(答案版)2017年湖南省株洲市中考数学试卷

合集下载

2017年湖南省株洲市中考数学试卷(含答案解析版)

2017年湖南省株洲市中考数学试卷(含答案解析版)

2017年湖南省株洲市中考数学试卷一、选择题(每小题3分,满分30分)1.(3分)计算a2•a4的结果为()A.a2B.a4C.a6D.a82.(3分)如图示,数轴上点A所表示的数的绝对值为()A.2 B.﹣2 C.±2 D.以上均不对3.(3分)如图示直线l1,l2△ABC被直线l3所截,且l1∥l2,则α=()A.41°B.49°C.51°D.59°4.(3分)已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b5.(3分)如图,在△ABC中,∠BAC=x°,∠B=2x°,∠C=3x°,则∠BAD=()A.145°B.150°C.155° D.160°6.(3分)下列圆的内接正多边形中,一条边所对的圆心角最大的图形是() A.正三角形B.正方形C.正五边形D.正六边形7.(3分)株洲市展览馆某天四个时间段进出馆人数统计如下,则馆内人数变化最大时间段为()9:00﹣10:0010:00﹣11:0014:00﹣15:0015:00﹣16:00第1页(共33页)第2页(共33页)进馆人数50 24 55 32 出馆人数 30 65 28 45A .9:00﹣10:00B .10:00﹣11:00C .14:00﹣15:00D .15:00﹣16:008.(3分)三名初三学生坐在仅有的三个座位上,起身后重新就坐,恰好有两名同学没有坐回原座位的概率为( )A .)19B .)16C .)14D .)129.(3分)如图,点E 、F 、G 、H 分别为四边形ABCD 的四边AB 、BC 、CD 、DA 的中点,则关于四边形EFGH ,下列说法正确的为( )A .一定不是平行四边形B .一定不是中心对称图形C .可能是轴对称图形D .当AC=BD 时它是矩形10.(3分)如图示,若△ABC 内一点P 满足∠PAC=∠PBA=∠PCB,则点P 为△ABC 的布洛卡点.三角形的布洛卡点(Brocard point )是法国数学家和数学教育家克洛尔(A .L .Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF 中,∠EDF=90°,若点Q 为△DEF 的布洛卡点,DQ=1,则EQ +FQ=( )A .5B .4C .3+√2D .2+√2二、填空题(每小题3分,满分24分)11.(3分)如图示在△ABC中∠B=.12.(3分)分解因式:m3﹣mn2=.13.(3分)分式方程4x ﹣1x+2=0的解为.14.(3分)已知“x的3倍大于5,且x的一半与1的差不大于2",则x的取值范围是.15.(3分)如图,已知AM为⊙O的直径,直线BC经过点M,且AB=AC,∠BAM=∠CAM,线段AB和AC分别交⊙O于点D、E,∠BMD=40°,则∠EOM=.16.(3分)如图示直线y=√3x+√3与x轴、y轴分别交于点A、B,当直线绕着点A 按顺时针方向旋转到与x轴首次重合时,点B运动的路径的长度为.17.(3分)如图所示是一块含30°,60°,90°的直角三角板,直角顶点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数y1=k1x(x>0)的图象上,顶点B在函数y2=k2x(x>0)的图象上,∠ABO=30°,则k1k2=.第3页(共33页)18.(3分)如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>√5﹣1;以上结论中正确结论的序号为.三、解答题(本大题共有8个小题,满分66分)19.(6分)计算:√8+20170×(﹣1)﹣4sin45°.20.(6分)化简求值:(x﹣y2x)•yx+y﹣y,其中x=2,y=√3.21.(8分)某次世界魔方大赛吸引世界各地共600名魔方爱好者参加,本次大赛首轮进行3×3阶魔方赛,组委会随机将爱好者平均分到20个区域,每个区域30名同时进行比赛,完成时间小于8秒的爱好者进入下一轮角逐;如图是3×3阶魔方赛A区域30名爱好者完成时间统计图,求:①A区域3×3阶魔方爱好者进入下一轮角逐的人数的比例(结果用最简分数表示).②若3×3阶魔方赛各个区域的情况大体一致,则根据A区域的统计结果估计在3×3阶魔方赛后进入下一轮角逐的人数.第4页(共33页)③若3×3阶魔方赛A区域爱好者完成时间的平均值为8。

湖南省株洲市中考数学试卷

湖南省株洲市中考数学试卷

精品基础教育教学资料,请参考使用,祝你取得好成绩!湖南省株洲市中考数学试卷一、选择题(每小题3分,满分30分)1.(3分)计算a2•a4的结果为()A.a2B.a4C.a6D.a82.(3分)如图示,数轴上点A所表示的数的绝对值为()A.2 B.﹣2 C.±2 D.以上均不对3.(3分)如图示直线l1,l2△ABC被直线l3所截,且l1∥l2,则α=()A.41°B.49°C.51°D.59°4.(3分)已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b5.(3分)如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD=()A.145°B.150°C.155° D.160°6.(3分)下列圆的内接正多边形中,一条边所对的圆心角最大的图形是()A.正三角形B.正方形C.正五边形D.正六边形7.(3分)株洲市展览馆某天四个时间段进出馆人数统计如下,则馆内人数变化最大时间段为()9:00﹣10:0010:00﹣11:0014:00﹣15:0015:00﹣16:00进馆人数5024553230652845出馆人数A.9:00﹣10:00 B.10:00﹣11:00 C.14:00﹣15:00 D.15:00﹣16:00 8.(3分)三名初三学生坐在仅有的三个座位上,起身后重新就坐,恰好有两名同学没有坐回原座位的概率为()A.)B.)C.)D.)9.(3分)如图,点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA 的中点,则关于四边形EFGH,下列说法正确的为()A.一定不是平行四边形B.一定不是中心对称图形C.可能是轴对称图形D.当AC=BD时它是矩形10.(3分)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC 的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF 中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C .D .二、填空题(每小题3分,满分24分)11.(3分)如图示在△ABC中∠B=.12.(3分)分解因式:m3﹣mn2=.13.(3分)分式方程﹣=0的解为.14.(3分)已知“x的3倍大于5,且x的一半与1的差不大于2”,则x的取值范围是.15.(3分)如图,已知AM为⊙O的直径,直线BC经过点M,且AB=AC,∠BAM=∠CAM,线段AB和AC分别交⊙O于点D、E,∠BMD=40°,则∠EOM=.16.(3分)如图示直线y=x+与x轴、y轴分别交于点A、B,当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动的路径的长度为.17.(3分)如图所示是一块含30°,60°,90°的直角三角板,直角顶点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数y1=(x>0)的图象上,顶点B 在函数y2=(x>0)的图象上,∠ABO=30°,则=.18.(3分)如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中正确结论的序号为.三、解答题(本大题共有8个小题,满分66分)19.(6分)计算:+20170×(﹣1)﹣4sin45°.20.(6分)化简求值:(x﹣)•﹣y,其中x=2,y=.21.(8分)某次世界魔方大赛吸引世界各地共600名魔方爱好者参加,本次大赛首轮进行3×3阶魔方赛,组委会随机将爱好者平均分到20个区域,每个区域30名同时进行比赛,完成时间小于8秒的爱好者进入下一轮角逐;如图是3×3阶魔方赛A区域30名爱好者完成时间统计图,求:①A区域3×3阶魔方爱好者进入下一轮角逐的人数的比例(结果用最简分数表示).②若3×3阶魔方赛各个区域的情况大体一致,则根据A区域的统计结果估计在3×3阶魔方赛后进入下一轮角逐的人数.③若3×3阶魔方赛A区域爱好者完成时间的平均值为8.8秒,求该项目赛该区域完成时间为8秒的爱好者的概率(结果用最简分数表示).22.(8分)如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.23.(8分)如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为α其中tanα=2,无人机的飞行高度AH为500米,桥的长度为1255米.①求点H到桥左端点P的距离;②若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度AB.24.(8分)如图所示,Rt△PAB的直角顶点P(3,4)在函数y=(x>0)的图象上,顶点A、B在函数y=(x>0,0<t<k)的图象上,PA∥y轴,连接OP,OA,记△OPA的面积为S△OPA,△PAB的面积为S△PAB,设w=S△OPA﹣S△PAB.①求k的值以及w关于t的表达式;②若用w max和w min分别表示函数w的最大值和最小值,令T=w max+a2﹣a,其中a为实数,求T min.25.(10分)如图示AB为⊙O的一条弦,点C为劣弧AB的中点,E为优弧AB 上一点,点F在AE的延长线上,且BE=EF,线段CE交弦AB于点D.①求证:CE∥BF;②若BD=2,且EA:EB:EC=3:1:,求△BCD的面积(注:根据圆的对称性可知OC⊥AB).26.(12分)已知二次函数y=﹣x2+bx+c+1,①当b=1时,求这个二次函数的对称轴的方程;②若c=﹣b2﹣2b,问:b为何值时,二次函数的图象与x轴相切?③若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<x2,与y轴的正半轴交于点M,以AB为直径的半圆恰好过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足=,求二次函数的表达式.湖南省株洲市中考数学试卷参考答案与试题解析一、选择题(每小题3分,满分30分)1.(3分)(2017•株洲)计算a2•a4的结果为()A.a2B.a4C.a6D.a8【分析】直接利用同底数幂的乘法运算法则求出答案.【解答】解:原式=a2+4=a6.故选C.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.2.(3分)(2017•株洲)如图示,数轴上点A所表示的数的绝对值为()A.2 B.﹣2 C.±2 D.以上均不对【分析】根据数轴可以得到点A表示的数,从而可以求出这个数的绝对值,本题得以解决.【解答】解:由数轴可得,点A表示的数是﹣2,∵|﹣2|=2,∴数轴上点A所表示的数的绝对值为2,故选A.【点评】本题考查数轴、绝对值,解答本题的关键是明确数轴的特点,会求一个数的绝对值.3.(3分)(2017•株洲)如图示直线l1,l2△ABC被直线l3所截,且l1∥l2,则α=()A.41°B.49°C.51°D.59°【分析】根据平行线的性质即可得到结论.【解答】解:∵l1∥l2,∴α=49°,故选B.【点评】本题考查了平行线的性质,是基础题,熟记性质是解题的关键.4.(3分)(2017•株洲)已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b【分析】根据不等式的性质即可得到a>b,a+2>b+2,﹣a<﹣b.【解答】解:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b.故选D.【点评】本题考查了不等式的性质,属于基础题.5.(3分)(2017•株洲)如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD=()A.145°B.150°C.155° D.160°【分析】根据三角形内角和定理求出x,再根据三角形的外角的等于不相邻的两个内角的和,即可解决问题.【解答】解:在△ABC中,∵∠B+∠C+∠BAC=180°,∠BAC=x,∠B=2x,∠C=3x,∴6x=180°,∴x=30°,∵∠BAD=∠B+∠C=5x=150°,故选B.【点评】本题考查三角形内角和定理、三角形的外角的性质等知识,学会构建方程解决问题,属于基础题.6.(3分)(2017•株洲)下列圆的内接正多边形中,一条边所对的圆心角最大的图形是()A.正三角形B.正方形C.正五边形D.正六边形【分析】根据正多边形的中心角的度数即可得到结论.【解答】解:∵正三角形一条边所对的圆心角是360°÷3=120°,正方形一条边所对的圆心角是360°÷4=90°,正五边形一条边所对的圆心角是360°÷5=72°,正六边形一条边所对的圆心角是360°÷6=60°,∴一条边所对的圆心角最大的图形是正三角形,故选A.【点评】本题考查了正多边形与圆,熟练掌握正多边形的中心角的定义是解题的关键.7.(3分)(2017•株洲)株洲市展览馆某天四个时间段进出馆人数统计如下,则馆内人数变化最大时间段为()9:00﹣10:0010:00﹣11:0014:00﹣15:0015:00﹣16:00进馆人数50245532出馆人数30652845A.9:00﹣10:00 B.10:00﹣11:00 C.14:00﹣15:00 D.15:00﹣16:00【分析】直接利用统计表中人数的变化范围得出馆内人数变化最大时间段.【解答】解:由统计表可得:10:00﹣11:00,进馆24人,出馆65人,差之最大,故选:B.【点评】此题主要考查了统计表,正确利用表格获取正确信息是解题关键.8.(3分)(2017•株洲)三名初三学生坐在仅有的三个座位上,起身后重新就坐,恰好有两名同学没有坐回原座位的概率为()A.)B.)C.)D.)【分析】画树状图为(用A、B、C表示三位同学,用a、b、c表示他们原来的座位)展示所有6种等可能的结果数,再找出恰好有两名同学没有坐回原座位的结果数,然后根据概率公式求解.【解答】解:画树状图为:(用A、B、C表示三位同学,用a、b、c表示他们原来的座位)共有6种等可能的结果数,其中恰好有两名同学没有坐回原座位的结果数为3,所以恰好有两名同学没有坐回原座位的概率==.故选D.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.9.(3分)(2017•株洲)如图,点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,则关于四边形EFGH,下列说法正确的为()A.一定不是平行四边形B.一定不是中心对称图形C.可能是轴对称图形D.当AC=BD时它是矩形【分析】先连接AC,BD,根据EF=HG=AC,EH=FG=BD,可得四边形EFGH是平行四边形,当AC⊥BD时,∠EFG=90°,此时四边形EFGH是矩形;当AC=BD 时,EF=FG=GH=HE,此时四边形EFGH是菱形,据此进行判断即可.【解答】解:连接AC,BD,∵点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,∴EF=HG=AC,EH=FG=BD,∴四边形EFGH是平行四边形,∴四边形EFGH一定是中心对称图形,当AC⊥BD时,∠EFG=90°,此时四边形EFGH是矩形,当AC=BD时,EF=FG=GH=HE,此时四边形EFGH是菱形,∴四边形EFGH可能是轴对称图形,故选:C.【点评】本题主要考查了中点四边形的运用,解题时注意:平行四边形是中心对称图形.解决问题的关键是掌握三角形中位线定理.10.(3分)(2017•株洲)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.D.【分析】由△DQF∽△FQE,推出===,由此求出EQ、FQ即可解决问题.【解答】解:如图,在等腰直角三角形△DEF中,∠EDF=90°,DE=DF,∠1=∠2=∠3,∵∠1+∠QEF=∠3+∠DFQ=45°,∴∠QEF=∠DFQ,∵∠2=∠3,∴△DQF∽△FQE,∴===,∵DQ=1,∴FQ=,EQ=2,∴EQ+FQ=2+,故选D【点评】本题考查等腰直角三角形的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.二、填空题(每小题3分,满分24分)11.(3分)(2017•株洲)如图示在△ABC中∠B=25°.【分析】由直角三角形的两个锐角互余即可得出答案.【解答】解:∵∠C=90°,∴∠B=90°﹣∠A=90°﹣65°=25°;故答案为:25°.【点评】本题考查了直角三角形的两个锐角互余的性质;熟记直角三角形的性质是解决问题的关键.12.(3分)(2017•株洲)分解因式:m3﹣mn2=m(m+n)(m﹣n).【分析】先提取公因式m,再运用平方差公式分解.【解答】解:m3﹣mn2,=m(m2﹣n2),=m(m+n)(m﹣n).【点评】本题考查提公因式法分解因式和利用平方差公式分解因式,本题要进行二次分解因式,分解因式要彻底.13.(3分)(2017•株洲)分式方程﹣=0的解为x=﹣.【分析】根据解方式方程的步骤一步步求解,即可得出x的值,将其代入原方程验证后即可得出结论.【解答】解:去分母,得4x+8﹣x=0,移项、合并同类项,得3x=﹣8,方程两边同时除以3,得x=﹣.经检验,x=﹣是原方程的解.故答案为:x=﹣.【点评】本题考查了解分式方程,熟练掌握分式方程的解法及步骤是解题的关键.14.(3分)(2017•株洲)已知“x的3倍大于5,且x的一半与1的差不大于2”,则x的取值范围是<x≤6.【分析】根据题意列出不等式组,再求解集即可得到x的取值范围.【解答】解:依题意有,解得<x≤6.故x的取值范围是<x≤6.故答案为:<x≤6.【点评】主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.(3分)(2017•株洲)如图,已知AM为⊙O的直径,直线BC经过点M,且AB=AC,∠BAM=∠CAM,线段AB和AC分别交⊙O于点D、E,∠BMD=40°,则∠EOM=80°.【分析】连接EM,根据等腰三角形的性质得到AM⊥BC,进而求出∠AMD=70°,于是得到结论.【解答】解:连接EM,∵AB=AC,∠BAM=∠CAM,∴AM⊥BC,∵AM为⊙O的直径,∴∠ADM=∠AEM=90°,∴∠AME=∠AMD=90°﹣∠BMD=50°∴∠EAM=40°,∴∠EOM=2∠EAM=80°,故答案为:80°.【点评】本题考查了等腰三角形的性质,圆周角定理,熟练掌握圆周角定理是解题的关键.16.(3分)(2017•株洲)如图示直线y=x+与x轴、y轴分别交于点A、B,当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动的路径的长度为π.【分析】先利用一次函数的解析式可确定A(﹣1,0),B(0,),再利用正切的定义求出∠BAO=60°,利用勾股定理计算出AB=2,然后根据弧长公式计算.【解答】解:当y=0时,x+=0,解得x=﹣1,则A(﹣1,0),当x=0时,y=x+=,则B(0,),在Rt△OAB中,∵tan∠BAO==,∴∠BAO=60°,∴AB==2,∴当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动的路径的长度==π.故答案为π.【点评】本题考查了一次函数图象与几何变换:熟练掌握旋转的性质,会计算一次函数与坐标轴的交点坐标.17.(3分)(2017•株洲)如图所示是一块含30°,60°,90°的直角三角板,直角顶点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数y1=(x>0)的图象上,顶点B在函数y2=(x>0)的图象上,∠ABO=30°,则=﹣.【分析】设AC=a,则OA=2a,OC=a,根据直角三角形30°角的性质和勾股定理分别计算点A和B的坐标,写出A和B两点的坐标,代入解析式求出k1和k2的值,相比即可.【解答】解:如图,Rt△AOB中,∠B=30°,∠AOB=90°,∴∠OAC=60°,∵AB⊥OC,∴∠ACO=90°,∴∠AOC=30°,设AC=a,则OA=2a,OC=a,∴A(a,a),∵A在函数y1=(x>0)的图象上,∴k1=a•a=,Rt△BOC中,OB=2OC=2a,∴BC==3a,∴B(a,﹣3a),∵B在函数y2=(x>0)的图象上,∴k2=﹣3a a=﹣3,∴=﹣;故答案为:﹣.【点评】本题考查了反比例函数图象上点的特征、直角三角形30°的性质,熟练掌握直角三角形30°角所对的直角边是斜边的一半,正确写出A、B两点的坐标是关键.18.(3分)(2017•株洲)如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中正确结论的序号为①④.【分析】根据抛物线与y轴交于点B(0,﹣2),可得c=﹣2,依此判断③;由抛物线图象与x轴交于点A(﹣1,0),可得a﹣b﹣2=0,依此判断①②;由|a|=|b|可得二次函数y=ax2+bx+c的对称轴为y=,可得x2=2,比较大小即可判断④;从而求解.【解答】解:由A(﹣1,0),B(0,﹣2),得b=a﹣2,∵开口向上,∴a>0;∵对称轴在y轴右侧,∴﹣>0,∴﹣>0,∴a﹣2<0,∴a<2;∴0<a<2;∴①正确;∵抛物线与y轴交于点B(0,﹣2),∴c=﹣2,故③错误;∵抛物线图象与x轴交于点A(﹣1,0),∴a﹣b﹣2=0,∵0<a<2,∴0<b+2<2,﹣2<b<0,故②错误;∵|a|=|b|,二次函数y=ax2+bx+c的对称轴在y轴的右侧,∴二次函数y=ax2+bx+c的对称轴为y=,∴x2=2>﹣1,故④正确.故答案为:①④.【点评】本题考查了抛物线与x轴的交点,二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a 与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.三、解答题(本大题共有8个小题,满分66分)19.(6分)(2017•株洲)计算:+20170×(﹣1)﹣4sin45°.【分析】根据立方根的定义、零指数幂及特殊角的三角函数值求得各项的值,再计算即可.【解答】解:+20170×(﹣1)﹣4sin45°=2+1×(﹣1)﹣4×=2﹣1﹣2=﹣1.【点评】本题主要考查实数的计算及零指数幂和特殊角的三角函数值,掌握立方根的计算、零指数幂的运算法则、熟记特殊角的三角函数值是解题的关键.20.(6分)(2017•株洲)化简求值:(x﹣)•﹣y,其中x=2,y=.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分后计算得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=•﹣y=﹣=﹣,当x=2,y=时,原式=﹣.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.(8分)(2017•株洲)某次世界魔方大赛吸引世界各地共600名魔方爱好者参加,本次大赛首轮进行3×3阶魔方赛,组委会随机将爱好者平均分到20个区域,每个区域30名同时进行比赛,完成时间小于8秒的爱好者进入下一轮角逐;如图是3×3阶魔方赛A区域30名爱好者完成时间统计图,求:①A区域3×3阶魔方爱好者进入下一轮角逐的人数的比例(结果用最简分数表示).②若3×3阶魔方赛各个区域的情况大体一致,则根据A区域的统计结果估计在3×3阶魔方赛后进入下一轮角逐的人数.③若3×3阶魔方赛A区域爱好者完成时间的平均值为8.8秒,求该项目赛该区域完成时间为8秒的爱好者的概率(结果用最简分数表示).【分析】①由图知1人6秒,3人7秒,小于8秒的爱好者共有4人,进入下一轮角逐的人数比例为4:30;②因为其他赛区情况大致一致,所以进入下一轮的人数为:600×A区进入下一轮角逐的人数比例;③由完成时间的平均值和A区30人,得到关于a、b的二元一次方程组,求出a、b,得到完成时间8秒的爱好者的概率.【解答】解:①A区小于8秒的共有3+1=4(人)所以A区进入下一轮角逐的人数比例为:=;②估计进入下一轮角逐的人数为600×=80(人);③因为A区域爱好者完成时间的平均值为8.8秒,所以(1×6+3×7+a×8+b×9+10×10)÷30=8.8化简,得8a+9b=137又∵1+3+a+b+10=30,即a+b=16所以解得a=7,b=9所以该区完成时间为8秒的爱好者的概率为.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.解决本题的关键是根据平均数和各个时间段的人数确定完成时间为8秒的人数.概率=所求情况数与总情况数之比.22.(8分)(2017•株洲)如图示,正方形ABCD的顶点A在等腰直角三角形DEF 的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.【分析】①由正方形ABCD与等腰直角三角形DEF,得到两对边相等,一对直角相等,利用SAS即可得证;②由第一问的全等三角形的对应角相等,根据等量代换得到∠BAG=∠BCF,再由对顶角相等,利用两对角相等的三角形相似即可得证.【解答】证明:①∵正方形ABCD,等腰直角三角形EDF,∴∠ADC=∠EDF=90°,AD=CD,DE=DF,∴∠ADE+∠ADF=∠ADF+∠CDF,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF;②延长BA到M,交ED于点M,∵△ADE≌△CDF,∴∠EAD=∠FCD,即∠EAM+∠MAD=∠BCD+∠BCF,∵∠MAD=∠BCD=90°,∴∠EAM=∠BCF,∵∠EAM=∠BAG,∴∠BAG=∠BCF,∵∠AGB=∠CGF,∴△ABG∽△CFG.【点评】此题考查了全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的判定与性质是解本题的关键.23.(8分)(2017•株洲)如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为α其中tanα=2,无人机的飞行高度AH为500米,桥的长度为1255米.①求点H到桥左端点P的距离;②若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度AB.【分析】①在Rt △AHP 中,由tan ∠APH=tanα=,即可解决问题;②设BC ⊥HQ 于C .在Rt △BCQ 中,求出CQ==1500米,由PQ=1255米,可得CP=245米,再根据AB=HC=PH ﹣PC 计算即可; 【解答】解:①在Rt △AHP 中,∵AH=500,由tan ∠APH=tanα===2,可得PH=250米.∴点H 到桥左端点P 的距离为250米.②设BC ⊥HQ 于C .在Rt △BCQ 中,∵BC=AH=500,∠BQC=30°,∴CQ==1500米,∵PQ=1255米, ∴CP=245米, ∵HP=250米,∴AB=HC=250﹣245=5米.答:这架无人机的长度AB 为5米.【点评】本题考查解直角三角形﹣仰角俯角问题,锐角三角函数,矩形判定和性质等知识,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.24.(8分)(2017•株洲)如图所示,Rt △PAB 的直角顶点P (3,4)在函数y=(x >0)的图象上,顶点A 、B 在函数y=(x >0,0<t <k )的图象上,PA ∥y 轴,连接OP ,OA ,记△OPA 的面积为S △OPA ,△PAB 的面积为S △PAB ,设w=S △OPA ﹣S △PAB .①求k 的值以及w 关于t 的表达式;②若用w max和w min分别表示函数w的最大值和最小值,令T=w max+a2﹣a,其中a为实数,求T min.【分析】(1)由点P的坐标表示出点A、点B的坐标,从而得S△PAB=•PA•PB=(4﹣)(3﹣),再根据反比例系数k的几何意义知S△OPA =S△OPC﹣S△OAC=6﹣t,由w=S△OPA ﹣S△PAB可得答案;(2)将(1)中所得解析式配方求得w max=,代入T=w max+a2﹣a配方即可得出答案.【解答】解:(1)∵点P(3,4),∴在y=中,当x=3时,y=,即点A(3,),当y=4时,x=,即点B(,4),则S△PAB=•PA•PB=(4﹣)(3﹣),如图,延长PA交x轴于点C,则PC⊥x轴,又S△OPA =S△OPC﹣S△OAC=×3×4﹣t=6﹣t,∴w=6﹣t﹣(4﹣)(3﹣)=﹣t2+t;(2)∵w=﹣t2+t=﹣(t﹣6)2+,∴w max=,则T=w max+a2﹣a=a2﹣a+=(a﹣)2+,∴当a=时,T min=.【点评】本题主要考查反比例函数系数k的几何意义及二次函数的性质,熟练掌握反比例系数k的几何意义及配方法求二次函数的最值是解题的关键.25.(10分)(2017•株洲)如图示AB为⊙O的一条弦,点C为劣弧AB的中点,E为优弧AB上一点,点F在AE的延长线上,且BE=EF,线段CE交弦AB于点D.①求证:CE∥BF;②若BD=2,且EA:EB:EC=3:1:,求△BCD的面积(注:根据圆的对称性可知OC⊥AB).【分析】①连接AC,BE,由等腰三角形的性质和三角形的外角性质得出∠F=∠AEB,由圆周角定理得出∠AEC=∠BEC,证出∠AEC=∠F,即可得出结论;②证明△ADE∽△CBE,得出,证明△CBE∽△CDB,得出,求出CB=2,得出AD=6,AB=8,由垂径定理得出OC⊥AB,AG=BG=AB=4,由勾股定理求出CG==2,即可得出△BCD的面积.【解答】①证明:连接AC,BE,作直线OC,如图所示:∵BE=EF,∴∠F=∠EBF;XX学校--用心用情服务教育!∵∠AEB=∠EBF+∠F,∴∠F=∠AEB,∵C是的中点,∴,∴∠AEC=∠BEC,∵∠AEB=∠AEC+∠BEC,∴∠AEC=∠AEB,∴∠AEC=∠F,∴CE∥BF;②解:∵∠DAE=∠DCB,∠AED=∠CEB,∴△ADE∽△CBE,∴,即,∵∠CBD=∠CEB,∠BCD=∠ECB,∴△CBE∽△CDB,∴,即,∴CB=2,∴AD=6,∴AB=8,∵点C为劣弧AB的中点,∴OC⊥AB,AG=BG=AB=4,∴CG==2,∴△BCD的面积=BD•CG=×2×2=2.【点评】本题考查了相似三角形的判定与性质、垂径定理、圆周角定理、三角形的外角性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理,证明三角形相似是解决问题的关键.26.(12分)(2017•株洲)已知二次函数y=﹣x2+bx+c+1,①当b=1时,求这个二次函数的对称轴的方程;②若c=﹣b2﹣2b,问:b为何值时,二次函数的图象与x轴相切?③若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<x2,与y轴的正半轴交于点M,以AB为直径的半圆恰好过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足=,求二次函数的表达式.【分析】①二次函数y=﹣x2+bx+c+1的对称轴为x=,即可得出答案;②二次函数y=﹣x2+bx+c+1的顶点坐标为(,),y由二次函数的图象与x轴相切且c=b2﹣2b,得出方程组,求出b即可;③由圆周角定理得出∠AMB=90°,证出∠OMA=∠OBM,得出△OAM∽△OMB,得出OM2=OA•OB,由二次函数的图象与x轴的交点和根与系数关系得出OA=﹣x1,OB=x2,x1+x2,=b,x1•x2=﹣(c+1),得出方程(c+1)2=c+1,得出c=0,OM=1,证明△BDE∽△BOM,△AOM∽△ADF,得出,,得出OB=4OA,即x2=﹣4x1,由x1•x2=﹣(c+1)=﹣1,得出方程组,解方程组求出b的值即可.【解答】解:①二次函数y=﹣x2+bx+c+1的对称轴为x=,当b=1时,=,∴当b=1时,求这个二次函数的对称轴的方程为x=.②二次函数y=﹣x2+bx+c+1的顶点坐标为(,),∵二次函数的图象与x轴相切且c=﹣b2﹣2b,∴,解得:b=,∴b为,二次函数的图象与x轴相切.③∵AB是半圆的直径,∴∠AMB=90°,∴∠OAM+∠OBM=90°,∵∠AOM=∠MOB=90°,∴∠OAM+∠OMA=90°,∴∠OMA=∠OBM,∴△OAM∽△OMB,∴,∴OM2=OA•OB,∵二次函数的图象与x轴交于点A(x1,0),B(x2,0),∴OA=﹣x1,OB=x2,x1+x2,=b,x1•x2=﹣(c+1),∵OM=c+1,∴(c+1)2=c+1,解得:c=0或c=﹣1(舍去),∴c=0,OM=1,∵二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足=,∴AD=BD,DF=4DE,DF∥OM,∴△BDE∽△BOM,△AOM∽△ADF,∴,,∴DE=,DF=,∴×4,∴OB=4OA,即x2=﹣4x1,∵x1•x2=﹣(c+1)=﹣1,∴,解得:,∴b=﹣+2=,∴二次函数的表达式为y=﹣x2+x+1.【点评】本题是二次函数综合题目,考查了二次函数的性质、二次函数的图象与x轴的交点、顶点坐标、圆周角定理、相似三角形的判定与性质、根与系数是关系等知识;本题综合性强,有一定难度.。

