第二章高频电路基础

合集下载

高频复习题 第2章 高频电路基础

高频复习题 第2章 高频电路基础

第2章高频电路基础2.1 自测题2.1-1 LC回路串联谐振时,回路最小,且为纯。

2.1-2 LC回路并联谐振时,回路最大,且为纯。

2.1-3 信噪比等于与之比。

2.1-4 噪声系数等于与之比。

2.2 思考题2.2-1 LC回路串联谐振的特点是什么?2.2-2 LC回路并联谐振的特点是什么?2.2-3.电阻热噪声的大小如何描述?噪声电压均方值与功率谱密度是什么关系?电压均方值中的B n 是指什么带宽?2.2-4.有两台精度相同的测量仪器,测同一个电阻的热噪声电压,测量结果却不相同,分别为5μV和10μV,这是为什么?2.2-5.噪声系数有哪些表示和计算方法?2.2-6.何谓额定功率、额定功率增益?它们与实际输出功率、实际功率增益有何差别?2.3 习题2.3-1已知LC串联谐振回路的f o=2.5MHz,C=100PF,谐振时电阻r=5Ω,试求:L和Q o。

2.3-2已知LC并联谐振回路在f=30MHz时测得电感L=1μH, Q o=100。

求谐振频率f o=30MHz时的C和并联谐振电阻R p。

2.3-3已知LCR并联谐振回路,谐振频率f o为10MHz。

在f=10MHz时,测得电感L=3μH, Q o=100,并联电阻R=10KΩ。

试求回路谐振时的电容C,谐振电阻R p和回路的有载品质因数。

2.3-4在f=10MHz时测得某电感线图的L=3μH, Q o=80。

试求L的串联的等效电阻r o若等效为并联时,g=?2.3-5电路如图2.3-5,参数如下:f o=30MHz,C=20PF,L13的Qo=60,N12=6,N23=4,N45=3。

R1=10KΩ,R g =2.5KΩ,R L=830Ω,C g=9PF,C L=12PF。

求L13、Q L。

图2.3-5图2.3-62.3-6电路如图2.3-6所示,已知L=0.8μH,Q o=100,C1=25PF,C2=15PF,C i =5PF,R i=10KΩ,R L=5KΩ。

高频电子线路二版第二章.高频电路基础

高频电子线路二版第二章.高频电路基础

次级回路自阻抗
M2
Zf1 Z22
初级回路自阻抗
M2
Zf2
Z11
Z22 次级回路自阻抗
Z11 初级回路自阻抗
广义失谐量: 0L ( 0 ) 2Q
r 0
0
耦合因子: A Q
临界耦合 A 1
欠耦合 A<1
过耦合 A>1
理相
1
0.7
实际
0.1
0
ω0
ω
② 选择性: 表征了对无用信号的抑制能力,
Q值越高,曲线越陡峭,选择性越好,但通频
带越窄。
③ 理想回路:幅频特性在通频带内应完全
平坦。是一个矩型.
矩型系数: 表征实际幅频特性与理想幅
频特性接近的程度.谐振曲线下降为谐振值( f0 处 )的0.1时对应的频带宽度B0.1与通频带B0.707 之比:
+
IS
RS
C
N1 N2 RL
+
R'L
IS
RS
C
L
分析:
由 N1:N2=1:n ,得 n = N2 / N1(接入系数)。利用ⅰ 的方法,也可求得负载RL等效到初级回路的等效电阻是:
பைடு நூலகம்RL
1 n2
RL
或 gL n2gL
ⅲ. 电容分压式阻抗变换电路
Ú
+
IS RS
L
C1 ÚT
C2
IS RS C L
C1 R'L
⑷ 分析几种常用的抽头并联谐振回路
ⅰ.自耦变压器阻抗变换电路
Ú1
+
IS
RS
C
N1 Ú2 L
N2
RL

第2章 高频电路基础

第2章  高频电路基础

0

1 1 2 2 1 2 1 (Q )
0
f B 2f 0 Q
Z arctan(2Q

0
) arctan
并联回路谐振时的电流、 电压关系: . IC
I C jC U
.
.
. I 0
U IR0
. U

Q R0 Q0 L 0C
R
接入系数: p
U jL1 I L L1 (高Q回路,I L I , 忽略互感) UT jLI L L

U 2 输入端等效电阻:R ( ) R0 p 2 R0 UT
U ) 2 R0 2 R
2 T
U2
图(b):
接入系数:
1 U C1 C2 p 1 UT C1 C2 CC 1 2 C1 C2
max

