脉冲序列的特点和应用

合集下载

连续脉冲与连续的脉冲序列

连续脉冲与连续的脉冲序列

连续脉冲与连续的脉冲序列全文共四篇示例,供读者参考第一篇示例:连续脉冲和连续的脉冲序列是信号处理领域中常见的概念,它们在数字通信、雷达系统、医学影像和其他领域中起着重要的作用。

在本文中,我们将介绍连续脉冲和连续的脉冲序列的定义、特点和应用。

一、连续脉冲的定义与特点连续脉冲是指在连续时间内产生的一系列脉冲信号。

它们通过在时间轴上连续分布的脉冲信号表示。

连续脉冲的特点包括:1. 连续性:连续脉冲在时间轴上是连续分布的,没有间隔。

2. 时域表达:通过连续时间函数表示。

3. 带宽:连续脉冲的频谱是有限的,但是其带宽较宽,因此需要对信号进行处理,以适配接收器的带宽。

4. 能量:连续脉冲的能量通常比离散脉冲大,因此可以提高信号的检测性能。

连续的脉冲序列是指在连续时间内按照一定规律产生的一系列脉冲信号。

它们是由一系列连续脉冲构成的,具有一定的重复性。

连续的脉冲序列的特点包括:1. 周期性:连续脉冲序列具有一定的重复周期,可以用周期函数表示。

2. 时域表达:通过连续时间函数表示。

3. 相位:连续脉冲序列一般具有一定的相位信息,可以通过调节相位来改变信号的特性。

4. 码型:连续脉冲序列可以根据不同的调制方式和编码规则产生不同的码型,用于传输信息。

三、连续脉冲与连续的脉冲序列的应用1. 数字通信:在数字通信系统中,连续脉冲和连续的脉冲序列被广泛应用于调制和解调信号,实现信息的传输和接收。

2. 雷达系统:在雷达系统中,连续脉冲和连续的脉冲序列被用于目标探测和跟踪,提高雷达系统的探测性能和精度。

3. 医学影像:在医学影像领域,连续脉冲和连续的脉冲序列被用于采集和处理医学图像,实现对人体组织结构和病变的检测和诊断。

4. 毫米波雷达:在毫米波雷达系统中,连续的脉冲序列被用于高分辨率成像和隐身目标探测,提高系统的探测性能和抗干扰能力。

连续脉冲和连续的脉冲序列作为信号处理领域重要的概念,在不同领域中发挥着重要作用,为相关领域的科研和应用提供了重要支撑。

核磁共振实验中三种基本脉冲序列的特点和应用

核磁共振实验中三种基本脉冲序列的特点和应用
有180°回波产生脉冲的IR序列的射频脉冲时序
包含SE序列的IR序列的射频脉冲时序
Thank you!
反转恢复序列(IR)
Inversion-Recovery
特点: 射频激励脉冲 信号测量脉冲
180°脉冲 90°脉冲
反转恢复法测纵向弛豫时间T1
Mz(t)=Mo[1—2e-t/T1]
自旋回波序列(SE)
Spin-Echo
特点: 一个周期内有90°脉冲和 180°脉冲 其中180°脉冲为相位反转脉冲 (回波形成脉冲)
θ=180° 180°脉冲 θ=90° 90°脉冲 τ:射频脉宽 硬脉冲 τ较小 软脉冲 τ较大
驰豫过程 非平衡态 →平衡态
纵向弛豫:磁化强度的纵向分量从某个 Mz向它的最大值Mo增长的过程。 横向弛豫:磁化强度的横向分量从某个 Mxy向它的最小值零衰减的过程。
什么是脉冲序列?
产生并测量MR信号所需要的一组周期 性重复的射频脉冲的组合方式和定时 关系。
回波信号的产生
t 0时
t 2 时
M XY M 0
M XY M 0e2 /T 2
t 时 180°脉冲使自旋绕x轴旋转180°
自旋回波法测横向弛豫时间T2
M XY (M 0e
2 /T2
)e
( t 2 )/T2
缺点: 花费时间长,每测一个回波要等Mz恢复到Mo, 每个周期要花5个T1 分子自扩散引起信号损失,使回波峰值达不到 应有高度,使得T2 偏小
核磁共振实验中三种基本 脉冲序列的特点和应用
Nuclear Magnetic Resonance Magnetic Resonance Imaging
07300300061 武帅 B0