湖南省株洲市中考数学试题及参考答案(word版)

湖南省株洲市中考数学试题及参考答案(word版)

1 / 10株洲市初中毕业学业考试数 学 试 题 卷考试时量:120分钟 满分:100分亲爱的同学:你好!今天是展示你的才能的时候了,请你仔细审题,认真答题,发挥自己的正常水平,轻松一点,相信自己的实力。

考生注意:本试卷分试题卷和答题卡两部分,全卷共三道大题,23道小题;请考生将解答过程全部填(涂)或写在答题卡上,写在试题卷上无效,考试结束后,将试题卷和答题卡一并上交.一、选择题(每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上.本题共8个小题,每小题3分,共计24分) 1.计算3(1)-的结果是 A .-1 B .1 C .-3 D .32.若使分式2xx -有意义,则x 的取值范围是 A .2x ≠ B .2x ≠- C .2x >-D .2x <3.某同学7次上学途中所花时间(单位:分钟)分别为10、9、11、12、9、10、10,这组数据的众数是A .9B .10C .11D .124.如图,在ABC ∆中,D 、E 分别是AB 、AC 边的中点,若6BC =,则DE 等于 A .5 B .4 C .3 D .25.“鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔?”解决此问题,设鸡为x 只,兔为y 只,则所列方程组正确的是 A .362100x y x y +=⎧⎨+=⎩ B .3642100x y x y +=⎧⎨+=⎩ C .3624100x y x y +=⎧⎨+=⎩ D .3622100x y x y +=⎧⎨+=⎩6.今年我市约有36000名学生参加初中毕业会考,为了了解这36000名学生的数学成绩,准备从中随机抽取1200 名学生的数学成绩进行统计分析,那么你的数学成绩被抽中的概率为A .136000B .11200C .150D .1307.已知函数1y x=的图象如下,当1x ≥-时,y 的取值范围是 A .1y <- B .1y ≤- C .1y ≤- 或0y >D .1y <-或0y ≥第4题B CD E A2 / 10第12题第8题8.在方格纸(每个小方格都是边长为1个单位长度的正方形)中,我们把每个小正方形的顶点称为格点,以格点为顶点的图形称为格点图形.如上图中的△ABC 称为格点△ABC .现将图中△ABC 绕点A 顺时针旋转180︒,并将其边长扩大为原来的2倍,则变形后点B 的对应点所在的位置是 A .甲 B .乙 C .丙 D .丁 二、填空题(本题共8个小题,每小题3分,共计24分)9.计算:(3)2-⨯= . 10.化简:52a a -= .11.北京时间年5月12日14时28分,四川省汶川县发生了8.0级地震.一时间,全国人民“众志成城、抗震救灾”,体现出了前所未有的民族大团结. 截至6月5 日12:00时,四川省财政厅共收到抗震救灾捐款约为43 800 000 000元,用科学记数法表示捐款数为 元.12.如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是 米.输入x平 方乘以2 减去4若结果大于0否则输出y第13题第7题-1-1yxO13.根据如上图所示的程序计算,若输入的x的值为1,则输出的y值为 .3 / 104 / 1014.利民商店中有3种糖果,单价及重量如下表:品 种 水果糖 花生糖 软糖 单价(元/千克) 10 12 16 重量(千克)334若商店将以上糖果配成什锦糖,则这种什锦糖果的单价是每千克_________元.15.已知A 、B 、C 三点在同一条直线上,M 、N 分别为线段AB 、BC 的中点,且 AB = 60,BC = 40,则MN 的长为 .16.如下图中每个阴影部分是以多边形各顶点为圆心,1为半径的扇形,并且所有多边形的每条边长都大于2,则第n 个多边形中,所有扇形面积之和是 (结果保留π).……第1个 第2个 第3个第16题三、解答题(本大题共7题,共52分) 17.(本题满分8分,每小题4分) (1)计算:0111(3)()2π--+--(2)分解因式:3269x x x -+18.(本题满分8分,每小题4分)(1)已知290x -=,求代数式22(1)(1)7x x x x x +----的值.(2)解方程:22570x x --=19.(本题满分6分)如图,在ABC ∆中,90C ∠=︒,点D 、E 分别在AC 、AB 上,BD 平分ABC ∠,DE AB ⊥,6AE =,3cos 5A =. 求(1)DE 、CD 的长;(2)tan DBC ∠的值.EDBCA5 / 1020.(本题满分6分)未成年人思想道德建设越来越受到社会的关注. 某青少年研究所随机调查了某校100名学生寒假中零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观. 根据调查数据形成了频数分布表和频数分布直方图. 如下表和图所示: 分 组 频 数 频 率 0.5~50.5 ( )① 0.1 50.5~( )② 20 0.2 100.5~150.5 ( )③ 0.25 150.5~200.5 30 0.3 200.5~250.5 10 0.1 250.5~300.5 5 0.05 合 计100( )④请结合图形完成下列问题: (1)补全频数分布表;(2)在频数分布直方图中,如果将矩形ABCD 底边AB 长度视为1,则这个矩形的面积是 ;这次调查的样本容量是 .21、(本题满分7分)如图所示,O 的直径AB =4,点P 是AB 延长线上的一点,过点P 作O 的切线,切点为C ,连结AC . (1)若∠CP A =30°,求PC 的长;(2)若点P 在AB 的延长线上运动,∠CP A 的平分线交AC 于点M . 你认为∠CMP 的大小是否发生变化?若变化,请说明理由;若不变化,请求出∠CMP 的值.10 20 25 30 5D C钱数250.5 300.5 频数 POBACM频数(人22.(本题满分7分)北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:比赛项目票价(元/场)男篮1000足球800乒乓球500(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(2)若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过...男篮门票的费用,问可以预订这三种球类门票各多少张?6 / 107 / 1023.(本题满分10分)如图(1),在平面直角坐标系中,点A 的坐标为(1,-2),点B的坐标为(3,-1),二次函数2y x =-的图象为1l .(1)平移抛物线1l ,使平移后的抛物线过点A ,但不过点B ,写出平移后的抛物线的一个解析式(任写一个即可).(2)平移抛物线1l ,使平移后的抛物线过A 、B 两点,记抛物线为2l ,如图(2),求抛物线2l 的函数解析式及顶点C 的坐标.(3)设P 为y 轴上一点,且ABC ABP S S ∆∆=,求点P 的坐标.(4)请在图(2)上用尺规作图的方式探究抛物线2l 上是否存在点Q ,使QAB ∆为等腰三角形. 若存在,请判断点Q 共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.yox图y o x图l 1l 28 / 10株洲市初中毕业学业考试试卷 数学参考答案及评分标准一、选择题:二、填空题: 9.6- 10. 3a 11. 104.3810⨯ 12.8 13.4 14. 1315.10或50(只填对一个得2分) 16.2n π 三、解答题:17、(1)原式=112+- ……3分 (2)原式=2(69)x x x -+ ………2分0= …… 4分 2(3)x x =- ………2分18、(1)原式=…=27x - ……2分由290x -=得29x =, 代入原式=2 ……4分(2)∵2,5,7a b c ==-=- …… 1分 ∴2481b ac -= …… 1分得 5811x ±==-或72……4分题 次 1 2 3 4 5 6 7 8 答 案 A A B C C D C C1 / 1019、(1) 在Rt ADE ∆中,由6AE =,3cos 5A =,得:10AD =, ……1分由勾股定理得8DE = ……2分利用三角形全等或角平分线性质得:8DC DE == ……4分 (2)法一:由(1)10AD =,8DC =,得18AC =.利用ADE ∆∽ABC ∆得:DE AE BC AC=,即8618BC =,24BC =, ……5分得:1tan 3DBC ∠= ……6分法二:由(1)得18AC =,又3cos 5AC A AB==,得30AB =,由勾股定理得24BC = ………5分 得:1tan 3DBC ∠= ……6分20、(每空一分)(1) ①10 ②100.5 ③25 ④1 (2) 25 100 21、(1)连结OC ……1分由AB =4,得OC =2,在R t OPC ∆中,030CPO ∠=,得3PC =……3分 (2)不变 …4分 1119045222CMP CAP MPA COP CPA ∠=∠+∠=∠+∠=⨯︒=︒ ……7分22、(1)设预定男篮门票x 张,则乒乓球门票(15x -)张.得:1000x +500(15-x )=12000,解得:x = 9 ∴151596x -=-= ……3分(2)设足球门票与乒乓球门票数都预定y 张,则男篮门票数为(15-2y )张,得:8005001000(152)120008001000(152)y y y y y ++-≤⎧⎨≤-⎩, ……5分 解得:2545714y ≤≤.由y 为正整数可得y =5. 15-2y =5 ……6分答:(1)略 (2)略 ……7分23、(1)222345y x x y x x =-+-=-+-或等 (满足条件即可) ……1分(2)设2l 的解析式为2y x bx c =-++,联立方程组21193b c b c-=-++⎧⎨-=-++⎩,解得:911,22b c ==-,则2l 的解析式为291122y x x =-+-, ……3分点C 的坐标为(97,416-) ……4分(3)如答图23-1,过点A 、B 、C 三点分别作x 轴的垂线,垂足分别为D 、E 、F ,则2AD =,716CF =,1BE =,2DE =,54DF =,34FE =.得:1516ABC ABED BCFE CFD S S S S ∆=--=梯形梯形梯形A . ……5分延长BA 交y 轴于点G ,直线AB 的解析式为1522y x =-,则点G 的坐标为(0,52-),设点P 的坐标为(0,h ) ①当点P 位于点G 的下方时,52PG h =--,连结AP 、BP ,则2 / 1052ABP BPG APG S S S h ∆∆∆=-=--,又1516ABC ABP S S ∆∆==,得5516h =-,点P 的坐标为(0,5516-). …… 6分②当点P 位于点G 的上方时,52PG h =+,同理2516h =-,点P 的坐标为(0,2516-).综上所述所求点P 的坐标为(0,5516-)或(0,2516-) …… 7分(4) 作图痕迹如答图23-2所示.由图可知,满足条件的点有1Q 、2Q 、3Q 、4Q ,共4个可能的位置. …… 10分本答案仅供参考,若有其他解法,请参照本评分标准评分。