L R0 Cr
谐振特性:在并联振荡回路输入信号的频率为 0 时
(1)回路的阻抗最大、纯阻性 (2)回路两端电压最大
(3)电流、电压同相
谐振频率: 品质因数:
1 0 LC
0 L 1 Q0 0CR0 r 0Cr
L Q R0 Q0 L Cr 0C
谐振电阻:
功能: 频率选择 阻抗变换: 1)使信号源内阻和回路阻抗匹配 2)减小信号源和负载对谐振回路的影响
接入系数:与外电路相连的那部分电抗与本回路参与 分压的同性质总电抗之比 —— p
与外电路相连的那部分电抗上的电压与本 回路参与分压的同性质总电抗上的电压之比
p U UT
接入系数与阻抗变换公式: 图(a):
输入端等效电阻:
U 2 R ( ) R0 p 2 R0 UT

高频电路基础

高频电路基础
信息科学技术学院 电子信息科学与技术系 高频电子线路 第2章 5
3.高频电感
分布 电容 高频电感实际等效电路
损耗 电阻
高频电感 想模型 高频电感理想模型
电感损耗用品质因数Q表征:
Q
L
RL
电感损耗主要指交流损耗。在高 频电路中, 电感损耗比较大,不
高频电感阻抗特性
能忽略,分布电容可以忽略。
高频电子线路 第2章 6
绝对角频率偏移 0 表示(角)频率偏移谐振的程度(失谐)。
信息科学技术学院 电子信息科学与技术系 高频电子线路 第2章 12
阻抗Zp可化简为 Z p
R0 L Cr ,式中 2 1 j 1 jQ
f 广义失谐 2Q 2Q 0 f0
阻抗幅 Z p 频特性
信息科学技术学院 电子信息科学与技术系 高频电子线路 第2章 17
1 1/ 2 |zp|/R0 Q1>Q2 Q1 Q2
0
Z
π 2
感性 Q2
Q1
Q1>Q2
容性
0
0

π 2
空载品质因数:回路没有外加负载时的值,LC回路本身的品质 因数 称为空载Q值或Q0; 因数,称为空载 有载品质因数: 回路有外加负载 RL时的值,称为有载Q 值或 QL。
1 r j L jC 并联谐振阻抗 Z p 1 r j L jC
此时有 0 2 20
0
1 LC
L Cr 0 1 jQ 0
0 2 02
0 2 02 0 0 2 2 0 0 0 0 0
信息科学技术学院 电子信息科学与技术系 高频电子线路 第2章 7

高频电子线路答案+完整

高频电子线路答案+完整

第二章 高频电路基础2-1对于收音机的中频放大器,其中心频率f 0=465 kHz .B 0.707=8kHz ,回路电容C=200pF ,试计算回路电感和 Q L 值。

若电感线圈的 Q O =100,问在回路上应并联多大的电阻才能满足要求。

解2-1:答:回路电感为0.586mH,有载品质因数为58.125,这时需要并联236.66k Ω的电阻。

2-5 一个5kHz 的基频石英晶体谐振器, C q =2.4X10-2pF C 0=6pF ,,r o =15Ω。

求此谐振器的Q 值和串、并联谐振频率。

解2-5:答:该晶体的串联和并联频率近似相等,为5kHz ,Q 值为88464260。

2-7 求如图所示并联电路的等效噪声带宽和输出均方噪声电压值。

设电阻R=10k Ω,C=200 pF ,T=290 K 。

解:答:电路的等效噪声带宽为125kHz ,和输出均方噪声电压值为19.865μV2.2-10 接收机等效噪声带宽近似为信号带宽,约 10kHz ,输出信噪比为 12 dB ,要求接收机的灵敏度为 1PW ,问接收机的噪声系数应为多大? 解2-10:根据已知条件答:接收机的噪音系数应为32dB 。

第三章 高频谐振放大器3-4 三级单调谐中频放大器,中心频率f 0=465 kHz ,若要求总的带宽B0.7=8 kHZ ,求每一级回路的 3 dB 带宽和回路有载品质因数Q L 值。

解3-4: 设每级带宽为B 1,则:答:每级带宽为15.7kHz,有载品质因数为29.6。

3-5 若采用三级临界耦合双回路谐振放大器作中频放大器(三个双回路),中心频率为f o =465 kHz ,当要求 3 dB 带宽为 8 kHz 时,每级放大器的3 dB 带宽有多大?当偏离中心频率 10 kHZ 时,电压放大倍数与中心频率时相比,下降了多少分贝? 解3-5 设每级带宽为B 1,则:0226120611244651020010100.5864465200f L f C mHπππ-==⨯⨯⨯⨯=≈⨯⨯2由()03034651058.125810LL 0.707f Q f Q B =⨯===⨯0.707由B 得:900312000000000010010171.222465102001024652158.1251171.22237.6610058.125L LLL L L L Q R k C C C Q Q R g g g R Q Q R R R k Q Q Q ΩωππωωΩ∑-===≈⨯⨯⨯⨯⨯⨯===++=-==⨯≈--因为:所以:()0q q0q 00q0q 093120q C C 60.024C 0.024pF C C C 60.024f f f 0.998f 4.99kHz C 11122C 1110Q 884642602f Cr 25100.0241015 3.6-⨯==≈=++==≈=⎛⎫++ ⎪⎝⎭====ππ⨯⨯⨯⨯⨯π总电容串联频率品质因数20220002064121),11|()|11()11arctan(2)1(2)211101254410200108RH R j CR j C R H j df df H CR df fCR fCR CR kHz CR ωωωωωπππ∞∞∞∞-===++=+==+====⨯⨯⨯⎰⎰⎰0n 网络传输函数为H(j 则等效噪音带宽为B =22202343214444 1.3710290101251019.865()n n n n kTGB H kTB R kTRB R V μ-====⨯⨯⨯⨯⨯⨯=输出噪音电压均方值为U 121212234061015.85101015.8515.85 1.3710290101015883215.85 1.3729o i i F o S N S N kTB N S N dB---=====⨯⨯⨯⨯=≈≈⨯⨯。

