《线性代数》知识点归纳整理-大学线代基础知识.docx
大学数学线性代数知识点归纳总结

大学数学线性代数知识点归纳总结线性代数是数学的一个重要分支,广泛应用于各个领域。
作为大学数学的一门核心课程,线性代数为我们提供了一种处理线性方程组、矩阵运算和向量空间等数学工具和理论。
在这篇文章中,我将对大学数学线性代数的知识点进行归纳总结。
1. 向量与向量空间- 向量的定义和性质- 向量的线性组合与线性相关性- 向量空间的定义和基本性质- 子空间与超平面- 线性无关与基2. 线性方程组- 线性方程组的概念与解的存在唯一性- 矩阵形式与增广矩阵- 初等行变换与线性方程组的等价性- 齐次线性方程组与非齐次线性方程组- 线性方程组的解的结构3. 矩阵与矩阵运算- 矩阵的定义和性质- 矩阵的加法与数乘- 矩阵的转置与对称矩阵- 矩阵乘法与矩阵的秩- 逆矩阵与可逆矩阵4. 特征值与特征向量- 特征值与特征向量的定义 - 特征多项式与特征方程- 对角化与可对角化条件- 特征值与矩阵的相似性5. 线性变换与线性映射- 线性变换的基本性质- 线性变换矩阵与基变换- 线性变换的零空间与像空间 - 线性变换的维数定理6. 内积空间与正交性- 内积空间的定义和性质- 正交向量与正交补空间- 正交投影与最小二乘法- 施密特正交化过程7. 特殊矩阵与应用- 对角矩阵与对角化- 正交矩阵与正交对角化- 幂零矩阵与Jordan标准形- 应用:图像处理、数据压缩、网络分析等通过对以上知识点的整理和总结,我们对大学数学线性代数的学习有了更加清晰的认识。
线性代数的理论和方法在计算机科学、物理学、工程学等领域都有广泛的应用,了解和掌握线性代数知识对于我们的学术研究和职业发展都具有重要意义。
希望本文能帮助读者对线性代数有更深入的了解,并在实际应用中发挥作用。
知识点总结线代

知识点总结线代1. 向量和向量空间向量是一个有大小和方向的量,它可以表示空间中的一个点或者物体的位移。
向量空间是由一组向量构成的集合,它满足一些特定的性质,比如对任意的向量加法和数乘运算封闭。
2. 矩阵和矩阵运算矩阵是一个长方形的数组,它由行和列组成。
在线性代数中,矩阵表示了线性映射的具体表达形式,可以用来描述向量之间的线性关系。
矩阵的加法、数乘、乘法等运算是线性代数中重要的概念。
3. 行列式和特征值行列式是矩阵的一个重要性质,在计算矩阵的逆、求解线性方程组等问题时起着重要的作用。
特征值是一个矩阵的固有性质,它表示了矩阵在某个方向上的伸缩比例。
4. 线性方程组和矩阵的逆线性方程组是线性代数中的一个重要问题,它的解决可以用来描述物理系统的平衡状态、工程问题的最优解等。
矩阵的逆是一个矩阵的重要性质,它可以用来求解线性方程组和描述线性映射的反演关系。
5. 线性变换和正交变换线性变换是线性代数中的一个重要概念,它描述了向量空间中的一个映射,满足加法和数乘的线性关系。
正交变换是一种特殊的线性变换,在物理学和工程中有着广泛的应用。
6. 对称矩阵和正定矩阵对称矩阵是一个重要的矩阵类别,在物理学、工程学等领域有着广泛的应用。
正定矩阵是一个特殊的对称矩阵,它的特征值都是正数,具有很好的性质和应用价值。
7. 线性代数在计算机科学中的应用线性代数在计算机科学中有着广泛的应用,比如在图形学、机器学习、计算机图像处理等领域都离不开线性代数的支持。
矩阵的运算、线性变换等概念在计算机科学中有着重要的应用价值。
总之,线性代数是数学中的一个重要分支,它研究的是向量空间、线性映射和矩阵等概念,具有很强的理论性和应用性。
通过学习线性代数,我们可以了解向量空间的性质、矩阵的运算规律以及线性方程组的求解方法,从而在物理、工程、计算机科学等领域有着广泛的应用和实际价值。
希望通过本文的总结,读者能够对线性代数有一个更深入的理解,从而在学习和应用过程中更加得心应手。
《线性代数》知识点归纳整理-大学线代基础知识.docx

《线性代数》知识点归纳整理-⼤学线代基础知识.docx 《线性代数》知识点归纳整理诚毅学⽣编01、余⼦式与代数余⼦式................................................................... - 2 -02、主对⾓线............................................................................. - 2 -03、转置⾏列式........................................................................... - 2 -04、⾏列式的性质......................................................................... - 3 -05、计算⾏列式........................................................................... - 3 -06、矩阵中未写出的元素................................................................... - 4 -07、⼏类特殊的⽅阵....................................................................... - 4 -08、矩阵的运算规则....................................................................... - 4 -09、矩阵多项式........................................................................... - 6 -10、对称矩阵............................................................................. - 6 -11、矩阵的分块........................................................................... - 6 -12、矩阵的初等变换....................................................................... - 6 -13、矩阵等价............................................................................. - 6 -14、初等矩阵............................................................................. - 7 -15、⾏阶梯形矩阵与⾏最简形矩阵......................................................... - 7 -16、逆矩阵............................................................................... - 7 -17、充分性与必要性的证明题............................................................... - 8 -18、伴随矩阵............................................................................. - 8 -19、矩阵的标准形:....................................................................... - 9 -20、矩阵的秩:........................................................................... - 9 -21、矩阵的秩的⼀些定理、推论............................................................. - 9 -22、线性⽅程组概念....................................................................... - 10 -23、齐次线性⽅程组与⾮齐次线性⽅程组(不含向量)......................................... - 10 -24、⾏向量、列向量、零向量、负向量的概念................................................. - 11 -25、线性⽅程组的向量形式................................................................. - 11 -26、线性相关与线性⽆关的概念.......................................................... - 12 -27、向量个数⼤于向量维数的向量组必然线性相关............................................ - 12 -28、线性相关、线性⽆关;齐次线性⽅程组的解;矩阵的秩这三者的关系及其例题................. - 12 -29、线性表⽰与线性组合的概念.......................................................... - 12 -30、线性表⽰;⾮齐次线性⽅程组的解;矩阵的秩这三者的关系其例题.......................... - 12 -31、线性相关(⽆关)与线性表⽰的3个定理................................................. - 12 -32、最⼤线性⽆关组与向量组的秩........................................................... - 12 -33、线性⽅程组解的结构................................................................... - 12 -01、余⼦式与代数余⼦式a 22 a 23对M ii 的解释:划掉第1⾏、第1列,剩下的就是⼀个⼆阶⾏列式a a ,这个 a 32 a 33⾏列式即元素an 的余⼦式M ii 。
大一线性代数重要知识点文库