湖南省株洲市2017年中考数学试题含答案

湖南省株洲市2017年中考数学试题含答案

2017年株洲中考试卷一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共计30分)1、计算a4ga2的结果是()A、aB、aC、aD、a解答:同底数幕的乘法:答案选C2、如图,数轴上A所表示的数的绝对值是A、2B、-2C、土2D、以上都不对A-3-2-10 1 2 3第2题图解答:数轴上的点表示的数与绝对值的意义,或者直接看这个点到原点的距离3、如图,直线1 |2被直线13所截,且h PI2,则〉的度数是A、41 °B、49 °C、51 °D、59 °解答:平行线的性质,内错角相等;答案选B4、已知实数a b满足a +1 Ab+1,则下列选项可能错误.的是A a bB 、a 2 b+2C 、-a :: -bD 2a 3b解答:不等式的性质;答案选D5、如图,在△ ABC中,/ BAC =x,乙B =2x,.匕C =3x,则乙BAD的度数为A 145°B 、150°C 、155°D 、160°解答:三角形的内角和,外角性质,邻补角的性质,答案选B6、下列圆的内接正多边中,一条边所对的圆心角最大的图形是()A、正三角形B正方形C、正五边形D、正六边形解答:正多边形平分弧平分圆心角,故分的份数越多圆心角越小,答案先A7、株洲市展览馆某天四个时间段进出馆人数统计如下表,则馆内人数变化最大的时间段是9: 00—10:0010 : 00—11 :0014:00—15:0015:00—16:00进馆人数50245532出馆人数30652845A 9: 00—10:00 B、10:00—11:00 C、14:00—15:00 D、15:00—16:00 解答:观察进出人数的变化过程,答案选B8、三名学生坐在仅有的三个座位上,起身后重新就座,恰好有两名同学没有坐回原来的座解答:三角形中位线的性质,可以确定四边形 EFGH 为平行四边形,故 A 、B 错误,当AC=BD时,它是菱形,故 D 也错误。

2017年湖南省株洲市中考数学真题试卷

2017年湖南省株洲市中考数学真题试卷

2017年湖南省株洲市中考数学试卷一、选择题(每小题3分,满分30分)1.(3分)计算a2•a4的结果为()A.a2B.a4C.a6D.a82.(3分)如图示,数轴上点A所表示的数的绝对值为()A.2 B.﹣2 C.±2 D.以上均不对3.(3分)如图示直线l1,l2△ABC被直线l3所截,且l1∥l2,则α=()A.41°B.49°C.51°D.59°4.(3分)已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b5.(3分)如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD=()A.145°B.150°C.155° D.160°6.(3分)下列圆的内接正多边形中,一条边所对的圆心角最大的图形是()A.正三角形B.正方形C.正五边形D.正六边形7.(3分)株洲市展览馆某天四个时间段进出馆人数统计如下,则馆内人数变化最大时间段为()A.9:00﹣10:00 B.10:00﹣11:00 C.14:00﹣15:00 D.15:00﹣16:00 8.(3分)三名初三学生坐在仅有的三个座位上,起身后重新就坐,恰好有两名同学没有坐回原座位的概率为()A.)B.)C.)D.)9.(3分)如图,点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA 的中点,则关于四边形EFGH,下列说法正确的为()A.一定不是平行四边形B.一定不是中心对称图形C.可能是轴对称图形D.当AC=BD时它是矩形10.(3分)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC 的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF 中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.D.二、填空题(每小题3分,满分24分)11.(3分)如图示在△ABC中∠B=.12.(3分)分解因式:m3﹣mn2=.13.(3分)分式方程﹣=0的解为.14.(3分)已知“x的3倍大于5,且x的一半与1的差不大于2”,则x的取值范围是.15.(3分)如图,已知AM为⊙O的直径,直线BC经过点M,且AB=AC,∠BAM=∠CAM,线段AB和AC分别交⊙O于点D、E,∠BMD=40°,则∠EOM=.16.(3分)如图示直线y=x+与x轴、y轴分别交于点A、B,当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动的路径的长度为.17.(3分)如图所示是一块含30°,60°,90°的直角三角板,直角顶点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数y1=(x>0)的图象上,顶点B在函数y2=(x>0)的图象上,∠ABO=30°,则=.18.(3分)如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中正确结论的序号为.三、解答题(本大题共有8个小题,满分66分)19.(6分)计算:+20170×(﹣1)﹣4sin45°.20.(6分)化简求值:(x﹣)•﹣y,其中x=2,y=.21.(8分)某次世界魔方大赛吸引世界各地共600名魔方爱好者参加,本次大赛首轮进行3×3阶魔方赛,组委会随机将爱好者平均分到20个区域,每个区域30名同时进行比赛,完成时间小于8秒的爱好者进入下一轮角逐;如图是3×3阶魔方赛A区域30名爱好者完成时间统计图,求:①A区域3×3阶魔方爱好者进入下一轮角逐的人数的比例(结果用最简分数表示).②若3×3阶魔方赛各个区域的情况大体一致,则根据A区域的统计结果估计在3×3阶魔方赛后进入下一轮角逐的人数.③若3×3阶魔方赛A区域爱好者完成时间的平均值为8.8秒,求该项目赛该区域完成时间为8秒的爱好者的概率(结果用最简分数表示).22.(8分)如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.23.(8分)如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为α其中tanα=2,无人机的飞行高度AH为500米,桥的长度为1255米.①求点H到桥左端点P的距离;②若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度AB.24.(8分)如图所示,Rt△PAB的直角顶点P(3,4)在函数y=(x>0)的图象上,顶点A、B在函数y=(x>0,0<t<k)的图象上,PA∥y轴,连接OP,OA,记△OPA的面积为S△OPA,△PAB的面积为S△PAB,设w=S△OPA﹣S△PAB.①求k的值以及w关于t的表达式;②若用w max和w min分别表示函数w的最大值和最小值,令T=w max+a2﹣a,其中a为实数,求T min.25.(10分)如图示AB为⊙O的一条弦,点C为劣弧AB的中点,E为优弧AB 上一点,点F在AE的延长线上,且BE=EF,线段CE交弦AB于点D.①求证:CE∥BF;②若BD=2,且EA:EB:EC=3:1:,求△BCD的面积(注:根据圆的对称性可知OC⊥AB).26.(12分)已知二次函数y=﹣x2+bx+c+1,①当b=1时,求这个二次函数的对称轴的方程;②若c=﹣b2﹣2b,问:b为何值时,二次函数的图象与x轴相切?③若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<x2,与y轴的正半轴交于点M,以AB为直径的半圆恰好过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足=,求二次函数的表达式.2017年湖南省株洲市中考数学试卷参考答案与试题解析一、选择题(每小题3分,满分30分)1.(3分)(2017•株洲)计算a2•a4的结果为()A.a2B.a4C.a6D.a8【分析】直接利用同底数幂的乘法运算法则求出答案.【解答】解:原式=a2+4=a6.故选C.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.2.(3分)(2017•株洲)如图示,数轴上点A所表示的数的绝对值为()A.2 B.﹣2 C.±2 D.以上均不对【分析】根据数轴可以得到点A表示的数,从而可以求出这个数的绝对值,本题得以解决.【解答】解:由数轴可得,点A表示的数是﹣2,∵|﹣2|=2,∴数轴上点A所表示的数的绝对值为2,故选A.【点评】本题考查数轴、绝对值,解答本题的关键是明确数轴的特点,会求一个数的绝对值.3.(3分)(2017•株洲)如图示直线l1,l2△ABC被直线l3所截,且l1∥l2,则α=()A.41°B.49°C.51°D.59°【分析】根据平行线的性质即可得到结论.【解答】解:∵l1∥l2,∴α=49°,故选B.【点评】本题考查了平行线的性质,是基础题,熟记性质是解题的关键.4.(3分)(2017•株洲)已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b【分析】根据不等式的性质即可得到a>b,a+2>b+2,﹣a<﹣b.【解答】解:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b.故选D.【点评】本题考查了不等式的性质,属于基础题.5.(3分)(2017•株洲)如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD=()A.145°B.150°C.155° D.160°【分析】根据三角形内角和定理求出x,再根据三角形的外角的等于不相邻的两个内角的和,即可解决问题.【解答】解:在△ABC中,∵∠B+∠C+∠BAC=180°,∠BAC=x,∠B=2x,∠C=3x,∴6x=180°,∴x=30°,∵∠BAD=∠B+∠C=5x=150°,故选B.【点评】本题考查三角形内角和定理、三角形的外角的性质等知识,学会构建方程解决问题,属于基础题.6.(3分)(2017•株洲)下列圆的内接正多边形中,一条边所对的圆心角最大的图形是()A.正三角形B.正方形C.正五边形D.正六边形【分析】根据正多边形的中心角的度数即可得到结论.【解答】解:∵正三角形一条边所对的圆心角是360°÷3=120°,正方形一条边所对的圆心角是360°÷4=90°,正五边形一条边所对的圆心角是360°÷5=72°,正六边形一条边所对的圆心角是360°÷6=60°,∴一条边所对的圆心角最大的图形是正三角形,故选A.【点评】本题考查了正多边形与圆,熟练掌握正多边形的中心角的定义是解题的关键.7.(3分)(2017•株洲)株洲市展览馆某天四个时间段进出馆人数统计如下,则馆内人数变化最大时间段为()A.9:00﹣10:00 B.10:00﹣11:00 C.14:00﹣15:00 D.15:00﹣16:00【分析】直接利用统计表中人数的变化范围得出馆内人数变化最大时间段.【解答】解:由统计表可得:10:00﹣11:00,进馆24人,出馆65人,差之最大,故选:B.【点评】此题主要考查了统计表,正确利用表格获取正确信息是解题关键.8.(3分)(2017•株洲)三名初三学生坐在仅有的三个座位上,起身后重新就坐,恰好有两名同学没有坐回原座位的概率为()A.)B.)C.)D.)【分析】画树状图为(用A、B、C表示三位同学,用a、b、c表示他们原来的座位)展示所有6种等可能的结果数,再找出恰好有两名同学没有坐回原座位的结果数,然后根据概率公式求解.【解答】解:画树状图为:(用A、B、C表示三位同学,用a、b、c表示他们原来的座位)共有6种等可能的结果数,其中恰好有两名同学没有坐回原座位的结果数为3,所以恰好有两名同学没有坐回原座位的概率==.故选D.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.9.(3分)(2017•株洲)如图,点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,则关于四边形EFGH,下列说法正确的为()A.一定不是平行四边形B.一定不是中心对称图形C.可能是轴对称图形D.当AC=BD时它是矩形【分析】先连接AC,BD,根据EF=HG=AC,EH=FG=BD,可得四边形EFGH是平行四边形,当AC⊥BD时,∠EFG=90°,此时四边形EFGH是矩形;当AC=BD 时,EF=FG=GH=HE,此时四边形EFGH是菱形,据此进行判断即可.【解答】解:连接AC,BD,∵点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,∴EF=HG=AC,EH=FG=BD,∴四边形EFGH是平行四边形,∴四边形EFGH一定是中心对称图形,当AC⊥BD时,∠EFG=90°,此时四边形EFGH是矩形,当AC=BD时,EF=FG=GH=HE,此时四边形EFGH是菱形,∴四边形EFGH可能是轴对称图形,故选:C.【点评】本题主要考查了中点四边形的运用,解题时注意:平行四边形是中心对称图形.解决问题的关键是掌握三角形中位线定理.10.(3分)(2017•株洲)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.D.【分析】由△DQF∽△FQE,推出===,由此求出EQ、FQ即可解决问题.【解答】解:如图,在等腰直角三角形△DEF中,∠EDF=90°,DE=DF,∠1=∠2=∠3,∵∠1+∠QEF=∠3+∠DFQ=45°,∴∠QEF=∠DFQ,∵∠2=∠3,∴△DQF∽△FQE,∴===,∵DQ=1,∴FQ=,EQ=2,∴EQ+FQ=2+,故选D【点评】本题考查等腰直角三角形的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.二、填空题(每小题3分,满分24分)11.(3分)(2017•株洲)如图示在△ABC中∠B=25°.【分析】由直角三角形的两个锐角互余即可得出答案.【解答】解:∵∠C=90°,∴∠B=90°﹣∠A=90°﹣65°=25°;故答案为:25°.【点评】本题考查了直角三角形的两个锐角互余的性质;熟记直角三角形的性质是解决问题的关键.12.(3分)(2017•株洲)分解因式:m3﹣mn2=m(m+n)(m﹣n).【分析】先提取公因式m,再运用平方差公式分解.【解答】解:m3﹣mn2,=m(m2﹣n2),=m(m+n)(m﹣n).【点评】本题考查提公因式法分解因式和利用平方差公式分解因式,本题要进行二次分解因式,分解因式要彻底.13.(3分)(2017•株洲)分式方程﹣=0的解为x=﹣.【分析】根据解方式方程的步骤一步步求解,即可得出x的值,将其代入原方程验证后即可得出结论.【解答】解:去分母,得4x+8﹣x=0,移项、合并同类项,得3x=﹣8,方程两边同时除以3,得x=﹣.经检验,x=﹣是原方程的解.故答案为:x=﹣.【点评】本题考查了解分式方程,熟练掌握分式方程的解法及步骤是解题的关键.14.(3分)(2017•株洲)已知“x的3倍大于5,且x的一半与1的差不大于2”,则x的取值范围是<x≤6.【分析】根据题意列出不等式组,再求解集即可得到x的取值范围.【解答】解:依题意有,解得<x≤6.故x的取值范围是<x≤6.故答案为:<x≤6.【点评】主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.(3分)(2017•株洲)如图,已知AM为⊙O的直径,直线BC经过点M,且AB=AC,∠BAM=∠CAM,线段AB和AC分别交⊙O于点D、E,∠BMD=40°,则∠EOM=80°.【分析】连接EM,根据等腰三角形的性质得到AM⊥BC,进而求出∠AMD=70°,于是得到结论.【解答】解:连接EM,∵AB=AC,∠BAM=∠CAM,∴AM⊥BC,∵AM为⊙O的直径,∴∠ADM=∠AEM=90°,∴∠AME=∠AMD=90°﹣∠BMD=50°∴∠EAM=40°,∴∠EOM=2∠EAM=80°,故答案为:80°.【点评】本题考查了等腰三角形的性质,圆周角定理,熟练掌握圆周角定理是解题的关键.16.(3分)(2017•株洲)如图示直线y=x+与x轴、y轴分别交于点A、B,当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动的路径的长度为π.【分析】先利用一次函数的解析式可确定A(﹣1,0),B(0,),再利用正切的定义求出∠BAO=60°,利用勾股定理计算出AB=2,然后根据弧长公式计算.【解答】解:当y=0时,x+=0,解得x=﹣1,则A(﹣1,0),当x=0时,y=x+=,则B(0,),在Rt△OAB中,∵tan∠BAO==,∴∠BAO=60°,∴AB==2,∴当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动的路径的长度==π.故答案为π.【点评】本题考查了一次函数图象与几何变换:熟练掌握旋转的性质,会计算一次函数与坐标轴的交点坐标.17.(3分)(2017•株洲)如图所示是一块含30°,60°,90°的直角三角板,直角顶点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数y1=(x>0)的图象上,顶点B在函数y2=(x>0)的图象上,∠ABO=30°,则=﹣.【分析】设AC=a,则OA=2a,OC=a,根据直角三角形30°角的性质和勾股定理分别计算点A和B的坐标,写出A和B两点的坐标,代入解析式求出k1和k2的值,相比即可.【解答】解:如图,Rt△AOB中,∠B=30°,∠AOB=90°,∴∠OAC=60°,∵AB⊥OC,∴∠ACO=90°,∴∠AOC=30°,设AC=a,则OA=2a,OC=a,∴A(a,a),∵A在函数y1=(x>0)的图象上,∴k1=a•a=,Rt△BOC中,OB=2OC=2a,∴BC==3a,∴B(a,﹣3a),∵B在函数y2=(x>0)的图象上,∴k2=﹣3a a=﹣3,∴=﹣;故答案为:﹣.【点评】本题考查了反比例函数图象上点的特征、直角三角形30°的性质,熟练掌握直角三角形30°角所对的直角边是斜边的一半,正确写出A、B两点的坐标是关键.18.(3分)(2017•株洲)如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中正确结论的序号为①④.【分析】根据抛物线与y轴交于点B(0,﹣2),可得c=﹣2,依此判断③;由抛物线图象与x轴交于点A(﹣1,0),可得a﹣b﹣2=0,依此判断①②;由|a|=|b|可得二次函数y=ax2+bx+c的对称轴为y=,可得x2=2,比较大小即可判断④;从而求解.【解答】解:由A(﹣1,0),B(0,﹣2),得b=a﹣2,∵开口向上,∴a>0;∵对称轴在y轴右侧,∴﹣>0,∴﹣>0,∴a﹣2<0,∴a<2;∴0<a<2;∴①正确;∵抛物线与y轴交于点B(0,﹣2),∴c=﹣2,故③错误;∵抛物线图象与x轴交于点A(﹣1,0),∴a﹣b﹣2=0,∵0<a<2,∴0<b+2<2,﹣2<b<0,故②错误;∵|a|=|b|,二次函数y=ax2+bx+c的对称轴在y轴的右侧,∴二次函数y=ax2+bx+c的对称轴为y=,∴x2=2>﹣1,故④正确.故答案为:①④.【点评】本题考查了抛物线与x轴的交点,二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a 与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.三、解答题(本大题共有8个小题,满分66分)19.(6分)(2017•株洲)计算:+20170×(﹣1)﹣4sin45°.【分析】根据立方根的定义、零指数幂及特殊角的三角函数值求得各项的值,再计算即可.【解答】解:+20170×(﹣1)﹣4sin45°=2+1×(﹣1)﹣4×=2﹣1﹣2=﹣1.【点评】本题主要考查实数的计算及零指数幂和特殊角的三角函数值,掌握立方根的计算、零指数幂的运算法则、熟记特殊角的三角函数值是解题的关键.20.(6分)(2017•株洲)化简求值:(x﹣)•﹣y,其中x=2,y=.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分后计算得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=•﹣y=﹣=﹣,当x=2,y=时,原式=﹣.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.(8分)(2017•株洲)某次世界魔方大赛吸引世界各地共600名魔方爱好者参加,本次大赛首轮进行3×3阶魔方赛,组委会随机将爱好者平均分到20个区域,每个区域30名同时进行比赛,完成时间小于8秒的爱好者进入下一轮角逐;如图是3×3阶魔方赛A区域30名爱好者完成时间统计图,求:①A区域3×3阶魔方爱好者进入下一轮角逐的人数的比例(结果用最简分数表示).②若3×3阶魔方赛各个区域的情况大体一致,则根据A区域的统计结果估计在3×3阶魔方赛后进入下一轮角逐的人数.③若3×3阶魔方赛A区域爱好者完成时间的平均值为8.8秒,求该项目赛该区域完成时间为8秒的爱好者的概率(结果用最简分数表示).【分析】①由图知1人6秒,3人7秒,小于8秒的爱好者共有4人,进入下一轮角逐的人数比例为4:30;②因为其他赛区情况大致一致,所以进入下一轮的人数为:600×A区进入下一轮角逐的人数比例;③由完成时间的平均值和A区30人,得到关于a、b的二元一次方程组,求出a、b,得到完成时间8秒的爱好者的概率.【解答】解:①A区小于8秒的共有3+1=4(人)所以A区进入下一轮角逐的人数比例为:=;②估计进入下一轮角逐的人数为600×=80(人);③因为A区域爱好者完成时间的平均值为8.8秒,所以(1×6+3×7+a×8+b×9+10×10)÷30=8.8化简,得8a+9b=137又∵1+3+a+b+10=30,即a+b=16所以解得a=7,b=9所以该区完成时间为8秒的爱好者的概率为.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.解决本题的关键是根据平均数和各个时间段的人数确定完成时间为8秒的人数.概率=所求情况数与总情况数之比.22.(8分)(2017•株洲)如图示,正方形ABCD的顶点A在等腰直角三角形DEF 的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.【分析】①由正方形ABCD与等腰直角三角形DEF,得到两对边相等,一对直角相等,利用SAS即可得证;②由第一问的全等三角形的对应角相等,根据等量代换得到∠BAG=∠BCF,再由对顶角相等,利用两对角相等的三角形相似即可得证.【解答】证明:①∵正方形ABCD,等腰直角三角形EDF,∴∠ADC=∠EDF=90°,AD=CD,DE=DF,∴∠ADE+∠ADF=∠ADF+∠CDF,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF;②延长BA到M,交ED于点M,∵△ADE≌△CDF,∴∠EAD=∠FCD,即∠EAM+∠MAD=∠BCD+∠BCF,∵∠MAD=∠BCD=90°,∴∠EAM=∠BCF,∵∠EAM=∠BAG,∴∠BAG=∠BCF,∵∠AGB=∠CGF,∴△ABG∽△CFG.【点评】此题考查了全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的判定与性质是解本题的关键.23.(8分)(2017•株洲)如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为α其中tanα=2,无人机的飞行高度AH为500米,桥的长度为1255米.①求点H到桥左端点P的距离;②若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度AB.【分析】①在Rt △AHP 中,由tan ∠APH=tanα=,即可解决问题;②设BC ⊥HQ 于C .在Rt △BCQ 中,求出CQ==1500米,由PQ=1255米,可得CP=245米,再根据AB=HC=PH ﹣PC 计算即可;【解答】解:①在Rt △AHP 中,∵AH=500, 由tan ∠APH=tanα===2,可得PH=250米.∴点H 到桥左端点P 的距离为250米.②设BC ⊥HQ 于C .在Rt △BCQ 中,∵BC=AH=500,∠BQC=30°,∴CQ==1500米, ∵PQ=1255米,∴CP=245米,∵HP=250米,∴AB=HC=250﹣245=5米.答:这架无人机的长度AB 为5米.【点评】本题考查解直角三角形﹣仰角俯角问题,锐角三角函数,矩形判定和性质等知识,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.24.(8分)(2017•株洲)如图所示,Rt △PAB 的直角顶点P (3,4)在函数y=(x >0)的图象上,顶点A 、B 在函数y=(x >0,0<t <k )的图象上,PA ∥y 轴,连接OP ,OA ,记△OPA 的面积为S △OPA ,△PAB 的面积为S △PAB ,设w=S △OPA ﹣S △PAB .①求k 的值以及w 关于t 的表达式;②若用w max和w min分别表示函数w的最大值和最小值,令T=w max+a2﹣a,其中a为实数,求T min.【分析】(1)由点P的坐标表示出点A、点B的坐标,从而得S△PAB=•PA•PB=(4﹣)(3﹣),再根据反比例系数k的几何意义知S△OPA=S△OPC﹣S△OAC=6﹣t,由w=S△OPA ﹣S△PAB可得答案;(2)将(1)中所得解析式配方求得w max=,代入T=w max+a2﹣a配方即可得出答案.【解答】解:(1)∵点P(3,4),∴在y=中,当x=3时,y=,即点A(3,),当y=4时,x=,即点B(,4),则S△PAB=•PA•PB=(4﹣)(3﹣),如图,延长PA交x轴于点C,则PC⊥x轴,又S△OPA=S△OPC﹣S△OAC=×3×4﹣t=6﹣t,∴w=6﹣t﹣(4﹣)(3﹣)=﹣t2+t;(2)∵w=﹣t2+t=﹣(t﹣6)2+,∴w max=,则T=w max+a2﹣a=a2﹣a+=(a﹣)2+,∴当a=时,T min=.【点评】本题主要考查反比例函数系数k的几何意义及二次函数的性质,熟练掌握反比例系数k的几何意义及配方法求二次函数的最值是解题的关键.25.(10分)(2017•株洲)如图示AB为⊙O的一条弦,点C为劣弧AB的中点,E为优弧AB上一点,点F在AE的延长线上,且BE=EF,线段CE交弦AB于点D.①求证:CE∥BF;②若BD=2,且EA:EB:EC=3:1:,求△BCD的面积(注:根据圆的对称性可知OC⊥AB).【分析】①连接AC,BE,由等腰三角形的性质和三角形的外角性质得出∠F=∠AEB,由圆周角定理得出∠AEC=∠BEC,证出∠AEC=∠F,即可得出结论;②证明△ADE∽△CBE,得出,证明△CBE∽△CDB,得出,求出CB=2,得出AD=6,AB=8,由垂径定理得出OC⊥AB,AG=BG=AB=4,由勾股定理求出CG==2,即可得出△BCD的面积.【解答】①证明:连接AC,BE,作直线OC,如图所示:∵BE=EF,∴∠F=∠EBF;∵∠AEB=∠EBF+∠F,∴∠F=∠AEB,∵C是的中点,∴,∴∠AEC=∠BEC,∵∠AEB=∠AEC+∠BEC,∴∠AEC=∠AEB,∴∠AEC=∠F,∴CE∥BF;②解:∵∠DAE=∠DCB,∠AED=∠CEB,∴△ADE∽△CBE,∴,即,∵∠CBD=∠CEB,∠BCD=∠ECB,∴△CBE∽△CDB,∴,即,∴CB=2,∴AD=6,∴AB=8,∵点C为劣弧AB的中点,∴OC⊥AB,AG=BG=AB=4,∴CG==2,∴△BCD的面积=BD•CG=×2×2=2.【点评】本题考查了相似三角形的判定与性质、垂径定理、圆周角定理、三角形的外角性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理,证明三角形相似是解决问题的关键.26.(12分)(2017•株洲)已知二次函数y=﹣x2+bx+c+1,①当b=1时,求这个二次函数的对称轴的方程;②若c=﹣b2﹣2b,问:b为何值时,二次函数的图象与x轴相切?③若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<x2,与y轴的正半轴交于点M,以AB为直径的半圆恰好过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足=,求二次函数的表达式.【分析】①二次函数y=﹣x2+bx+c+1的对称轴为x=,即可得出答案;②二次函数y=﹣x2+bx+c+1的顶点坐标为(,),y由二次函数的图象与x轴相切且c=b2﹣2b,得出方程组,求出b即可;③由圆周角定理得出∠AMB=90°,证出∠OMA=∠OBM,得出△OAM∽△OMB,得出OM2=OA•OB,由二次函数的图象与x轴的交点和根与系数关系得出OA=﹣x1,OB=x2,x1+x2,=b,x1•x2=﹣(c+1),得出方程(c+1)2=c+1,得出c=0,OM=1,证明△BDE∽△BOM,△AOM∽△ADF,得出,,得出OB=4OA,即x2=﹣4x1,由x1•x2=﹣(c+1)=﹣1,得出方程组,解方程组求出b的值即可.【解答】解:①二次函数y=﹣x2+bx+c+1的对称轴为x=,当b=1时,=,∴当b=1时,求这个二次函数的对称轴的方程为x=.②二次函数y=﹣x2+bx+c+1的顶点坐标为(,),∵二次函数的图象与x轴相切且c=﹣b2﹣2b,∴,解得:b=,∴b为,二次函数的图象与x轴相切.③∵AB是半圆的直径,∴∠AMB=90°,∴∠OAM+∠OBM=90°,∵∠AOM=∠MOB=90°,∴∠OAM+∠OMA=90°,∴∠OMA=∠OBM,∴△OAM∽△OMB,∴,∴OM2=OA•OB,∵二次函数的图象与x轴交于点A(x1,0),B(x2,0),∴OA=﹣x1,OB=x2,x1+x2,=b,x1•x2=﹣(c+1),∵OM=c+1,∴(c+1)2=c+1,解得:c=0或c=﹣1(舍去),∴c=0,OM=1,∵二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足=,∴AD=BD,DF=4DE,DF∥OM,∴△BDE∽△BOM,△AOM∽△ADF,∴,,∴DE=,DF=,∴×4,∴OB=4OA,即x2=﹣4x1,∵x1•x2=﹣(c+1)=﹣1,∴,解得:,∴b=﹣+2=,∴二次函数的表达式为y=﹣x2+x+1.【点评】本题是二次函数综合题目,考查了二次函数的性质、二次函数的图象与x轴的交点、顶点坐标、圆周角定理、相似三角形的判定与性质、根与系数是关系等知识;本题综合性强,有一定难度.2017年湖北省黄石市中考数学试卷一、选择题1.(3分)下列各数是有理数的是()A.﹣ B.C.D.π2.(3分)地球绕太阳公转的速度约为110000km/h,则110000用科学记数法可表示为()A.0.11×106B.1.1×105C.0.11×105D.1.1×1063.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)下列运算正确的是()A.a0=0 B.a2+a3=a5 C.a2•a﹣1=a D.+=5.(3分)如图,该几何体主视图是()A.B.C.D.6.(3分)下表是某位男子马拉松长跑运动员近6次的比赛成绩(单位:分钟)则这组成绩的中位数和平均数分别为()A.137、138 B.138、137 C.138、138 D.137、1397.(3分)如图,△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE=,则∠CDE+∠ACD=()A.60°B.75°C.90°D.105°8.(3分)如图,是二次函数y=ax2+bx+c的图象,对下列结论①ab>0,②abc>0,③<1,其中错误的个数是()A.3 B.2 C.1 D.09.(3分)如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为()A.B.C.D.10.(3分)如图,已知凸五边形ABCDE的边长均相等,且∠DBE=∠ABE+∠CBD,AC=1,则BD必定满足()A.BD<2 B.BD=2C.BD>2 D.以上情况均有可能二、填空题11.(3分)因式分解:x2y﹣4y=.12.(3分)分式方程=﹣2的解为.13.(3分)如图,已知扇形OAB的圆心角为60°,扇形的面积为6π,则该扇形的弧长为.14.(3分)如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了100米后到达D处,在D处测得A处的仰角大小为30°,则建筑物AB的高度约为米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据:≈1.41,≈1.73)15.(3分)甲、乙两位同学各抛掷一枚质地均匀的骰子,他们抛掷的点数分别记为a、b,则a+b=9的概率为.16.(3分)观察下列格式:=1﹣=+=1﹣+﹣=++=1﹣+﹣+﹣=…请按上述规律,写出第n个式子的计算结果(n为正整数).(写出最简计算结果即可)三、解答题17.(7分)计算:(﹣2)3++10+|﹣3+|.18.(7分)先化简,再求值:(﹣)÷,其中a=2sin60°﹣tan45°.19.(7分)已知关于x的不等式组恰好有两个整数解,求实数a 的取值范围.20.(8分)已知关于x的一元二次方程x2﹣4x﹣m2=0(1)求证:该方程有两个不等的实根;(2)若该方程的两个实数根x1、x2满足x1+2x2=9,求m的值.21.(8分)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为⊙O的切线.22.(8分)随着社会的发展,私家车变得越来越普及,使用节能低油耗汽车,对环保有着非常积极的意义,某市有关部门对本市的某一型号的若干辆汽车,进行了一项油耗抽样实验:即在同一条件下,被抽样的该型号汽车,在油耗1L的情况下,所行驶的路程(单位:km)进行统计分析,结果如图所示:(注:记A为12~12.5,B为12.5~13,C为13~13.5,D为13.5~14,E为14~14.5)请依据统计结果回答以下问题:。

