化工原理4传热

合集下载

化工原理-第四章-传热

化工原理-第四章-传热

d12
d1
4 d2 d1
入口效应修正 在管进口段,流动尚未充分发展,传热边界层较
薄,给热系数较大,对于l d1 60 的换热管,应考虑进口段对给 热系数的增加效应。故将所得α乘以修正系数:
l
1 d l
0.7
弯管修正 流体流过弯曲管道或螺旋管时,会引起二次环流而强
化传热,给热系数应乘以一个大于1的修正系数:
水和甘油:T ↗ ↗ 一般液体: T ↗ ↘ 纯液体>溶液
气体的导热系数:
T ↗ ↗ P ↗ 变化小 极高P ↗ ↗
气体导热系数小,保温材料之所以保温一般是材料中空 隙充有气体。
18
三、平壁的稳态热传导
1.单层平壁的热传导
t1 t2
b
t Q t1
t2
0 bx
b:平均壁厚,m; t:温度差,oC;
4
❖ 一、传热过程的应用
物料的加热与冷却 热量与冷量的回收利用 设备与管路的保温
❖ 二、热传递的三种基本方式
热传导 热对流 热辐射
5
1. 热传导(又称导热)
热量从高温物体传向低温物体或从物体内部高温部 分向低温部分传递。
特点:物体各部分不发生相对位移,仅借分子、原 子和自由电子等微观粒子的热运动而引起的热量 传递。
8
3. 热辐射
因热的原因而产生的电磁波在空间的传递, 称为热辐射。
热辐射的特点:
①不需要任何介质,可以在真空中传播;
②不仅有能量的传递,而且还有能量形式 的转移;
③任何物体只要在热力学温度零度以上, 都能发射辐射能,但是只有在物体温度较高时, 热辐射才能成为主要的传热方式。
9
二、间壁传热与速率方程
41

化工原理第四章传热及传热设备

化工原理第四章传热及传热设备
例:温度升高,气体的粘度μ_____________,导热系数 λ____________(变大,变小,不变)。
物质热导率的大致范围
物质种类
热导率
纯金属 金属合金 液态金属 非金属固体 非金属液体 绝热材料 气体
100~1400 50~500 30~300 0.05 ~50 0.5~5 0.05~1 0.005~0.5
4.2 热传导
4.2.1 温度场和温度梯度 温度场:在某一瞬间,空间或物体内所有各点温度分布的总和。 即: t = f (x,y,z,θ) t--温度; x,y,z--空间坐标; θ--时间
温度梯度 :
4.2.2 傅立叶定律( Fourier’s Law)
单位时间内传导的热量Q与温度梯度dt/dx及垂直于热量方向
蓄热体
4、中间载热体式换热器 又称热媒式换热器。 换热原理:将两个间壁式换 热器由在其中循环的载热体 (称为热媒)连接起来,载 热体在高温流体换热器中从 热流体吸收热量后,带至低 温流体换热器传给冷流体。 典型设备:空调的制冷循环、 太阳能供热设备、热管式换 热器等。 适用范围:核能工业、冷冻 技术及工厂余热利用中。
优点:传热速度较快,适用范围广,热量的综合利 用和回收便利。
缺点:造价高,流动阻力大,动力消耗大。
典型设备:列管式换热器、套管式换热器。
适用范围:不许直接混合的两种流体间的热交换。
单程列管式换热器
1 —外壳 2—管束 3、4—接管 5—封头 6—管板 7—挡板
套管式换热器 1—内管 2—外管
3、蓄热式换热器
4.2 传导
热传导又称导热,是物质借助分子和原子振动及自 由电子运动进行热量传递的过程。
导热过程的特点是:在传热过程中传热方向上无质 点的宏观迁移。

化工原理教案04传热

化工原理教案04传热

第四章 传热第一节 概 述一、传热过程由热力学第二定律可知,凡有温度差存在的地方,就必然有热量的传递。

化学工业与传热密切相关,化工生产过程中许多单元操作都需要加热和冷却。

化工生产中进行传热操作的目的——1.料液的加热和冷却,为达到反应所需的温度; 2.为维持反应温度,需不断输入或输出热量; 3.许多单元操作需输入或输出热量; 4.化工设备的保温;5.生产过程中热能的综合利用及废热的回收。