磁共振简易原理、脉冲序列及临床应用

磁共振简易原理、脉冲序列及临床应用
2019/6/10
IR序列应用: ①主要用于产生T1WI和PDWI; ②形成重T1WI,成像中完全除去T2作用; ③除重T1WI外,主要用于脂肪抑制和水抑制。
201I9R/6-/1T01WI, 冠状面
SE-T1WI,横断
IR-T1WI,横断面
1.短TI反转恢复序列
脂肪组织T1非常短,IR序列采用短的TI值 (≤300ms)抑制脂肪信号,该序列称短TI反转恢 复序列(short TI inversion recovery,STIR);
B
长TR 时间ms
PDWI 组织信号高低取决 于质子含量高低; 脂肪及含水的组织 均呈较高信号;
2019/6/10
SE序列 临床应用
腕关节高分辨
2019/6/10
SE-T1WI
左枕叶脑脓肿
2019/6/10
SE-T1WI
SE-T1WI增强扫描
(二)快速自旋回波序列
快速自旋回波(fast spin-echo,FSE)序列:在一个TR 周期内先发射一个90°RF脉冲,然后相继发射多个 180°RF脉冲,形成多个自旋回波;
LAD RCA
RCA LAD
2019/6/10
Courtesy oRf iNgohrtthcworeostnearnryUanritveerysity Ho
在读出梯度方向施加一对强度相同、方向相反的梯度磁场,使 离散的相位重聚而产生回波,该回波被称梯度回波。
2019/6/10
常规GRE序列的结构
• (1)射频脉冲激发角度小于90 ° • (2)回波的产生依靠读出梯度场(即频率编
码梯度场)的切换
2019/6/10
GRE序列的基本特点
(1)采用小角度激发,加快成像速度; (2)采用梯度场切换采集回波信号,进一步加快采集速度; (3)反映的是T2*弛豫信息而非T2弛豫信息; (4)GRE序列的固有信噪比较低; (5)GRE序列对磁场的不均匀性敏感; (6)GRE序列中血流常呈高信号。

脉冲序列及其应用

脉冲序列及其应用

第一节 脉冲序列的分类及参数
一、 脉冲序列的分类 二、 脉冲序列的参数
常用脉冲序列及其应用
*脉冲序列:是指具有一定宽度、一定幅度的射
频脉冲与梯度脉冲组成的脉冲序列。MR检查中 反复施加射频脉冲RF(radio frequence pulse)的 顺序。它控制着系统施加RF脉冲、梯度和数据采 集的方式,并由此决定图像的加权、图像质量以 及对病变显示的敏感性。
T1
长TR
TR
T2 长TE
TE
长TR: 2000 ~ 4000ms 短TE: 10 ~ 20ms
质子加权像
SSE
=f(H)g(V)(1-e-—TT—1R—
)e
-TE T2
TR
TE
常用脉冲序列及其应用
常规SE脉冲序列的特点:
优点:
——— 临床上用途最广泛的标准成像序列
☆ T1加权具有较高的信噪比,显示解剖结构 ☆ T1加权是增强检查的常规序列,因为顺磁性对 比剂具有短 T1增强效应 ☆ T2加权易于显示水肿和液体,成高信号。 ☆ PD加权显示血管结构。
又恢Y复到接近90°RF脉冲后的强度,这时产Y 生自旋回波信号。 180°脉冲
Z
Z
90°RF激励脉冲的作用:质子吸收能量,纵向磁化减少
氢质子开始同相进动产生横X向磁化
X
Y
Y
90°RF脉冲
TR
单次180°脉冲
单次自旋回波
TE
90°RF脉冲
常用脉冲序列及其应用
SE序列组织的信号强度(S)可用 Bloch方程表示:
向,其偏离的角度称为翻转角。翻转角的大小是由RF强度
(能量)所决定的。
B0 Z B1产生翻转力
Z 900脉冲

se脉冲序列的特点

se脉冲序列的特点

SE脉冲序列的特点
自旋回波(SE)脉冲序列采用“90°-180°”脉冲组合形式构成,具有以下特点:
1.在SE序列中,如果选用短TR(重复时间)、短TE(回波时间),则获得
的是T1WI(T1加权图像);选用长TR、长TE时,获取的是T2WI(T2加权图像);选用长TR、短TE时,获取的是PDWI(质子密度加权图像)。

2.SE序列的信噪比较高,组织间对比度好,对磁场的均匀性不敏感,用途广
泛。

3.SE序列的一个显著缺点是扫描时间相对较长。

另外,在颅脑和四肢关节等部位的扫描中,SE序列常被采用。

然而,由于SE序列在一次90度脉冲激发后,只采集一个回波信号,其扫描时间太长,目前已经很少使用。

如需更多关于SE脉冲序列的介绍,建议咨询专业医生或相关专家学者。

脉冲序列

脉冲序列

MRI常用扫描序列时间:2009-08-16 来源:影像园作者:med999 【复制分享】【讨论-纠错】【举报】扫描序列是指射频脉冲、梯度场和信号采集时刻等相关参数的设置及其在时序上的排列。

