风力发电场防雷接地工程方案
风力发电机组防雷设计方案
风力发电机组防雷设计方案深圳天顺科技有限公司曾中海一:概述风能是当前技术最成熟、最具备规模开发条件的可再生洁净能源。
风能发电为人与自然和谐发展提供了基础。
由于风力发电机组是在自然环境下工作,不可避免的会受到自然灾害的影响。
由于现代科学技术的迅猛发展,风力发电机组的单机容量越来越大,为了吸收更多能量,轮毂高度和叶轮直径随着增高,相对的也增加了被雷击的风险,雷击成了自然界中对风力发电机组安全运行危害最大的一种灾害。
雷电释放的巨大能量会造成风力发电机组叶片损坏、发电机绝缘击穿、控制元器件烧毁等。
我国沿海地区地形复杂,雷暴日较多,应充分重视雷击给风力风电机组和运行人员带来的巨大威胁。
例如,红海湾风电场建成投产至今发生了多次雷击事件,据统计,叶片被击中率达4%,其他通讯电器元件被击中率更高达20% 。
为了降低自然灾害带来的损失,必须充分了解它,并做出有针对性的防范措施。
二:风机对比介绍风电变速恒频风力发电系统,主要分为双馈式和直驱式。
双馈式风力发电系统由于其变流器容量(滑差功率)只占系统额定功率的30%左右,能较多地降低系统成本,因此双馈式系统受到了广泛的关注。
与双馈式相比,直驱式采用低速永磁同步发电机结构,无需齿轮箱,机械损耗小,运行效率高,维护成本低,但是,由于系统功率是全功率传输,系统中变流器造价昂贵,控制复杂(本文重点介绍直驱式风电系统雷电防护)。
直驱风力发电系统风轮与永磁同步发电机直接连接,无需升速齿轮箱。
首先将风能转化为频率和幅值变化的交流电,经过整流之后变为直流,然后经过三相逆变器变换为三相频率恒定的交流电连接到电网。
通过中间电力电子变化环节,对系统有功功率和无功功率进行控制,实现最大功率跟踪,最大效率利用风能。
直驱式风力发电系统中的电力电子变换电路(整流器和逆变器)可以有不同的拓扑结构(常见2种见图1、2)。
图1图2三:设计依据标准1、Germanischer Lloyd; Vorschriften und Richtlinien, Kapitel IV: Nichtmaritime Te chnik, Abschnitt 1: Richtlinie für die Zertifizierung von Windeenergieanlagen 《GL指导文件IV‐1风力发电系统》2、IEC 61400-24 Wind turbine generator systems –Part 24: Lightning protection《IEC61400‐24风力发电系统防雷保护》3、IEC 62305 Protection against lightning 《IEC62305雷电防护》《GL 指导文件》是风机安装、测试和认证的标准,该标准也包含了对风机雷电防护的具体要求,是风机防雷保护的基础性文件。
风力发电防雷工程施工方案
一、项目背景随着风力发电事业的快速发展,风力发电机组越来越多地应用于各种地形和气候条件,雷电灾害对风力发电机组的安全稳定运行造成严重威胁。
为提高风力发电机组防雷能力,确保发电设备安全可靠运行,特制定本风力发电防雷工程施工方案。
二、施工目标1. 提高风力发电机组防雷等级,降低雷击故障发生率;2. 确保施工质量,保证工程顺利进行;3. 按时完成施工任务,缩短停机时间。
三、施工范围1. 风力发电机组本体防雷;2. 风机塔筒及基础防雷;3. 风机平台及设备防雷;4. 风力发电场内其他设施防雷。
四、施工方法1. 风力发电机组本体防雷(1)在风力发电机组本体上安装避雷针,将雷电流引至地面;(2)在避雷针周围安装接地网,确保接地电阻符合要求;(3)对避雷针进行防腐处理,延长使用寿命。
2. 风机塔筒及基础防雷(1)在风机塔筒上安装避雷针,将雷电流引至地面;(2)在风机基础周围安装接地网,确保接地电阻符合要求;(3)对避雷针和接地网进行防腐处理。
3. 风机平台及设备防雷(1)在风机平台上安装避雷针,将雷电流引至地面;(2)在风机平台周围安装接地网,确保接地电阻符合要求;(3)对避雷针和接地网进行防腐处理。
4. 风力发电场内其他设施防雷(1)对风力发电场内其他设施(如电缆、变压器等)进行接地处理,确保接地电阻符合要求;(2)对风力发电场内其他设施进行防腐处理。
五、施工要求1. 施工前,对施工人员进行技术培训,确保施工人员掌握防雷施工技能;2. 施工过程中,严格按照施工图纸和规范进行操作;3. 施工过程中,加强施工现场安全管理,确保施工安全;4. 施工过程中,做好施工记录,确保施工质量;5. 施工完成后,进行防雷效果测试,确保防雷设施符合要求。
六、施工进度1. 施工前期准备:5天;2. 风力发电机组本体防雷施工:10天;3. 风机塔筒及基础防雷施工:15天;4. 风机平台及设备防雷施工:10天;5. 风力发电场内其他设施防雷施工:5天;6. 施工验收及测试:5天。
风电防雷接地设计方案
风电防雷接地设计方案1 风机的防雷特点电闪雷鸣释放的巨大能量,会造成风机叶片爆裂、电气绝缘击穿、自动化控制和通信元件烧毁…… 1.1 一般雷击率在年均10雷电日地区,建筑物高度h与一般雷击率n的关系见表1。