化工生产对传热过程的要求:1.强化传热——要求传热速率高,降低设备成本; 2.削弱传热——可减少热损失。

二、传热的基本方式(传热机理)传热原因——传热推动力(温度差)传热方向——在无外功输入时,由热力学第二定律,热流方向由高温处向低温处流动。

传热的三种基本方式:1.热传导——物体内部或两个直接接触物体之间的传热方式。

金属导体—自由电子运动不良导体,大部分液体—温度高的分子振动,与相邻分子碰撞,造成的动量传递。

气体—分子无规则运动热传导是静止物体内的一种传递方式,没有物质的宏观位移。

2.对流传热——是指流体由质点发生相对位移而引起的热交换。

对流传热仅发生在流体中,所以与流体的流动方式密切相关。

自然对流——质点位移是由于流体内部密度差引起的,使轻者浮,重者沉; 强制对流——质点运动是由外力作用所致。

对流传热同时伴有热传导,事实上无法将其分开——又称给热。

化工中所讨论的给热,都是指流体与固体壁面之间的传热过程——间壁式换热3.热辐射——是一种通过电磁波传递能量的过程任何物体,只要在0K 以上都能发射电磁波,而不依靠任何介质,当被另一物体接收后,又重新变为热能。

热辐射不仅是能量转移,也伴随着能量形式的转移。

三、间壁式换热1.间壁式换热过程 —由对流、导热、对流三过程串联而成 (1)热流体以对流方式将热量传递到间壁一侧; (2)热量以导热方式通过间壁;(3)热量以对流方式传至冷流体。

对流传热对流传热热传导热流体冷流体T 1 T 2 t 2 t 12。

化工原理答案--第四章--传热

化工原理答案--第四章--传热

第四章 传 热热传导【4-1】有一加热器,为了减少热损失,在加热器的平壁外表面,包一层热导率为0.16W/(m·℃)、厚度为300mm 的绝热材料。

已测得绝热层外表面温度为30℃,另测得距加热器平壁外表面250mm 处的温度为75℃,如习题4-1附图所示。

试求加热器平壁外表面温度。

解 2375℃, 30℃t t ==计算加热器平壁外表面温度1t ,./()W m λ=⋅016℃231212t t t t b b λλ--= (1757530025005016016)t --= ..145025********t =⨯+=℃【4-2】有一冷藏室,其保冷壁是由30mm 厚的软木做成的。

软木的热导率λ=0.043 W/(m·℃)。

若外表面温度为28℃,内表面温度为3℃,试计算单位表面积的冷量损失。

解 已知.(),.123℃, 28℃, =0043/℃ 003t t W m b m λ==⋅=, 则单位表面积的冷量损失为()()../.q t t W m bλ=-=-=-2120043328358 003【4-3】用平板法测定材料的热导率,平板状材料的一侧用电热器加热,另一侧用冷水冷却,同时在板的两侧均用热电偶测量其表面温度。

若所测固体的表面积为0.02m 2,材料的厚度为0.02m 。

现测得电流表的读数为2.8A ,伏特计的读数为140V ,两侧温度分别为280℃和100℃,试计算该材料的热导率。

解 根据已知做图热传导的热量 .28140392Q I V W =⋅=⨯=()12AQ t t bλ=-.().()12392002002280100Qb A t t λ⨯==-- ()./218W m =⋅℃【4-4】燃烧炉的平壁由下列三层材料构成:耐火砖层,热导率λ=1.05W/(m·℃),厚度230b mm =;绝热砖层,热导率λ=0.151W/(m·℃);普通砖层,热导率λ=0.93W/(m·℃)。

化工原理第四章传热

化工原理第四章传热
化工原理
4-2.2

平面壁的稳态热传导
t Q R
dt Q A d
单层平面壁的稳态热传导
t1
△t
1、过程分析 假设Ⅰ:一维稳态热传导,即t=f(x) 假设Ⅱ:无限大平壁 A 2、模型 Q (t t )

1 2
A
Q
t2
可改写为:
t t Q A R
Am,3 2 rm,3l
Ф
t4
数学模型

1 1 Am,1
t1
t4
其中,
t1
Am,1 2 rm,1l Am,2 2 rm,2l
rm ,1
t4 Ф
r r r2 r1 r r rm ,2 3 2 rm ,3 4 3 r r r4 ln 2 ln 3 ln r1 r2 r3
非稳态传热——传热面各点温度t、传热速率Q 、热通量q等 物理量不仅为位置的函数,同时也随时间而改变。 Q, q, t……=f (x,y,z, τ)
化工原理

等温面 在温度场中,温度相同的各点组成的面。
等温面

温度梯度 等温面法线方向上的温度变化率。
t1>t2
对于一维稳定温度场, t=f(x),温度梯度表示为:
★ Q
t t t R 2 lrm Am
其中,
r2 r1 rm r ln 2 r1
Am 2 rml
rm——半径的对数平均值;当r2/r1<2时,rm≈ (r1+r2)/2
化工原理