大一线性代数重要知识点文库线性代数是数学中的一个重要分支,也是大一学生必修的一门课程。
在学习线性代数的过程中,掌握一些重要的知识点对于深入理解和应用线性代数具有至关重要的作用。
本文将介绍一些大一线性代数的重要知识点,供大家参考和学习。
1. 向量与矩阵在线性代数中,向量和矩阵是最基本的概念。
向量是有方向和大小的量,在数学中用箭头表示。
矩阵是由数个元素按照行和列组成的二维数组。
向量和矩阵在线性代数中是广泛使用的工具,用于描述和计算线性关系。
2. 线性方程组线性方程组是线性代数中的核心概念之一。
它是一组含有未知数的线性方程的集合。
在解线性方程组的过程中,可以使用矩阵和向量的表示法,应用高斯消元法或矩阵的逆等方法,求解未知数的值。
3. 矩阵运算矩阵运算是线性代数中的重要内容之一。
常见的矩阵运算包括矩阵的加法、减法、乘法和转置等操作。
矩阵的运算规则和性质对于解决线性方程组、矩阵的特征值和特征向量等问题具有重要作用。
4. 向量空间向量空间是研究线性代数的基本对象之一。
它是由一组向量组成的集合,在满足一定条件下,可以进行加法和数乘运算。
向量空间的性质和结构对于分析线性方程组的解空间、矩阵的秩和特征空间等问题有着深刻的影响。
5. 矩阵的特征值和特征向量矩阵的特征值和特征向量是矩阵理论中的重要概念。
特征值是一个数,表示矩阵在线性变换下的伸缩比例;特征向量是一个非零向量,表示在某个特征值下的不变方向。
矩阵的特征值和特征向量在解决线性方程组、矩阵的对角化和相似矩阵等问题时起到了重要的作用。
6. 行列式行列式是线性代数中的一个重要概念。
它是矩阵的一个标量,表示矩阵的行与列的线性关系。
行列式可以用来判断矩阵是否可逆,计算矩阵的秩和求解线性方程组。
7. 线性变换线性变换是线性代数中的核心概念之一。
它是一种特殊的函数,将向量空间中的向量映射到另一个向量空间中的向量。
线性变换在几何变换、信号处理和计算机图形学等领域有广泛的应用。
线性代数知识点归纳,超详细

线性代数复习要点第一部分行列式1. 排列的逆序数2. 行列式按行(列)展开法则3. 行列式的性质及行列式的计算行列式的定义1.行列式的计算:①(定义法)②(降阶法)行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.③(化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积.④若都是方阵(不必同阶),则⑤关于副对角线:⑥范德蒙德行列式:证明用从第n行开始,自下而上依次的由下一行减去它上一行的倍,按第一列展开,重复上述操作即可。
⑦型公式:⑧(升阶法)在原行列式中增加一行一列,保持原行列式不变的方法.⑨(递推公式法) 对阶行列式找出与或,之间的一种关系——称为递推公式,其中,,等结构相同,再由递推公式求出的方法称为递推公式法.(拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算.⑩(数学归纳法)2. 对于阶行列式,恒有:,其中为阶主子式;3. 证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值.4. 代数余子式和余子式的关系:第二部分矩阵1.矩阵的运算性质2.矩阵求逆3.矩阵的秩的性质4.矩阵方程的求解1.矩阵的定义由个数排成的行列的表称为矩阵.记作:或①同型矩阵:两个矩阵的行数相等、列数也相等.②矩阵相等: 两个矩阵同型,且对应元素相等.③矩阵运算a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减).b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为.c. 矩阵与矩阵相乘:设, ,则,其中注:矩阵乘法不满足:交换律、消去律, 即公式不成立.a. 分块对角阵相乘:,b. 用对角矩阵○左乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的○行向量;c. 用对角矩阵○右乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的○列向量.d. 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘.④方阵的幂的性质:,⑤矩阵的转置:把矩阵的行换成同序数的列得到的新矩阵,叫做的转置矩阵,记作.a. 对称矩阵和反对称矩阵:是对称矩阵.是反对称矩阵.b. 分块矩阵的转置矩阵:⑥伴随矩阵:,为中各个元素的代数余子式.,, .分块对角阵的伴随矩阵:,矩阵转置的性质:矩阵可逆的性质:伴随矩阵的性质:(无条件恒成立)r(A)与r(A*)的关系若r(A)=n,则不等于0,A*=可逆,推出r(A*)=n。
线性代数知识点归纳