湖南省株洲市2017年中考数学真题试题无答案

湖南省株洲市2017年中考数学真题试题无答案

2017年株洲市中考试题一选择题(每题3分,总分值30分)1.计算42a a ⋅的结果为( )A)2a B)4a C)6a D)8a 2.如图示,数轴上点A 所表示的数的绝对值为( ) A)2 B)2- C)2± D)以上均不对 3.如图示直线21,l l 被直线3l 所截,且21//l l ,那么=α( ) A)041 B)049 C)051 D)0594.已知实数b a ,知足11+>+b a ,那么以下选项错误的为( ) A)b a > B)22+>+b a C)b a -<- D)b a 32>5.如图在ABC ∆中03,2,x C x B x BAC =∠=∠=∠,那么=∠BAD ( ) A)0145 B)0150 C)0155 D)01606.以下圆的内接正多边形中,一条边所对的圆心角最大的图形是( ) A)正三角形 B)正方形 C)正五边形 D)正六边形7.株洲市展览馆某天四个时刻段进出馆人数统计如下,那么馆内人数转变最大时刻段为( )9:00-10:00 10:00-11:00 14:00-15:00 15:00-16:00进馆人数 50 24 55 32 出馆人数30652845A) 9:00-10:00 B) 10:00-11:00 C) 14:00-15:00 D) 15:00-16:008.三名初三学生坐在仅有的三个座位上,起身后从头就坐,恰好有两名同窗没有坐回原座位的概率为( )A)91B)61 C)41 D)21 9.如图点E 、F 、G 、H 别离为四边形ABCD 的四边AB 、BC 、CD 、DA 的中点, 那么关于四边形EFGH ,以下说法正确的为( )A)必然不是平行四边形 B)必然不是中心对称图形 C)可能是轴对称图形 D)当BD AC =时它是矩形10.如图示,假设ABC ∆内一点P 知足PCB PBA PAC ∠=∠=∠,那么点P 为ABC ∆ 的布洛卡点,三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔 1780-1855)于1816年第一次发觉,但他的发觉并未被那时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845-1922)从头 发觉,并用他的名字命名;问题:已知在等腰直角三角形DEF 中,090=∠EDF , 假设点Q 为DEF ∆的布洛卡点,1=DQ ,那么=+FQ EQ ( ) A)5 B)4 C)23+D)22+二填空题(每题3分,总分值24分) 11.如图示在ABC ∆中______=∠B12.因式分解:______________23=-mn m13.分式方程0214=+-x x 的解为___________ 14.已知“x 的3倍大于5,且x 的一半与1的差不大于2”,那么x 的取值范围是_________15.如图示已知AM 为O Θ的直径,直线BC 通过点M ,且CAM BAM AC AB ∠=∠=,,线段AB 、AC 别离交O Θ于点D 、E ,040=∠EMD ,那么_______=∠EOM 16.如图示直线33+=x y 与x 轴、y 轴别离交于点A 、B ,当直线绕着点A 按顺时针方向旋转到与x 轴第一次重合时,点B 运动的途径的长度为_________ 17.如图示一块含090,60,30的直角三角板,直角极点O 位于坐标原点,斜边AB 垂直于x 轴,极点A 在函数)0(11>=x x k y 的图像上,极点B 在函数)0(22>=x x ky 的图像上,030=∠ABO ,那么______21=k k 18.如图示二次函数c bx ax y ++=2的对称轴在y 轴的右边,其图像与x 轴交于点)0,1(-A 与点)0,(2x C ,且与y 轴交于点)2,0(-B ,小强取得以下结论:①20<<a ;②01<<-b ;③1-=c ;④当b a =时152->x ;以上结论中正确结论的序号为________三解答题(本大题共有8个小题,总分值66分)19(6分)计算:0045sin 4)1(20178--⨯+20(6分)化简求值:y yx y x y x -+⋅-)(2,其中3,2==y x21(8分)某次世界魔方大赛吸引世界各地共600名魔方爱好者参加,本次 大赛首轮进行33⨯阶魔方赛,组委会随机将爱好者平均分到20个区域, 每一个区域30名同时进行竞赛,完成时刻小于8秒的爱好者进入下一轮角 逐;以下图是33⨯阶魔方赛A 区域30名爱好者完成时刻统计图,求:①A 区域33⨯阶魔方爱好者进入下一轮比赛的人数的比例(结果用最简分数表示) ②若33⨯阶魔方赛各个区域的情形大体一致,那么依照A 区域的统计结果估量在33⨯阶魔方赛后进入下一轮比赛的人数③若33⨯阶魔方赛A 区域爱好者完成时刻的平均值为秒,求该项目赛该区域完成时刻为8秒的爱好者的概率(结果用最简分数表示)22(8分)如图示,正方形ABCD 的极点A 在等腰直角三角形DEF 的斜边E F 上, EF 与BC 相交于点G ,连接CF ;①求证:DAE ∆≌DCF ∆; ②求证:ABG ∆∽CFG ∆23(8分)如图示一架水平飞行的无人机AB 的尾端点A 测得正前方的桥的左端点P 的 俯角为α其中32tan =α,无人机的飞行高度AH 为3500米,桥的长度为1255米; ①求点H 到桥左端点P 的距离; ②假设无人机前端点B 测得正前方的桥的右端点Q 的 俯角为030,求这架无人机的长度AB 。

历年湖南省株洲市中考数学试卷(含答案)

历年湖南省株洲市中考数学试卷(含答案)