MR成像主要依赖于四个因素:即质子密度、T1、T2、流空效应,应用不同的磁共振扫描序列可以得到反映这些因素不同侧重点的图像。

目前最基本、最常用的脉冲序列为SE序列,其它还包括GRE序列、IR序列等。

1)自旋回波(spin echo,SE)首先发射一个90。

的射频脉冲后,间隔数至数十毫秒,发射1个180。

的射频脉冲,再过数十毫秒后,测量回波信号。

是MR成像的经典序列,特点是在90。

脉冲激发后,利用180。

复相脉冲,以剔除主磁场不均匀造成的横向磁化矢量衰减。

SE序列的加权成像有三种:A、质子密度N(H)加权像:参数选择:长TR(1500ms~2500ms)短TE(15ms~30ms)。

采集的回波信号幅度与主要质子密度有关,因而这种图像称为质子密度加权像。

B、T2加权像:参数选择:长TR(1500ms~2500ms)长TE(90ms~120ms)。

采集的回波信号幅度主要反映各组织的T2弛豫差别,因而这种图像称为T2加权像。

C、T1加权像:参数选择:短TR(500ms左右)短TE(15ms~30ms)。

采集的回波信号幅度主要反映各组织的T1驰豫差别,因而这种图像称为T1加权像。

特点:1、图像信噪比高,组织对比良好;2、序列结构简单,信号变化容易解释;3、对磁场不均匀敏感性低,没有明显磁化率伪影;4、采集时间长,容易产生运动伪影,难以进行动态增强。

2)快速自旋回波序列在一次90。

RF激发后利用多个(2个以上)180。

复相脉冲产生多个自旋回波,每个回波的相位编码不同,填充K空间的不同位置。

不同厂家的MRI仪上有不同的名称,安科公司和GE公司称之为FSE(fast spin echo,FSE),西门子公司和飞利浦公司称之为TSE(turbo spin echo)。

磁共振lava脉冲序列在腹部脏器成像中的应用

磁共振lava脉冲序列在腹部脏器成像中的应用

磁共振lava脉冲序列在腹部脏器成像中的应用磁共振lava脉冲序列1. 简介LAVA (Low-Angle VARiable-density Acquisition) 是一种能够提供低剖面角的磁共振变密度序列。

它的特点之一是能够减少磁共振工作站对噪声的敏感度,而且可以胜任复杂成像,如拉伸,道重建或者曲线配准等。

在腹部脏器成像中,LAVA脉冲序列通常被认为是有效的应用,由其具备减少波叠加和抑制零点迒移的能力。

2. 特点(1)脉冲序列来源于spin-echo TSE(turbo spin-echo TSE),它可用于增加结构矩阵尺寸,从而提高耐受性抗噪声。

(2)它能够动态的调整扫描的长度,从而在某一最佳角度获得更多的分辨率。

(3)它可以实现更快的扫描速度,提高清晰度,并减少低温校正这类情况出现。

(4)由于在LAVA脉冲序列中引入了轻微的脉冲之后,图像中的“零点迒移”衰减可以大大减少,这样就能够改善图像质量。

3. 在腹部脏器成像中的应用(1)LAVA脉冲序列可以有效改善图像质量,特别是用于检查肝脏和胆囊的外科应用。

(2)由于它的容量高、获得的结构矩阵的尺寸大和抗噪声的能力强,LAVA脉冲序列还可以用于以下临床任务:影像检测,如胃、十二指肠段落的描述,直肠的肿瘤检测以及肠胃道的障碍物的检测表明,LAVA脉冲序列可以有效地检测出在不同深度处的特征结构。

(3)在腹部脏器成像方面,LAVA脉冲序列显示出强大的容量和可扩展性,从而可以提高对每一个成像序列的高灵敏度和准确性,以及一般图像数据的容量,特别是涉及肝脏的图像,它的复杂性明显比较大。

4. 结论总体而言,LAVA脉冲序列在腹部脏器成像中有很多应用,它可以显著提高扫描速度,使用该序列可以有效解决“零点迒移”等问题,同时可以减少噪声对扫描结果的影响,同时还可以改善图像质量。