线性代数知识点归纳线性代数是一门研究向量、向量空间、线性变换以及有限维线性方程组的数学分支。
它广泛应用于各个领域,如物理、计算机科学、工程学等。
线性代数的核心概念和工具包括行列式、矩阵、向量组以及线性方程组等。
下面将详细介绍线性代数的相关知识点。
一、行列式1.1 行列式的概念:行列式是一个函数,它从n×n阶方阵到实数(或复数)的映射。
行列式记作|A|,其中A是一个n×n的方阵。
1.2 逆序数:在n×n阶方阵A中,将行列式中元素a_ij与a_ji互换,所得到的新的行列式称为原行列式的逆序数。
1.3 余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij删去,剩下的(n-1)×(n-1)阶方阵的行列式称为原行列式的余子式,记作M_ij。
1.4 代数余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij替换为它的相反数,然后计算得到的新的行列式,称为原行列式的代数余子式,记作A_ij。
1.5 行列式的性质:行列式具有以下性质:(1)交换行列式中任意两个元素的位置,行列式的值变号。
(2)行列式中某一行(列)的元素乘以常数k,行列式的值也乘以k。
(3)行列式中某一行(列)的元素与另一行(列)的元素相加,行列式的值不变。
(4)行列式某一行(列)的元素与另一行(列)的元素相减,行列式的值变号。
1.6 行列式的计算方法:行列式的计算方法有:降阶法、按行(列)展开法、克拉默法则等。
二、矩阵2.1 矩阵的概念:矩阵是一个由数组元素构成的矩形阵列,矩阵中的元素称为矩阵的项。
矩阵记作A,其中A是一个m×n的矩阵,A_ij表示矩阵A中第i行第j列的元素。
2.2 矩阵的线性运算:矩阵的线性运算包括加法、减法、数乘等。
2.3 矩阵的乘法:两个矩阵A和B的乘法,记作A×B,要求A是一个m×n的矩阵,B是一个n×p的矩阵。
矩阵的乘法满足交换律、结合律和分配律。
大学线性代数最全知识点

b1 a12 a13
若记
D1 b2 a22 a23 ,
b3 a32 a33
或
b1 b2
a11 a12 a13 D a21 a22 a23
b1
a31 a32 a33
项目三 儿歌
aa2111xx11
a12 x2 a22 x2
a13 x3 a23 x3
b1 , b2 ,
a31x1 a32 x2 a33 x3 b3;
说明1 对角线法则只适用于二阶与三阶行列式.
项目三 儿歌
2.
三阶行列式包括3!项,每一项都是位于不同行,
不同列的三个元素的乘积,其中三项为正,三项为 负.
利用三阶行列式求解三元线性方程组
如果三元线性方程组
aa2111xx11
a12 x2 a22 x2
a13 x3 a23 x3
b1 , b2 ,
f 2 4a 2b c 3, f 3 9a 3b c 28,
得一个关于未知数 a, b, 的c 线性方程组, 又 D 20 0, D1 40, D2 60, D3 20. 得 a D1 D 2, b D2 D 3, c D3 D 1
项目三 儿歌 故所求多项式为
a31 b3 a33
x1
D1 D
,
x2
D2 D
,
x3
D3 D
.
项目三 儿歌
1 2 -4 例2 计算三阶行列式 D - 2 2 1
-3 4 -2
解
按对角线法则,有
D 1 2 (2) 2 1 (3) (4) (2) 4 11 4 2 (2) (2) (4) 2 (3)
4 6 32 4 8 24 14.
项目三 儿歌
11 1 例3 求解方程 2 3 x 0.
《线性代数》知识点 归纳整理-大学线代基础知识

《线性代数》知识点归纳整理诚毅学生编01、余子式与代数余子式.............................................................................................................................................. - 2 -02、主对角线.................................................................................................................................................................. - 2 -03、转置行列式.............................................................................................................................................................. - 2 -04、行列式的性质.......................................................................................................................................................... - 3 -05、计算行列式.............................................................................................................................................................. - 3 -06、矩阵中未写出的元素.............................................................................................................................................. - 4 -07、几类特殊的方阵...................................................................................................................................................... - 4 -08、矩阵的运算规则...................................................................................................................................................... - 4 -09、矩阵多项式.............................................................................................................................................................. - 6 -10、对称矩阵.................................................................................................................................................................. - 6 -11、矩阵的分块.............................................................................................................................................................. - 6 -12、矩阵的初等变换...................................................................................................................................................... - 6 -13、矩阵等价.................................................................................................................................................................. - 6 -14、初等矩阵.................................................................................................................................................................. - 7 -15、行阶梯形矩阵与行最简形矩阵.......................................................................................................................... - 7 -16、逆矩阵 ..................................................................................................................................................................... - 7 -17、充分性与必要性的证明题...................................................................................................................................... - 8 -18、伴随矩阵.................................................................................................................................................................. - 8 -19、矩阵的标准形:...................................................................................................................................................... - 9 -20、矩阵的秩:.............................................................................................................................................................. - 9 -21、矩阵的秩的一些定理、推论................................................................................................................................ - 10 -22、线性方程组概念.................................................................................................................................................... - 10 -23、齐次线性方程组与非齐次线性方程组(不含向量)........................................................................................ - 10 -24、行向量、列向量、零向量、负向量的概念........................................................................................................ - 11 -25、线性方程组的向量形式........................................................................................................................................ - 12 -26、线性相关与线性无关的概念.......................................................................................................................... - 12 -27、向量个数大于向量维数的向量组必然线性相关.............................................................................................. - 12 -28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题 ...................................... - 12 -29、线性表示与线性组合的概念.......................................................................................................................... - 12 -30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题 .......................................................... - 12 -31、线性相关(无关)与线性表示的3个定理........................................................................................................ - 12 -32、最大线性无关组与向量组的秩............................................................................................................................ - 12 -33、线性方程组解的结构............................................................................................................................................ - 13 -01、余子式与代数余子式(1)设三阶行列式D =333231232221131211a a a a a a a a a ,则①元素11a ,12a ,13a 的余子式分别为:M 11=33322322a a a a ,M 12=33312321a a a a ,M 13=32312221a a a a对M 11的解释:划掉第1行、第1列,剩下的就是一个二阶行列式33322322a a a a ,这个行列式即元素11a 的余子式M 11。
线代必备资料:线性代数知识框架(word版)