2017年湖南省株洲市中考数学试卷一、选择题(每小题3分,满分30分)1.(3分)计算a2•a4的结果为()A.a2B.a4C.a6D.a82.(3分)如图示,数轴上点A所表示的数的绝对值为()A.2 B.﹣2 C.±2 D.以上均不对3.(3分)如图示直线l1,l2△ABC被直线l3所截,且l1∥l2,则α=()A.41°B.49°C.51°D.59°4.(3分)已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b5.(3分)如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD=()A.145°B.150°C.155° D.160°6.(3分)下列圆的内接正多边形中,一条边所对的圆心角最大的图形是()A.正三角形B.正方形C.正五边形D.正六边形7.(3分)株洲市展览馆某天四个时间段进出馆人数统计如下,则馆内人数变化最大时间段为()9:00﹣10:0010:00﹣11:0014:00﹣15:0015:00﹣16:00进馆人数50245532出馆人30652845数A.9:00﹣10:00 B.10:00﹣11:00 C.14:00﹣15:00 D.15:00﹣16:00 8.(3分)三名初三学生坐在仅有的三个座位上,起身后重新就坐,恰好有两名同学没有坐回原座位的概率为()A.)B.)C.)D.)9.(3分)如图,点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA 的中点,则关于四边形EFGH,下列说法正确的为()A.一定不是平行四边形B.一定不是中心对称图形C.可能是轴对称图形D.当AC=BD时它是矩形10.(3分)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC 的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF 中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.D.二、填空题(每小题3分,满分24分)11.(3分)如图示在△ABC中∠B=.12.(3分)分解因式:m3﹣mn2=.13.(3分)分式方程﹣=0的解为.14.(3分)已知“x的3倍大于5,且x的一半与1的差不大于2”,则x的取值范围是.15.(3分)如图,已知AM为⊙O的直径,直线BC经过点M,且AB=AC,∠BAM=∠CAM,线段AB和AC分别交⊙O于点D、E,∠BMD=40°,则∠EOM=.16.(3分)如图示直线y=x+与x轴、y轴分别交于点A、B,当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动的路径的长度为.17.(3分)如图所示是一块含30°,60°,90°的直角三角板,直角顶点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数y1=(x>0)的图象上,顶点B 在函数y2=(x>0)的图象上,∠ABO=30°,则=.18.(3分)如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中正确结论的序号为.三、解答题(本大题共有8个小题,满分66分)19.(6分)计算:+20170×(﹣1)﹣4sin45°.20.(6分)化简求值:(x﹣)•﹣y,其中x=2,y=.21.(8分)某次世界魔方大赛吸引世界各地共600名魔方爱好者参加,本次大赛首轮进行3×3阶魔方赛,组委会随机将爱好者平均分到20个区域,每个区域30名同时进行比赛,完成时间小于8秒的爱好者进入下一轮角逐;如图是3×3阶魔方赛A区域30名爱好者完成时间统计图,求:①A区域3×3阶魔方爱好者进入下一轮角逐的人数的比例(结果用最简分数表示).②若3×3阶魔方赛各个区域的情况大体一致,则根据A区域的统计结果估计在3×3阶魔方赛后进入下一轮角逐的人数.③若3×3阶魔方赛A区域爱好者完成时间的平均值为8.8秒,求该项目赛该区域完成时间为8秒的爱好者的概率(结果用最简分数表示).22.(8分)如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.23.(8分)如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为α其中tanα=2,无人机的飞行高度AH为500米,桥的长度为1255米.①求点H到桥左端点P的距离;②若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度AB.24.(8分)如图所示,Rt△PAB的直角顶点P(3,4)在函数y=(x>0)的图象上,顶点A、B在函数y=(x>0,0<t<k)的图象上,PA∥y轴,连接OP,OA,记△OPA的面积为S△OPA,△PAB的面积为S△PAB,设w=S△OPA﹣S△PAB.①求k的值以及w关于t的表达式;②若用w max和w min分别表示函数w的最大值和最小值,令T=w max+a2﹣a,其中a为实数,求T min.25.(10分)如图示AB为⊙O的一条弦,点C为劣弧AB的中点,E为优弧AB 上一点,点F在AE的延长线上,且BE=EF,线段CE交弦AB于点D.①求证:CE∥BF;②若BD=2,且EA:EB:EC=3:1:,求△BCD的面积(注:根据圆的对称性可知OC⊥AB).26.(12分)已知二次函数y=﹣x2+bx+c+1,①当b=1时,求这个二次函数的对称轴的方程;②若c=﹣b2﹣2b,问:b为何值时,二次函数的图象与x轴相切?③若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<x2,与y轴的正半轴交于点M,以AB为直径的半圆恰好过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足=,求二次函数的表达式.2017年湖南省株洲市中考数学试卷参考答案与试题解析一、选择题(每小题3分,满分30分)1.(3分)(2017•株洲)计算a2•a4的结果为()A.a2B.a4C.a6D.a8【分析】直接利用同底数幂的乘法运算法则求出答案.【解答】解:原式=a2+4=a6.故选C.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.2.(3分)(2017•株洲)如图示,数轴上点A所表示的数的绝对值为()A.2 B.﹣2 C.±2 D.以上均不对【分析】根据数轴可以得到点A表示的数,从而可以求出这个数的绝对值,本题得以解决.【解答】解:由数轴可得,点A表示的数是﹣2,∵|﹣2|=2,∴数轴上点A所表示的数的绝对值为2,故选A.【点评】本题考查数轴、绝对值,解答本题的关键是明确数轴的特点,会求一个数的绝对值.3.(3分)(2017•株洲)如图示直线l1,l2△ABC被直线l3所截,且l1∥l2,则α=()A.41°B.49°C.51°D.59°【分析】根据平行线的性质即可得到结论.【解答】解:∵l1∥l2,∴α=49°,故选B.【点评】本题考查了平行线的性质,是基础题,熟记性质是解题的关键.4.(3分)(2017•株洲)已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b【分析】根据不等式的性质即可得到a>b,a+2>b+2,﹣a<﹣b.【解答】解:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b.故选D.【点评】本题考查了不等式的性质,属于基础题.5.(3分)(2017•株洲)如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD=()A.145°B.150°C.155° D.160°【分析】根据三角形内角和定理求出x,再根据三角形的外角的等于不相邻的两个内角的和,即可解决问题.【解答】解:在△ABC中,∵∠B+∠C+∠BAC=180°,∠BAC=x,∠B=2x,∠C=3x,∴6x=180°,∴x=30°,∵∠BAD=∠B+∠C=5x=150°,故选B.【点评】本题考查三角形内角和定理、三角形的外角的性质等知识,学会构建方程解决问题,属于基础题.6.(3分)(2017•株洲)下列圆的内接正多边形中,一条边所对的圆心角最大的图形是()A.正三角形B.正方形C.正五边形D.正六边形【分析】根据正多边形的中心角的度数即可得到结论.【解答】解:∵正三角形一条边所对的圆心角是360°÷3=120°,正方形一条边所对的圆心角是360°÷4=90°,正五边形一条边所对的圆心角是360°÷5=72°,正六边形一条边所对的圆心角是360°÷6=60°,∴一条边所对的圆心角最大的图形是正三角形,故选A.【点评】本题考查了正多边形与圆,熟练掌握正多边形的中心角的定义是解题的关键.7.(3分)(2017•株洲)株洲市展览馆某天四个时间段进出馆人数统计如下,则馆内人数变化最大时间段为()9:00﹣10:0010:00﹣11:0014:00﹣15:0015:00﹣16:00进馆人数50245532出馆人数30652845A.9:00﹣10:00 B.10:00﹣11:00 C.14:00﹣15:00 D.15:00﹣16:00【分析】直接利用统计表中人数的变化范围得出馆内人数变化最大时间段.【解答】解:由统计表可得:10:00﹣11:00,进馆24人,出馆65人,差之最大,故选:B.【点评】此题主要考查了统计表,正确利用表格获取正确信息是解题关键.8.(3分)(2017•株洲)三名初三学生坐在仅有的三个座位上,起身后重新就坐,恰好有两名同学没有坐回原座位的概率为()A.)B.)C.)D.)【分析】画树状图为(用A、B、C表示三位同学,用a、b、c表示他们原来的座位)展示所有6种等可能的结果数,再找出恰好有两名同学没有坐回原座位的结果数,然后根据概率公式求解.【解答】解:画树状图为:(用A、B、C表示三位同学,用a、b、c表示他们原来的座位)共有6种等可能的结果数,其中恰好有两名同学没有坐回原座位的结果数为3,所以恰好有两名同学没有坐回原座位的概率==.故选D.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.9.(3分)(2017•株洲)如图,点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,则关于四边形EFGH,下列说法正确的为()A.一定不是平行四边形B.一定不是中心对称图形C.可能是轴对称图形D.当AC=BD时它是矩形【分析】先连接AC,BD,根据EF=HG=AC,EH=FG=BD,可得四边形EFGH是平行四边形,当AC⊥BD时,∠EFG=90°,此时四边形EFGH是矩形;当AC=BD 时,EF=FG=GH=HE,此时四边形EFGH是菱形,据此进行判断即可.【解答】解:连接AC,BD,∵点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,∴EF=HG=AC,EH=FG=BD,∴四边形EFGH是平行四边形,∴四边形EFGH一定是中心对称图形,当AC⊥BD时,∠EFG=90°,此时四边形EFGH是矩形,当AC=BD时,EF=FG=GH=HE,此时四边形EFGH是菱形,∴四边形EFGH可能是轴对称图形,故选:C.【点评】本题主要考查了中点四边形的运用,解题时注意:平行四边形是中心对称图形.解决问题的关键是掌握三角形中位线定理.10.(3分)(2017•株洲)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.D.【分析】由△DQF∽△FQE,推出===,由此求出EQ、FQ即可解决问题.【解答】解:如图,在等腰直角三角形△DEF中,∠EDF=90°,DE=DF,∠1=∠2=∠3,∵∠1+∠QEF=∠3+∠DFQ=45°,∴∠QEF=∠DFQ,∵∠2=∠3,∴△DQF∽△FQE,∴===,∵DQ=1,∴FQ=,EQ=2,∴EQ+FQ=2+,故选D【点评】本题考查等腰直角三角形的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.二、填空题(每小题3分,满分24分)11.(3分)(2017•株洲)如图示在△ABC中∠B=25°.【分析】由直角三角形的两个锐角互余即可得出答案.【解答】解:∵∠C=90°,∴∠B=90°﹣∠A=90°﹣65°=25°;故答案为:25°.【点评】本题考查了直角三角形的两个锐角互余的性质;熟记直角三角形的性质是解决问题的关键.12.(3分)(2017•株洲)分解因式:m3﹣mn2=m(m+n)(m﹣n).【分析】先提取公因式m,再运用平方差公式分解.【解答】解:m3﹣mn2,=m(m2﹣n2),=m(m+n)(m﹣n).【点评】本题考查提公因式法分解因式和利用平方差公式分解因式,本题要进行二次分解因式,分解因式要彻底.13.(3分)(2017•株洲)分式方程﹣=0的解为x=﹣.【分析】根据解方式方程的步骤一步步求解,即可得出x的值,将其代入原方程验证后即可得出结论.【解答】解:去分母,得4x+8﹣x=0,移项、合并同类项,得3x=﹣8,方程两边同时除以3,得x=﹣.经检验,x=﹣是原方程的解.故答案为:x=﹣.【点评】本题考查了解分式方程,熟练掌握分式方程的解法及步骤是解题的关键.14.(3分)(2017•株洲)已知“x的3倍大于5,且x的一半与1的差不大于2”,则x的取值范围是<x≤6.【分析】根据题意列出不等式组,再求解集即可得到x的取值范围.【解答】解:依题意有,解得<x≤6.故x的取值范围是<x≤6.故答案为:<x≤6.【点评】主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.(3分)(2017•株洲)如图,已知AM为⊙O的直径,直线BC经过点M,且AB=AC,∠BAM=∠CAM,线段AB和AC分别交⊙O于点D、E,∠BMD=40°,则∠EOM=80°.【分析】连接EM,根据等腰三角形的性质得到AM⊥BC,进而求出∠AMD=70°,于是得到结论.【解答】解:连接EM,∵AB=AC,∠BAM=∠CAM,∴AM⊥BC,∵AM为⊙O的直径,∴∠ADM=∠AEM=90°,∴∠AME=∠AMD=90°﹣∠BMD=50°∴∠EAM=40°,∴∠EOM=2∠EAM=80°,故答案为:80°.【点评】本题考查了等腰三角形的性质,圆周角定理,熟练掌握圆周角定理是解题的关键.16.(3分)(2017•株洲)如图示直线y=x+与x轴、y轴分别交于点A、B,当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动的路径的长度为π.【分析】先利用一次函数的解析式可确定A(﹣1,0),B(0,),再利用正切的定义求出∠BAO=60°,利用勾股定理计算出AB=2,然后根据弧长公式计算.【解答】解:当y=0时,x+=0,解得x=﹣1,则A(﹣1,0),当x=0时,y=x+=,则B(0,),在Rt△OAB中,∵tan∠BAO==,∴∠BAO=60°,∴AB==2,∴当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动的路径的长度==π.故答案为π.【点评】本题考查了一次函数图象与几何变换:熟练掌握旋转的性质,会计算一次函数与坐标轴的交点坐标.17.(3分)(2017•株洲)如图所示是一块含30°,60°,90°的直角三角板,直角顶点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数y1=(x>0)的图象上,顶点B在函数y2=(x>0)的图象上,∠ABO=30°,则=﹣.【分析】设AC=a,则OA=2a,OC=a,根据直角三角形30°角的性质和勾股定理分别计算点A和B的坐标,写出A和B两点的坐标,代入解析式求出k1和k2的值,相比即可.【解答】解:如图,Rt△AOB中,∠B=30°,∠AOB=90°,∴∠OAC=60°,∵AB⊥OC,∴∠ACO=90°,∴∠AOC=30°,设AC=a,则OA=2a,OC=a,∴A(a,a),∵A在函数y1=(x>0)的图象上,∴k1=a•a=,Rt△BOC中,OB=2OC=2a,∴BC==3a,∴B(a,﹣3a),∵B在函数y2=(x>0)的图象上,∴k2=﹣3a a=﹣3,∴=﹣;故答案为:﹣.【点评】本题考查了反比例函数图象上点的特征、直角三角形30°的性质,熟练掌握直角三角形30°角所对的直角边是斜边的一半,正确写出A、B两点的坐标是关键.18.(3分)(2017•株洲)如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中正确结论的序号为①④.【分析】根据抛物线与y轴交于点B(0,﹣2),可得c=﹣2,依此判断③;由抛物线图象与x轴交于点A(﹣1,0),可得a﹣b﹣2=0,依此判断①②;由|a|=|b|可得二次函数y=ax2+bx+c的对称轴为y=,可得x2=2,比较大小即可判断④;从而求解.【解答】解:由A(﹣1,0),B(0,﹣2),得b=a﹣2,∵开口向上,∴a>0;∵对称轴在y轴右侧,∴﹣>0,∴﹣>0,∴a﹣2<0,∴a<2;∴0<a<2;∴①正确;∵抛物线与y轴交于点B(0,﹣2),∴c=﹣2,故③错误;∵抛物线图象与x轴交于点A(﹣1,0),∴a﹣b﹣2=0,∵0<a<2,∴0<b+2<2,﹣2<b<0,故②错误;∵|a|=|b|,二次函数y=ax2+bx+c的对称轴在y轴的右侧,∴二次函数y=ax2+bx+c的对称轴为y=,∴x2=2>﹣1,故④正确.故答案为:①④.【点评】本题考查了抛物线与x轴的交点,二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a 与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.三、解答题(本大题共有8个小题,满分66分)19.(6分)(2017•株洲)计算:+20170×(﹣1)﹣4sin45°.【分析】根据立方根的定义、零指数幂及特殊角的三角函数值求得各项的值,再计算即可.【解答】解:+20170×(﹣1)﹣4sin45°=2+1×(﹣1)﹣4×=2﹣1﹣2=﹣1.【点评】本题主要考查实数的计算及零指数幂和特殊角的三角函数值,掌握立方根的计算、零指数幂的运算法则、熟记特殊角的三角函数值是解题的关键.20.(6分)(2017•株洲)化简求值:(x﹣)•﹣y,其中x=2,y=.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分后计算得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=•﹣y=﹣=﹣,当x=2,y=时,原式=﹣.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.(8分)(2017•株洲)某次世界魔方大赛吸引世界各地共600名魔方爱好者参加,本次大赛首轮进行3×3阶魔方赛,组委会随机将爱好者平均分到20个区域,每个区域30名同时进行比赛,完成时间小于8秒的爱好者进入下一轮角逐;如图是3×3阶魔方赛A区域30名爱好者完成时间统计图,求:①A区域3×3阶魔方爱好者进入下一轮角逐的人数的比例(结果用最简分数表示).②若3×3阶魔方赛各个区域的情况大体一致,则根据A区域的统计结果估计在3×3阶魔方赛后进入下一轮角逐的人数.③若3×3阶魔方赛A区域爱好者完成时间的平均值为8.8秒,求该项目赛该区域完成时间为8秒的爱好者的概率(结果用最简分数表示).【分析】①由图知1人6秒,3人7秒,小于8秒的爱好者共有4人,进入下一轮角逐的人数比例为4:30;②因为其他赛区情况大致一致,所以进入下一轮的人数为:600×A区进入下一轮角逐的人数比例;③由完成时间的平均值和A区30人,得到关于a、b的二元一次方程组,求出a、b,得到完成时间8秒的爱好者的概率.【解答】解:①A区小于8秒的共有3+1=4(人)所以A区进入下一轮角逐的人数比例为:=;②估计进入下一轮角逐的人数为600×=80(人);③因为A区域爱好者完成时间的平均值为8.8秒,所以(1×6+3×7+a×8+b×9+10×10)÷30=8.8化简,得8a+9b=137又∵1+3+a+b+10=30,即a+b=16所以解得a=7,b=9所以该区完成时间为8秒的爱好者的概率为.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.解决本题的关键是根据平均数和各个时间段的人数确定完成时间为8秒的人数.概率=所求情况数与总情况数之比.22.(8分)(2017•株洲)如图示,正方形ABCD的顶点A在等腰直角三角形DEF 的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.【分析】①由正方形ABCD与等腰直角三角形DEF,得到两对边相等,一对直角相等,利用SAS即可得证;②由第一问的全等三角形的对应角相等,根据等量代换得到∠BAG=∠BCF,再由对顶角相等,利用两对角相等的三角形相似即可得证.【解答】证明:①∵正方形ABCD,等腰直角三角形EDF,∴∠ADC=∠EDF=90°,AD=CD,DE=DF,∴∠ADE+∠ADF=∠ADF+∠CDF,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF;②延长BA到M,交ED于点M,∵△ADE≌△CDF,∴∠EAD=∠FCD,即∠EAM+∠MAD=∠BCD+∠BCF,∵∠MAD=∠BCD=90°,∴∠EAM=∠BCF,∵∠EAM=∠BAG,∴∠BAG=∠BCF,∵∠AGB=∠CGF,∴△ABG∽△CFG.【点评】此题考查了全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的判定与性质是解本题的关键.23.(8分)(2017•株洲)如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为α其中tanα=2,无人机的飞行高度AH为500米,桥的长度为1255米.①求点H到桥左端点P的距离;②若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度AB.【分析】①在Rt △AHP 中,由tan ∠APH=tanα=,即可解决问题; ②设BC ⊥HQ 于C .在Rt △BCQ 中,求出CQ==1500米,由PQ=1255米,可得CP=245米,再根据AB=HC=PH ﹣PC 计算即可;【解答】解:①在Rt △AHP 中,∵AH=500, 由tan ∠APH=tanα===2,可得PH=250米.∴点H 到桥左端点P 的距离为250米.②设BC ⊥HQ 于C .在Rt △BCQ 中,∵BC=AH=500,∠BQC=30°,∴CQ==1500米, ∵PQ=1255米,∴CP=245米,∵HP=250米,∴AB=HC=250﹣245=5米.答:这架无人机的长度AB 为5米.【点评】本题考查解直角三角形﹣仰角俯角问题,锐角三角函数,矩形判定和性质等知识,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.24.(8分)(2017•株洲)如图所示,Rt △PAB 的直角顶点P (3,4)在函数y=(x >0)的图象上,顶点A 、B 在函数y=(x >0,0<t <k )的图象上,PA ∥y 轴,连接OP ,OA ,记△OPA 的面积为S △OPA ,△PAB 的面积为S △PAB ,设w=S △OPA ﹣S △PAB .①求k 的值以及w 关于t 的表达式;②若用w max和w min分别表示函数w的最大值和最小值,令T=w max+a2﹣a,其中a为实数,求T min.【分析】(1)由点P的坐标表示出点A、点B的坐标,从而得S△PAB=•PA•PB=(4﹣)(3﹣),再根据反比例系数k的几何意义知S△OPA =S△OPC﹣S△OAC=6﹣t,由w=S△OPA ﹣S△PAB可得答案;(2)将(1)中所得解析式配方求得w max=,代入T=w max+a2﹣a配方即可得出答案.【解答】解:(1)∵点P(3,4),∴在y=中,当x=3时,y=,即点A(3,),当y=4时,x=,即点B(,4),则S△PAB=•PA•PB=(4﹣)(3﹣),如图,延长PA交x轴于点C,则PC⊥x轴,又S△OPA =S△OPC﹣S△OAC=×3×4﹣t=6﹣t,∴w=6﹣t﹣(4﹣)(3﹣)=﹣t2+t;(2)∵w=﹣t2+t=﹣(t﹣6)2+,∴w max=,则T=w max+a2﹣a=a2﹣a+=(a﹣)2+,∴当a=时,T min=.【点评】本题主要考查反比例函数系数k的几何意义及二次函数的性质,熟练掌握反比例系数k的几何意义及配方法求二次函数的最值是解题的关键.25.(10分)(2017•株洲)如图示AB为⊙O的一条弦,点C为劣弧AB的中点,E为优弧AB上一点,点F在AE的延长线上,且BE=EF,线段CE交弦AB于点D.①求证:CE∥BF;②若BD=2,且EA:EB:EC=3:1:,求△BCD的面积(注:根据圆的对称性可知OC⊥AB).【分析】①连接AC,BE,由等腰三角形的性质和三角形的外角性质得出∠F=∠AEB,由圆周角定理得出∠AEC=∠BEC,证出∠AEC=∠F,即可得出结论;②证明△ADE∽△CBE,得出,证明△CBE∽△CDB,得出,求出CB=2,得出AD=6,AB=8,由垂径定理得出OC⊥AB,AG=BG=AB=4,由勾股定理求出CG==2,即可得出△BCD的面积.【解答】①证明:连接AC,BE,作直线OC,如图所示:∵BE=EF,∴∠F=∠EBF;∵∠AEB=∠EBF+∠F,∴∠F=∠AEB,∵C是的中点,∴,∴∠AEC=∠BEC,∵∠AEB=∠AEC+∠BEC,∴∠AEC=∠AEB,∴∠AEC=∠F,∴CE∥BF;②解:∵∠DAE=∠DCB,∠AED=∠CEB,∴△ADE∽△CBE,∴,即,∵∠CBD=∠CEB,∠BCD=∠ECB,∴△CBE∽△CDB,∴,即,∴CB=2,∴AD=6,∴AB=8,∵点C为劣弧AB的中点,∴OC⊥AB,AG=BG=AB=4,∴CG==2,∴△BCD的面积=BD•CG=×2×2=2.【点评】本题考查了相似三角形的判定与性质、垂径定理、圆周角定理、三角形的外角性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理,证明三角形相似是解决问题的关键.26.(12分)(2017•株洲)已知二次函数y=﹣x2+bx+c+1,①当b=1时,求这个二次函数的对称轴的方程;②若c=﹣b2﹣2b,问:b为何值时,二次函数的图象与x轴相切?③若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<x2,与y轴的正半轴交于点M,以AB为直径的半圆恰好过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足=,求二次函数的表达式.【分析】①二次函数y=﹣x2+bx+c+1的对称轴为x=,即可得出答案;②二次函数y=﹣x2+bx+c+1的顶点坐标为(,),y由二次函数的图象与x轴相切且c=b2﹣2b,得出方程组,求出b即可;③由圆周角定理得出∠AMB=90°,证出∠OMA=∠OBM,得出△OAM∽△OMB,得出OM2=OA•OB,由二次函数的图象与x轴的交点和根与系数关系得出OA=﹣x1,OB=x2,x1+x2,=b,x1•x2=﹣(c+1),得出方程(c+1)2=c+1,得出c=0,OM=1,证明△BDE∽△BOM,△AOM∽△ADF,得出,,得出OB=4OA,即x2=﹣4x1,由x1•x2=﹣(c+1)=﹣1,得出方程组,解方程组求出b的值即可.【解答】解:①二次函数y=﹣x2+bx+c+1的对称轴为x=,当b=1时,=,∴当b=1时,求这个二次函数的对称轴的方程为x=.②二次函数y=﹣x2+bx+c+1的顶点坐标为(,),∵二次函数的图象与x轴相切且c=﹣b2﹣2b,∴,解得:b=,∴b为,二次函数的图象与x轴相切.③∵AB是半圆的直径,∴∠AMB=90°,∴∠OAM+∠OBM=90°,∵∠AOM=∠MOB=90°,∴∠OAM+∠OMA=90°,∴∠OMA=∠OBM,∴△OAM∽△OMB,∴,∴OM2=OA•OB,∵二次函数的图象与x轴交于点A(x1,0),B(x2,0),∴OA=﹣x1,OB=x2,x1+x2,=b,x1•x2=﹣(c+1),∵OM=c+1,∴(c+1)2=c+1,解得:c=0或c=﹣1(舍去),∴c=0,OM=1,∵二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足=,∴AD=BD,DF=4DE,DF∥OM,∴△BDE∽△BOM,△AOM∽△ADF,∴,,∴DE=,DF=,∴×4,∴OB=4OA,即x2=﹣4x1,∵x1•x2=﹣(c+1)=﹣1,∴,解得:,∴b=﹣+2=,∴二次函数的表达式为y=﹣x2+x+1.【点评】本题是二次函数综合题目,考查了二次函数的性质、二次函数的图象与x轴的交点、顶点坐标、圆周角定理、相似三角形的判定与性质、根与系数是关系等知识;本题综合性强,有一定难度.。