高频电子线路 第2章-高频电路基础

高频电子线路 第2章-高频电路基础

1 1 L= 2 = ω0 C (2π ) 2 f 02C
以兆赫兹(MHz)为单位 C以皮法 为单位, 以皮法(pF)为单位 L以 为单位, 将f0以兆赫兹 为单位 为单位 以 微亨( )为单位, 上式可变为一实用计算公式: 微亨(µH)为单位, 上式可变为一实用计算公式:
1 2 1 25330 6 L = ( ) 2 × 10 = 2 2π f 0 C f0 C
(3) 求满足 求满足0.5 MHz带宽的并联电阻。 设回路上并联 带宽的并联电阻。 带宽的并联电阻 电阻为R 并联后的总电阻为R 电阻为 1, 并联后的总电阻为 1∥R0, 总的回路有载品 f0 质因数为Q 由带宽公式, 质因数为 L。 由带宽公式 有 Q =
L
B
此时要求的带宽B=0.5 MHz, 故 QL = 20 此时要求的带宽 回路总电阻为
主要包括电台、工业、空间电磁、天电等 主要包括电台、工业、空间电磁、
内部产生的一般称为噪声
人为:接地 回路耦合等 人为 接地,回路耦合等 接地 系统内:电阻 电子器件等的热噪声等 系统内 电阻,电子器件等的热噪声等 电阻
电子噪声:电子线路中普遍存在。 电子噪声:电子线路中普遍存在。指电子线路中的随 机起伏的电信号,与电子扰动有关。 机起伏的电信号,与电子扰动有关。 当噪声,干扰与信号可比拟时 称信号被噪声淹没 当噪声 干扰与信号可比拟时,称信号被噪声淹没 干扰与信号可比拟时 称信号被噪声淹没.
ωM M = 对于互感耦合: 对于互感耦合 k = 2 L1L2 ω L1L2
通常情况: 通常情况
M L1 = L2 = L 则 k = L
CC k= 对于电容耦合: 对于电容耦合 (C1 + CC )(C2 + CC )

第2章 高频电路基础2009

第2章  高频电路基础2009

解 :(1) 计算L值。 由式(2 — 2), 可得
§3 抽头并联振荡回路 的阻抗变化(折合)关系
一.接入系数:
接入系数P 定义为:抽头点电压与端电压的比
也可定义为:接入点电压与欲折合处电压之比
1.变压器耦合接入电路:
P
U2 U1

N2 N1
2.电感抽头电路:
d + L2 a Is Rs + L1 Vab – b – Vbd
CL P CL
电容减小,阻抗加大。 结论:1、抽头改变时,P改变.
b
b
C2 C1 C
L1 L1 L 2
2、抽头由低高,等效导纳降低P2倍,Q值提高许 多,即等效电阻提高了 1 倍,并联电阻加大,Q 2 P 值提高。
因此,抽头的目的是:
减小信号源内阻和负载对回路的影响。 负载电阻和信号源内阻小时应采用串联方式; 负载电阻和信号源内阻大时应采用并联方式; 负载电阻信号源内阻不大不小采用部分接入方式 。
2
1 2
时所对应的频率范围


1 2
N (f) V om
Q0
2f 0.7 fo
f0 Q0
0.7
1
1 2
V0 m
2 f 0.7
B0.7
1
0
2
f
即 通频带 B

fo Qp
7. 信号源内阻和负载电阻对并联 谐振回路的影响
1 1 QL


1 R0

1 RL
RS

0 L
O
0


1Cຫໍສະໝຸດ 总结:串联振荡回路及其特性
2.品质因数Q :
谐振时回路感抗值(或容抗值)与回路电阻R的比值称 为回路的品质因数,以Q表示,它表示回路损耗的大小。