1.2 环境风力发电特点是:风机分散安置在旷野,大型风机叶片高点(轮毂高度加风轮半径)达60,70 m,易受雷击;风力发电机组的电气绝缘低(发电机电压690 V、大量使用自动化控制和通信元件)。
因此,就防雷来说,其环境远比常规发电机组的环境恶劣。
1.3 严重性风力发电机组是风电场的贵重设备,价格占风电工程投资60%以上。
若其遭受雷击(特别是叶片和发电机贵重部件遭受雷击),除了损失修复期间应该发电所得之外,还要负担受损部件的拆装和更新的巨大费用。
丹麦LM公司资料介绍:1994年,害损坏超过6%,修理费用估计至少1 500万克朗(当年丹麦装机540 MW,平均2.8万克朗/MW) 。
按LM公司估计,世界每年有1%,2%的转轮叶片受到雷电袭击。
叶片受雷击的损坏中,多数在叶尖是容易被修补的,但少数情况则要更换整个叶片。
雷击风机常常引起机电系统的过电压,造成风机自动化控制和通信元件的烧毁、发电机击穿、电气设备损坏等事故。
所以,雷害是威胁风机安全经济运行的严重问题。
2 叶片防雷研究雷击造成叶片损坏的机理是:雷电释放巨大能量,使叶片结构温度急剧升高,分解气体高温膨胀,压力上升造成爆裂破坏。
美国瞬变特性研究院用人工电晕发生器,在全复合材料的叶片做雷击试验,高电压、长电弧冲击(3(5 MV,20 kA)加在无防雷设置的叶片上,结论是叶片必须加装防雷装置。
TACKE公司设计了玻璃钢防雷叶片(图1),叶片顶端铆装一个不锈钢叶尖,用铜丝网贴在叶片两面,将叶尖与叶根连为一导电体。
铜丝网一方面可将叶尖的雷电引导至大地,也防止雷击叶片主体。
丹麦LM公司于1994年获得叶片防雷的科研项目,由丹麦能源部资助,包括丹麦研究院雷电专家、风机生产厂、工业保险业、风电场和商业组织在内,目的在于调查研究雷电导致叶片损害,开发安全耐用的防雷叶片。
风电避雷工程施工方案设计
随着风电行业的快速发展,风电项目遍布全国各地,其中避雷工程是风电项目安全运行的重要保障。
为保障风电场设备安全,降低雷击事故发生率,特制定本风电避雷工程施工方案。
二、工程概况1. 工程地点:某风电场2. 工程规模:风电场内共计安装100台风机,其中避雷针100根,接地网100套,避雷器100套。
三、施工方案设计1. 施工组织机构(1)项目经理:负责全面管理项目,确保工程进度、质量和安全;(2)技术负责人:负责技术指导和施工方案实施;(3)施工队长:负责施工队伍的管理和现场施工;(4)安全员:负责现场安全监督和事故处理。
2. 施工工艺(1)避雷针安装:根据设计要求,在风机塔筒上安装避雷针,确保避雷针与塔筒连接牢固;(2)接地网铺设:在风电场内铺设接地网,确保接地网与避雷针连接,形成良好的接地系统;(3)避雷器安装:在风机附近安装避雷器,确保避雷器与接地网连接,提高雷击防护能力。
3. 施工步骤(1)现场勘查:对风电场进行现场勘查,了解地形、地质、气候等条件,为施工提供依据;(2)材料准备:根据设计要求,准备避雷针、接地网、避雷器等材料;(3)施工准备:组织施工队伍,进行技术交底和安全教育;(4)避雷针安装:按照设计要求,在风机塔筒上安装避雷针,确保连接牢固;(5)接地网铺设:按照设计要求,在风电场内铺设接地网,确保与避雷针连接;(6)避雷器安装:按照设计要求,在风机附近安装避雷器,确保与接地网连接;(7)施工验收:对施工质量进行检查,确保符合设计要求。
四、施工质量控制1. 材料质量:严格按照设计要求,选用合格的材料;2. 施工质量:严格按照施工工艺进行施工,确保工程质量;3. 检查验收:对施工质量进行检查,确保符合设计要求。
五、施工安全措施1. 施工现场安全防护:设置安全警示标志,加强安全防护措施;2. 施工人员安全培训:对施工人员进行安全培训,提高安全意识;3. 施工现场安全监督:加强施工现场安全监督,及时发现和处理安全隐患。
风力电力站的接地和防雷解决方案
风力电力站的接地和防雷解决方案
风力电力站的接地和防雷问题解决
风机口及其输电设备的接地和防雷接地的要求:
风力电站的设备接地与防雷接地应该区分但又必须共用接地系统。
区分在于入地点之间的区分和选择。
共用接地在于地下部分的巧接和系统之间泄流与保护的功用关系
风力电站设备接地与防雷接地共用地网,其接地地阻为1欧姆以下。
地网布置适用双环行射线状,其外环与内环应间距应为内环到风机口的4倍。
其内环应根据风机口基础的深度确定,应大于基础深度的8-10倍,一般不低于12米。
外围射线布置根据土壤确定,不应低于4条,其长度为风机口到外环的2倍。
地网材料的要求:
水平接地体:5*50以上热镀锌扁钢或4*40以上铜条
垂直接地体:6*63以上热镀锌角钢或5*50以上铜包钢材料
为保证风力电站接地的长久效果,接地材料不适合采用降阻新型材料。
风力发电防雷接地施工方案
风力发电防雷接地施工方案1. 引言风力发电作为一种可再生的清洁能源,受到越来越多的关注和应用。
然而,在风力发电场建设过程中,由于风力发电机组的高度和立体结构,以及所处环境的复杂性,雷击是一个常见问题。
为了保护风力发电机组和相关设备不受雷击的影响,需采取合适的防雷接地施工方案。
本文将介绍一种风力发电防雷接地施工方案,以确保风力发电场的设备和人员的安全。