( Am )n ( A)mn
√ 设 Amn , Bns , A 的列向量为1,2 ,,n , B 的列向量为 1, 2 , , s ,
b11 b12 b1s
则 AB Cms
1
,
2
,
,
n
b21
b22
b2
BT
CT
DT
分块矩阵的逆矩阵:
A
B
1
A1
B
1
B
A 1
A1
B1
A
O
C B
1
A1 O
A1CB1
B
A
C
O 1
B
A1 B 1CA1
⑤任意一个 n 维向量都可以用 e1, e2 ,, en 线性表示.
a11 a12 a1n
行列式的定义
Dn
a21
a22
a2 n
( j1 j2 jn )
( 1) a a a j1 j2 jn
1 j1 2 j2
njn
an1 an2 ann
√ 行列式的计算:
17 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. 18 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定.
7
19 若两个线性无关的向量组等价,则它们包含的向量个数相等.
20 若 A 是 m n 矩阵,则 r( A) min m, n ,若 r( A) m , A 的行向量线性无关;
(完整版)线性代数知识点总结

线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j nija a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。
(转置行列式TD D =) ②行列式中某两行(列)互换,行列式变号。
推论:若行列式中某两行(列)对应元素相等,则行列式等于零。
③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。
推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。
④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。
克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。
化为三角形行列式 ⑤上(下)三角形行列式:行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *(零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) 矩阵的运算:加法(同型矩阵)---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A T T =)( TT T B A B A +=+)( T T kA kA =)( TT T A B AB =)((反序定理) 方幂:2121k k k kA AA +=2121)(k k k k A A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置 注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A=-1(非奇异矩阵、奇异矩阵|A|=0、伴随矩阵)初等变换1、交换两行(列)2.、非零k 乘某一行(列)3、将某行(列)的K 倍加到另一行(列)初等变换不改变矩阵的可逆性 初等矩阵都可逆 初等矩阵:单位矩阵经过一次初等变换得到的(对换阵 倍乘阵 倍加阵) 等价标准形矩阵⎪⎪⎭⎫ ⎝⎛=O OO I D rr矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n n ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。
线代知识点总结归纳

线代知识点总结归纳1. 基本概念线性代数的基本概念包括向量、矩阵、线性方程组、行列式等。
向量是线性代数中的基本概念,它是一个有向量在空间中的表示。
通常用n维实数或复数坐标表示一个n维向量,例如,一个三维向量可以表示为(x,y,z)。
矩阵是由若干个数排成若干行和若干列组成的数表,通常用大写字母表示,例如,矩阵A。
线性方程组是由一组线性方程组成的方程组,通常用矩阵形式表示,例如,Ax=b。
行列式是一个数学概念,用来判断矩阵是否可逆,是一个非零数值。
2. 矩阵运算矩阵运算包括矩阵加法、矩阵数量乘法、矩阵乘法等。
矩阵加法是将两个相同维度的矩阵进行对应元素的相加,例如,矩阵A和矩阵B相加得到矩阵C。
矩阵数量乘法是将一个数与一个矩阵的每一个元素相乘,例如,数k与矩阵A相乘。
矩阵乘法是将一个m×n的矩阵与一个n×p的矩阵相乘得到一个m×p的矩阵,例如,矩阵A与矩阵B相乘得到矩阵C。
3. 向量空间向量空间是一个由向量构成的集合,并且满足一定的线性运算和封闭性质。
向量空间包括零向量、线性组合、线性相关与线性无关等概念。
零向量是所有元素都为零的向量,通常用0表示。
线性组合是将向量乘以一个标量再相加得到一个新的向量,例如,向量u和向量v的线性组合是ku+lv。
线性相关是指向量集合中存在非零标量使得它们的线性组合为零向量,线性无关是指向量集合中不存在非零标量使得它们的线性组合为零向量。
4. 特征值与特征向量矩阵的特征值和特征向量是线性代数中的重要概念。
特征值是一个数,特征向量是一个非零向量,使得矩阵与特征向量的乘积等于特征值与特征向量的乘积,即Ax=λx。
通过求解矩阵的特征值和特征向量,可以得到矩阵的对角化与相似对角化等结果,进而解决一些重要的问题,例如,求解线性方程组、奇异值分解等。
综上所述,线性代数是数学中的一个重要分支,它研究向量空间、矩阵、线性变换等代数结构,并且在科学与工程领域广泛应用。
大学线代知识点总结