因此,LAVA脉冲序列是一种有效的腹部脏器成像方法。

磁共振基本序列及应用

磁共振基本序列及应用

磁共振基本序列及应用磁共振(Magnetic Resonance Imaging,MRI)是一种利用磁共振现象对人体进行成像的无创检查技术。

它在临床诊断中具有重要的应用价值,可以用于检测多种疾病,包括肿瘤、脑血管疾病、骨科疾病等。

磁共振成像技术的基本原理是利用人体内的原子核(大多是氢核)在强磁场和无线电波作用下的共振现象,生成图像。

磁共振成像的基本序列主要有横断面(T1加权和T2加权)、矢状面和冠状面。

不同的序列在成像原理、参数设置和图像显示方面有所区别,适用于不同部位和病变的检查。

T1加权序列是磁共振成像的基本序列之一,它通过特定的参数设置使得脂肪组织呈现高信号(白色),而水和其他组织呈现低信号(黑色)。

常用的脉冲序列有快速梯度回波(Fast Gradient Echo,FGE)和推迟梯度回波(Turbo Spin Echo,TSE)等。

T1加权序列适用于显示解剖结构,如脑灰质、白质和脑脊液。

T2加权序列是磁共振成像中另一个重要的基本序列,与T1加权序列相比,它在信号强度上相反。

T2加权成像使脑脊液和脑灰质呈现高信号,而脂肪和骨骼呈现低信号。

常用的脉冲序列有常规普通脉冲(T2WI)和涡旋涡旋回波(Fast Spin Echo,FSE)等。

T2加权序列适用于显示病变和水肿等病理改变。

此外,还有一些特殊的序列,如增强扫描序列和弥散加权序列。

增强扫描序列通过给患者注射对比剂,在血管和病变中增加信号强度,用于观察血管供应情况和病变的强化情况。

弥散加权序列通过测量水分子在磁场中的扩散情况,对组织的微观结构和组织改变进行观察。

磁共振成像技术在临床中有广泛应用。

首先,在神经科学领域,磁共振成像可以用于诊断脑梗死、脑出血、脑肿瘤等疾病,并能提供脑部结构和功能的信息。

其次,在骨科领域,磁共振成像可以用于检查关节、骨骼和软组织等,如关节退行性变、软组织肿瘤等。

再次,在心脏领域,磁共振成像可以用于观察心脏构造和心功能,并且对心肌炎、心肌梗死等疾病的检查有高度准确性。

MR脉冲序列基础知识及临床应用(讲座版)1

MR脉冲序列基础知识及临床应用(讲座版)1

VASCULAR
FSE SSFSE FSE-IR SSFSE-IR
FSE-XL FRFSE-XL T1 FLAIR T2 FLAIR
ECHO PLANAR
TOF-GRE TOF-SPGR Phase Contrast Fast TOF GRE
FastCard-GRE FastCard SPGR Fast 2D Phase Contrast Fast TOF SPGR
FRFSE-XL
LAVA
增加空间和时间分辨率 应用均匀的压脂 提高病变检出率
SE家族
SE、FSE、FSE-XL、SSFSE、FSEIR、STIR、T1FLAIR、T2FLAIR
自旋回波序列 (Echo Spin, SE)
自旋回波(SE)
1800
回波
900
TE TR
TR:重复时间 TE:回波时间
T1Flair
FSE-IR
T2Flair
翻转恢复自旋回波序列
FSE-IR
反转恢复快速自旋回波(FSE-IR)
TI
Acq. Time
TI
Inversion Pulse 180o
Inversion Pulse
180o 180o 180o 180o 180o 180o 180o 180o
180o
90o
Half-Fourier acquired single shot turbo spin echo,HASTE
SSFSE
………… • 单次RF内完成一层扫描所有数据的采集——每幅图像
成像不到1秒,图像较常规图像模糊。 • 0.5NEX——相位编码数为正常的一半,利用K
空间的共轭对称性推算出另一半,但SNR会降低。

磁共振tse序列

磁共振tse序列

磁共振tse序列
磁共振TSE序列(Turbo Spin Echo Sequence)是一种常用的磁共振成像序列,用于获取高分辨率的脑、颈椎、脊柱、肩关节等部位的图像。