高频西电教学课件2-高频电路基础.ppt

高频西电教学课件2-高频电路基础.ppt
IL IC QI
. IC
. I
0
.
U
17
(2-12) (2-14)
. IL
图2-5 表示了并联振荡回路中谐振时的电流、 电压关系。
第2章 高频电路基础
18
Zp
1
R jQ 2
R0 1 j
0
6)通频带(半功率点频带)
当保持外加信号的幅值不变而改变其频率时, 将回路电流值下降 为谐振值的 1 2 时对应的频率范围称为回路的通频带, 也称回路带宽, 通常用B来表示。 令上式等于 R0 2 , 则可推得ξ=±1, 从而可得带宽为:
矩形系数是大于1的(理想时为1),矩形系数越小,回路的
选择性越好。
对于单级简单并联谐振回路,可以计算出其矩形系数为:
Kr0.1 102 1 9.96
第2章 高频电路基础
20
需要说明的几点:通过前面分析可知
(1) 回路的品质因素越高,谐振曲线越尖锐,回路的通 频带越狭窄,但矩形系数不变。因此,对于简单(单级) 并联谐振回路,通频带与选择性是不能兼顾的。
11
|zp|/R0
.
I
1
. .+
L
.
C
IC C
IR IL . U
R0 L
1/ 2
Q1>Q2 Q1 Q2
Z /2
感性 Q2 0
Q1 Q1>Q2 容性
r

感性区
容性区 -/2
0
0
B
(a)
(b)
(c)
(d)
图2-4 并联谐振回路及其等效电路、 阻抗特性和辐角特性
(a) 并联谐振回路; (b)等效电路; (c)阻抗特性; (d)辐角特性
第2章 高频电路基础

高频电路原理与分析(曾兴雯)课后习题答案

高频电路原理与分析(曾兴雯)课后习题答案

高频电路原理与分析第五版课后习题答案曾兴雯刘乃安陈健付卫红编[日期]NEUQ西安电子科技大学出版社第一章 绪论1-1 画出无线通信收发信机的原理框图,并说出各部分的功用。

答:上图是一个语音无线电广播通信系统的基本组成框图,它由发射部分、接收部分以及无线信道三大部分组成。

发射部分由话筒、音频放大器、调制器、变频器(不一定必须)、功率放大器和发射天线组成。

低频音频信号经放大后,首先进行调制后变成一个高频已调波,然后可通过变频,达到所需的发射频率,经高频功率放大后,由天线发射出去。

接收设备由接收天线、高频小信号放大器、混频器、中频放大器、解调器、音频放大器、扬声器等组成。

由天线接收来的信号,经放大后,再经过混频器,变成一中频已调波,然后检波,恢复出原来的信息,经低频功放放大后,驱动扬声器。

1-2 无线通信为什么要用高频信号?“高频”信号指的是什么? 答:高频信号指的是适合天线发射、传播和接收的射频信号。

采用高频信号的原因主要是: (1)频率越高,可利用的频带宽度就越宽,信道容量就越大,而且可以减小或避免频道间的干扰;(2)高频信号更适合电线辐射和接收,因为只有天线尺寸大小可以与信号波长相比拟时,才有较高的辐射效率和接收效率,这样,可以采用较小的信号功率,传播较远的距离,也可获得较高的接收灵敏度。

1-3 无线通信为什么要进行凋制?如何进行调制? 答:因为基带调制信号都是频率比较低的信号,为了达到较高的发射效率和接收效率,减小天线的尺寸,可以通过调制,把调制信号的频谱搬移到高频载波附近;另外,由于调制后的音频放大器调制器激励放大输出功率放大载波振荡器天线开关高频放大混频器中频放大与滤波解调器音频放大器话筒本地振荡器扬声器变频器信号是高频信号,所以也提高了信道利用率,实现了信道复用。

调制方式有模拟调调制和数字调制。

在模拟调制中,用调制信号去控制高频载波的某个参数。

在调幅方式中,AM 普通调幅、抑制载波的双边带调幅(DSB )、单边带调幅(SSB )、残留单边带调幅(VSSB );在调频方式中,有调频(FM )和调相(PM )。