2006—2019株洲市中考数学试卷含详细解答(历年真题)

2006—2019株洲市中考数学试卷含详细解答(历年真题)
14.(3分)若a为有理数,且2﹣a的值大于1,则a的取值范围为.
15.(3分)如图所示,过正五边形ABCDE的顶点B作一条射线与其内角∠EAB的角平分线相交于点P,且∠ABP=60°,则∠APB=度.
16.(3分)如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=度.
(1)求BC的长度;
(2)假如障碍物上的点M正好位于线段BC的中点位置(障碍物的横截面为长方形,且线段MN为此长方形前端的边),MN⊥l1,若小强的爸爸将汽车沿直线l1后退0.6米,通过汽车的前端F1点恰好看见障碍物的顶部N点(点D为点A的对应点,点F1为点F的对应点),求障碍物的高度.
22.(8分)某甜品店计划订购一种鲜奶,根据以往的销售经验,当天的需求量与当天的最高气温T有关,现将去年六月份(按30天计算)的有关情况统计如下:
7.(3分)若一组数据x,3,1,6,3的中位数和平均数相等,则x的值为( )
A.2B.3C.4D.5
8.(3分)下列各选项中因式分解正确的是( )
A.x2﹣1=(x﹣1)2B.a3﹣2a2+a=a2(a﹣2)
C.﹣2y2+4y=﹣2y(y+2)D.m2n﹣2mn+n=n(m﹣1)2
9.(3分)如图所示,在平面直角坐标系xOy中,点A、B、C为反比例函数y (k>0)上不同的三点,连接OA、OB、OC,过点A作AD⊥y轴于点D,过点B、C分别作BE,CF垂直x轴于点E、F,OC与BE相交于点M,记△AOD、△BOM、四边形CMEF的面积分别为S1、S2、S3,则( )
故选:C.
4.(3分)对于任意的矩形,下列说法一定正确的是( )

2017年湖南省株洲市中考数学真题及答案

2017年湖南省株洲市中考数学真题及答案

绝密★启用前株洲市2017年初中毕业学业考试数学试题及解答时量:120分钟 满分:100分注意事项:1、答题前,请按要求在答题卡上填写自己的姓名和准考证号。

2、答题时,切记答案要填写在答题卡上,答在试题卷上的答案无效。

3、考试结束后,请将试题卷和答题卡都交给监考老师。

选择题:答案为A D D B C C B C一、选择题(每小题有且只有一个正确答案,本题共8小题,每小题3分,共24分)1、下列各数中,绝对值最大的数是A 、-3B 、-2C 、0D 、12、x 取下列各数中的哪个数时,二次根式3x 有意义A 、-2B 、0C 、2D 、4解:本题变相考二次根式有意义的条件 3、下列说法错误的是姓 名 准考证号圆柱 B圆椎C球DA 、必然事件的概率为1B 、数据1、2、2、3的平均数是2C 、数据5、2、-3、0的极差是8D 、如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖4、已知反比例函数k y x=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是A 、(-6,1)B 、(1,6)C 、(2,-3)D 、(3,-2)解:本题主要考查反比例函数三种表达中的xy k =5、下列几何何中,有一个几何体的主视图与俯视图形状不一样,这个几何体是6、一元一次不等式组21050x x +>⎧⎨-≤⎩的解集中,整数解的个数是A 、4B 、5C 、6D 、7 解:分析本题主要考查学生解一元一次不等式的能力及找特解的能力。

正方体 A7、已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是A、选①②B、选②③C、选①③D、选②④解:分析本题主要考查学生由平行四边形判定要正方形的判定方法答案:选B8、在平面直角坐标系中,孔明做走棋游戏,其走法是:棋子从原点和,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步走1个单位……依此类推,第n步的是:当n能被3整除时,则向上走1个单位;当n被3除,余数是1时,则向右走1个单位,当n被3除,余数为2时,则向右走2个单位,当他走完第100步时,棋子所处位置的坐标是:A、(66,34)B、(67,33)C、(100,33)D、(99,34)解:本题主要考查学生对信息的分类在1至100这100个数中:(1)能被3整除的为33个,故向上走了33个单位(2)被3除,余数为1的数有34个,故向右走了34个单位(3)被3除,余数为2的数有33个,故向右走了66个单位故总共向右走了34+66=100个单位,向上走了33个单位。

2017湖南省中考数学试卷含解析(可编辑修改word版)

2017湖南省中考数学试卷含解析(可编辑修改word版)