TSE序列是一种脉冲序列,其特点是通过多次重复的自旋回波脉冲来增强信号,从而获得高信噪比的图像。

TSE序列相对于传统的普通自旋回波脉冲序列,在同样的扫描时间内可以获得更高的空间分辨率。

TSE序列的特点还包括以下几方面:
1. TSE序列采用了多个自旋回波脉冲,使得信号的积累更多,提高了信噪比。

2. TSE序列可以通过调整序列参数实现不同的对比度,以适应不同的临床需求。

3. TSE序列具有较高的抗伪影能力,可以有效减少伪影的产生。

4. TSE序列采用了快速自旋回波技术,可以在较短的扫描时间内获得更多的图像信息。

总之,磁共振TSE序列是一种常用的磁共振成像序列,可以获得高分辨率的图像,并且具有较高的信噪比和抗伪影能力。

它在临床上广泛应用于各种脑、颈椎、
脊柱等部位的疾病诊断和评估。

常用脉冲序列及其应用PPT课件

常用脉冲序列及其应用PPT课件
诊断准确性
通过使用不同的脉冲序列参数,医生可以获得不同分辨率、对比度和组织特异性的图像, 从而提高诊断准确性。
临床应用
脉冲序列在临床中广泛应用于脑部、心脏、肝脏、骨骼等部位的成像,帮助医生准确判断 病变位置、大小和性质。
物质检测
01 02
物质检测
脉冲序列在物质检测中也有广泛应用,如光谱分析和化学分析。通过发 送脉冲信号激发物质中的原子或分子,接收它们返回的信号,可以了解 物质的成分和结构。
面临的挑战与展望
技术瓶颈与挑战
目前,脉冲序列技术的发展仍面临一些技术瓶颈和挑战,如信号噪声比、成像 深度等问题的制约。
未来展望
随着科研人员的不断努力和技术的发展,相信未来脉冲序列技术将会取得更大 的突破,为医学影像领域带来更多的创新和变革。
05 结论
脉冲序列的重要地位
01
脉冲序列是MRI技术的核心组成 部分,对于获取高质量的MRI图 像起着至关重要的作用。
加强国际合作与交流,共同推动脉冲 序列技术的创新和发展,为全球医学 影像技术的发展做出贡献。
感谢您的观看
THANKS
物理实验
在物理学实验中,脉冲序列用于研究物质的基本性质,如 电子、原子和分子的行为。
生物医学研究
在生物医学研究中,脉冲序列用于研究生物组织的生理和 生化过程,如神经传导、心脏功能和药物作用机制等。
04 脉冲序列的发展趋势与展 望
技术创新与优化
持续研发新型脉冲序列
随着技术的不断进步,科研人员正致 力于开发出更加高效、快速的脉冲序 列,以满足临床和科研的需求。
科学研究
脉冲序列在科学研究中也发挥了 重要作用,可用于研究物质的微 观结构和宏观性质,如化学、物
理、生物学等领域。

脉冲序列原理及临床应用(WQ)

脉冲序列原理及临床应用(WQ)

通过检测回波信号的强度和相 位信息,可以重建出图像。
03
临床应用
脉冲序列在医学影像诊断中的应用
核磁共振成像
脉冲序列用于产生核磁共振信号, 通过信号处理和重建算法形成高 质量的医学影像,用于诊断肿瘤、
血管病变等。
超声成像
利用脉冲回声技术,通过发射超 声波并接收回声信号,生成人体 内部结构的二维或三维图像,用 于观察器官形态、血流状况等。
环境监测
通过分析脉冲信号的传播特性,监 测土壤湿度、地下水分布等环境参 数。
04
脉冲序列的优缺点
优点
成像速度快
脉冲序列可以显著提高 成像速度,从而减少成 像时间,减轻患者的不
适感。
空间分辨率高
通过精确控制脉冲的参 数,脉冲序列可以实现 高分辨率的图像重建。
对比度分辨率高
通过优化脉冲序列,可 以在图像中获得更好的 对比度,从而提高病变
的检出率。
灵活性高
脉冲序列可以根据不同 的临床需求进行调整, 以适应不同的检查场景。
缺点
对设备要求高
脉冲序列需要高性能的成像设 备才能实现,这增加了设备成
本和维护成本。
对病人不友好
由于脉冲序列的快速成像特点 ,可能会导致病人感到不适或 产生幽闭恐惧症。
技术难度大
脉冲序列需要精确控制脉冲参 数和采集过程,对操作技术要 求较高。
反转恢复序列
先施加一个180度反转脉 冲,使自旋磁化矢量反转, 再施加90度脉冲激发,然 后进行读出。
梯度回波序列
利用快速变化的梯度磁场 产生回波信号,常用于显 示血流。
脉冲序列的工作原理
核自旋的磁化矢量在磁场中受 到射频脉冲的激励,从低能态 跃迁到高能态。
在射频脉冲作用后,磁化矢量 发生进动,产生回波信号。