大学线代知识点总结一、向量和矩阵基础1. 向量的定义和性质向量是具有大小和方向的量,通常用箭头表示。
向量之间可以进行加法和数乘运算。
向量的性质包括零向量、相反向量、平行向量等。
2. 矩阵的定义和性质矩阵是由数按照一定规则排列成的矩形阵列。
矩阵的性质包括零矩阵、单位矩阵、矩阵的转置、矩阵的乘法等。
3. 线性方程组与矩阵表示线性方程组可以用矩阵表示,通过高斯消元法可以求解线性方程组的解。
二、向量空间与子空间1. 向量空间的定义和性质向量空间是指满足一定条件的向量的集合,包括加法和数乘运算,并满足一定的性质,如结合律、分配律等。
2. 向量空间的子空间向量空间的子空间是指一个向量空间中的非空子集,也满足向量的加法和数乘运算,并且满足向量空间的性质。
3. 线性相关与线性无关若向量组中的任意一个向量都可以由其它向量线性表示,则称该向量组线性相关;若向量组中的向量不能由其他向量线性表示,则称该向量组线性无关。
4. 基、维数和坐标基是向量空间中一个线性无关的向量组,维数是向量空间中基的向量个数。
通过基可以将向量表示为坐标的形式。
三、矩阵的运算和特征1. 矩阵的加法和数乘矩阵加法是按元素对应相加,矩阵数乘是将矩阵的每个元素乘以一个标量。
2. 矩阵的乘法矩阵乘法需要满足乘积矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。
矩阵乘法满足结合律但不满足交换律。
3. 矩阵的逆和转置若矩阵A的逆存在,则A乘以其逆等于单位矩阵。
矩阵的转置是将矩阵的行、列互换得到的新矩阵。
4. 特征值和特征向量矩阵A的特征值是使得A减去特征值倍的单位矩阵的行列式为零的数。
特征向量是满足特定特征值的非零向量。
四、线性映射和内积空间1. 线性映射的定义和性质线性映射是指保持向量空间加法和数乘运算的映射。
线性映射具有线性性质和保持零向量的特点。
2. 矩阵的行、列空间与秩矩阵的行空间是矩阵所有行向量张成的子空间,列空间是矩阵所有列向量张成的子空间。
线性代数知识点全面总结

线性代数知识点全面总结线性代数是数学的重要分支,广泛应用于各个领域,如物理学、计算机科学、经济学等。
本文将全面总结线性代数的知识点,帮助读者系统地了解和掌握该学科。
1. 线性代数的基本概念1.1 向量及其表示:向量是线性代数的基本概念,可以用有序数对、矩阵或列向量表示,具有方向和大小。
1.2 矩阵及其运算:矩阵是由数字排列成的矩形数组,可以进行加法、乘法、转置等运算。
1.3 线性方程组:线性方程组是由一组线性方程组成的方程组,可以用矩阵和向量的表示形式来求解。
2. 向量空间2.1 向量空间的定义:向量空间是由一组满足一定条件的向量构成的集合,满足加法和数乘运算的封闭性。
2.2 子空间:子空间是向量空间的子集,也是向量空间,满足加法和数乘运算的封闭性。
2.3 线性无关与生成子空间:线性无关是指向量组中的向量之间不存在线性关系,生成子空间是指向量组中所有向量的线性组合的集合。
3. 线性映射3.1 线性映射的定义:线性映射是一个将一个向量空间映射到另一个向量空间的映射,保持加法和数乘运算的性质。
3.2 线性映射的矩阵表示:线性映射可以用矩阵表示,将一个向量空间的向量转化为另一个向量空间的向量。
3.3 核与像:核是线性映射中被映射为零向量的向量集合,像是线性映射中所有被映射到的向量组成的集合。
4. 矩阵的特征值与特征向量4.1 特征值和特征向量的定义:特征值是一个矩阵对应的线性变换中不改变方向的标量因子,特征向量是在特征值下发生伸缩的向量。
4.2 特征值与特征向量的计算:特征值与特征向量可以通过求解特征方程来计算。
4.3 对角化与相似矩阵:若一个矩阵相似于一个对角矩阵,则称其可对角化,对角矩阵是一个形式为对角线非零、其余元素均为零的矩阵。
5. 线性代数的应用5.1 物理学中的应用:线性代数在量子力学、力学等物理学领域有广泛应用,如描述粒子的状态和变换等。
5.2 计算机科学中的应用:线性代数在计算机图形学、机器学习等领域起到重要作用,如图像处理、数据分析等。
大学线性代数知识点总结

大学线性代数知识点总结1. 向量与空间- 向量的定义与表示- 向量的加法与数乘- 向量的内积与外积- 向量的模、方向与单位向量- 向量空间的定义与性质- 基、维数与坐标表示- 子空间及其性质- 线性相关与线性无关的概念2. 矩阵- 矩阵的定义与表示- 矩阵的加法、数乘与转置- 矩阵的乘法规则- 矩阵的逆- 行列式的概念与性质- 行列式的计算方法- 秩的概念与求解- 矩阵的分块3. 线性方程组- 线性方程组的表示- 高斯消元法- 行列式法- 逆矩阵解法- 克拉默法则- 线性方程组的解的结构- 齐次与非齐次线性方程组 - 线性方程组的解空间4. 特征值与特征向量- 特征值与特征向量的定义 - 特征值与特征向量的计算 - 矩阵的对角化- 矩阵的Jordan标准形- 特征值与特征向量的应用5. 内积空间- 内积空间的定义- 正交与正交性- 正交基与正交矩阵- 格拉姆-施密特正交化过程 - 最小二乘法- 正交投影与正交补6. 线性变换- 线性变换的定义与性质- 线性变换的矩阵表示- 线性变换的核与像- 线性变换的不变子空间- 线性变换的复合与逆变换 - 线性变换的分类7. 广义逆矩阵- 广义逆矩阵的概念- 广义逆矩阵的计算方法- 广义逆矩阵的性质与应用8. 谱理论- 谱定理- 谱半径与谱半径估计- 谱聚类9. 线性代数在其他领域的应用- 计算机图形学- 数据分析与机器学习- 量子力学- 结构工程- 电路分析结语线性代数是数学的一个重要分支,它在科学、工程、经济等多个领域都有着广泛的应用。
掌握线性代数的基本概念、理论和方法是解决实际问题的关键。
本文总结了线性代数的核心知识点,旨在为学习和应用线性代数提供参考和指导。
大一线性代数知识点总结