.. . ﹣2015 年湖南省株洲市中考数学试卷一.选择题(每小题 3 分,共 24 分)1.(3 分)(2015•株洲)2 的相反数是( ) A . B .2 C .D ﹣22.(3 分)(2015•株洲)已知∠α=35°,那么∠α 的余角等于( )A .35°B .55°C .65°D .145°3.(3 分)(2015•株洲)下列等式中,正确的是( )A .B .a 2•a 3=a 5C . 3 2 6D .2 2 23a ﹣2a=1 (﹣2a ) =﹣4a (a ﹣b ) =a ﹣b4.(3 分)(2015•株洲)下列几何图形中,既是轴对称图形,又是中心对称图形的是( )A .等腰三角形B .正三角形C .平行四边形D .正方形5.(3 分)(2015•株洲)从 2,3,4,5 中任意选两个数,记作 a 和 b ,那么点(a ,b )在函数 y=图象上的概率是()AB .C .D6.(3 分)(2015•株洲)如图,圆 O 是△ABC 的外接圆,∠A=68°,则∠OBC 的大小是()A .22°B .26°C .32°D .68°7.(3 分)(2015•株洲)如图,已知 AB 、CD 、EF 都与 BD 垂直,垂足分别是 B 、D 、F , 且 AB=1,CD=3,那么 EF 的长是( )..A B.C. D8.(3 分)(2015•株洲)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四个结论中,错误的是()A.如果方程M 有两个相等的实数根,那么方程N 也有两个相等的实数根B.如果方程M 的两根符号相同,那么方程N 的两根符号也相同C.如果5 是方程M 的一个根,那么是方程N 的一个根D.如果方程M 和方程N 有一个相同的根,那么这个根必是x=1二.填空题(每小题3 分,共24 分)9.(3 分)(2015•株洲)如果手机通话每分钟收费m 元,那么通话n 分钟收费元.10.(3 分)(2015•株洲)在平面直角坐标系中,点(﹣3,2)关于y 轴的对称点的坐标是.11.(3 分)(2015•株洲)如图,l∥m,∠1=120°,∠A=55°,则∠ACB 的大小是.12.(3 分)(2015•株洲)某大学自主招生考试只考数学和物理.计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95 分,综合得分为93 分,那么孔明物理得分是分.13.(3 分)(2015•株洲)因式分解:x2(x﹣2)﹣16(x﹣2)= .14.(3 分)(2015•株洲)已知直线y=2x+(3﹣a)与x 轴的交点在A(2,0)、B(3,0)之间(包括A、B 两点),则a 的取值范围是.15.(3 分)(2015•株洲)如图是“赵爽弦图”,△ABH、△BCG、△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形.如果AB=10,EF=2,那么AH 等于.﹣16.(3 分)(2015•株洲)“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式 表达式为 S=a+﹣1,孔明只记得公式中的 S 表示多边形的面积,a 和 b 中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是 a 还是 b 表示多边形内部的整点个数,请你选择一些特殊的多边形(如图 1)进行验证,得到公式中表示多边形内部的整点个数的字母是 ,并运用这个公式求得图 2 中多边形的面积是.三.解答题(共 7 小题,共 52 分)17.(4 分)(2015•株洲)计算:|﹣3|+(2015﹣π)0﹣2sin30°.18.(4 分)(2015•株洲)先化简,再求值:()• ,其中 x=4.19.(6 分)(2015•株洲)为了举行班级晚会,孔明准备去商店购买 20 个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个 1.5 元,球拍每个 22 元.如果购买金额不超过 200 元,且买的球拍尽可能多,那么孔明应该买多少个球拍?20.(6 分)(2015•株洲)某学校举行一次体育测试,从所有参加测试的中学生中随机的抽取 10 名学生的成绩,制作出如下统计表和条形图,请解答下列问题:(1) 孔明同学这次测试的成绩是 87 分,则他的成绩等级是 等;(2) 请将条形统计图补充完整;(3) 已知该校所有参加这次测试的学生中,有 60 名学生成绩是 A 等,请根据以上抽样结果,编号 成绩 等级 编号 成绩 等级①95 A ⑥76 B②78 B ⑦85 A③72 C ⑧82 B④79 B ⑨77 B⑤92 A ⑩69 C21.(6 分)(2015•株洲)P 表示n 边形对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P 与n 的关系式是P= (n2﹣an+b)(其中a,b 是常数,n≥4)(1)填空:通过画图可得:四边形时,P= (填数字);五边形时,P= (填数字)(2)请根据四边形和五边形对角线的交点个数,结合关系式,求a 和b 的值.(注:本题中的多边形均指凸多边形)22.(8 分)(2015•株洲)如图,在Rt△ABC 中,∠C=90°,BD 是△ABC 的一条角平分线.点O、E、F 分别在BD、BC、AC 上,且四边形OECF 是正方形.(1)求证:点O 在∠BAC 的平分线上;(2)若AC=5,BC=12,求OE 的长.23.(8 分)(2015•株洲)已知AB 是圆O 的切线,切点为B,直线AO 交圆O 于C、D 两点,CD=2,∠DAB=30°,动点P 在直线AB 上运动,PC 交圆O 于另一点Q.(1)当点P 运动到使Q、C 两点重合时(如图1),求AP 的长;(2)点P 在运动过程中,有几个位置(几种情况)使△CQD 的面积为?(直接写出答案)(3)当△CQD 的面积为,且Q 位于以CD 为直径的上半圆,CQ>QD 时(如图2),求AP 的长.24、(本题满分 10 分)已知抛物线的表达式为y =-x2+ 6x +c(1)若抛物线与x 轴有交点,求c 的取值范围;(2)设抛物线与x 轴两个交点的横坐标分别为x 、x ,若x 2+x 2= 26 ,求c 的值;1 2 1 2(3)若P、Q 是抛物线上位于第一象限的不同两点,PA、QB 都垂直于x 轴,垂足分别为 A、B,且△OPA 与△OQB 全等,求证:c >-2142015 年湖南省株洲市中考数学试卷参考答案与试题解析一.选择题(每小题3 分,共24 分)1.(3 分)考点:相反数.分析:根据相反数的定义即可求解.解答:解:2 的相反数等于﹣2.故选A.点评:本题考查了相反数的知识,属于基础题,注意熟练掌握相反数的概念是关键.2.(3 分)考点:余角和补角.分析:根据余角的定义:如果两个角的和等于90°(直角),就说这两个角互为余角计算.解答:解:∵∠α=35°,∴它的余角等于90°﹣35°=55°.Bn故选B.点评:本题考查了余角的定义,解题时牢记定义是关键.3.(3 分)考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.分析:结合选项分别进行幂的乘方和积的乘方、合并同类项、同底数幂的乘法、完全平方公式等运算,然后选择正确选项.解答:解:A、3a﹣2a=a,原式计算错误,故本选项错误;B、a2•a3=a5,原式计算正确,故本选项正确;C、(﹣2a3)2=4a6,原式计算错误,故本选项错误;D、(a﹣b)2=a2﹣2ab+b2,原式计算错误,故本选项错误.故选B.点评:本题考查了幂的乘方和积的乘方、合并同类项、同底数幂的乘法、完全平方公式等知识,掌握运算法则是解答本题关键.4.(3 分)考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、既是轴对称图形,又是中心对称图形.故正确.故选D.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转 180 度后与原图重合. 5.(3 分)考点:列表法与树状图法;反比例函数图象上点的坐标特征. 分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点(a ,b )在函数 y=图象上的情况,再利用概率公式即可求得答案. 解答:解:画树状图得:∵共有 12 种等可能的结果,点(a ,b )在函数 y=图象上的有(3,4),(4,3);∴点(a ,b )在函数 y=图象上的概率是:=. 故选 D .点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比. 6.(3 分)考点:圆周角定理.分析:先根据圆周角定理求出∠BOC 的度数,再根据等腰三角形的性质即可得出结论. 解答:解:∵∠A 与∠BOC 是同弧所对的圆周角与圆心角,∠A=68°,∴∠BOC=2∠A=136°. ∵OB=OC , ∴∠OBC==22°.故选 A .点评:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键. 7.(3 分)考点:相似三角形的判定与性质. 易证△DEF ∽△DAB ,△BEF ∽△BCD ,根据相似三角形的性质可得 =,=,从而可得+=+=1.然后把 AB=1,CD=3 代入即可求出 EF 的值. 解答:解:∵AB 、CD 、EF 都与 BD 垂直,∴AB ∥CD ∥EF ,∴△DEF ∽△DAB ,△BEF ∽△BCD , ∴=,=, ∴+=+==1.分析:∵AB=1,CD=3,∴+=1,∴EF=.故选C.点评:本题主要考查的是相似三角形的判定与性质,发现+ =1 是解决本题的关键.8.(3 分)考点:根的判别式;一元二次方程的解;根与系数的关系.分析:利用根的判别式判断A;利用根与系数的关系判断B;利用一元二次方程的解的定义判断C 与D.解答:解:A、如果方程M 有两个相等的实数根,那么△=b2﹣4ac=0,所以方程N 也有两个相等的实数根,结论正确,不符合题意;B、如果方程M 的两根符号相同,那么方程N 的两根符号也相同,那么△=b2﹣4ac≥0,>0,所以a 与c 符号相同,>0,所以方程N 的两根符号也相同,结论正确,不符合题意;C、如果5 是方程M 的一个根,那么25a+5b+c=0,两边同时除以25,得c+ b+a=0,所以是方程N 的一个根,结论正确,不符合题意;D、如果方程M 和方程N 有一个相同的根,那么ax2+bx+c=cx2+bx+a,(a﹣c)x2=a﹣c,由a≠c,得x2=1,x=±1,结论错误,符合题意;故选D.点评:本题考查了一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根.也考查了根与系数的关系,一元二次方程的解的定义.二.填空题(每小题3 分,共24 分)9.(3 分)考点:列代数式.分析:通话时间×通话单价=通话费用.解答:解:依题意得通话n 分钟收费为:mn.故答案是:mn.点评:本题考查了列代数式.解决问题的关键是读懂题意,找到所求的量的等量关系.10.(3 分)考点:关于x 轴、y 轴对称的点的坐标.分析:根据关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.解答:解:在平面直角坐标系中,点(﹣3,2)关于y 轴的对称点的坐标是(3,2),故答案为:(3,2).点评:本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.11.(3 分)考点:平行线的性质.专题:计算题.分析:先根据平行线的性质得∠2=∠1=120°,然后根据三角形外角性质计算∠ACB 的大小.解答:解:∵l∥m,∴∠2=∠1=120°,∵∠2=∠ACB+∠A,∴∠ACB=120°﹣55°=65°.故答案为65°.点评:本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.12.(3 分)考点:加权平均数.分析:先计算孔明数学得分的折算后的分值,然后用综合得分﹣数学得分的折算后的得分,计算出的结果除以40%即可.解答:解:(93﹣95×60%)÷40%=(93﹣57)÷40%=36÷40%=90.故答案为:90.点评:此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.13.(3 分)考点:提公因式法与公式法的综合运用.专题:计算题.分析:原式提取公因式,再利用平方差公式分解即可.解答:2解:原式=(x﹣2)(x ﹣16)=(x﹣2)(x+4)(x﹣4).故答案为:(x﹣2)(x+4)(x﹣4).点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(3 分)考点:一次函数图象上点的坐标特征.分析:根据题意得到x 的取值范围是2≤x≤3,则通过解关于x 的方程2x+(3﹣a)=0 求得x 的值,由x 的取值范围来求a 的取值范围.解答:解:∵直线y=2x+(3﹣a)与x 轴的交点在A(2,0)、B(3,0)之间(包括A、B 两点),∴2≤x≤3,令y=0,则2x+(3﹣a)=0,解得x=,则2≤≤3,解得7≤a≤9.故答案是:7≤a≤9.点评:本题考查了一次函数图象上点的坐标特征.根据一次函数解析式与一元一次方程的关系解得x 的值是解题的突破口.15.(3 分)考点:勾股定理的证明.分析:根据面积的差得出a+b 的值,再利用a﹣b=2,解得a,b 的值代入即可.解答:解:∵AB=10,EF=2,∴大正方形的面积是100,小正方形的面积是4,∴四个直角三角形面积和为100﹣4=96,设AE 为a,DE 为b,即4×ab=96,∴2ab=96,a2+b2=100,∴(a+b)2=a2+b2+2ab=100+96=196,∴a+b=14,∵a﹣b=2,解得:a=8,b=6,∴AE=8,DE=6,∴AH=8﹣2=6.故答案为:6.点评:此题考查勾股定理的证明,关键是应用直角三角形中勾股定理的运用解得ab 的值.16.(3 分)﹣ ﹣ 考点:规律型:图形的变化类.分析:分别找到图 1 中图形内的格点数和图形上的格点数后与公式比较后即可发现表示图上的格点数的字母,图 2 中代入有关数据即可求得图形的面积.解答:解:如图 1,∵三角形内由 1 个格点,边上有 8 个格点,面积为 4,即 4=1+﹣1;矩形内由 2 个格点,边上有 10 个格点,面积为 6,即 6=2+﹣1;∴公式中表示多边形内部整点个数的字母是 a ;图 2 中,a=15,b=7,故 S=15+﹣1=17.5. 故答案为:a ,17.5.点评:本题考查了图形的变化类问题,解题的关键是能够仔细读题,找到图形内和图形外格点的数目,难度不大.三.解答题(共 7 小题,共 52 分)17.(4 分)考点:实数的运算;零指数幂;特殊角的三角函数值. 专题:计算题.分析:原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值计算即可得到结果.解答: 解:原式=3+1 2× =3+1 1=3.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(4 分)考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把 x 的值代入进行计算即可. 解答:解:原式=•=x+2,当 x=4 时,原式=6.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(6 分)考点:一元一次不等式的应用.分析:设购买球拍 x 个,根据乒乓球每个 1.5 元,球拍每个 22 元,购买的金额不超过 200 元,列出不等式,求解即可.解答:解:设购买球拍 x 个,依题意得:1.5×20+22x ≤200,解之得:x ≤7,由于 x 取整数,故 x 的最大值为 7,答:孔明应该买 7 个球拍.点评:此题考查了一元一次不等式的应用,解决问题的关键是读懂题意,依题意列出不等式进行求解.20.(6 分)考点:条形统计图;用样本估计总体;统计表.分析:(1)根据题意确定各个等级的范围,得到答案;(2)根据频数将条形统计图补充完整;(3)计算A 等的百分比,估计该校参加这次测试的学生总人数.解答:解:(1)由统计图可知A 等是85≤x<100,∴孔明同学的成绩等级是A 等;(2)如图:(3)60÷=200,∴该校参加这次测试的学生总人数是200 人.点评:本题考查的是统计表、条形图和用样本估计总体,从统计表中获取正确的信息并进行分析计算是具体点关键.21.(6 分)考点:二元一次方程组的应用;多边形的对角线.分析:(1)根据题意画出图形,进而得出四边形和五边形中P 的值;(2)利用(1)中所求,得出二元一次方程组进而求出即可.解答:解:(1)如图所示:四边形时,P=1;五边形时,P=5;故答案为:1,5;(2)由(1)得:,整理得:,解得:.点评:此题主要考查了二元一次方程组的应用,根据题意得出正确关于a,b 的等量关系是解题关键.22.(8 分)考点:角平分线的性质;全等三角形的判定与性质;正方形的性质.分析:(1)过点O 作OM⊥AB,由角平分线的性质得OE=OM,由正方形的性质得OE=OF,易得OE=OF,由角平分线的判定定理得点O 在∠BAC 的平分线上;(2)由勾股定理得AB 的长,利用方程思想解得结果.解答:(1)证明:过点O 作OM⊥AB,∵BD 是∠ABC 的一条角平分线,∴OE=OM,∵四边形OECF 是正方形,∴OE=OF,∴OF=OM,∴AO 是∠BAC 的角平分线,即点O 在∠BAC 的平分线上;(2)解:∵在Rt△ABC 中,AC=5,BC=12,∴AB= ==13,设OE=CF=x,BE=BM=y,AM=AD=z,∴,解得:,∴OE=2.点评:本题主要考查了正方形的性质,以及角平分线定理及性质,熟练掌握正方形的性质,运用方程思想是解本题的关键.23.(8 分)考点:圆的综合题;解一元二次方程-公式法;相似三角形的判定与性质;锐角三角函数的定义.专题:综合题.分析:(1)如图1,利用切线的性质可得∠ACP=90°,只需求出AC,然后在Rt△ACP 中运用三角函数就可解决问题;(2)易得点Q 到CD 的距离为,结合图形2,即可解决问题;(3)过点Q 作QN⊥CD 于N,过点P 作PM⊥CD 于M,连接QD,如图3,易证△CNQ∽△QND,根据相似三角形的性质可求出CN.易证△PMC∽△QNC,根据相似三角形的性质可得PM 与CM之间的关系,由∠MAP=30°即可得到PM 与AM 之间的关系,然后根据AC=AM+CM 就可得到PM 的值,即可得到AP 的值.解答:解:(1)∵AB 与⊙O 相切于点B,∴∠ABO=90°.∵∠DAB=30°,OB= CD=×2=1,∴AO=2OB=2,AC=AO﹣CO=2﹣1=1.当Q、C 两点重合时,CP 与⊙O 相切于点C,如图1,则有∠ACP=90°,∴cos∠CAP= ==,解得AP=;(2)有4 个位置使△CQD 的面积为.提示:设点Q 到CD 的距离为h,∵S△CQD= CD•h=×2×h=,∴h= .由于h=<1,结合图2 可得:有4 个位置使△CQD 的面积为;(3)过点Q 作QN⊥CD 于N,过点P 作PM⊥CD 于M,如图3.∵S△CQD= CD•QN= ×2×QN= ,∴QN= .∵CD 是⊙O 的直径,QN⊥CD,∴∠CQD=∠QND=∠QNC=90°,∴∠CQN=90°﹣∠NQD=∠NDQ,∴△QNC∽△DNQ,∴=,∴QN2=CN•DN,设CN=x,则有=x(2﹣x),整理得4x2﹣8x+1=0,解得:x1= ,x2= .∵CQ>QD,∴x= ,∴=2+ .∵QN⊥CD,PM⊥CD,∴∠PMC=∠QNC=90°.∵∠MCP=∠NCQ,∴△PMC∽△QNC,∴==2+ ,∴MC=(2+ )MP.在Rt△AMP 中,tan∠MAP= =tan30°= ,∴AM= MP.∵AC=AM+MC= MP+(2+ )MP=1,∴MP= ,∴AP=2MP= .点评:本题主要考查了相似三角形的判定与性质、圆周角定理、三角函数、特殊角的三角函数值、切线的性质、解一元二次方程等知识,把求AP 的值转化为解△ABC 是解决第(3)小题的关键.24.。

【数学】湖南省株洲市中考真题(解析版)

 【数学】湖南省株洲市中考真题(解析版)
∴当直线绕着点 A 按顺时针方向旋转到与 x 轴首次重合时,点 B 运动的路径的长度=
60 2 2 . 180 3 故答案为 2 .
3
考点:一次函数图象与几何变换;轨迹. 17.
【答案】 k1 =﹣ 1 . k2 3
【解析】 试题分析:如图,Rt△AOB 中,∠B=30°,∠AOB=90°,∴∠OAC=60°, ∵AB⊥OC,∴∠ACO=90°,∴∠AOC=30°,
12.
【答案】m(m+n)(m﹣n).
【解析】
试题分析:m3﹣mn2,
=m(m2﹣n2),
=m(m+n)(m﹣n).
考点:提公因式法与公式法的综合运用.
13.
8
【答案】x=﹣ .
3
考点:解分式方程.
5
14.【答案】 <x≤6.
3
【解析】
3x 5
5
试题分析:依题意有
1 2
x
1
2
,解得
3
<x≤6.
A.41° B.49° C.51° D.59° 4.(3 分)(2017•株洲)已知实数 a,b 满足 a+1>b+1,则下列选项错误的为( ) A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b 5.(3 分)(2017•株洲)如图,在△ABC 中,∠BAC=x°,∠B=2x°,∠C=3x°,则 ∠BAD=( )
1
1
1
1