MR常用脉冲序列及其临床应用

MR常用脉冲序列及其临床应用

FIR T1WI (T1 FLAIR)
液体抑制反转恢复
用于脂肪抑制
脂肪组织T1值为200-250ms,宏观纵向磁化矢 量从反向最大到0需要时间为其T1的70%
STIR序列的TI=脂肪T1 X 70%=140-175ms TR>2000ms
临床应用
偏中心部位 形态不规则部位
COR T2 FS
50%
长TR(>2000ms)
长TE(>50ms)Mxy(横向磁化矢量)
100%
50%
TR(ms) TE(ms)
选择合适长的TE获得最好的T2对比
Mxy
100%
合适长的TE
一般TE选择两种组织T2值的平均 值附近可获得最好的T2对比
T2对比
TE(ms)
100%
Mz(纵向磁化矢量)
50%
短TR(200-600ms)
三维容积内插快速扰相GRE T1WI序列
西门子:容积内插体部检查(VIBE) GE:肝脏容积加速采集(LAVA) 飞利浦:T1高分辨力各向同性容积激发(THRIVE)
优点:
① 在层面较薄时可以保持较高的信噪比 ② 没有层间距,有利于小病灶的显示 ③ 可同时兼顾脏器实质成像和三维血管成像的需要
缺点:
长回波链FSE T2WI
优点
扫描速度快,可屏气扫描
缺点
ETL较长,图像模糊更明显 屏气不好者仍有伪影
主要用途
体部屏气T2WI 3D水成像
FSE的衍生序列
快速恢复FSE(FRFSE) 单次激发FSE序列(SS- FSE ) 半傅里叶采集单次激发FSE序列( HASTE )
FSE T1WI
优点
采集时间缩短,甚至可以进行屏气扫描

磁共振检查序列及磁共振序列分类、特点和临床应用

磁共振检查序列及磁共振序列分类、特点和临床应用

磁共振检查序列及序列分类、特点和临床应用磁共振序列序列具有一定带宽、一定幅度的射频脉冲与梯度脉冲有机组合。

射频脉冲与梯度脉冲不同的组合方式构成不同的序列,不同序列获得的图像有各自特点。

磁共振序列分类1、自由感应衰减序列:脉冲激发后直接采集自由感应衰减信号。

2、自旋回波序列。

用射频脉冲产生回波的序列。

3、梯度回波序列。

用读出梯度切换产生回波的序列。

4、杂合序列。

同时有自旋回波和梯度回波的序列。

1、SE序列特点最常用T1WI序列,组织对比良好,SNR较高,伪影少,扫描时间为2-5分钟。

T2WI和PDWI加权像扫描时间太长几乎完全被快速SE序列取代。

临床应用:常用于颅脑、脊柱及关节软组织。

2、快速SE序列西门子:TSE 。

GE:FSE。

飞利浦:TSE。

特点快速成像,FSE序列一次90°射频脉冲激发后采集多个自旋回波,且对磁场不均匀性不敏感。

组织对比度降低,图像模糊,脂肪组织信号强度提高,组织T2值有所延长,SAR值增加。

3、单次激发FSE序列西门子:SS-TSEGE:SS-FSE飞利浦:SSh-TSE特点快速,单层图像采集只需1秒以内,一次90°脉冲激发后利用连续的聚焦脉冲采集填充K空间所需的全部回波信号。

软组织T2对比差,T2加权太重,除水外其他组织信号几乎完全衰减。

临床应用:胆管成像MRCP、MRU,MRM。

4、半傅里叶采集SS-FSE西门子:HASTE。

GE:SS-FSE。

飞利浦:SSh-TSE+half scan。

特点快速,有利于软组织成像,几乎无运动伪影和磁敏感伪影,T2WI 对比不及SE、FES。

临床应用:颅脑、脊柱超快T2成像,MRCP、MRU,心脏成像,腹部屏气T2WI。

5、快速恢复(翻转)自旋回波序列 FRFSE西门子:TSE-Restore。

GE:FRFSE。

飞利浦:TSE DRIVE 。

DE:驱动平衡。

特点:更短TR、增加效率、一般只用于T2WI或PDWI。

临床应用:采用FRFSE序列,减少TR可以节省时间,提高工作效率,改善图像质量。

脉冲序列选择及图像特点(二)

脉冲序列选择及图像特点(二)