高频电路原理与分析(第四版)课后习题答案

高频电路原理与分析(第四版)课后习题答案
答2-4:
石英晶体有以下几个特点
1.晶体的谐振频率只与晶片的材料、尺寸、切割方式、几何形状等有关,温度系数非常小,因此受外界温度影响很小
2.具有很高的品质因数
3.具有非常小的接入系数,因此手外部电路的影响很小。
4.在工作频率附近有很大的等效电感,阻抗变化率大,因此谐振阻抗很大
5.构成震荡器非常方便,而且由于上述特点,会使频率非常稳定。
第一章绪论
1-1画出无线通信收发信机的原理框图,并说出各部分的功用。
答:
上图是一个语音无线电广播通信系统的基本组成框图,它由发射部分、接收部分以及无线信道三大部分组成。发射部分由话筒、音频放大器、调制器、变频器(不一定必须)、功率放大器和发射天线组成。
低频音频信号经放大后,首先进行调制后变成一个高频已调波,然后可通过变频,达到所需的发射频率,经高频功率放大后,由天线发射出去。接收设备由接收天线、高频小信号放大器、混频器、中频放大器、解调器、音频放大器、扬声器等组成。由天线接收来的信号,经放大后,再经过混频器,变成一中频已调波,然后检波,恢复出原来的信息,经低频功放放大后,驱动扬声器。
1-2无线通信为什么要用高频信号?“高频”信号指的是什么?
答:
高频信号指的是适合天线发射、传播和接收的射频信号。采用高频信号的原因主要是:
(1)频率越高,可利用的频带宽度就越宽,信道容量就越大,而且可以减小或避免频道间的干扰;
(2)高频信号更适合电线辐射和接收,因为只有天线尺寸大小可以与信号波长相比拟时,才有较高的辐射效率和接收效率,这样,可以采用较小的信号功率,传播较远的距离,也可获得较高的接收灵敏度。
(3)选用fT比较高的晶体管
(4)选用温度特性比较好的晶体管,或通过电路和其他措施,达到温度的自动补偿。

2、高频电路基础

2、高频电路基础

Z
P

L
C
r j ( L
1 ) C

R0 1 jQ 2
0

感性 容性
R0 Z P 1 j
阻抗—频率特性: 辐角—频率特性:
称为广义失谐量
ZP
R0 1 2
Z arctan
( f ) 通频带(又称3dB通频带,或半功率点通频带) 定义:阻抗幅频特性下降为谐振值(中心频率处)的 时对应的频率范围,用B0.707表示。
解: ( 1) 0
L 1
0 2 C
( 2) B
f0 QL
QL
f 0 465 58 B 8
3 3
(3) R0 Q00 L 100 2 465 10 0.586 10 171.22K
R0 // R QL0 L 58 2 465 103 0.586 103 99.25K
R
1 C 1C 2 解: 0 107 rad / s 回路总电容: C 1000pF 固有角频率:
放大器所需带宽要求?
解: ( 3)
f 0 10MH Z QL 20 B 0.5 MH Z
QL R0 // R1 0 L
放 大 器
R0
R1
R0//R1
R0 // R1 QL0 L 6.37 K
R1 7.97 K
(2)串联谐振回路(自学)
作业:
第一版:P59 2-1 2-2 第二版:P67 2-2 2-3
R0 Q0 L 0
R0 // R QL L 0
R 237 .66 K
2-3 图示为波段内调谐用的并联振荡回路,可变电容C的变化范围为12~ 260pF,Ct为微调电容,要求此回路的调谐范围为535~1605kHz,求回路电 感L和Ct的值,并要求C的最大和最小值与波段的最低和最高频率对应。

第2章 高频电路基础知识

第2章  高频电路基础知识

0
0
0
(2 — 7)

Q 2 ( ) 2Q f
0
f0
(2 — 8)
为广义失谐, 则式(2 — 5)可写成
I 1
I0 1 2
(2 — 9)
第2章 高频电路基础知识 17
当保持外加信号的幅值不变而改变其频率时, 将回路电流 值下降为谐振值的 1 2 时对应的频率范围称为回路的通 频带, 也称回路带宽, 通常用B来表示。 令式(2 — 9)等 于 1 2 , 则可推得ξ=±1, 从而可得带宽为.
ZS
r
jL
1
jC
r
j(L 1 ) C
(2 — 1)
串联谐振角频率 0 为:
0
1 LC
(2 — 2)
若在串联振荡回路两端加一恒压信号U , 则发生串联谐振时因 阻抗最小, 流过电路的电流最大, 称为谐振电流, 其值
I0
U
r
第2章 高频电路基础知识 12
(2 — 3)
谐振时回路电流最大,且与外加电压同相。
RC LC
C
自身谐振频率SRF f小于SRF时,电容器呈正常的电容特性 F大于SRF时,电容器等效为一个电感
阻抗Z
SRF
频率f
❖电感
第2章 高频电路基础知识 5
➢高频电感器与普通电感器一样, 电感量是其主要 参数。 电感量L产生的感抗为jωL, 其中, ω为工 作角频率。高频电路中的电感不仅具有电感的特性, 还具有电阻和电容的特性。其等效电路如图所示。
. IL
I&L
r
V&
j0 L
V&
j0 L
jI&s
0
1 L