多层圆筒壁的热传导
Q t1 t4 t t 3 2 R Am 2 Am,2 3 Am,3
dt grad (t ) d

化工原理 第四章 传热过程

化工原理     第四章 传热过程

• 传导传热的机理 • 一个物体的两部分存在温差,热就要从高温部分 向低温部分传递,直到各部分的温度相等为止, 这种传热方式就称为传导传热(或热传导)。 • 传导传热的本质是物体内部微观粒子的热运动而 引起的热量传递。物质的三态均可以充当热传导 介质,但导热的机理因物质种类不同而异,具体 为: • 固体金属:自由电子运动在晶格之间; • 液体和非金属固体:晶格结构的振动;即分子、 原子在其平衡位置的振动。 • 气体:分子的不规则运动。
第四章 传热过程 §4-1 概述 4-1.1 化工生产中的传热过程 1、传热过程在化工生产中的应用 例如:蒸发、蒸馏、干燥、结晶等 由于化工生产过中传热过程的普遍性,使得换热 设备的费用在总投资费用中所占的比重甚高。据 统计:在一般石油化工企业中占30~40% 在炼油厂中占40~50%。因此,认识传热过程, 掌握一般换热设备运行的规律,充分利用反应热、 余热、废热,对化工生产具有十分重要的意义。
r2 t 2 t1 ln 2l r1
r2 t1 t 2 ln 2l r1 t1 t 2 2l r2 ln r1
• 上式即为单层圆筒壁的导热速率方程。 • 在圆筒壁内找一个合理的平均导热面积Am , 或与Am对应的平均半径 rm ,这样圆筒壁的导 热速率就可按平壁来处理。 • 将(4)分子分母同乘以(r2-r1)
r1 2
术平均值代替,误差不超过4%,在工程上是允 许的。
r1 r2 rm 2
• 4、多层圆筒壁的导热 • 热量是由多层壁的最内壁传导到最外壁, 要依次经过各层,所以多层圆筒壁的传热, 可以看成是各单层壁串联进行的热量传递。
r2 r3
r1
• 对于稳定传热
• 对第一层
1 2 3

(化工原理)第四节 传热计算

(化工原理)第四节 传热计算

平均温度差法-11
平均温度差法-12
平均温度差法-13
平均温度差法-14
平均温度差法-15
平均温度差法-16
对于1-2型(单壳程双管程)换热器, 可用下式计算
对于1-2n型,也可近似使用
平均温度差法-17
(三)流向的选择
在两流体进、出口温度各自相同的条件下,逆流时的平均温度 差最大,并流时最小,其它流向介于两者之间。逆流优于并流 和其它流型。当换热器的传热量Q及总传热系数一定时,采用 逆流流动,所需的换热器的传热面积最小
选择的传热面积不同,总传热系数不同 dQ=Ki(T-t)dSi=KO(T-t)dS0=Km(T-t)dSm
K面i、积的KO总、传K热m—系—数基,于W管/(m内2•表℃面);积、外表面积和内外表面平均 S面i 、积S,m0、2。Sm——换热器管内表面积、外表面积和内外侧的平均
dQ及(T-t)和选择的基准面积无关,故
dQ=K(T-t)dS=KΔtdS
平均温度差法-7
(3)总传热系数K为常量,即K值不随换热器的管长而变化;
平均温度差法-8
平均温度差Δtm等于换热器两端处温度 差的对数平均值
当 Δt2/Δt1≤2时,可以用算术平均温度差代替对 数平均温度差,
并流流动, 该式是计算逆流和并流时的 平均温度差Δtm的通式。
d均i、直d径o、,mdm——管内径、外径和内外径的平
总传热速率微分方程和总传热系 数-4
二、总传热系数
(一)、总传热系数的数值范围
总传热系数K值主要取决于流体的物性、传 热过程的操作条件及换热器的类型
总传热速率微分方程和总传热系 数-6
(二)、总传热系数的计算式
通过管壁之任一截面的热传导速率