该方案主要包括以下几个方面:选择合适的接地材料、接地设计、接地电阻测试、施工要点等。
2. 接地材料选择接地材料的选择是防雷接地施工的基础,需要考虑材料的导电性能、耐腐蚀性能和耐久性等因素。
常用的接地材料包括铜、镀锌铁、铝等。
在风力发电场的防雷接地中,一般选择铜作为接地材料,因为铜具有导电性能好、抗腐蚀性能强的特点,适用于各种复杂环境。
3. 接地设计风力发电场的防雷接地设计需要考虑到多种因素,包括地质条件、设备排布、雷电活动频率等。
首先,需要确认接地点的选取。
接地点应选择在地势最低的位置,以确保雷电击中后电流能顺利通过地下传导,减少对设备的影响。
其次,需要合理布置接地装置。
根据设备排布和雷电活动频率,合理安排接地装置,使其能够覆盖整个风力发电场,并确保有效接地。
最后,需要合理规划接地导线的走向和长度。
接地导线应尽量短,减少电阻,提高接地效果。
同时,接地导线的走向也应尽量避免与其他电缆和设备产生干扰。
4. 接地电阻测试接地电阻是评估接地效果的重要指标,需要进行定期测试和检查。
常用的接地电阻测试方法包括三线法和四线法。
其中,三线法适用于小型接地,四线法适用于大型接地。
测试结果可以通过比较测试前后的接地电阻值,来评估接地的有效性。
在测试过程中,需要确保接地导线与测试仪器的连接良好,并排除其他因素对测试结果的干扰。
测试结果应记录并保存,以备后续参考和对比。
5. 施工要点在风力发电防雷接地施工过程中,需要注意以下几个要点:•施工前需进行详细的方案设计和风险评估,确保施工过程的安全性。
风力发电场防雷接地施工方案的设计与实践
风力发电场防雷接地施工方案的设计与实践一、引言风力发电场是当今绿色能源发展的重要组成部分,而在发电场的建设过程中,必须考虑到防雷问题。
本文将介绍风力发电场防雷接地施工方案的设计与实践,以确保发电设备的安全和稳定运行。
二、风力发电场防雷接地施工方案设计1. 风力发电场的特点风力发电场分布广泛且高度暴露,容易受到雷击的影响。
因此,防雷接地施工方案设计必须考虑到风力发电场的特点,包括地形、气候等因素。
2. 地面接地设计地面接地是防雷接地施工方案的关键部分。
在设计中应考虑地下土壤的电阻率、风力发电机组的功率等因素,以确保接地系统具有足够的导电性能。
3. 避雷针设计风力发电场通常需要安装避雷针,以吸引雷电击中。
在设计中,应考虑到风力发电场的高度和外形,合理确定避雷针的位置和数量。
4. 绝缘设计在设计防雷接地方案时,还需考虑到设备的绝缘设计。
通过合理的接地设计,可以减少雷击对设备的影响,确保风力发电机组的安全运行。
三、风力发电场防雷接地施工方案实践1. 施工材料的选择在实际施工过程中,应选择高质量的导电材料,包括铜材、铝材等,以确保接地系统的导电性能。
2. 施工操作规范施工操作必须符合相关的规范和标准,确保施工过程中的安全性。
施工人员应经过专业培训,并持有相关资质证书。
3. 施工现场管理在风力发电场的防雷接地施工过程中,应加强现场管理,确保施工进度、安全和质量。
定期检查施工设备和材料的质量,及时处理施工中的问题和隐患。
4. 施工后的测试与维护在防雷接地施工完成后,应进行必要的测试,以验证接地系统的有效性。
并制定相应的维护计划,定期检查和保养接地系统,确保其长期有效。
四、结论风力发电场防雷接地施工方案的设计与实践是保障发电设备安全运行的关键。
通过合理的施工方案设计,选择优质的材料,规范的施工操作和有效的维护,可以提高风力发电场的抗雷能力,保障设备的安全性和稳定性。
在未来的发展中,应进一步加强对风力发电场防雷技术的研究和改进,不断提高防雷接地施工方案的效果,为风力发电行业的可持续发展做出贡献。
新能源防雷接地及防雷工程完整方案
新能源防雷接地及防雷工程完整方案一、引言随着全球对可再生能源需求的增加,新能源领域如风能、太阳能、地热能等逐渐成为能源发展的主力军。
然而,由于∙这些新能源系统常常位于开放环境中,宙出成为其面临的主要自然灾害之一。
有效的防笛接地系统不仅能够保障新能源设备的安全运行,还能延长其使用寿命,提高经济效益。
地凯将详细介绍新能源防需的应用、原理、行业解决方案,并提供具体的参数和施工方案。
二、新能源防雷的应用1.风力发电风力发电系统通常建在开阔地带或海上,塔架高度较高,易受雷电袭击、雷击可能导致风力发电机的叶片、电气设备、控制系统等损坏。
为此,风力发电系统需要采用有效的防宙措施,包括防雷接地、宙电流分潦等.2.太阳能光伏发电太阳能光伏电站一般布置在开阔地带,光伏组件和逆变潺是雷击的主要目标。
雷击会引起光伏组件的热效应、电压波动,甚至烧毁逆变潜。
防雷接地系统可以有效保护光伏电站免受雷电损害.3.地热能地热能系统主要包括地热井和发电设备。
虽然地热井本身不易受到雷击,但其附网设备如控制系统、输电线路等仍需要防雷保护。
三、地凯科技新能源防雷接地的原理1.雷电的形成与危害窃电是大气中一种常见的放电现象,其电压可达数百万伏,电流可达数十万安培。
雷电袭击新能源系统后,可能通过直击、感应雷、电涌等形式对设备造成破坏.2.防雷的基本原理防雷的基本原理是通过科学的设计,将雷电流引导至大地,避免其对设备的苴接和间接破坏。
具体措施包括:接闪器:用来吸引雷电潦,如避雷针、避宙线等。