脉冲序列选择及图像特点(二)3.脂肪抑制序列(STIR或SPIR) 目地是消除或抑制SE序列中脂肪的高信号,使其呈黑色(低信号)。

这有利于暴露病变及鉴别诊断(如识别错构瘤内脂肪成分、出血等)。

通常在普通T2 WI扫描后再选择T。

WI抑脂扫描,也可在注射 Gd-DTPA前后进行TiWI抑脂扫描。

4.磁共振水成像用于脑室造影( ventrigram)、尿路造影(MRU)、脊髓造影( MRM)、内耳水成像等。

由脂肪抑制序列和重T。

加权序列扫描完成,经最大强度投影法重建获得肾盂输尿管膀胱的三维立体图像。

近年开发出单层扫描法磁共振水成像技术(SSFSE或HASTE),水成像在数秒内即可完成。

磁共振水成像无需注射或口服造影剂,利用生理状态的脑脊液和尿液等体液成像(高信号),而实质器官和脂肪呈低信号。

正常生理状态的输尿管因含尿液量少,常不能显示或不连续显示。

但尿路梗阻者因输尿管积水扩张,显示效果极佳,尤其适用于不宜碘剂造影检查或造影失败的病人。

5.Ti加权快速梯度回波序列(T.TFE) 扫描速度快,可进行屏气扫描以消除呼吸运动伪影。

可在Gd-DTPA注射前后各扫描一次。

团注造影剂后动态扫描可显示CMD及评价肾功能状态。

与SE序列不同,T.TFE序列中脂肪不再呈高信号,而动静脉及心腔内血流呈高信号,这对于辨认血管结构和评价有无瘤栓形成及其程度尤为有利。

6.快速液体衰减反转恢复序列(Turbo FLAIR) 能够抑制游离水(如脑脊液)的信号,使得病变更容易暴露。

主要应用于中枢神经系统,发现病变或鉴别液体的性质。

7.磁共振血管造影( MRA) 既可通过静脉注射Gd-DTPA后进行血管造影(CE MRA)显示大范围的动静脉结构,也可不注射Gd-DTPA,通过相位对比(PC angiography)或流入血管造影(inflow angiography,TOF)方法显示动静脉结构。

分析图像时应注意,MIP重建影像显示管腔的整体轮廓和外形较好,而原始扫描图像显示病变的内部细微结构更真确,二者应配合使用。

磁共振成像序列及参数选择

磁共振成像序列及参数选择

《医学影像检查技术》第八章 磁共振检查技术
二维扰相GRE腹部屏气T1WI增强扫描
《医学影像检查技术》第八章 磁共振检查技术
平衡式SSFP( balance SSFP )序列 (真实稳态自由进动)
原理:在层面选择、相位编码、读出方向 上均施加一个与相应的空间编码梯度场大 小相同,方向相反的梯度场,使SSFPRefocused达到真正的稳态。
《医学影像检查技术》第八章 磁共振检查技术
《医学影像检查技术》第八章 磁共振检查技术
反转恢复序列(IR)
特点:T1对比最佳,明显高于SE T1WI; 一次反转仅采集一个回波,且TR很长, 扫描时间较长。 可用作STIR和FLAIR,
《医学影像检查技术》第八章 磁共振检查技术
STIR脉冲序列
序列特点:是选择特殊的TI值,恰好使脂 肪质子的纵向磁化恢复到0点时施加90°脉 冲,因此在90°脉冲后脂肪质子无横向磁 化而无信号产生。主要用于脂肪抑制。
180°
90°
回波
TE
TR
180° 90°
回波
《医学影像检查技术》第八章 磁共振检查技术
翻转角:是指在射频脉冲的作用下,组织的宏 观磁化矢量偏离平衡状态的角度。 射频脉冲能量(脉冲的强度和持续时间)越大偏转 角越大。 MRI常用的偏转角为90”、180”和梯度回波序列 的小角度。 GRE序列采用小于20”翻转角,可以得到 T2* 加权像,大于80“可以得到T1加权像。
《医学影像检查技术》第八章 磁共振检查技术
常规SE脉冲序列应用价值
临床用途最广泛的标准成像序列,适用于绝 大多数MRI检查。
T1WI具有较高的信噪比(signal to noise ratio SNR),适于显示解剖结构,也是增 强检查的常规序列。

核磁共振实验中三种基本脉冲序列的特点和应用07300300061武帅

核磁共振实验中三种基本脉冲序列的特点和应用07300300061武帅

核磁共振实验中三种基本脉冲序列的特点和应用0730******* 武帅材料物理摘要核磁共振实验中,不同射频脉冲会对样品产生不同的激励,这将导致得到的核磁共振信号的差异。

因此,射频脉冲序列的恰当选择对实验的结果有着很重要的影响。

在本实验中,我们主要使用了三种基本的核磁共振脉冲序列来激励大豆油样品,对其纵向和横向弛豫时间进行测量。

本文主要就这三种基本脉冲序列的特点、应用以及演变进行讨论和总结,以达到正确选择脉冲序列来合理测量样品性质的目的。

关键词核磁共振射频脉冲引言核磁共振原理:对置于外磁场中的自旋核系统,沿着垂直于外场的方向施加一个频率与拉莫尔频率相同的射频电磁场B1,在该作用下,磁化矢量以B1为轴做章动,即圆周运动。