化工原理第四章传热

化工原理第四章传热

λ3A
因△t = t1-t4 = △t1+ △t2+ △t3
△t b1 b2 b3 + + λ1A λ2A λ3A
△t
Q=

∑ Ri
i=1
3
总推动力
=
总热阻
[例4-2]已知:耐火砖 :b1=150mm λ1=1.06 W/(m· ℃) 保温砖: b2=310mm λ2=0.15 W/(m· ℃) 建筑砖 :b3=240mm λ3=0.69 W/(m· ℃) t1=1000℃,t2=946℃
解:(a)每米管长的热损失
q1= Q l = r2 1 ln r1 λ1 2π(t1 – t4) r3 1 ln + r2 λ2 r4 1 + ln r3 λ3
r1=0.053/2=0.0265, r2=0.0265+0.0035=0.03 r3=0.03+0.04=0.07,r4=0.07+0.02=0.09 q1=191
Q q1= =2πλ l
t1-t2 r2 ln r1
可见,当比值r2/r1一定时,q1与坐标r无关
上式也可改写为单层平壁类似形式的计 算式:
2πl(r2 - r1)λ(t1 - t2)
2πr2l (r2 - r1)ln 2πr1l (A2 - A1)λ(t1 - t2) λ = = Am(t1-t2) A2 b (r2 - r1)ln A1

△t
R
传热推动力 = 热阻
也可写成: Q q= A
λ (t1-t2) = b
[例4-1] 现有一厚度为240mm的砖壁,内 壁温度为600℃,外壁温度为150℃。试求 通过每平方米砖壁壁面的导热速率(热流 密度)。已知该温度范围内砖壁的平均热 导率λ=0.6W/(m. ℃ )。 解:

化工原理 第四章 传热过程超详细讲解

化工原理  第四章 传热过程超详细讲解
液体:α<0,t↑,λ↓ 。 ∵t↑液体膨胀,分子距离加大,碰撞↓ 气体:α>0, t↑,λ↑。 ∵ t ↑, 分子能量↑ 碰撞 ↑。 λ金属>λ非金属,λ固>λ液>λ气,λ结构紧密>λ结构松散
泡沫保温 材料
三、平面壁的稳定热传导——特点
1 单层平面壁,如P105图
∴ A
(t1 t 2) At
例4-11 Δtm逆 =54.9℃ Δtm并=39.1℃ Δtm逆 /Δtm并=54.9/39.1 =1.404 在Φ, K相同时:A并/A逆=Δtm逆/Δtm并>1 A并>A逆 在A, K相同时:Φ逆/Φ并=Δtm逆 /Δtm并>1 Φ逆>Φ并 据Φ=MCpΔt`,在Φ相同时,逆流可减少热载体的用量, 即M逆<M并。
(2)Δt1/Δt2 =R1/R2=
即各层的温降与其热阻成正比。
1 2 t1 t4 (3) t 2 t 1 t3 t2 t2 2 3 i A 1 A2 2 i 1 i
——可求夹层间的温度。
(4)在不知A时, 可求单位传热面积的传热速率—热流密度
五、总传热系数K
∴单层
1 1 K rm rm rm r 2 r1 rm 1 r 1 2 r 2 1r 1 2 r 2
多层圆简壁一般不用Φ=KAm (T- t) 的形式,而直接使用公式。
i
rmi
ri 1 ri 1 ln ln ri 1 ri ri ri
对数平均半径。当r2 /r1<1.2 时,可用算术
平均半径 rm=(r2+r1)/2代替。
2 、多层圆简壁 如图:各层都相当于单层圆筒壁,仿多层平面壁推导有:

化工原理--传热

化工原理--传热

第四章传热本章介绍了三种基本传热方式,即导热、对流传热、辐射传热的基本概念和定律;详细分析了对流传热过程机理,建立了对流传热速率方程以及表面传热系数的经验关联式;由总传热速率方程出发,对传热过程进行设计计算和操作分析、诊断;介绍了换热设备的类型和列管式换热器的设计和选用。

本章重点要求掌握:①对流传热过程的基本概念、定律、传热速率方程;②管内强制湍流流动时表面传热系数的经验关联及影响因素;③总传热速率方程以及传热过程的计算。

4.1 概述4.1.1 传热在化工生产中的应用传热,即热量的传递,是自然界中普遍存在的物理现象。

由热力学第二定律可知,凡是有温度差存在的物系之间,就会导致热量从高温处向低温处的传递,故在科学技术、工业生产以及日常生活中都涉及许多的传热过程。

化工生产过程与传热关系十分密切。

这是因为化工生产中的很多过程都需要进行加热和冷却。

例如,为保证化学反应在一定的温度下进行,就需要向反应器输入或移出热量;化工生产设备的保温或保冷;生产过程中的热量的合理使用以及废热的回收利用,换热器网络的综合利用;蒸发、精馏、吸收、萃取、干燥等单元操作都与传热过程有关。