大一线性代数知识点总结一、向量与矩阵1.1 向量的概念与性质向量是线性代数中的基本概念,它是指具有大小和方向的量。
在数学中,向量通常用箭头表示,并且可以表示为n维空间中的有序数组。
向量的加法与数乘定义为:- 两个向量的加法:设有两个向量a=(a1, a2, ..., an)和b=(b1, b2, ..., bn),则它们的和定义为:a + b = (a1+b1, a2+b2, ..., an+bn)。
- 数乘:设有一个向量a=(a1, a2, ..., an),一个标量k,那么k乘以a定义为:ka = (ka1, ka2, ..., kan)。
1.2 矩阵的概念与基本运算矩阵是由m行n列元素组成的长方形阵列,它的基本形式可以表示为:A= ( a11 a12 ... a1n )( a21 a22 ... a2n )( ... ... ... ... )( am1 am2 ... amn )其中,aij表示第i行第j列的元素。
矩阵的加法与数乘定义为:- 矩阵的加法:设有两个矩阵A与B,它们是同型矩阵,其相应元素相加即得到矩阵的和:A+B。
- 数乘:设有一个数k,以及一个矩阵A,那么可以通过数量k乘以矩阵A的每一个元素得到新的矩阵kA。
1.3 零向量与单位矩阵零向量是指所有分量都为零的向量,通常用0表示,对于n维空间而言,它的零向量可以表示为(0, 0, ..., 0)。
单位矩阵是指在主对角线上的元素都为1,其余元素都为0的方阵,通常用I表示。
对于n×n的单位矩阵可以表示为:I = ( 1 0 ... 0 )( 0 1 ... 0 )( ... ... ... )( 0 0 ... 1 )1.4 范数与内积向量的范数是指向量的长度,通常可以表示为||v||。
对于n维向量v=(v1, v2, ..., vn),它的范数定义为:||v|| = √(v1^2 + v2^2 + ... + vn^2)。
最完整的线代基础知识点

最完整的线代基础知识点第1章行列式1.1 n阶行列式1.1.1 二阶、三阶行列式起源:发现规律了,继续~从上述推倒可以看出,行列式说白了就是对方程求解的简化过程。
后续的所有变换也都是基于此的。
了解到根源了,就不难理解了。
知识点:(所有的知识其实都是不成体系的,体系都是人为归纳的,其实知识就是一个一个的点而已)1.对角线法则这个法则只能用在二阶和三阶,高阶有另外的算法,后面会介绍到,耐心往下看吧。
以后看到二三阶可以直接用这个算哦。
2.行列式应用(克莱姆法则)法则啥的就是别人先发现了,就是一个规律。
不用理解,直接记住。
(因为本来就是一个现象)小技巧:再算d1d2d3的时候默念一下d1换1(列)d2换2(列)d3换3(列)。
1.1.2 排列既逆序数起源:逆序数为奇数,为奇排列,偶数为偶排列。
知识点:1.任一排列经过对换后,必改变其奇偶性。
2.所有n阶排列中,奇排列与偶排列个数相同,各有n!/2个。
1.1.3 n阶行列式知识点:1.计算方法前面说了,n阶有其他方法,这个就是其中之一不过比较笨重难算一点。
只要看懂这个式子,这节就ok啦,看不懂的可以评论问我。
2.对角行列式对角行列式等于其对角元素的连乘,再加上一个逆序数。
因为除了去取对角之外但凡取到其他位置上的0,就会让这项变成0。
上三角行列式和下三角行列式与对角行列式类似,不能取0。
好题:1.对行列式中数字的选取规则理解如果不用分块矩阵的话,直接从定义出发,三行用两个书,必有一行选不到非零数。
1.2 行列式的性质知识点:1.行列式与它的转置行列式相同,即行与列为完全等价的。
2.互换行列式的两行或两列,行列式值变号3.若行列式有两行或两列元素相同则其行列式的值为04.行列式的某一行中所有元素都乘以k,等于用k数乘行列式5.如果行列式中某一行的元素都为0,则其值为06.若行列式有两列或两行元素成比例,则其为07.若两个行列式除了一行外相同,则可以相合。
相同的行不变,不同的行相加。
(完整版)线性代数知识点全归纳

1线性代数知识点1、行列式1.n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3.代数余子式和余子式的关系:(1)(1)i j i j ij ijij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =;5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;22、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----===***111()()()T T T AB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B OB ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯)33、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11kk k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)4⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式; 二项展开式:01111110()nn n n m n m mn n n n m m n mn n n n n n m a b C a C a b C a b C a b C b C a b-----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化:7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;511. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩; ②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTm βββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4.()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :6若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤; 向量组A 能由向量组B 线性表示,则()()r A r B ≤;向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆);9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,A 与B 的任何对应的列向量组有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩;10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,【考试中可以直接作为定理使用,而无需证明】 ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关;14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;715. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ;5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;7.n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)8第一章 随机事件互斥对立加减功,条件独立乘除清; 全概逆概百分比,二项分布是核心; 必然事件随便用,选择先试不可能。
线性代数知识点及总结