(高频电子线路)第二章高频电路基础

(高频电子线路)第二章高频电路基础
和适用场景。
低通滤波器的应用包括信号处理、 电源滤波等,可以有效地抑制高
频噪声,提高信号的信的电路。其特点是通带范围较 窄,阻带范围较宽。
高通滤波器的电路结构也有多种形式,如RC、LC等。不同结构的高通滤波器具有不 同的性能指标和适用场景。
对信号进行放大,提高信号的 幅度和功率。
振荡器
产生高频振荡,为电路提供所 需频率的信号。
信号源
产生高频信号,提供电路所需 输入信号。
滤波器
对信号进行滤波,提取所需频 率成分,抑制无用频率成分。
调制解调器
对信号进行调制和解调,实现 信号的传输和处理。
02
高频电子器件
电感器
01
02
03
04
电感器定义
差。
调相振荡器的应用
调相振荡器广泛应用于信号处理、 电子对抗和通信等领域。
锁相环路
锁相环路的定义
锁相环路是一种自动控制系统,它通过比较输入信号和输出信号的 相位差,自动调节输出信号的频率和相位。
锁相环路的工作原理
当输入信号和输出信号的相位差在一定范围内时,锁相环路会自动 调节其内部参数,使输出信号的频率和相位与输入信号保持一致。
标和适用场景。
带通滤波器的应用包括信号选频、 消除干扰等,可以有效地提取特 定频段的信号,提高信号的准确
度。
带阻滤波器
带阻滤波器是一种阻止某一频段内的信 号通过而允许其他频段信号的电路。其 特点是阻带范围较窄,通带范围较宽。
带阻滤波器的应用包括消除特定频段干 扰、抑制噪声等,可以有效地抑制特定 频段的噪声,提高信号的清晰度。
高频电路的应用领域
通信领域
高频电路广泛应用于通信 领域,如无线通信、卫星

高频电路基础知识点总结

高频电路基础知识点总结

第二章一.串联谐振回路1. 串联谐振电路的阻抗为1()Z r j L Cωω=+-,0ωω<时1L Cωω<回路呈现容性而0ωω>时1L Cωω>回路呈现感性,0ωω=时0X =、||Z r =且0φ=,电压电流同相位即回路呈现纯阻性,此时的回路发生了“谐振”; 2.谐振频率为0ω=;3. 品质因数定义为谐振时回路储能和耗能之比即001LQ rCrωω==;4. 幅频特性||I I =在“小量失谐的情况下”可表示为0||II ≈=;5. 相频特性ωϕQ 值越大曲线越陡峭,线性范围越小0000001||arctan 1j I Ie Q I I jQ ϕωωϕωωωωωω⎛⎫=⋅=⇒=-- ⎪⎛⎫⎝⎭+- ⎪⎝⎭6. 将两个半功率点之间的带宽定义为串联回路的通频带00.7B Qω=。

二.并联谐振回路1. 并联谐振回路的阻抗为1()11()Lr j L j C C Z r j L r j L j C Cωωωωωω+⋅=≈+++-,0ωω<时1L C ωω<回路呈现感性而0ωω>时1L C ωω>回路呈现容性,0ωω=时10C L ωω-=、||LZ rC=且0φ=,电压电流同相位即回路呈现纯阻性,回路发生“谐振”; 2.谐振频率为0ω=;3. 品质因数0000011LC Q rCr G LGωωωω====; 4. 幅频特性和相频特性与串联回路相同; 5. 通频带00.7B Qω=。

三.抽头并联回路1. 抽头电路具有阻抗变换和电源变换的作用即21.2.13.TTTR p RV pV I I p ⎧⎪=⎪⎪=⎨⎪⎪=⋅⎪⎩四. 耦合振荡回路1.临界耦合时双调谐回路的带宽为0.70B =2. 单调谐回路的矩形系数为9.95而双调谐回路的矩形系数为3.15。

五.石英晶体滤波器 1.石英晶片的电路模型:C q C q L qr2.石英晶体的串联谐振频率为q ω=q ωω≈;3. q ωω<或p ωω>时晶体为容性而q p ωωω<<时晶体为感性。

高频电路基础3滤波器与阻抗变换

高频电路基础3滤波器与阻抗变换
1.陶瓷滤波器
利用某些陶瓷材料的压电效应构成的滤波器,称为陶瓷 滤波器。它常用锆钛酸铅[Pb(ZrTi)O3]压电陶瓷材料(简称 PZT)制成。
这种陶瓷片的两面用银作为电极,经过直流高压极化之 后具有和石英晶体相类似的压电效应。
优点:容易焙烧,可制成各种形状;适于小型化;且耐 热耐湿性好。
它的等效品质因数QL为几百,比石英晶体低但比LC滤 波器高.
1 LqC
显然 0q 由C q 于 C 0,因0 此 与 q 很接近
p
1 LqCq
1Cq C0
q
1P
接入系数p很小,一般为10-3数量级,所以0与q很接近。
z0
z1z2 z1z2
j 1
C0
rq
j(Lq
1
Cq
)
rq
j(Lq
1 )j 1
Cq C0
上式忽略 rq 后可简化为
z0jx0j1C0220q22
符号及等效电路
Lq
2L
Cq
Rq
图中C0 等效为压电陶瓷谐振子的固定 电容;Lq 为机械振动的等效质量; Cq 为机械振动的等效弹性模数;Rq Co为机械振动的等效阻尼;其等效电路 与晶体相同。
其串联谐振频率 q
1 Lq Cq
并联谐振频率 p
1
ห้องสมุดไป่ตู้Lq
CqC0 Cq C0
式中,C 为C0和C8串联后的电容。
第二章 高频电路基础
2.2.3 石英晶体谐振器 2.2.4 集中滤波器 2.2.5 高频衰减器与匹配器
作业:2-4 2-10
2.2.3 石英晶体谐振器(石英振子)
1。 石英晶体的物理特性: 石英是矿物质硅石的一种(也可人工制造),