化工生产过程中需要解决的传热问题大致分为两类:(1)传热过程的计算,包括设计型计算和操作型计算;(2)传热过程的改进与强化。

这两类问题的解决,都需要从总的传热速率方程出发,即:(4.1.1)式中:Q—冷流体吸收或热流体放出的热流量,W;K—传热系数,W/(m2·℃);A—传热面积,m2;Δtm—平均传热温差,℃。

4.1.2 传热的基本方式根据热量传递机理的不同,传热基本方式有三种,即热传导、对流和辐射。

热传导:热传导又称导热。

是指热量从物体的高温部分向同一物体的低温部分、或者从一个高温物体向一个与它直接接触的低温物体传热的过程。

对流传热:对流传热是依靠流体的宏观位移,将热量由一处带到另一处的传递现象。

在化工生产中的对流传热,往往是指流体与固体壁面直接接触时的热量传递。

化工原理 第四章 传热教学内容

化工原理 第四章 传热教学内容

t R
i1 i A
例4-2 P125
多层平壁传热的推动力为总温度差。传热阻力由 各层热阻之和。并且有
t1:t2:t3:t = R1:R2:R3:Ri
25
四、圆筒壁的热传导
1.单层圆筒壁的热传导(稳态)
dr t2 t1
r2
Q
Hale Waihona Puke r1rL26
QAdt2rldt
dr
dr
上式积分可得:
Q
2lt1
ln r2
时的传热速率。
固体导热系数:
固体>液体 >气体
金属的导热系数最大,是热的良导体。
温度↗ ↘
纯度↗ ↗
非金属导热系数较小。
温度↗ ↗ 纯度↗ ↗
对大多数固体: = 0(1+at)= 0 +at
0C时的导热系数
温度系数
17
液体的导热系数: 液态金属(与固态金属性质差不多) 非金属液体:水的导热系数最大
第四章 传热
1
要求:
1.掌握热传导的基本原理、傅里叶定律、平壁与 圆筒壁的稳定热传导计算; 2.掌握对流传热的基本原理及牛顿冷却定律; 3.掌握运用传热速率方程式、热量衡算式、平均 温度差、总传热系数进行传热计算;
2
4.理解对流传热系数的影响因素、关联式及应用 条件; 5.了解间壁换热器的结构特点、应用及强化途径。
21
传热速率
传热推动力 传热阻力
22
2.多层平壁的热传导
Q
b1 b2 b3 t t1
t2 t3 t4 x
23
以三层平壁为例:
QQ 1Q2Q3
Qt1t2 t2 t3 t3t4
b1
b2
b3

化工原理第四章对流传热

化工原理第四章对流传热
3/24/2020
【解】在确定各物理量时,先确定定性温度。
一般情况下,用进出设备流体的温度的平均值
(算术平均值),即:
t t进+t出 =20+40=30℃
2
2
查数据手册,30℃时水的物性数据为:
Cp=4183J/(K.kg) ρ=996kg/m3 μ=8.01×10-4Pa.s λ=0.618W/(m.K)
【注意事项】
(1)定性温度取流体进出温度的算术平均值tm; (2)特征尺寸为管内径d;
(3)流体被加热时,n=0.4;
流体被冷却时,n=0.3。
(4)若l/d<60 ,进行校正:
'
1
d
0.7
l
3/24/2020
(2)圆形直管内的湍流(高粘度流体)
0.027 ( du )0.8 ( c p )0.33 ( )0.14
(1)什么是定性温度 【定义】确定物性参数 数值的温度称为定性温 度。
Re du
T1
t2
Pr c p
T2
t1
3/24/2020
(2)定性温度的取法 ①流体进、出口温度的平均值
②膜温
tm
t1
t2 2
t tm tw 2
th T1
热Φ 流 体
th,w
t2
Φ
冷 流 tc,w 体
式中 tw——壁面上的温度;
bt
Q bt A(tw t) 当流体被冷却时:
Q
bt'
A(T
Tw )
bt’
3/24/2020
4、牛顿冷却定律
令:
bt
Q
bt
A(t w
t)
流体被加热: Q A(tw t)