施加的射频脉冲使得磁化矢量Mo偏离Z方向一个角度θ,θ=βB1τ,θ=90°的是90°射频脉冲,同样若θ=180°则为180°射频脉冲。

图1 核磁共振原理图1施加的射频脉冲使得宏观磁化矢量既以外磁场为轴进动,同时也要在该射频场的作用下章动,这使得宏观磁化矢量M的运动为一条球面螺旋线。

这种使得宏观磁化矢量发生偏转的现象即为核磁共振现象。

实验中我们使用的是NMI20Analyst 台式核磁共振成像仪,采用脉冲傅里叶变换法(FT-NMR),这种方法中的射频脉冲有一定的时间宽度,射频有一定带宽,相当于多个单频连续波核磁共振波谱仪在同时进行激励,因此在较大的范围内就可以观察到核磁共振现象(NMR)。

弛豫过程:系统从激励状态恢复到原始状态的过程就叫弛豫过程。

纵向弛豫时间T1,指的是自旋核释放激励过程中吸收的射频能量返回到基态的过程所用的时间,其快慢主要取决于自旋的原子核与周围分子之间的相互作用情况。

横向弛豫时间T2,指的是激励过程使质子进动相位的一致性逐渐散相(即失去相位一致性)的过程,其散相的有效程度与质子所处的周围分子结构的均匀性有关。

结构越均匀,散相效果越差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号测量脉冲 作用:对纵向磁化强度进行测量 射频激励脉冲 作用:建立横向磁化强度
饱和恢复序列SR
射频脉冲序列
反转恢复序列IR
自旋回波序列SE
饱和恢复序列(SR)
Saturation-Recovery
特点:射频激励脉冲 信号测量脉冲
90°脉冲 90°脉冲
饱和恢复法测纵向弛豫时间T1
Mz(t)=Mo [1- e-TR/T1]
回波信号的产生
t 0时 t 时
t 2 时
M
XY
M
0
180°脉冲使自旋绕x轴旋转180°
M
XY
M 0e
2 / T 2
自旋回波法测横向弛豫时间T2
M
XY
( M 0e
2 / T2
)e
( t 2 ) / T2

缺点: 花费时间长,每测一个回波要等Mz恢复到Mo, 每个周期要花5个T1 分子自扩散引起信号损失,使回波峰值达不到 应有高度,使得T2 偏小
抗射频干扰能力:
SE序列中,检测的是180°脉冲后的自旋回波信号,可以
避免被90°射频所干扰,抗干扰能力比较强
应用方面:
IR和SR序列主要利用样品的T1弛豫时间影响信号性质, IR序列该特点更为显著;SE序列主要特点体现在获得反 映样品的T2特性的信号方面,是NMI中最广泛应用的基
本脉冲序列
可以检测自旋回波的IR序列
核磁共振实验中三种基本 脉冲序列的特点和应用
Nuclear Magnetic Resonance Magnetic Resonance Imaging
073振原理
在恒定磁场Bo中 θ=γB1τ
γ :旋磁比 与核的种类有关
0 B0
磁化强度矢量M在射频场B1作用下的运动
SE序列的改进: CP序列
CPMG序列
180°脉冲方向不同!施加在Y轴上,避免了 因为180°脉冲不精确而引起的误差
使用硬脉冲CPMG序列测量横向弛 豫时间T2
自旋回波序列成像
芝麻成像图
三种序列的比较
SR和IR对纵向弛豫时间的测定能力: IR序列比SR序列测量T1的准确性要高,鉴别T1不同的组织 的能力更强(由于TR的不同)
反转恢复序列(IR)
Inversion-Recovery
特点: 射频激励脉冲 信号测量脉冲
180°脉冲 90°脉冲
反转恢复法测纵向弛豫时间T1
Mz(t)=Mo[1—2e-t/T1]
自旋回波序列(SE)
Spin-Echo
特点: 一个周期内有90°脉冲和 180°脉冲 其中180°脉冲为相位反转脉冲 (回波形成脉冲)
有180°回波产生脉冲的IR序列的射频脉冲时序
包含SE序列的IR序列的射频脉冲时序
Thank you!
θ=180° 180°脉冲 θ=90° 90°脉冲 τ:射频脉宽 硬脉冲 τ较小 软脉冲 τ较大
驰豫过程 非平衡态 →平衡态
纵向弛豫:磁化强度的纵向分量从某个 Mz向它的最大值Mo增长的过程。 横向弛豫:磁化强度的横向分量从某个 Mxy向它的最小值零衰减的过程。
什么是脉冲序列?
产生并测量MR信号所需要的一组周期 性重复的射频脉冲的组合方式和定时 关系。
相关文档
最新文档