线性代数知识点总结第一章 行列式1. n 阶行列式()()121212111212122212121==-∑n nnn t p p p n p p np p p p n n nna a a a a a D a a a a a a 2.特殊行列式1212n nλλλλλλ=,()()1122121n n n nλλλλλλ-=-3.行列式的性质定义记111212122212nn n n nna a a a a a D a a a =,112111222212n n T nnnna a a a a a D a a a =,行列式TD 称为行列式D 的转置行列式。
性质1行列式与它的转置行列式相等。
性质2 互换行列式的两行()↔i j r r 或列()↔i j c c ,行列式变号。
推论如果行列式有两行〔列〕完全一样〔成比例〕,则此行列式为零。
性质3 行列式*一行〔列〕中所有的元素都乘以同一数()⨯j k r k ,等于用数k 乘此行列式; 推论1 D 的*一行〔列〕中所有元素的公因子可以提到D 的外面; 推论2 D 中*一行〔列〕所有元素为零,则=0D 。
性质4 假设行列式的*一列〔行〕的元素都是两数之和,则1112111212222212()()()i i n i i n n n ni ninna a a a a a a a a a D a a a a a '+'+='+11121111121121222*********12i n i n i n i n n n ninnn n ninna aa a a a a a a a a a a a a a a a a a a a a a ''=+' 性质6 把行列式的*一列〔行〕的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式的值不变。
而算得行列式的值。
4. 行列式按行〔列〕展开余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的1n -阶行列式叫做元素ij a 的余子式,记作ij M 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《线性代数》知识点归纳整理诚毅学生编01、余子式与代数余子式................................................................... - 2 -02、主对角线............................................................................. - 2 -03、转置行列式........................................................................... - 2 -04、行列式的性质......................................................................... - 3 -05、计算行列式........................................................................... - 3 -06、矩阵中未写出的元素................................................................... - 4 -07、几类特殊的方阵....................................................................... - 4 -08、矩阵的运算规则....................................................................... - 4 -09、矩阵多项式........................................................................... - 6 -10、对称矩阵............................................................................. - 6 -11、矩阵的分块........................................................................... - 6 -12、矩阵的初等变换....................................................................... - 6 -13、矩阵等价............................................................................. - 6 -14、初等矩阵............................................................................. - 7 -15、行阶梯形矩阵与行最简形矩阵......................................................... - 7 -16、逆矩阵............................................................................... - 7 -17、充分性与必要性的证明题............................................................... - 8 -18、伴随矩阵............................................................................. - 8 -19、矩阵的标准形:....................................................................... - 9 -20、矩阵的秩:........................................................................... - 9 -21、矩阵的秩的一些定理、推论............................................................. - 9 -22、线性方程组概念....................................................................... - 10 -23、齐次线性方程组与非齐次线性方程组(不含向量)......................................... - 10 -24、行向量、列向量、零向量、负向量的概念................................................. - 11 -25、线性方程组的向量形式................................................................. - 11 -26、线性相关与线性无关的概念.......................................................... - 12 -27、向量个数大于向量维数的向量组必然线性相关............................................ - 12 -28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题................. - 12 -29、线性表示与线性组合的概念.......................................................... - 12 -30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题.......................... - 12 -31、线性相关(无关)与线性表示的3个定理................................................. - 12 -32、最大线性无关组与向量组的秩........................................................... - 12 -33、线性方程组解的结构................................................................... - 12 -01、余子式与代数余子式a 22 a 23对M ii 的解释:划掉第1行、第1列,剩下的就是一个二阶行列式a a ,这个 a 32 a 33行列式即元素an 的余子式M ii 。