南京理工化工原理课件4 --传热

南京理工化工原理课件4 --传热

减小任何环节的热阻都可提高传热系数。
当各环节的热阻相差较大时,总热阻的数值将主要
由其中的最大热阻所决定。此时强化传热的关键在
于提高该环节的传热系数。
若α1>>α2,欲要提高K值,关键在于提高对流传热
系数较小一侧的α2。若污垢热阻为控制因素,则必
须设法减慢污垢形成速率或及时清除污垢。
4-5-4 传热推动力和总传热速率方程
对n层平壁:
t1 tn 1 Q n bi S i 1 i
t 总推动力 R 总热阻
4-3-2
牛顿冷却定律和对流传热系数
dt Q S dx
Q
根据有效膜概念 积分后得
S T TW t
T、TW——分别对热流体和冷壁温度,℃
——对流传热系数,W/(m2· ℃), t
m为0.8,指数n与热流方向有关:当流体被加热时, n=0.4;当流体被冷却时,n=0.3。 定性温度为流体主体温度在进、出口的算术平均值,
特征尺寸为管内径di。
2.流体在圆形直管中作过渡流 Nu=CRemPrn计算得的α乘以小于1的系数f
6 105 f 1 Re 1.8
3.流体在圆型弯管内作强制湍流 Nu=CRemPrn计算得的α乘以小于1的系数f /
第四章 传 热
第一节 概述
4.1.1 化工生产中的传热
传热:是指由于温度差引起的能量转移,又称 热量传递过程 传热的三种方法:直接混合、蓄热式、间壁换热
4.1.2 传热过程
一、传热速率
热流量Q :即单位时间内热流体通过整个换热器的 传热 面传递给冷流体的热量,单位是W。 热流密度(或热通量)q :单位时间内通过单位传 热面积所传递的热量,单位是W/m2

化工原理 第四章 传热

化工原理 第四章 传热

注意→气体很小,有利于保温、绝热,如玻璃棉。
传热-热传导
3. 平壁导热 ① 单层平壁
dt Q S dx x 0,t t1;
x b,t t2; t1 t2
Q
S
b
t1 t2
Q
单层平壁导热
假设→①稳态、一维导热。 ②λ不随温度变化。 ③不计热损失。
⑴ 给热是集热对流和热传导于一体的耦合过程。 ⑵ R集中在层流内层→ 层流内层厚度↓是强化给热的主要途径。
传热-对流传热
② 热边界层 热边界层→即温度边界层,指壁面附近处具有温度梯度的流体薄层。
dt dQ dS dy w

dQ tw t dS
dt dt tw t dy w t dy w

平板上的热边界层
dt t不变时, t , dy w

⑵ 流体在管内流动时,热边界层与流动边 ⑴ 热边界层边缘处→ 界层类似。不同的是,经历进口段和完全 t t 0.99 t t 发展区后,温度分布随管长渐变为平坦, < ⑵ 热边界层厚度→ 。 继而温度梯度消失,直至传热停止。
dQ T Tw dS
Q S t
R
1 S
① →平均给热系数。 ② 流体温度→流动横截面上的平均温度。 ③ 若热流体走管内,冷流体走环隙, dQ i T Tw dSi o tw t dSo
④ 给热研究的内核→不同给热情况下,α 的大小、影响因素及其计算式。
n
bi
mi
Q

2 πL t1 t4 1 r2 1 r3 1 r4 ln ln ln 1 r1 2 r2 3 r3

化工原理 第四章 传热

化工原理 第四章 传热

12
第二节 热传导
一、傅立叶定律
1.温度场和温度梯度 1) 温度场 某一时刻物体或系统内各点的温度分布总和。
t f x, y, z,
13
2) 等温面:温度场中同一时刻下相同温度各点所
组成的面。等温面不能相交。 3) 温度梯度:两相邻等温面的温度差与两面间的 垂直距离之比。即等温面上某点法线 方向上的温度变化
Ku l c p ( gt )
a b c d e f
h
将各物理量量纲代入上式,用一些参数a,f,h表示其它参数 得 d=1-f c=-a+f-2h e=a+2h b=a+3h-1 代入原函数得 39
lu c p l K
37
对流传热过程的分类及准数关联
由于对流传热的多样性,有必要将问题分类加以研究。
冷凝传热 有相变传热 沸腾传热 对流传热 自然对流 无相变传热 强制对流 管内对流 管外对流 非圆管道 弯管 圆形直管 湍流 过渡区 滞流
38
三、对流传热中的量纲分析
对流传热系数一般难于用理论建立公式,通过量纲分 析再加实验是确定它的关系的重要途径。 流体无相变时,通常有下列物理量影响。 u , l , , , , Cp, gt 设可写为幂函数形式
物体物流各点不随时间变化的传热过程称稳态传热, 反之则非稳态传热。稳态传热的传热速率为常数。 工业生产上一般接近稳态传热。
4. 两流体通过间壁的传热过程
对流热传导对流 以对流方式为主,通常又称对流传热或给热。
11
5. 传热速率方程
经验表明,在稳态传热过程中,传热速率与传热面积 A和两流体的温度差成正比。 t m 推动力 Q KAt m 1 /(KA) 热阻 总传热系数、传热面积、推动力是传热过程三大要素。 将热阻记为R,则Q=tm/R 下面将分别讨论传热基本原理及传热系数的计算。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Nu
0.36 Re0.55
Pr 1/ 3
W
应用范围:Re=2×103~106
定性温度:
tm
t1
t2 2
特征尺寸:(1)当量直径de
正方形排列:
de
4(t 2
0.785d02 )
d0
正三角形排列:d e
4(
3 2
t
2
0.785d 0 2
)
d 0
d0 t
t
(2)流速u(按以下流通截面计算)
特征尺寸:管外径; 流速取各排最窄通道处流速
定性温度:进、出口温度平均值
平均对流传热系数:
αm
α1 A1 α2 A2 A1 A2
αn An An
2.流体在换热器管间的流动 折流挡板形式:圆缺形、圆环形
设置折流挡板目的: 增加壳程流体的湍动程度,进而提高壳程的。
圆缺形折流挡板:
0.14
工程处理: 加热:( )0.14 1.05
W
冷却:
(
W
) 0.14
0.95
(3) 弯管
弯 直

