基于MATLAB下的SPWM三相桥式逆变电路
基于matlab的三相桥式PWM逆变电路的仿真实验报告

基于matlab的三相桥式PWM逆变电路的仿真实验报告一、小组成员指导教师二、实验目的1.深入理解三相桥式PWM逆变电路的工作原理。
2.使用simulink和simpowersystem工具箱搭建三相桥式PWM逆变电路的仿真框图。
3.观察在PWM控制方式下电路输出线电压和负载相电压的波形。
4.分别改变三角波的频率和正弦波的幅值,观察电路的频谱图并进行谐波分析。
三、实验平台Matlab / simulink / simpowersystem五、实验模块介绍1. 正弦波,电路常用到的正弦信号模块,双击图标,在弹出的窗口中调整相关参数。
其信号生成方式有两种:Time based和Sample based。
2. 锯齿波发生器,产生一个时基和高度可调的锯齿波序列。
3. 示波器,其模块可以接受多个输入信号,每个端口的输入信号都将在一个坐标轴中显示。
4. 关系运算符,<、>、=等运算。
5. 直流电压源,提供一个直流电源。
6. 三相RLC串联电路,电阻、电感、电容串联的三相电路,单位欧姆、亨利、法拉。
7. 电压测量,用于检测电压,使用时并联在被测电路中,相当于电压表的检测棒,其输出端“v”则输出电压信号。
8. 多路测量仪,可以接收该需要测模块的电压、电流或电压电流信号并输出。
9. IGBT/二极管,带续流二极管的IGBT 模型.10 为了执行仿真其可以允许修改初始状态、进行电网稳定性分析、傅里叶分解等功能.六、实验原理三相桥式PWM逆变电路图1-1如下:图1-1三相桥式PWM逆变电路图三相桥式PWM逆变电路波形七、仿真实验内容三相桥式PWM逆变电路仿真框如图1-2所示:图1-2 三相桥式PWM逆变电路仿真框图仿真参数设置如下:三角波参数如图1-3所示:载波频率f=1kHz,周期T=1e-3s,幅值Ur=1V.图1-3三角波参数图正弦波参数,正弦信号A/B/C相位差为120,分别为0、2*pi/3、-2*pi/3,幅值都为1,如图1-4、1-5、1-6所示。
三相SPWM逆变电路仿真

三相SPWM逆变电路仿真摘要:利用MATLAB软件中的电力系统模块库,为三相电压型逆变器建立了仿真模型,对其输出特性进行了仿真分析,并利用快速傅里叶变换(FFT)分析工具对逆变器的输出电压进行了谐波分析。
仿真实例表明了此模型和仿真方法的正确性。
关键词:逆变电路;脉宽调制(PWM);快速傅里叶变换(FFT) ;谐波;MATLAB0 引言随着大功率全控型电力电子器件(如GTO、IG2BT、MOSFET、IGCT 等)的开发成功和应用技术的不断成熟,近年来电能变换技术出现了突破性进展,各种新型逆变器已开始在各类直流电源、UPS、交流电机变频调速、高压直流输电系统等领域中得到应用,由于大功率电力电子装置的结构非常复杂,若直接对装置进行试验,代价高且费时费力,故在研制过程中需要借助计算机仿真技术,对装置的运行机理与特性、控制方法的有效性进行验证,以预测并解决问题,缩短研制时间。
MATLAB软件具有强大的数值计算功能,方便直观的Simulink建模环境,使复杂电力电子装置的建模与仿真成为可能。
本文利用MATLAB/Simulink为SPWM(脉宽调制)逆变电路建立系统仿真模型,并对其输出特性进行仿真分析。
1 SPWM电压型逆变电路的基本原理SPWM控制是通过对每周期内输出脉冲个数和每个脉冲宽度的控制来改善逆变器的输出电压、电流波形。
它是现代交流变频调速的一种重要的控制方式。
三相逆变器主回路原理图如下所示,图中V1-V6为6个开关元件,由SPWM调制器控制其开通与关断。
逆变器产生的SPWM 波形,施加给三相负载。
图1 三相逆变器主电路2 通过matlab/simulink建立仿真电路如下图所示:通过matlab/simulink建立仿真图形,主要参数为:直流电压为530V。
脉冲频率为1650Hz,调制比为1,电压频率为50Hz。
Discre te ,Ts = 5e -007 s.pow e rguig A B C+-Universal BridgeA B CThree-PhaseSeries RLC Load Scope3MultimeterPulse sDiscretePWM Generatort2e-005 sDiscrete On/Off Delayi +-C urrent Measurement530Viduania uab图2 用simulink 实现的仿真模型3 死区时间对三相输出电压和电流的影响为防止在垂直换流中桥上下壁器件产生共态导通,在互补式控制极脉冲下,必须插入死区。
单、三相双极性SPWM逆变电路