《高频电路教案》课件

《高频电路教案》课件

《高频电路教案》PPT课件第一章:高频电路概述1.1 高频电路的定义与特点1.2 高频电路的应用领域1.3 高频电路的基本组成部分1.4 高频电路的研究方法第二章:高频电路中的信号与频谱2.1 信号的分类与特性2.2 频率与周期2.3 频谱与频带2.4 调制与解调第三章:高频电路中的元件与器件3.1 电阻、电容、电感元件3.2 滤波器与耦合器3.3 放大器与振荡器3.4 混频器与解调器第四章:高频放大器与振荡器的设计与分析4.1 高频放大器的设计与分析4.2 高频振荡器的设计与分析4.3 放大器与振荡器的性能指标4.4 放大器与振荡器的应用场景第五章:高频电路的测量与调试5.1 高频信号的发生与接收5.2 测量仪器与设备5.3 高频电路的调试方法5.4 高频电路的故障排除第六章:高频电路中的滤波器设计与应用6.1 滤波器的基本原理与分类6.2 低通、高通、带通、带阻滤波器的设计6.3 滤波器的频率响应与截止特性6.4 滤波器在无线通信中的应用第七章:调制解调技术7.1 调制与解调的基本概念7.2 调幅、调频、调相与解调技术7.3 调制解调器的组成与工作原理7.4 调制解调技术在通信系统中的应用第八章:无线通信系统8.1 无线通信的基本原理与技术8.2 无线传输的频段与标准8.3 无线通信系统的组成与工作方式8.4 无线通信技术在现代通信中的应用第九章:高频电路的噪声与干扰9.1 噪声的来源与分类9.2 噪声的数学描述与计算9.3 干扰的类型与抑制方法9.4 高频电路的抗干扰设计与优化第十章:高频电路的现代设计与仿真10.1 高频电路的计算机辅助设计10.2 电路仿真软件的使用与操作10.3 高频电路的实例设计与仿真10.4 高频电路的实验与验证重点和难点解析一、高频电路的定义与特点难点解析:理解高频电路与低频电路的区别,掌握高频电路的特殊设计与分析方法。

二、高频电路中的信号与频谱难点解析:区分不同类型的信号,理解调制解调的基本原理及其在通信中的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