直(1
1.77
d) R
R 弯管的曲率半径
(4)非圆形管道 用当量直径计算。
0.023 ( deu实 ) 0.8 Pr n de
2. 圆形直管内流体处于过渡区时的对流传热系数 2300 < Re < 104
d
0.023
c 0.8 n 1n p 0.8n
u 0.8 d 0.2
物性一定时:
u 0.8 d 0.2
思考:流量、流速、直径对对流传热系数有何影响?
公式修正:
(1)当L/d
<
60,乘校正系数
1
1
d l
0.7

(2)高粘度液体 (>2 水)
Nu 0.027 Re 0.8 Pr ( 0.33 ) 0.14 W
2.液体热导率
0.1~0.7 W/(m·K)
金属液体较高,非金属液体低; 非金属液体中水的最大; 水和甘油:t , 其它液体:t ,
3.气体热导率 0.01~0.6 W/(m·K)
t , 一般情况下,随p的变化可忽略; 气体不利于导热,有利于保温或隔热。
三、平壁的稳态热传导
(一)单层平壁热传导
1 、 2 ── 热、冷流体的对流传热系数,
W/(m2·K); T 、TW、t、tW ── 热、冷流体的平均温度及
平均壁温,℃。
二、对流传热系数的影响因素 (一)影响因素
1.流动状态 湍流 > 层流
2.引起流动的原因 自然对流:由于流体内部密度差而引起流体的流动。 强制对流:由于外力和压差而引起的流动。
二、传热的基本方式
(一)热传导
气体 分子做不规则热运动时相互碰撞的结果 固体 导电体:自由电子在晶格间的运动
非导电体:通过晶格结构的振动实现 液体 机理复杂
特点:静止介质中的传热,没有物质的宏观位移 (层流流体在与流向垂直方向上的传热亦可视为导热)
(二)热对流 自然对流:由于流体内温度不同造成的浮升力 引起的流动。 强制对流:流体受外力作用而引起的流动。
1. 努塞尔特(Nusselt )数
Nu l
表示对流传热系数的特征数
2. 雷诺(Reynolds)数
Re lu
反映流体的流动状态对对流 传热的影响
3. 普兰特(Prandtl)数
Pr c p
反映流体的物性对对流传热 的影响
4. 格拉斯霍夫(Grashof)准数
Gr
l3 2 gt 2
表示自然对流对对流传热的 影响
乘校正因子:f
1
0.8(1 0.015Gr 3
)
适用范围:
0.6
Pr
6700
Re
2300
(Re Pr
d) L
10
定性温度:
tm
t1
t2 2
特征尺寸:管内径
(二)流体在管外强制对流传热 1. 流体在管束外垂直流过
Nu=C Ren Pr0.4
应用范围:Re=5000~70000; x1/d=1.2~5; x2/d=1.2~5
r1
ln r2 R r1 r2 r1
2l r2 r1
b
Am