引下线:聘雷电流从接闪器引导至接地系统。
接地装置:将雷电流放流到大地,常见形式有接地极、接地网等。
3.接地系统的设计原则接地系统的设计需满足以下原则:低电阻:确保雷电流迅速泄放,接地电阻一般要求小于10欧姆。
耐久性:接地装置应具备耐腐蚀、耐高温等特点,保证长期使用。
等电位连接:将系统中的各金网部分通过等电位连接,防止电位差造成设备损坏。
四、地凯科技新能源防窗行业解决方案1.风力发电防雷解决方案(I)叶片防雷风力发电机的叶片是易受雷击的部分,叶片防宙一般采用内置导电路径,将雷电流引导至塔架,再通过塔架的引下线引至接地系统。
风电场防雷接地施工工法
风电场风机基础防雷接地工法(三门峡渑池荆庄100MW风电项目)一、前言风能作为一种清洁的可再生能源,越来越受到世界各国的重视。
因此风力发电也因之崛起,由于它属于可再生能源,为人与自然和谐发展提供了基础,而且不像火电、核电、水电会造成环境问题,所以符合社会可持续发展对能源的要求,所以,风力发电已在我国达到了举足轻重的地位。
风力发电场广泛随着社会经济的发展,建设量也持续增加。
然而,风力发电机组是在空旷、外露的的环境下工作,不可避免的会遭受到直接雷击。
由于风电技术的迅速发展,风力发电机组的容量也越来越大,轮毂高度100米,叶片长度68米、即最高点高度约168米的风机,在雷雨天气时极易遭受直接雷击。
雷击是自然界中对风力发电机组安全运行危害最大的一种灾害,雷电释放的巨大能量会造成风力发电机组叶片损坏、发电机绝缘击穿、控制元器件烧毁等。
这种情况下,防雷接地系统问世。
风机的防雷是一个综合性的防雷工程,防雷设计的到位与否,直接关系到风机在雷雨天气时能否正常工作,并且确保风机内的各种设备不受损害。
为保证风力发电机组的正常、安全使用,因此风机基础的防雷接地施工技术成为重中之重。
二、工法特点2.1施工工序衔接紧密,人员分工详细,各负其责,互相协作,既能确保工程质量,又可以提高工作效率。
2.2该工法易于掌握,施工方便,且满足设计要求。
三、适用范围本工法适用于风力发电机组基础、变电站防雷接地装置施工作业。
四、工艺原理该工法根据流水法施工原理,结合接地网施工特点,科学合理安排施工工序,将整个施工过程分为:(1)接地网测量放线;(2)接地沟开挖;(3)敷设接地扁钢与垂直接地极;(4)接地扁钢之间连接与垂直接地极连接;(5)接地扁钢涂刷防腐、防锈材料;(6)检查验收合格;(7)接地沟回填;(8)检测接地电阻值;(9)检测接地电阻值是否≤4Ω,如小于该步骤结束进入下到施工工序,如>4Ω需放置接地模块。
九个工序,按顺序施工,当上一道工序完成一定工作量后,同时开始下一道工序施工。
风力发电机组防雷接地施工专项方案
目录1.编制目的 (2)2.风电厂地貌及接地电阻要求 (2)3.编制依据 (3)4.防雷接地系统 (3)4.1总接地网 (3)4.2风力发电机组接地布置 (3)4.3集电线路铁塔接地型式 (4)5.接地材料 (6)5.1材料选择 (6)5.2材质要求 (6)6.质量保证措施 (6)7.安全保证措施 (6)防雷接地施工专项方案1.编制目的目前,风力发电被称为明日世界的能源。
由于它属于可再生能源,为人与自然和谐发展提供了基础,而且不像火电、核电、水电会造成环境问题,所以符合社会可持续发展对能源的要求。
所以,风力发电已在我国达到了举足轻重的地位。
然而,风力发电机组是在空旷、自然、外露的环境下工作,不可避免的会遭受到直接雷击。
由于现代科学技术的迅猛发展,风力发电机组的单机容量越来越大。
主体高度约80米、叶片长度约45米、即最高点高度约为120米的风机,在雷雨天气时极易遭受直接雷击。
雷击是自然界中对风力发电机组安全运行危害最大的一种灾害,雷电释放的巨大能量会造成风力发电机组叶片损坏、发电机绝缘击穿、控制元器件烧毁等。
风机的防雷是一个综合性的防雷工程,防雷设计的到位与否,直接关系到风机在雷雨天气时能否正常工作,并且确保风机内的各种设备不受损害。
为保证风力发电机组的正常、安全使用,特编制此方案。
2.风电厂地貌及接地电阻要求甄家湾风电场位于河北张家口蔚县地区,风力发电机组功率2000KW。
此地,土壤电阻率比较高,超过450Ω.m,加之有岩石的存在,造成不同深度的土壤电阻率分布不均匀。
风机基础占地面积为9.8*9.8π,距其17.5m处有一台箱式变压器,再远处亦是35KV集电线路终端铁塔。
为保证风电场不遭受雷击而正常发电运行,要求风力发电机组的接地电阻值≤3.5Ω,35KV集电线路铁塔的接地电阻值详见接地装置数据表。
3.编制依据(1)施工招标文件及相关施工图;(2)国家、行业及自治区现行的有关工程建设标准、规范、规程及相关的法律、法规,具体如下:《电气装置安装工程接地装置施工及验收规范》GBJ50242—2002 《风力发电场项目建设工程验收规范》DLT5191-20044.防雷接地系统4.1总接地网图1、风机与升压变接地网布置图4.2风力发电机组接地布置图2、风机接地布置图4.3集电线路铁塔接地型式铁塔接地施工参照表1以及相关施工图纸。
风力发电站防雷设计
风力发电站防雷设计一、防雷概述雷击防护的基本原理雷击防护:就是通过合理、有效的手段将雷电流的能量尽可能的引入到大地,是疏导,而不是堵雷或消雷。