其他元素的余子式以此类推。
② 元素 a 11 , a i2, a i3 的代数余子式分别为:A ii = ( — 1)1*1M ιι , A 12= ( — 1)1"M I 2 , A 13 = ( — 1)1+3M i3 .对 A ij 的解释(i 表示第 i 行,j 表示第 j 列):A ij = ( — 1)i +J M j .(N 阶行列式以此类推)(2)填空题求余子式和代数余子式时,最好写原式。
比如说,作业Pi 第1题:0 43+10 4 M 31 一,A 31 一 (-I)0 30 3(3)例题:课本P8、课本P21-27、作业P1第1题、作业P1第3题02、主对角线一个n 阶方阵的主对角线,是所有第k 行第k 列元素的全体,k=1,2, 3, n ,即从左上到右下 的一条斜线。
与之相对应的称为副对角线或次对角线,即从右上到左下的一条斜线。
03、转置行列式Λ√a∣l ai2…ai ttΛΠ a Ii-F - αv ∣Λ≡I J …≡ a ・ aD ,=aIl «22%-行列戎Q 「称为行列式n 的转覽行列式+即元素au 与元素◎的位置对调(i 表示第i 行,j 表示第j 列),比如说,a i2与a 21的位置对 调、a 35与a 53的位置对调。
a iia 12a13(1)设三阶行列式D =a 21 a 22a 23 ,则a 31 a 32 a 33①元素04、行列式的性质详见课本P5-8 (性质1.1.1~ 1.1.7 其中,性质1.1.7可以归纳为这个:La i1A k1+a*2 A k 2+ , + a^Akn = <A i k' '(i 表示第i 行,k 表示第k 列)0,Htk 熟练掌握行列式的性质,可以迅速的简化行列式,方便计算。
例题:作业P1第2题05、计算行列式1+1 1+2 1+3=a 11 A 11+ a 12 A 12+ a 13A 13 = a 11( — 1) M 11 + a 12 ( — 1) M 12 + a 13( — 1) M 13 N 阶行列式的计算以此类推。
通常先利用行列式的性质对行列式进行转化, 0元素较多时方便计算.(r 是row ,即行。
C 是 COIumn ,即歹U )例题:课本P5、课本P9、课本P14、作业P1第4题、作业P2第3小题(3) n 阶上三角行列式(0元素全在左下角)与n 阶下三角行列式(0元素全在右上角):D = a 11a 22, a nn (主对角线上兀素的乘积) 例题:课本P10、作业P3第4小题有的题可以通过“从第二行起,将各行的元素对应加到第一行”转化成上三角行列式 例题:课本P11(4)范德蒙行列式:详见课本P12-13a 11a 12a 13 a 21 a 22 a23 a 31 a 32 a33 计算三阶行列式 计算二阶行列式a 11 a 12a 21 a 22①方法(首选):a 11 a 12a 21 a 22②方法: a 11 a 12=a 11 A 11—a“a 22— a 12a 21(即,左上角×右下角一右上角×左下角)例题:课本 P14(2) a 11 a 12 a13a 21a 22a 23 a 31 a 32a 33(1) a 21a22 + a 12A 12 = an a 22— a 12a 21(5)有的题可以通过“从第二行起,将各行的元素对应加到第一行”提取出“公因式”,得到元素全为1的一行,方便化简行列式。
例题:作业P2第1小题、作业P2第2小题06、矩阵中未写出的兀素课本P48下面有注明,矩阵中未写出的元素都为007、几类特殊的方阵详见课本P30-32(1)上 (下)三角矩阵:类似上(下)三角行列式(2)对角矩阵:除了主对角线上的元素外,其他元素都为0(3)数量矩阵:主对角线上的元素都相同(4)零矩阵:所有元素都为0,记作O(5)单位矩阵:主对角线上的元素都为1,其他元素全为0,记作E或En (其行列式的值为1)08、矩阵的运算规则(1) 矩阵的加法(同型的矩阵才能相加减,同型,即矩阵A的行数与矩阵B的行数相同;矩阵A的列数与矩阵B的列数也相同):①课本P32 “A+ B”、“A-B”②加法交换律:A+ B= B+ A③加法结合律:A+( B+ C) = ( A+ B) + C(2) 矩阵的乘法(基本规则详见课本P34阴影):①数与矩阵的乘法:I. 课本P33 “kA”II. kA = k n A (因为k A只等于用数k乘以矩阵A的一行或一列后得到的矩阵的行列式)②同阶矩阵相乘(高中理科数学选修矩阵基础):/ 、,'b11b12X a11b11 + a12b21a11b12 +a12b22X=Ia21 a 22 Jφ21b22 J Ia21b11 +a22b21a21b12 +a22b22 J描述:令左边的矩阵为①'令右边的矩阵为②,令计算得到的矩阵为P B],则I A B C A 描述:令左边的矩阵为①,令右边的矩阵为②,令计算得到的矩阵为DEF ,则 I GH L即A = a ιι × b 11 + a i2 × b 21 + a 13 × b 31B 、C 、DE 、F 、GHl 的值的求法与 A 类似③数乘结合律: k (IA ) = ( kl ) A ,(kA ) B = A (kB )= k (AB ) ④数乘分配律:(k + l ) A = kA + IA ,k (A + B )= kA + kB⑤乘法结合律:(AB ) C = A (BC ) ⑥ 乘法分配律: ⑦需注意的:A (B +C )= AB + AC ,(A + B ) C = AC + BC I. 课本P34例题两个不等于零的矩阵的乘积可以是零矩阵 II. 课本P34例题数乘的消去律、交换律不成立III. 一般来讲,(AB ) k ≠ A k B k ,因为矩阵乘法不满足交换律IV. 课本P40习题第2题:(A + B ) 2不一定等于A 2+ 2AB + B 2,(A + B ) 2不一定等于A 2 + 2AB + B 2,(A + B ) (A -B )不一定等于A 2- B 2 .当AB = BA 时,以上三个等式均成立 (3) 矩阵的转置运算规律:① (A T )T = A ② (A ± B)T = A T ± B T ③ (kA)τ = kA τ ④ (AB)T = B T A T ⑤ (ABC )T = C T B T A TA 的值为:①中第1行的每个元素分别乘以②中第 即 A = a 11 × b 11 + a 12 × b 21 1列的每个元素,并将它们相加B 的值为:①中第1行的每个元素分别乘以②中第 2列的每个元素,并将它们相加即 B = a 11 × b 12 + a 12 × b 22C 的值为:①中第2行的每个元素分别乘以②中第 1列的每个元素,并将它们相加即 C = a 21 × b 11 + a 22 × b 21D 的值为:①中第2行的每个元素分别乘以②中第 2列的每个元素,并将它们相加即 D = a 21 × b 12 + 322 × b 22 .a i 2 a 22 a 32 a n 3'a ?3 × a 33 J'b 11 b 2101 b 12 b 1^ 'z ⅛11b11 + a i2b 21+a i3b 3i a i1b 12 亠 a i2b 22 亠a i3b 32a 2lb l2:〉a 22b 22 n a 2≡b 32a 31b 12 - a 32b 22". a 33b 32a i1b 13+ a i2b 23 + a i3b 33'a 21b 13 + a 22b 23+a 23b 33 a 3l b l3+a 32b 23 + a 33b 33 Jb 22 b 23 = a 2l b l1 +a 22b 21 +a 23b 31b 32 b 3∖ ©3l b l1 +a 32b 21 +a 33b 31A 的值为:①中第1行的每个元素分别乘以②中第1列的每个元素,并将它们相加,a i 1 a 21⑥(ABCD)T= D T C T B T A T(4)同阶方阵相乘所得的方阵的行列式等于两个方阵的行列式的乘积:(详见课本P46)AB = A B(5)例题:课本P35、课本P36-37、课本P40第4大题、课本P40第5大题、课本P51第1 大题、课本P51第4大题、课本P60第4大题、作业P5全部、作业P5第3大题、作业P5第4大题09、矩阵多项式详见课本P 3610、对称矩阵(1)对称矩阵、实对称矩阵、反对称矩阵的概念(详见课本P37)(2)①同阶对称(反对称)矩阵的和、差仍是对称(反对称)矩阵②数与对称(反对称)矩阵的乘积仍是对称(反对称)矩阵③对称(反对称)矩阵的乘积不一定是对称(反对称)矩阵11、矩阵的分块线代老师说这部分的内容做了解即可。