rm
r2 r1 ln r2
——对数平均半径
r1
一般 r2 2 r1
时,
rm
r1 r2 2
Am
2rml
A2 A1 ln A2
——对数平均面积
A1
b r2 r1
Q t1 t2
b Am
对比平壁: Q t1t2 b A
(二)多层圆筒壁的热传导
三层: Q= 2l(t1 t2 ) 2l(t2 t3 ) 2l(t3 t4 )
1 ln r2
1 ln r3
1 ln r4
1 r1
2 r2
3 r3
2l(t1 t4 )
3 1 ln ri1
i1 i
ri
n层圆筒壁:
Q=
2l
n
(t1 1
tn1 ) ln ri1
1. 圆形直管内的强制湍流
Nu C Rem Pr n Nu 0.023Re0.8 Pr n 流体被加热 n=0.4
流体被冷却 n=0.3
(1)应用范围:Re >104, Pr=0.7~120, L/d >60, 气体或低粘度的液体(<2 水)
(2)定性温度:流体进出口的算术平均 值 (3)特征尺寸:管内径
一般形式:Nu=f (Re, Pr, Gr)
简化:强制对流 Nu=f (Re, Pr)
自然对流 Nu=f (Pr, Gr)
使用准数关联式时注意:
1. 应用范围
2. 特征尺寸
3. 定性温度 无相变
强制对流 自然对流
蒸汽冷凝 有相变
液体沸腾
四、无相变时对流传热系数的经验关联式
(一)流体在管内作强制对流
式中
S hD(1 d0 ) t
h——两块折流挡板间距离,m; D——换热器壳体直径,m;
d0——列管外直径,m; t——列管排间距,m。
(三)自然对流时的对流传热系数
Nu C(Pr Gr )n 各种情况下的C、n值及特征尺寸不同。
定性温度:膜温(tm+tw)/2 特征尺寸:垂直的管或板为高度H
流 t1 体
稳态传热: Q1 Q2 Q3 Q
(五)总传热速率方程
Q KAtm
tm 1
总传热推动力 总热阻
KA
式中 tm──两流体的平均温度差,℃或K; A──传热面积,m2; K──总传热系数,W/(m2·℃)或W/(m2·K)。
第二节 热传导
一、傅立叶定律
(一)温度场和等温面 温度场:某时刻,物体或空间各点的温度分布。
b
t
t1
Q
t2
dx
假设: 材料均匀,为常数; 一维温度场,t沿x变化; A/b很大,忽略边界损失。
x
Q A t A dt
n
dx
分离变
量积分:
b
Qdx
t2 Adt
0
t1
Q
A
b
(t1
t2
)
Q
t1 b
t2
A
t R
推动力 热阻
(二)多层平壁热传导
t b1 b2 b3
1 2 3
t1 t2 t3 t4
dA qm1, T2
冷流体 A
传热壁
热流体 A′
T T
tW
TW
t t A2 A1
湍流主体 温度梯度小,热对流为主
层流内层 温度梯度大,热传导为主
过渡区域 热传导、热对流均起作用
热流体: Q 1 A1(T TW ) 冷流体: Q 2 A2 (tW t )
牛顿冷却定律
式中 Q ── 对流传热速率,W;
假设: 各层接触良好,接触面 两侧温度相同。
x
Q t1 t2 t2 t3 t3 t4
b1
b2
b3
1 A 2 A 3 A
t1 t2 t3
b1 b2 b3
t1
t4 Ri
总推动力 总热阻
1 A 2 A 3 A
各层的温差
t1
t2
:
t2
t3
:
t3
t4
b1
1 A
:
b2
2 A
:
b3
3 A
i1 i
ri
t1 tn1 = t1 tn1
n bi
A i1 i mi
n
Ri
i 1
思考
1. 总热阻与各层热阻的关系 2. 总温度差与各层温度差的关系 3. 各层温度差与对应热阻的关系 4. 将任意两层位置对调,总热阻变化吗?
为什么?
第三节 对流传热
一、对流传热过程
qm1,T1
qm2,t1
qm2, t2
特点:流动介质中的传热,流体作宏观运动 (三)热辐射
物体因热的原因发出辐射能的过程称为热辐射。
能量转移、能量形式的转化 不需要任何物质作媒介
三、两流体通过间壁的换热过程 (一)间壁式换热器
热流体T1
t2
冷流体t1
T2 套管式换热器
(二)传热速率与热流密度
传热速率Q(热流量):单位时间内通过换热器的整 个传热面传递的热量,单位 J/s或W。 热流密度q (热通量) :单位时间内通过单位传热面 积传递的热量,单位 J/(s. m2)或W/m2。
变化, A=2rl (2) 一维温度场,t 沿r变化。
在半径r处取厚度为dr的同心薄层圆筒
相关文档
最新文档