正常采用的方法是采用提前放电避雷针或避雷针塔防护。
避雷针(或避雷带、避雷网、避雷针塔)、引下线和智能接地系统构成外部防雷系统,主要是为了保护建筑物免受雷击引起火灾事故及人身安全事故;完整的防雷还包括内部防雷系统则是防止雷电和其它形式的过电压侵入设备中造成损坏,这是外部防雷系统无法保证的,为了实现内部避雷,需对建筑物进出各保护区的电缆、金属管道等安装过电压保护器进行保护并良好接地。
A、多级分级(类)保护原则:即根据电气、微电子设备的不同功能及不同受保护程序和所属保护层确定防护要点作分类保护;根据雷电和操作瞬间过电压危害的可能通道从电源线到数据通信线路都应做多级层保护。
B、外部无源保护:在0级保护区即外部作无源保护,主要有提前放电避雷针(网、线、带)和接地装置(接地线、地极)。
保护原理:当雷云放电接近地面时,它使地面电场发生畸变。
在避雷针(线)顶部,形成局部电场强度畸变,以影响雷电先导放电的发展方向,引导雷电向避雷针(线)放电,再通过接地引下线,接地装置将雷电流引入大地,从而使被保护物免受雷击。
这是人们长期实践证明的有效的防直击雷的方法。
然而,以往一般认为用避雷针架空得越高越好(一般只按45度角考虑),且使用被动放电式避雷针,其反应速度差,保护的范围小以及导通量小。
根据现代化发展的要求,避雷针应选择提前放电主动式的防雷装置,并且应该从30度、45度、60度等不同角度考虑,安装,以做到对各种雷击的防护,增大保护范围以及增加导通量。
建筑物的所有外露金属构件(管道),都应与防雷网(带,线)良好连接。
风能是当前技术最成熟、最具备规模开发条件的可再生洁净能源。
风能发电为人与自然和谐发展提供了基础。
由于风力发电机组是在自然环境下工作,不可避免的会受到自然灾害的影响。
由于现代科学技术的迅猛发展,风力发电机组的单机容量越来越大,为了吸收更多能量,轮毂高度和叶轮直径随着增高,相对的也增加了被雷击的风险,雷击成了自然界中对风力发电机组安全运行危害最大的一种灾害,并且雷击对风电机组造成的危害主要有直击雷、感应雷、雷电波侵入、地电位反击等形式。
风电工程防雷接地设计实例
风电工程防雷接地设计实例随着清洁能源的推广和使用,风电工程作为一种重要的可再生能源装置得到了广泛的应用和发展。
然而,在风电工程的建设和运营过程中,雷击是一种常见的自然灾害,对设备和人员产生巨大的威胁。
因此,风电工程的防雷接地设计显得尤为重要。
下面以一个风电工程项目为例,详细介绍其防雷接地设计。
该风电工程项目位于山区,占地面积较大,可容纳多个大型风力发电机组。
项目设计总功率为120MW,每个风力发电机组的容量为2MW。
根据当地的气象数据和设备特性,设计需满足以下防雷接地设计要求:1.保证风电工程各个设备的安全运行,抵御雷击对设备的直接打击和感应效应;2.确保风电工程人员的人身安全;3.减少雷击对周边环境的影响,防止火灾和其他次生灾害的发生。
基于以上要求,该项目的防雷接地设计分为以下几个步骤:1.确定主要设备的防雷接地方案:风力发电机组、变电站等重要设备需要一套独立的防雷接地系统。
采用垂直接地和水平接地相结合的方式,确保设备能够迅速将雷击电流导入地下,并有效地分散雷击能量。
同时,在设备周围布置防雷地网,增加接地面积,提高接地效果。
2.设计风电机组的防雷接地系统:风力发电机组通常由塔身和发电机组成。
塔身可以起到防雷作用,因为其高度可提供更好的侵入角度,缓冲雷电对风机的直接影响。
发电机组内部需要设计良好的接地系统,确保雷电电流能够迅速地流入地下。
3.设计变电站的防雷接地系统:变电站是风力发电工程的重要环节,需要采取有效的防雷接地措施。
在设计过程中,应遵循规范和标准,确保变电站内部设备的接地电阻小于规定值。
同时,设计接地涉及的体形和电位等指标,以满足电磁兼容要求。
4.布置雷击预警系统:在风电工程项目周边布置雷击预警系统,及时监测雷电活动,并通过声音警报和移动设备提醒工作人员注意。
这样可以在雷电活动开始前更早地采取相应的应对措施,确保人身安全。
5.定期检验和维护:风电工程的防雷接地系统需要定期检验,确保其正常运行和有效地防止雷击。
风电场全站防雷及接地装置安装施工方案
XX县X山风电场工程全站防雷及接地装置安装作业指导书批准审核编制XX电力建设有限公司目录1、施工范围2、编制依据2.1 施工图号 2.2 标准规范3、施工准备3.1 材料设备 3.2 施工机械 3.3 技术资料 3.4 计量器具及特殊工具4、施工工序4.1 流程 4.2 工序方法5、控制点6、工艺质量标准及验收级别7、安全技术措施8、环境保护措施附表:施工安全、技术交底记录本作业指导书适用于XX县X山风电场48MW机组全站防雷接地及电气设备接地安装。
2.编制依据2.1.1:XX勘测设计研究院图纸:全站接地装置安装2.2标准规范2.2.1标准:《电气装置安装工程质量检验及评定规程》(2002)DL/T5161.5电缆线路施工质量检验。
2.2.2 强条中华人民共和国《工程建设标准强制性条文》(电力工程部分)(2009年版)火力发电工程建设标准强制性条文执行表格——电气分册(2009版)2.2.2规范:《电气装置安装工程接地装置施工及验收规范》GB50169—2006。