A. B. C.) D.)
9
6
4
2
9.(3 分)(2017•株洲)如图,点 E、F、G、H 分别为四边形 ABCD 的四边 AB、BC、CD、DA 的中点,则关于四边形 EFGH,下列说法正确的为( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年湖南省株洲市中考数学试卷一、选择题(每小题3分,满分30分)1.(3分)计算a2•a4的结果为()A.a2B.a4C.a6D.a82.(3分)如图示,数轴上点A所表示的数的绝对值为()A.2 B.﹣2 C.±2 D.以上均不对3.(3分)如图示直线l1,l2△ABC被直线l3所截,且l1∥l2,则α=()A.41°B.49°C.51°D.59°4.(3分)已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b5.(3分)如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD=()A.145°B.150°C.155° D.160°6.(3分)下列圆的内接正多边形中,一条边所对的圆心角最大的图形是()A.正三角形B.正方形C.正五边形D.正六边形7.(3分)株洲市展览馆某天四个时间段进出馆人数统计如下,则馆内人数变化最大时间段为()A.9:00﹣10:00 B.10:00﹣11:00 C.14:00﹣15:00 D.15:00﹣16:00 8.(3分)三名初三学生坐在仅有的三个座位上,起身后重新就坐,恰好有两名同学没有坐回原座位的概率为()A.)B.)C.)D.)9.(3分)如图,点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA 的中点,则关于四边形EFGH,下列说法正确的为()A.一定不是平行四边形B.一定不是中心对称图形C.可能是轴对称图形D.当AC=BD时它是矩形10.(3分)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC 的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF 中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.D.二、填空题(每小题3分,满分24分)11.(3分)如图示在△ABC中∠B=.12.(3分)分解因式:m3﹣mn2=.13.(3分)分式方程﹣=0的解为.14.(3分)已知“x的3倍大于5,且x的一半与1的差不大于2”,则x的取值范围是.15.(3分)如图,已知AM为⊙O的直径,直线BC经过点M,且AB=AC,∠BAM=∠CAM,线段AB和AC分别交⊙O于点D、E,∠BMD=40°,则∠EOM=.16.(3分)如图示直线y=x+与x轴、y轴分别交于点A、B,当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动的路径的长度为.17.(3分)如图所示是一块含30°,60°,90°的直角三角板,直角顶点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数y1=(x>0)的图象上,顶点B在函数y2=(x>0)的图象上,∠ABO=30°,则=.18.(3分)如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中正确结论的序号为.三、解答题(本大题共有8个小题,满分66分)19.(6分)计算:+20170×(﹣1)﹣4sin45°.20.(6分)化简求值:(x﹣)•﹣y,其中x=2,y=.21.(8分)某次世界魔方大赛吸引世界各地共600名魔方爱好者参加,本次大赛首轮进行3×3阶魔方赛,组委会随机将爱好者平均分到20个区域,每个区域30名同时进行比赛,完成时间小于8秒的爱好者进入下一轮角逐;如图是3×3阶魔方赛A区域30名爱好者完成时间统计图,求:①A区域3×3阶魔方爱好者进入下一轮角逐的人数的比例(结果用最简分数表示).②若3×3阶魔方赛各个区域的情况大体一致,则根据A区域的统计结果估计在3×3阶魔方赛后进入下一轮角逐的人数.③若3×3阶魔方赛A区域爱好者完成时间的平均值为8.8秒,求该项目赛该区域完成时间为8秒的爱好者的概率(结果用最简分数表示).22.(8分)如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.23.(8分)如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为α其中tanα=2,无人机的飞行高度AH为500米,桥的长度为1255米.①求点H到桥左端点P的距离;②若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度AB.24.(8分)如图所示,Rt△PAB的直角顶点P(3,4)在函数y=(x>0)的图象上,顶点A、B在函数y=(x>0,0<t<k)的图象上,PA∥y轴,连接OP,OA,记△OPA的面积为S△OPA,△PAB的面积为S△PAB,设w=S△OPA﹣S△PAB.①求k的值以及w关于t的表达式;②若用w max和w min分别表示函数w的最大值和最小值,令T=w max+a2﹣a,其中a为实数,求T min.25.(10分)如图示AB为⊙O的一条弦,点C为劣弧AB的中点,E为优弧AB 上一点,点F在AE的延长线上,且BE=EF,线段CE交弦AB于点D.①求证:CE∥BF;②若BD=2,且EA:EB:EC=3:1:,求△BCD的面积(注:根据圆的对称性可知OC⊥AB).26.(12分)已知二次函数y=﹣x2+bx+c+1,①当b=1时,求这个二次函数的对称轴的方程;②若c=﹣b2﹣2b,问:b为何值时,二次函数的图象与x轴相切?③若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<x2,与y轴的正半轴交于点M,以AB为直径的半圆恰好过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足=,求二次函数的表达式.2017年湖南省株洲市中考数学试卷参考答案与试题解析一、选择题(每小题3分,满分30分)1.(3分)(2017•株洲)计算a2•a4的结果为()A.a2B.a4C.a6D.a8【分析】直接利用同底数幂的乘法运算法则求出答案.【解答】解:原式=a2+4=a6.故选C.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.2.(3分)(2017•株洲)如图示,数轴上点A所表示的数的绝对值为()A.2 B.﹣2 C.±2 D.以上均不对【分析】根据数轴可以得到点A表示的数,从而可以求出这个数的绝对值,本题得以解决.【解答】解:由数轴可得,点A表示的数是﹣2,∵|﹣2|=2,∴数轴上点A所表示的数的绝对值为2,故选A.【点评】本题考查数轴、绝对值,解答本题的关键是明确数轴的特点,会求一个数的绝对值.3.(3分)(2017•株洲)如图示直线l1,l2△ABC被直线l3所截,且l1∥l2,则α=()A.41°B.49°C.51°D.59°【分析】根据平行线的性质即可得到结论.【解答】解:∵l1∥l2,∴α=49°,故选B.【点评】本题考查了平行线的性质,是基础题,熟记性质是解题的关键.4.(3分)(2017•株洲)已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b【分析】根据不等式的性质即可得到a>b,a+2>b+2,﹣a<﹣b.【解答】解:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b.故选D.【点评】本题考查了不等式的性质,属于基础题.5.(3分)(2017•株洲)如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD=()A.145°B.150°C.155° D.160°【分析】根据三角形内角和定理求出x,再根据三角形的外角的等于不相邻的两个内角的和,即可解决问题.【解答】解:在△ABC中,∵∠B+∠C+∠BAC=180°,∠BAC=x,∠B=2x,∠C=3x,∴6x=180°,∴x=30°,∵∠BAD=∠B+∠C=5x=150°,故选B.【点评】本题考查三角形内角和定理、三角形的外角的性质等知识,学会构建方程解决问题,属于基础题.6.(3分)(2017•株洲)下列圆的内接正多边形中,一条边所对的圆心角最大的图形是()A.正三角形B.正方形C.正五边形D.正六边形【分析】根据正多边形的中心角的度数即可得到结论.【解答】解:∵正三角形一条边所对的圆心角是360°÷3=120°,正方形一条边所对的圆心角是360°÷4=90°,正五边形一条边所对的圆心角是360°÷5=72°,正六边形一条边所对的圆心角是360°÷6=60°,∴一条边所对的圆心角最大的图形是正三角形,故选A.【点评】本题考查了正多边形与圆,熟练掌握正多边形的中心角的定义是解题的关键.7.(3分)(2017•株洲)株洲市展览馆某天四个时间段进出馆人数统计如下,则馆内人数变化最大时间段为()A.9:00﹣10:00 B.10:00﹣11:00 C.14:00﹣15:00 D.15:00﹣16:00【分析】直接利用统计表中人数的变化范围得出馆内人数变化最大时间段.【解答】解:由统计表可得:10:00﹣11:00,进馆24人,出馆65人,差之最大,故选:B.【点评】此题主要考查了统计表,正确利用表格获取正确信息是解题关键.8.(3分)(2017•株洲)三名初三学生坐在仅有的三个座位上,起身后重新就坐,恰好有两名同学没有坐回原座位的概率为()A.)B.)C.)D.)【分析】画树状图为(用A、B、C表示三位同学,用a、b、c表示他们原来的座位)展示所有6种等可能的结果数,再找出恰好有两名同学没有坐回原座位的结果数,然后根据概率公式求解.【解答】解:画树状图为:(用A、B、C表示三位同学,用a、b、c表示他们原来的座位)共有6种等可能的结果数,其中恰好有两名同学没有坐回原座位的结果数为3,所以恰好有两名同学没有坐回原座位的概率==.故选D.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.9.(3分)(2017•株洲)如图,点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,则关于四边形EFGH,下列说法正确的为()A.一定不是平行四边形B.一定不是中心对称图形C.可能是轴对称图形D.当AC=BD时它是矩形【分析】先连接AC,BD,根据EF=HG=AC,EH=FG=BD,可得四边形EFGH是平行四边形,当AC⊥BD时,∠EFG=90°,此时四边形EFGH是矩形;当AC=BD 时,EF=FG=GH=HE,此时四边形EFGH是菱形,据此进行判断即可.【解答】解:连接AC,BD,∵点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,∴EF=HG=AC,EH=FG=BD,∴四边形EFGH是平行四边形,∴四边形EFGH一定是中心对称图形,当AC⊥BD时,∠EFG=90°,此时四边形EFGH是矩形,当AC=BD时,EF=FG=GH=HE,此时四边形EFGH是菱形,∴四边形EFGH可能是轴对称图形,故选:C.【点评】本题主要考查了中点四边形的运用,解题时注意:平行四边形是中心对称图形.解决问题的关键是掌握三角形中位线定理.10.(3分)(2017•株洲)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.D.【分析】由△DQF∽△FQE,推出===,由此求出EQ、FQ即可解决问题.【解答】解:如图,在等腰直角三角形△DEF中,∠EDF=90°,DE=DF,∠1=∠2=∠3,∵∠1+∠QEF=∠3+∠DFQ=45°,∴∠QEF=∠DFQ,∵∠2=∠3,∴△DQF∽△FQE,∴===,∵DQ=1,∴FQ=,EQ=2,∴EQ+FQ=2+,故选D【点评】本题考查等腰直角三角形的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.二、填空题(每小题3分,满分24分)11.(3分)(2017•株洲)如图示在△ABC中∠B=25°.【分析】由直角三角形的两个锐角互余即可得出答案.【解答】解:∵∠C=90°,∴∠B=90°﹣∠A=90°﹣65°=25°;故答案为:25°.【点评】本题考查了直角三角形的两个锐角互余的性质;熟记直角三角形的性质是解决问题的关键.12.(3分)(2017•株洲)分解因式:m3﹣mn2=m(m+n)(m﹣n).【分析】先提取公因式m,再运用平方差公式分解.【解答】解:m3﹣mn2,=m(m2﹣n2),=m(m+n)(m﹣n).【点评】本题考查提公因式法分解因式和利用平方差公式分解因式,本题要进行二次分解因式,分解因式要彻底.13.(3分)(2017•株洲)分式方程﹣=0的解为x=﹣.【分析】根据解方式方程的步骤一步步求解,即可得出x的值,将其代入原方程验证后即可得出结论.【解答】解:去分母,得4x+8﹣x=0,移项、合并同类项,得3x=﹣8,方程两边同时除以3,得x=﹣.经检验,x=﹣是原方程的解.故答案为:x=﹣.【点评】本题考查了解分式方程,熟练掌握分式方程的解法及步骤是解题的关键.14.(3分)(2017•株洲)已知“x的3倍大于5,且x的一半与1的差不大于2”,则x的取值范围是<x≤6.【分析】根据题意列出不等式组,再求解集即可得到x的取值范围.【解答】解:依题意有,解得<x≤6.故x的取值范围是<x≤6.故答案为:<x≤6.【点评】主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.(3分)(2017•株洲)如图,已知AM为⊙O的直径,直线BC经过点M,且AB=AC,∠BAM=∠CAM,线段AB和AC分别交⊙O于点D、E,∠BMD=40°,则∠EOM=80°.【分析】连接EM,根据等腰三角形的性质得到AM⊥BC,进而求出∠AMD=70°,于是得到结论.【解答】解:连接EM,∵AB=AC,∠BAM=∠CAM,∴AM⊥BC,∵AM为⊙O的直径,∴∠ADM=∠AEM=90°,∴∠AME=∠AMD=90°﹣∠BMD=50°∴∠EAM=40°,∴∠EOM=2∠EAM=80°,故答案为:80°.【点评】本题考查了等腰三角形的性质,圆周角定理,熟练掌握圆周角定理是解题的关键.16.(3分)(2017•株洲)如图示直线y=x+与x轴、y轴分别交于点A、B,当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动的路径的长度为π.【分析】先利用一次函数的解析式可确定A(﹣1,0),B(0,),再利用正切的定义求出∠BAO=60°,利用勾股定理计算出AB=2,然后根据弧长公式计算.【解答】解:当y=0时,x+=0,解得x=﹣1,则A(﹣1,0),当x=0时,y=x+=,则B(0,),在Rt△OAB中,∵tan∠BAO==,∴∠BAO=60°,∴AB==2,∴当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动的路径的长度==π.故答案为π.【点评】本题考查了一次函数图象与几何变换:熟练掌握旋转的性质,会计算一次函数与坐标轴的交点坐标.17.(3分)(2017•株洲)如图所示是一块含30°,60°,90°的直角三角板,直角顶点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数y1=(x>0)的图象上,顶点B在函数y2=(x>0)的图象上,∠ABO=30°,则=﹣.【分析】设AC=a,则OA=2a,OC=a,根据直角三角形30°角的性质和勾股定理分别计算点A和B的坐标,写出A和B两点的坐标,代入解析式求出k1和k2的值,相比即可.【解答】解:如图,Rt△AOB中,∠B=30°,∠AOB=90°,∴∠OAC=60°,∵AB⊥OC,∴∠ACO=90°,∴∠AOC=30°,设AC=a,则OA=2a,OC=a,∴A(a,a),∵A在函数y1=(x>0)的图象上,∴k1=a•a=,Rt△BOC中,OB=2OC=2a,∴BC==3a,∴B(a,﹣3a),∵B在函数y2=(x>0)的图象上,∴k2=﹣3a a=﹣3,∴=﹣;故答案为:﹣.【点评】本题考查了反比例函数图象上点的特征、直角三角形30°的性质,熟练掌握直角三角形30°角所对的直角边是斜边的一半,正确写出A、B两点的坐标是关键.18.(3分)(2017•株洲)如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中正确结论的序号为①④.【分析】根据抛物线与y轴交于点B(0,﹣2),可得c=﹣2,依此判断③;由抛物线图象与x轴交于点A(﹣1,0),可得a﹣b﹣2=0,依此判断①②;由|a|=|b|可得二次函数y=ax2+bx+c的对称轴为y=,可得x2=2,比较大小即可判断④;从而求解.【解答】解:由A(﹣1,0),B(0,﹣2),得b=a﹣2,∵开口向上,∴a>0;∵对称轴在y轴右侧,∴﹣>0,∴﹣>0,∴a﹣2<0,∴a<2;∴0<a<2;∴①正确;∵抛物线与y轴交于点B(0,﹣2),∴c=﹣2,故③错误;∵抛物线图象与x轴交于点A(﹣1,0),∴a﹣b﹣2=0,∵0<a<2,∴0<b+2<2,﹣2<b<0,故②错误;∵|a|=|b|,二次函数y=ax2+bx+c的对称轴在y轴的右侧,∴二次函数y=ax2+bx+c的对称轴为y=,∴x2=2>﹣1,故④正确.故答案为:①④.【点评】本题考查了抛物线与x轴的交点,二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a 与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.三、解答题(本大题共有8个小题,满分66分)19.(6分)(2017•株洲)计算:+20170×(﹣1)﹣4sin45°.【分析】根据立方根的定义、零指数幂及特殊角的三角函数值求得各项的值,再计算即可.【解答】解:+20170×(﹣1)﹣4sin45°=2+1×(﹣1)﹣4×=2﹣1﹣2=﹣1.【点评】本题主要考查实数的计算及零指数幂和特殊角的三角函数值,掌握立方根的计算、零指数幂的运算法则、熟记特殊角的三角函数值是解题的关键.20.(6分)(2017•株洲)化简求值:(x﹣)•﹣y,其中x=2,y=.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分后计算得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=•﹣y=﹣=﹣,当x=2,y=时,原式=﹣.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.(8分)(2017•株洲)某次世界魔方大赛吸引世界各地共600名魔方爱好者参加,本次大赛首轮进行3×3阶魔方赛,组委会随机将爱好者平均分到20个区域,每个区域30名同时进行比赛,完成时间小于8秒的爱好者进入下一轮角逐;如图是3×3阶魔方赛A区域30名爱好者完成时间统计图,求:①A区域3×3阶魔方爱好者进入下一轮角逐的人数的比例(结果用最简分数表示).②若3×3阶魔方赛各个区域的情况大体一致,则根据A区域的统计结果估计在3×3阶魔方赛后进入下一轮角逐的人数.③若3×3阶魔方赛A区域爱好者完成时间的平均值为8.8秒,求该项目赛该区域完成时间为8秒的爱好者的概率(结果用最简分数表示).【分析】①由图知1人6秒,3人7秒,小于8秒的爱好者共有4人,进入下一轮角逐的人数比例为4:30;②因为其他赛区情况大致一致,所以进入下一轮的人数为:600×A区进入下一轮角逐的人数比例;③由完成时间的平均值和A区30人,得到关于a、b的二元一次方程组,求出a、b,得到完成时间8秒的爱好者的概率.【解答】解:①A区小于8秒的共有3+1=4(人)所以A区进入下一轮角逐的人数比例为:=;②估计进入下一轮角逐的人数为600×=80(人);③因为A区域爱好者完成时间的平均值为8.8秒,所以(1×6+3×7+a×8+b×9+10×10)÷30=8.8化简,得8a+9b=137又∵1+3+a+b+10=30,即a+b=16所以解得a=7,b=9所以该区完成时间为8秒的爱好者的概率为.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.解决本题的关键是根据平均数和各个时间段的人数确定完成时间为8秒的人数.概率=所求情况数与总情况数之比.22.(8分)(2017•株洲)如图示,正方形ABCD的顶点A在等腰直角三角形DEF 的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.【分析】①由正方形ABCD与等腰直角三角形DEF,得到两对边相等,一对直角相等,利用SAS即可得证;②由第一问的全等三角形的对应角相等,根据等量代换得到∠BAG=∠BCF,再由对顶角相等,利用两对角相等的三角形相似即可得证.【解答】证明:①∵正方形ABCD,等腰直角三角形EDF,∴∠ADC=∠EDF=90°,AD=CD,DE=DF,∴∠ADE+∠ADF=∠ADF+∠CDF,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF;②延长BA到M,交ED于点M,∵△ADE≌△CDF,∴∠EAD=∠FCD,即∠EAM+∠MAD=∠BCD+∠BCF,∵∠MAD=∠BCD=90°,∴∠EAM=∠BCF,∵∠EAM=∠BAG,∴∠BAG=∠BCF,∵∠AGB=∠CGF,∴△ABG∽△CFG.【点评】此题考查了全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的判定与性质是解本题的关键.23.(8分)(2017•株洲)如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为α其中tanα=2,无人机的飞行高度AH为500米,桥的长度为1255米.①求点H到桥左端点P的距离;②若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度AB.【分析】①在Rt △AHP 中,由tan ∠APH=tanα=,即可解决问题;②设BC ⊥HQ 于C .在Rt △BCQ 中,求出CQ==1500米,由PQ=1255米,可得CP=245米,再根据AB=HC=PH ﹣PC 计算即可; 【解答】解:①在Rt △AHP 中,∵AH=500,由tan ∠APH=tanα===2,可得PH=250米.∴点H 到桥左端点P 的距离为250米.②设BC ⊥HQ 于C .在Rt △BCQ 中,∵BC=AH=500,∠BQC=30°,∴CQ==1500米,∵PQ=1255米, ∴CP=245米, ∵HP=250米,∴AB=HC=250﹣245=5米.答:这架无人机的长度AB 为5米.【点评】本题考查解直角三角形﹣仰角俯角问题,锐角三角函数,矩形判定和性质等知识,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.24.(8分)(2017•株洲)如图所示,Rt △PAB 的直角顶点P (3,4)在函数y=(x >0)的图象上,顶点A 、B 在函数y=(x >0,0<t <k )的图象上,PA ∥y 轴,连接OP ,OA ,记△OPA 的面积为S △OPA ,△PAB 的面积为S △PAB ,设w=S △OPA ﹣S △PAB .①求k 的值以及w 关于t 的表达式;②若用w max和w min分别表示函数w的最大值和最小值,令T=w max+a2﹣a,其中a为实数,求T min.【分析】(1)由点P的坐标表示出点A、点B的坐标,从而得S△PAB=•PA•PB=(4﹣)(3﹣),再根据反比例系数k的几何意义知S△OPA=S△OPC﹣S△OAC=6﹣t,由w=S△OPA ﹣S△PAB可得答案;(2)将(1)中所得解析式配方求得w max=,代入T=w max+a2﹣a配方即可得出答案.【解答】解:(1)∵点P(3,4),∴在y=中,当x=3时,y=,即点A(3,),当y=4时,x=,即点B(,4),则S△PAB=•PA•PB=(4﹣)(3﹣),如图,延长PA交x轴于点C,则PC⊥x轴,又S△OPA=S△OPC﹣S△OAC=×3×4﹣t=6﹣t,∴w=6﹣t﹣(4﹣)(3﹣)=﹣t2+t;(2)∵w=﹣t2+t=﹣(t﹣6)2+,∴w max=,则T=w max+a2﹣a=a2﹣a+=(a﹣)2+,∴当a=时,T min=.【点评】本题主要考查反比例函数系数k的几何意义及二次函数的性质,熟练掌握反比例系数k的几何意义及配方法求二次函数的最值是解题的关键.25.(10分)(2017•株洲)如图示AB为⊙O的一条弦,点C为劣弧AB的中点,E为优弧AB上一点,点F在AE的延长线上,且BE=EF,线段CE交弦AB于点D.①求证:CE∥BF;②若BD=2,且EA:EB:EC=3:1:,求△BCD的面积(注:根据圆的对称性可知OC⊥AB).【分析】①连接AC,BE,由等腰三角形的性质和三角形的外角性质得出∠F=∠AEB,由圆周角定理得出∠AEC=∠BEC,证出∠AEC=∠F,即可得出结论;②证明△ADE∽△CBE,得出,证明△CBE∽△CDB,得出,求出CB=2,得出AD=6,AB=8,由垂径定理得出OC⊥AB,AG=BG=AB=4,由勾股定理求出CG==2,即可得出△BCD的面积.【解答】①证明:连接AC,BE,作直线OC,如图所示:∵BE=EF,∴∠F=∠EBF;∵∠AEB=∠EBF+∠F,∴∠F=∠AEB,∵C是的中点,∴,∴∠AEC=∠BEC,∵∠AEB=∠AEC+∠BEC,∴∠AEC=∠AEB,∴∠AEC=∠F,∴CE∥BF;②解:∵∠DAE=∠DCB,∠AED=∠CEB,∴△ADE∽△CBE,∴,即,∵∠CBD=∠CEB,∠BCD=∠ECB,∴△CBE∽△CDB,∴,即,∴CB=2,∴AD=6,∴AB=8,∵点C为劣弧AB的中点,∴OC⊥AB,AG=BG=AB=4,∴CG==2,∴△BCD的面积=BD•CG=×2×2=2.【点评】本题考查了相似三角形的判定与性质、垂径定理、圆周角定理、三角形的外角性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理,证明三角形相似是解决问题的关键.26.(12分)(2017•株洲)已知二次函数y=﹣x2+bx+c+1,①当b=1时,求这个二次函数的对称轴的方程;②若c=﹣b2﹣2b,问:b为何值时,二次函数的图象与x轴相切?③若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<x2,与y轴的正半轴交于点M,以AB为直径的半圆恰好过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足=,求二次函数的表达式.【分析】①二次函数y=﹣x2+bx+c+1的对称轴为x=,即可得出答案;②二次函数y=﹣x2+bx+c+1的顶点坐标为(,),y由二次函数的图象与x轴相切且c=b2﹣2b,得出方程组,求出b即可;③由圆周角定理得出∠AMB=90°,证出∠OMA=∠OBM,得出△OAM∽△OMB,得出OM2=OA•OB,由二次函数的图象与x轴的交点和根与系数关系得出OA=﹣x1,OB=x2,x1+x2,=b,x1•x2=﹣(c+1),得出方程(c+1)2=c+1,得出c=0,OM=1,证明△BDE∽△BOM,△AOM∽△ADF,得出,,得出OB=4OA,即x2=﹣4x1,由x1•x2=﹣(c+1)=﹣1,得出方程组,解方程组求出b的值即可.【解答】解:①二次函数y=﹣x2+bx+c+1的对称轴为x=,当b=1时,=,∴当b=1时,求这个二次函数的对称轴的方程为x=.②二次函数y=﹣x2+bx+c+1的顶点坐标为(,),∵二次函数的图象与x轴相切且c=﹣b2﹣2b,∴,解得:b=,∴b为,二次函数的图象与x轴相切.③∵AB是半圆的直径,∴∠AMB=90°,∴∠OAM+∠OBM=90°,∵∠AOM=∠MOB=90°,∴∠OAM+∠OMA=90°,∴∠OMA=∠OBM,∴△OAM∽△OMB,∴,∴OM2=OA•OB,∵二次函数的图象与x轴交于点A(x1,0),B(x2,0),∴OA=﹣x1,OB=x2,x1+x2,=b,x1•x2=﹣(c+1),∵OM=c+1,∴(c+1)2=c+1,解得:c=0或c=﹣1(舍去),∴c=0,OM=1,∵二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足=,∴AD=BD,DF=4DE,DF∥OM,∴△BDE∽△BOM,△AOM∽△ADF,∴,,∴DE=,DF=,∴×4,∴OB=4OA,即x2=﹣4x1,∵x1•x2=﹣(c+1)=﹣1,∴,解得:,∴b=﹣+2=,∴二次函数的表达式为y=﹣x2+x+1.【点评】本题是二次函数综合题目,考查了二次函数的性质、二次函数的图象与x轴的交点、顶点坐标、圆周角定理、相似三角形的判定与性质、根与系数是关系等知识;本题综合性强,有一定难度.。

相关文档
最新文档