100MHz时,正向电流(mA)
反向电压(V)
§2.1 无源器件与模型
2.1.6 高频二极管
2.高频二极管应用
4) 变容二极管
Cj
C
j
0
1

ur VD
第二章 高频电路基础
常用于调谐回路、振荡电路 和锁相环路,实现自动频率控 制、扫描振荡、调频和调谐等, 如电视机高频头的频道转换和 调谐电路
§2.1 无源器件与模型
2、无线通信电路中,器件的物理结构都尽可能的小, 从而使得器件的有效工作频率随尺寸的减小而升高, 如表面贴器件。 3、高频电路由无源元件和有源器件组成。
有源器件:具有电流控制能力的器件。如电子管、 三极管、场效应管、晶闸管、可控硅等。
无源器件:导线、电阻、电容、电感,以及二极 管等。
§2.1 无源器件与模型
Cd
dQ
dVD
T
dID dVD
T
ID VT
§2.1 无源器件与模型
第二章 高频电路基础
2.1.6 高频二极管
2.高频二极管应用
1)检波二极管
检波(也称幅度解调)二极管是利用二极管单向导电 性将高频或中频无线电信号中的幅度信息(如音频信号) 取出来;
广泛应用于半导体收音机、电视机及通信设备等 小信号电路中,其工作频率较高,但处理信号时无增益。
§2.1 无源器件与模型
第二章 高频电路基础
2.1.6 高频二极管
2.高频二极管应用
3)晶体二极管
又称为PIN二极管,是由在P型和N型半导体材料之 间掺入一薄层低掺杂的本征半导体层组成,为一种静态 结电容很小、用于高频开关和高频保护的特殊二极管。
当工作频率超过100MHz时,由于少数载流子的存 储效应和本征层中渡越时间效应,该二极管失去整流功 能而变为阻抗器件,并且其阻抗值随偏置电压变化而变。
Qc
一个周期内电容的储能 一个周期内消耗的能量
=Crc
阻抗
式中:ω为工作频率 C为电容值 rc为电容的总损耗电阻。
RC LC
C
§2.1 无源器件与模型
2.1.4 电感器
rLb 为磁芯损耗的等效电阻 CL 为绕组间的分布电容 rLa 为电感绕组的交流电阻
第二章 高频电路基础
§2.1 无源器件与模型
当直流正向偏置时,本征区的阻抗很小,为导通状 态,作为可变阻抗元件使用;
反向偏置时,本征区为高阻抗状态,呈开路状态。 常用于高频开关、移相、调制、限幅等电路中,作 为开关和衰减器使用。
§2.1 无源器件与模型
2.1.6 高频二极管 2.高频二极管应用
3)晶体二极管
第二章 高频电路基础
电阻 (Ω) 电容(pF)
本地振荡信号)通过非线性处理获得两频率之差的信号 (简称差频)、或两频率之和的信号(简称和频)的过程。
混频二极管是一种肖特基势垒二极管。 与一般二极管相比,混频二极管具有工作频率高、 噪声低、反向电流小、结电容小等特点。在大信号工 作时,为开关工作状态,可获得较大的动态范围,广 泛应用于高频与微波电路中。
通常选用锗半导体材料制成的点接触型二极管, 其接触面积小,虽然不能通过大的电流,且结电容小, 但具有工作频率高和反向电流小等特点。
常用的检波二极管有2AP系列、1N34/A、1N60等。
§2.1 无源器件与模型
第二章 高频电路基础
2.1.6 高频二极管
2.高频二极管应用
2)混频二极管 混频是将两个不同频率的信号(如接收射频信号和
第二章 高频电路基础
2.1.1 导线
1、导线包括裸铜线、镀银(金)线、漆包线、塑包线、纱包线 等,用于传输信号。
2、趋肤效应
图2-1 趋肤效应示意图
§2.1 无源器件与模型
2.1.1 导线
第二章 高频电路基础
图2-2 趋肤 深度与工作 频率的关系
§2.1 无源器件与模型
2.1.2 电阻器
LR为电阻的引线电感; CR为分布电容
第二章 高频电路基础
§2.1 无源器件与模型
2.1.3 电容器
第二章 高频电路基础
(a)
聚酯 云母 (CL) (CY)
独石 钽(CA)
陶瓷 (CC)
(c)
fc
(b)
§2.1 无源器件与模型
第二章 高频电路基础
2.1.3 电容器 电容标定:1MHz;rc为损耗电阻;Lc为引线电感 电容的品质因数Qc为
2.1.4 电感器
1000
环形电感
第二章 高频电路基础
Z(Ω)
理想电感
100
SMD电感
10 1M
10M
fL 100M
1G f (Hz)
§2.1 无源器件与模型
第二章 高频电路基础
2.1.4 电感器
电感的品质因数QL为
QL
一个周期内电感的储能=L
一个周期内消耗的能量 rL
采用漆包线绕制
L(18d 40l) N
隧道二极管的正向电流-电压特性具有负阻特性
《高频电子线路》
主讲:郑宽磊 电话:15926338899 武汉工程大学电气信息学院
2016年9月
主要内容
第二章 高频电路基础
2.1 无源器件与模型 2.2 有源器件与模型 2.3 传输线与微带线 2.4 Y参数与S参数 2.5 噪声与噪声系数
引子
第二章 高频电路基础
1、高频电路与低频电路中元器件的频率特性是不同的。 在低频呈现的集总器件 在高频时呈现分布参数
高频电路基础
Cj:反向偏置时的势垒电容:
Cj
C
j
0
1
ur VD
§2.1 无源器件与模型
2.1.6 高频二极管
第二章 高频电路基础
反向工作时,结电容以势垒电容Cj为主,其大小 与外加反向电压ur的关系:
Cj
Cj0
1
ur VD
正向工作时,结电容以扩散电容为主,其大小 与二极管电流有关:
2.1.6 高频二极管
2.高频二极管应用 5) 隧道二极管
第二章 高频电路基础
隧道二极管(Tunnel diode)是采用砷化镓(GaAs)和锑化镓(GaSb) 等材料混合、在重掺杂 N型(或 P型)的半导体片上用快速合金工 艺形成高掺杂的PN结而制成的,PN结的耗尽层非常薄,使电子 能够直接从N型层穿透PN结势垒进入P型层,称为隧道结。
d
绕制环形线圈 N 100 L (铁粉磁芯)
AL N 1 000 L (铁氧体磁芯)
AL
§2.1 无源器件与模型
2.1.5 铁氧体磁珠
第二章 高频电路基础
L
R
C
§2.1 无源器件与模型
第二章
2.1.6 高频二极管
应用:检波、调制、解调以及混频等 非线性变换电路中, 工作在低电平。
1.高频二极管模型 Rd:二极管耗损电阻 VD:内部PN结电压 ID:直流导通电流 Cd:正向偏置时的扩散电容
相关文档
最新文档