2.2.3安规:《电力建设安全工作规程》(火力发电厂部分) DL 5009.1-2002。
国家电网公司《基建安全管理规定》2010版3.施工准备3.1 作业条件要求及技术要求1)主接地网施工区域开挖必须符合要求2)施工图纸必须完善并通过审核,相关的技术资料准备齐全3)材料齐全并经过验收合格,需加工制作的部件准备齐全4)施工人员经过技术培训考核合格,并通过安全考核合格5)施工人员必须熟悉施工图纸、有关技术资料和施工现场情况,了解土建施工情况进度6)特殊工种人员应持证上岗(焊工、电工)7)材料材质、型号、规格与图纸设计一致3.2 施工主要机工具主要机工具有电焊机2套,火焊设备1套,电动切割机2台,其他电工工具5套,计量器具有钢板尺1m、皮尺100m、卷尺3m等。
3.3 人力组织劳动力组织:根据现场情况,图纸、土建交安情况,先组织3~5人分2个组进行施工。
风电工程防雷接地设计实例
风电工程防雷接地设计实例10.1风力发电机组在本节中,编者将以某厂家3MW的风力发电机组为例,对风力发电机组防雷接地设计作深入介绍。
10.1.1风力发电机组的泄流途径风力发电机接地系统的构建应按照IEC/TR61400-24实施。
根据IEC/TR61400-24建议,风电机组所有的系统和金属部件必须被连接在一起并连接到一个低电阻的接地路径上。
整机接地系统原理如图10-1所示:图10-1 整机防雷接地图机组的泄流通道是机组整体外部泄流方式。
风力发电机组的叶片是整机中最易接闪的部件,从叶片接闪电流到引下线,到轮毂外围滑动装置(变桨接地碳刷),到主轴与轮榖旋转接触的滑动接地碳刷,到偏航尾部滑动碳刷,再到达塔筒再接入接地系统散流,完全避开风机主要大部件,如齿轮箱、发电机等,相比传统风机的内部泄流方式较优,降低和减少雷击对风力发电机组造成的设备损坏及影响保护了风电机组的安全可靠运行。
图10-2整机雷电泄流通道同时,机组通过在每个泄流环节采取完善的等电位措施达到等电位保护设备部件并迅速泄放雷电流的目的。
10.1.2风机直击雷防护本小节将重点介绍该风电机组的直击雷保护系统中的接闪系统和引下线系统。
该风力发电机组建立的直击雷外部防雷系统示意图如图10-3。
SPD )SPD图10-3 风电机组防雷系统1.接闪系统接闪系统包括金属叶片尖及旋转桨叶中的雷电接受器、轮毂与主轴的滑动连接装置。
(1)叶片接闪器设计对于叶片的接闪器设计,叶尖和叶中共设四组接闪器。
在叶尖设有一组接闪器,叶中设有三组接闪器。
采用φ60mm的铜质材料制作的圆盘形接闪器,根部通过叶片固定法兰固定在叶尖,底部连接法兰通过桁架上敷设的引下线与叶片根部M36的法兰栓相连,组成叶片的接闪及导雷通道。
叶片通过连接在M36的接地线和轮毂内部的碳刷(详见图10-4碳刷图纸)一起实现与轮毂的可靠连接,将雷电流引至金属轮毂,从而将叶片和轮毂形成一个整体的泄放通道。
图10-4 防雷碳刷图10-5 叶尖接闪器图10-6 叶中接闪器布置图10-7 接闪器引下线和法兰栓连接图引下线通过70mm2/12镀锡铜冲压终端与端面带螺纹的交叉螺母连接,如上图所示。
华润东陵风电场防雷接地施工方案 2
目录1 升压站接地的施工要求 (1)2 编制依据 (2)3 施工流程 (2)4 施工准备 (2)5 主要施工方法 (2)6 接地装置质量要求 (5)7 安全措施 (6)一、变电站接地的施工要求1.1 站区接地网由水平人工接地网,和与之可靠连接的自然接地体(各种建筑物基础及钢筋等金属构件)组成。
主接地网水平接地体埋设深度为0.8m。
1.2 接地线引上预留引出,露头300mm,供主变、GIS封闭母线桥外壳,SVG户外装置等电器设备或其基础接地引接。
1.3 扁钢搭焊长度应不小于其宽度的两倍并三面焊接;所有焊接点均应经防腐处理。
地面以上的焊接处,刷银粉漆;地面以下及电缆沟内接地线的焊接处,刷防腐漆。
1.4 引出与各电缆沟内明敷接地线可靠连接。
1.5 电缆外皮,电缆支架,各种金属管道,灯杆,金属构件及预埋设备预埋件都应该可靠接地。
1.6 独立避雷针的接地装置与接地网地中距离应不小于3m。
1.7 电缆外皮不能用作接地引下线。
1.8 设备的接地引下线与地网可靠的焊接在一起,焊口要刷防锈漆进行处理。
1.9 暗敷接地镀铜钢绞线与构筑物基础钢筋或设备箱体外壳可靠连接。
1.10 对站内变压器中性点、充油设备和避雷器,要实行“双接地”,并与地网的两个不同点相连接,每根接地引下线均应符合热稳定的要求;电气主设备为单相架构式或落地式时,每相应单独接地,当为三相架构式时,可每组只设两根引下线,与地网的两个不同点相连接,每根接地引下线均应符合热稳定的要求。
1.11 垂直接地极之间的距离应大约5m。
1.12 根据需要,应在适当的位置,焊接接地螺栓,以方便在以后的运行和检修工作时供连接临时接地线用。
1.13 卫生间须做局部等电位连接1.14 二次铜排应确保一点接地。
1.15 变电站内的接地网要严格按设计图纸放线、定位,开挖水平接地沟槽1.16 接地铜排敷设于讲点地板下。
铜排接地网与主接地网采取一点连接,由统一点引出两根接地线与主网相连。
风电场接地工程施工方案
风电场接地工程施工方案一、施工背景随着风电场的迅速发展,风电场接地工程的施工工作也变得越来越重要。
风电场接地系统是一种重要的设备,它能够有效地降低风电设备运行时的接地电阻,保证设备的安全可靠运行。
因此,风电场接地工程的施工工作需要具有很高的专业水平和严密的规范要求,以确保风电场接地系统的效果和稳定性。
二、施工目标1. 确保风电场接地系统的安全可靠运行。
2. 减小接地电阻,提高接地系统的效果和稳定性。
3. 保护风电设备和人员的安全。
三、施工方案1. 施工前准备在进行风电场接地工程的施工工作之前,需要对施工区域进行仔细的勘察和评估,了解当地的地质、水文等情况,以便制定出合理的施工方案。
同时,还需要对所需的材料、设备进行清点和检查,确保施工工作的顺利进行。
施工前准备的主要工作包括:(1) 勘察评估:对施工区域进行地质、水文等勘察评估,了解当地的地质结构和水文环境,从而为施工工作提供参考依据。
(2) 材料设备:对所需的材料和设备进行清点和检查,确保施工需要的材料和设备齐全和完好。
(3) 现场布置:对施工现场进行布置,确保施工的安全和顺利进行。
2. 施工流程(1) 接地桩的打桩施工a. 接地桩的布置:根据设计要求,在风电场布设接地桩的位置,确定桩位并标明桩号,进行测量和调整。
b. 打桩施工:根据设计要求和现场实际情况,选择适当的打桩设备和方法进行接地桩的打桩施工。
c. 桩身检测:对打入的接地桩进行桩身检测,确保桩身的质量和稳定性。
(2) 接地网的铺设施工a. 接地网的布置:根据设计要求在风电场内布设接地网,确定接地网的位置和布置方式。
b. 接地网的铺设:选用合适的材料和工艺进行接地网的铺设,确保接地网的质量和效果。
c. 接地电阻测试:对接地网进行电阻测试,确保接地系统的效果和稳定性。
3. 施工技术要点(1) 接地桩的打桩技术:选用适当的打桩设备和方法进行接地桩的打桩施工,确保桩身的质量和稳定性。
(2) 接地网的铺设技术:选用合适的材料和工艺进行接地网的铺设,确保接地网的质量和效果。
风力发电场防雷接地施工方案
风力发电场防雷接地施工方案一、背景介绍风力发电作为新兴的清洁能源形式,在近年来得到了广泛的推广和应用。
然而,随着风电设施规模的不断扩大,雷电对风力发电场的危害日益凸显。
为了保障风力发电场设备的正常运行和人员的安全,建立合理有效的防雷接地施工方案势在必行。
二、施工目标本防雷接地施工方案旨在实现以下目标:1. 提供合理的防雷接地方式,有效阻止雷电对风力发电设备的损害。
2. 保护风力发电场的工作人员免受雷击伤害。
3. 确保风力发电场设备的正常运行,减少设备损坏和停工维修时间。
三、防雷接地施工方案根据风力发电场的特点和雷电防护的原则,本方案提出以下防雷接地施工方案:1. 防雷接地设施选址防雷接地设施选址需满足以下条件:- 避免设施受到周边建筑物和树木的阻挡,确保接地设施能够充分暴露于空气中。
- 选址处地质条件应稳定,避免存在湿地、泥泞等不利于接地效果的地方。
2. 接地棍的设计与安装接地棍是防雷接地系统的关键组成部分,其设计与安装需要遵循以下原则:- 接地棍的材料应选用导电性能好且耐腐蚀的铜材,确保接地效果稳定可靠。
- 接地棍的长度应根据设计需求和地质条件合理确定,通常要求接地棍埋入地下至少2米以上,并通过焊接、螺栓等方式与风力发电场设备连接。
- 接地棍的安装位置要靠近主要设备,同时考虑布置合理性和施工便捷性。
3. 接地线的布设接地线的布设需要注意以下要点:- 接地线选用耐候、耐腐蚀的铜材料,尽量减少导电电阻,确保接地的连续性和稳定性。
- 接地线的长度应尽量缩短,减少电阻的影响。
同时,要避免接地线与其他电线、电缆等设备发生干扰。
- 接地线的规划应符合相关安全规范和要求,合理划定接地范围。
4. 检测和维护防雷接地设施的检测和维护是保证施工方案有效的重要环节:- 定期对防雷接地设施进行检测,确保接地的连续性和稳定性。
- 如发现接地设施损坏或存在问题,应及时采取修复措施,确保设施的正常运行。
- 对防雷接地设施进行维护,及时清理接地设施周围的杂物和堆积物,保持设施表面的导电性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
风力发电场
防雷接地工程方案
一、概述
目前,风力发电被称为明日世界的能源。
由于它属于可再生能源,为人与自然和谐发展提供了基础。
而且不像火电、核电、水电会造成环境问题,所以符合社会可持续发展对能源的要求。
所以,风力发电已在我国达到了举足轻重的地位。
然而,风力发电机组是在空旷、自然、外露的环境下工作,不可避免的会遭受到直接雷击。
由于现代科学技术的迅猛发展,风力发电机组的单机容量越来越大。
主体高度约80米、叶片长度约40米、即最高点高度约为120米的风机,在雷雨天气时极易遭受直接雷击。
它是自然界中对风力发电机组安全运行危害最大的一种灾害。
雷电释放的巨大能量会造成风力发电机组叶片损坏、发电机绝缘击穿、控制元器件烧毁等。
风机的防雷是一个综合性的防雷工程,防雷设计的到位与否,直接关系到风机在雷雨天气时能否正常工作,并且确保风机内的各种设备不受损害。
本方案针对风力发电机组的防雷接地。
二、风力发电厂地貌及接地电阻要求
风力发电场位于河北张家口地区,风力发电功率为1500kw。
土壤电阻率比较高,超过450Ω.m。
由于有岩石的存在,造成不同深度的土壤电阻率分布不均匀。
风机接地电阻要求做到4欧姆。
风机基础占地面积大约14×14平方米,距其10m处有一台箱式变压器,其接地电阻值的要求为4欧姆。
三、接地材料的选择及地网设计
接地是指将风机的外壳与大地连接一起,以便在正常运行、事故接地和遭受雷击的情况下,将其接地点的电位固定在允许范围内,从而保证人身和设备安全。
风机的接地系统是风机防雷保护系统中一个关键环节。
在地网开挖面积有限、土壤电阻率较高的环境条件下,要能达到上面的技术要求,用传统常规
的角钢、扁铁等接地材料进行施工是非常困难的。
本方案建议采用新型的接地材料:高效低阻接地极。
下面介绍常规接地材料与新型高效接地模块的使用。
1、常规接地材料
一般来说,水平接地体采用不小于40×4mm 的热镀锌扁钢,垂直接地体采用不小于50×50×5mm的角钢,每根角钢的长度大约-3米。
考虑到减少接地体的屏蔽效应,垂直接地体的间距一般为其长度的至2 倍,即为5-6米。
单根垂直接地体的接地电阻Rg,可按下式计算:
在一定的土壤电阻率下,为达到要求的接地电阻值,通常需要若干根垂直接地体。
根据上式计算,在土壤电阻率为450Ω.M的情况下,接地电阻按4Ω考虑,所需3米长的角钢大约也要60多条。
占地面积大约42米×42米。
由此可以看出,以现在的风机地貌、可开挖面积来看,用传统的接地材料想达到接地电阻值的要求是非常困难的。
此外,传统金属接地体的接地电阻随气候(土壤潮湿程度)的变化会发生大幅度的起伏,随着腐蚀的加剧地阻也会不断增大。
2、梅花型高效低阻接地体
四川铭士电子科技有限公司是专业生产防雷设备的单位,其生产的高效低阻接地体是一种以非金属材料为主的接地体,由导电性、稳定性较好的非金属矿物质和电解物质组成,它不含对人体有害和污染水源、土壤、环境的有害物质。
其特殊的形状增大了接地体本身的散流面积,减小了接地体与土壤之间的接触电阻,接地电阻值低。
其优良的吸湿保湿及改善周围土壤导电特性的能力,使接地电阻不断减小而趋于长期稳定。
因具有抗盐、酸、碱腐蚀的能力,使
用寿命长达50年。
特别适用于沙漠、戈壁、盐碱地、高原和常年冻土带等恶劣地质条件的地区。
梅花型高效低阻接地体的技术指标见下表
序号产品型号外形尺寸mm 质量kg
室温下
电阻率Ω.m
工频
接地电阻Ω
估算参考式
3 MSD-ⅢФ260×1000 52-5
4 ≤1 4 ρ
单根梅花型接地体的接地电阻Rg,可按下式计算:
在一定的土壤电阻率下,为达到要求的接地电阻值,通常需要若干根梅花型接地体。
接地体的间距不小于4米。
根据上式计算,在土壤电阻率为450Ω.M的情况下,接地电阻按4Ω考虑,所需梅花型高效低阻接地体25多块。
占地面积大约16米×16米。
通过以上计算可以看出,采用梅花型高效低阻接地体,所需数量、占地面积远比传统材料少。
四、技术经济比较
通过以上计算可以看出,采用梅花型高效低阻接地体,所需数量、占地面积远比传统材料少。
1、占地面积
(1)在一般条件下(ρ≤100Ωm)使用金属接地材料,在变电站占地面积内一般
均可达到接地电阻要求。
(2)在ρ≥500Ωm时,由公式Rj=ρ/√s可知,此时土壤电阻率ρ为常值,
若要降低Rj,只有增大√s,此时占地面积S将急剧增大,表现为外接多个外引地网,征地费用大幅增加,总费用剧增,显然是不可取的解决办法。
若在原场地上大规模换土,更需动用几千至几万方粘土,其总费用更是惊人。
(3)采用低电阻接地模块作垂直接地极时:
“低电阻接地模块”采用了一系列降阻技术。
首先降低接地极与土壤之间的表面接触电阻,同时成倍增加了接地体的散流面积。
由于接地体本身含有丰富的离子,又具有吸湿保湿特性,采用电子十离子导电的散流方式,大大优于金属的电子导电的散流方式。
尤其是在高土壤电阻率时,这种工作方式更是大幅度提高了电流的散流效果。
采用低电阻接地模块一般情况下均能在变电站本身占地面积内达到接地电阻要求。
2、两种接地材料的对比
以目前钢铁材料市场的价格,不考虑运输及施工费用,角钢的材料总费用大约是接地模块的1/3~1/2。
但角钢的施工面积却是接地模块的7倍,即用角钢的施工费要远远超过高效接地体。
因此从总成本上看,采用高效低阻接地体的总成本会略高一些,但其所需的场地却要小的多。
3、腐蚀和寿命问题
由设计手册可知扁钢的腐蚀速度为~年,在酸碱度大的地区腐蚀速度更快,这样在变电站工作几年后,由于扁钢表面已腐蚀,散流时接触电阻迅速增大,整个地网的接地电阻值将逐渐增大。
同时变电站由于工频泄放的问题,进一步加速了扁钢的腐蚀速度。
低电阻接地模块采用的是导电性能优良的非金属材料,金属极芯和富含电解质的材料制成的。
外层是非金属材料,金属极芯采用的是不锈钢(可达五十年寿命),抗腐蚀能力极强,腐蚀速度极低,可忽略不计。
4、污染
低电阻接地模块由于材料与工艺的原因,无任何污染,同时又有很强的抗污染抗腐蚀能力。
扁钢则受污染的影响很大。
6、费用
就单个材料而言,低电阻接地模块的费用要高些,但就高土壤电阻率的情况下,工程总费用和全寿命期费用则要明显低于用扁钢的地网。
五、地网施工图。