计算机仿真实验报告专业:电气工程及其自动化班级:11电牵4班姓名:江流在班编号:26指导老师:叶满园实验日期:2014年5月22日一、实验名称:单、三相双极性SPWM逆变电路MATLAB仿真二、目的及要求了解并掌握单、三相双极性SPWM逆变电路的工作原理; 2.进一步熟悉MATLAB中对Simulink的使用及模块封装、参数设置等技能; 3.进一步熟悉掌握用MA TLAB绘图的技巧。
三、实验原理1.单相双极性SPWM逆变的电路原理2、单相双极性SPWM逆变电路工作方式单相桥式逆变电路双极性PWM控制方式:在Ur的半个周期内,三角波载波有正有负,所得PWM波也有正有负,其幅值只有±Ud两种电平。
同样在调制信号Ur和载波信号Uc 的交点时刻控制器件的通断。
Ur正负半周,对各开关器件的控制规律相同。
当Ur>Uc时,给V1和V4导通信号,给V2和V3关断信号。
如I0>0,V1和V4通,如I0<0,VD1和VD4通,U0=Ud 。
当Ur<Uc时,给V2和V3导通信号,给V1和V4关断信号。
如I0<0,V2和V3通,如I0>0,VD2和VD3通,U0=-Ud 。
这样就得到如下所示的双极性的SPWM波双极性SPWM控制方式波形3.三相双极性SPWM逆变的电路原理图三相SPWM逆变电路4、三相双极性SPWM逆变电路工作方式为:四、实验步骤及电路图1、建立单相双极性SPWM逆变电路MA TLAB仿真模型。
以下分别是主电路和控制电路(触发电路)模型:2、单相双极性SPWM逆变电路参数设置本实验设置三角载波的周期为t,通过改变t的值改变输出SPWM矩形波的稠密,从而调节负载获取电压的质量。
设置正弦波周期为0.02s,幅值为1。
直流电源幅值为97V,三角载波幅值为1.2V,三角载波必须依次交替输出正三角波和负三角波,这可以通过让三角载波同与之周期相同的、依次交替输出1和-1的矩形波相乘实现。
基于matlab的三相桥式PWM逆变电路的仿真实验报告

基于matlab 的三相桥式PWM 逆变电路的仿真实验报告一、小组成员指导教师二、实验目的1. 深入理解三相桥式 PWM 逆变电路的工作原理。
2. 使用 simulink 和 simpowersystem 工具箱搭建三相桥式 PWM 逆变电路的仿真框图.3. 观察在 PWM 控制方式下电路输出线电压和负载相电压的波形。
4. 分别改变三角波的频率和正弦波的幅值, 观察电路的频谱图并进行谐波分析。
三、实验平台Matlab / simulink / simpowersystem五、实验模块介绍BSi∏* WIVt正弦波, 电路常用到的正弦信号模 块,双击图标,在弹出的窗 口中调整相关参数。
其信号 生成方式有两种:Time based 和SamPle based .OKCancelHelPI,J3. E E 示波器,其模块可以接受多个输入信号,每个端口的输入信号都将在 一个坐标轴中显示。
2.锯齿波发RePeat ing j t able (mask)OIItPUt 炷 repeating SeQUeTlCe Of niunbers SPeCified Ln a IabIe Of I IJH 亡-ValiL 亡 pairs. VaItLeS □f tiinft ShOUIti be JilorL OtoniCalIy IrLCrea≤in⅛ ・生器,产生一个时基和高度 可调的锯齿波序列。
⅞⅛ SOUrCe BlCCk Parameter^r RePtating SeqUtnCeS-ErqU-⅞-π茜ParaJiieterETinIe ValUftEiFUnCtiOn BloCk P ⅛ramet 亡rm : RelatianaI OPeratOr 屋Relational OperatorAPPl ie≡ the selected re IatLOIlaI OlPerator to t h.E inpu Ieft ) input 79xreΞpQΓL^ j ζ□ the it st Qp ⅞Eand ・Main Si SnaI Attr ibu ,t e S Kelatianal OPeratclr :∖-∣ 。
基于MATLAB的三相桥式PWM逆变电路

电力电子技术课程设计报告题目:三相桥式PWM逆变电路设计学院:姓名:学号:专业班级:指导老师:时间:目录课题背景********************************************2 三相桥式SPWM逆变器的设计内容及要求*****************3 SPWM逆变器的工作原理******************************3 MATlAB仿真设计************************************12硬件实验************************************************19实验总结********************************************23附录一 Matab简介********************************24 附录二Protel简介***************************************25参考文献*******************************************26三相桥式PWM逆变电路设计一、课题背景正弦逆变电源作为一种可将直流电能有效地转换为交流电能的电能变换装置被广泛地应用于国民经济生产生活中,其中有:针对计算机等重要负载进行断电保护的交流不间断电源UPS (Uninterruptle Power Supply) ;针对交流异步电动机变频调速控制的变频调速器;针对智能楼宇消防与安防的应急电源EPS ( Emergence Power Supply) ;针对船舶工业用电的岸电电源SPS(Shore Power Supply) ;还有针对风力发电、太阳能发电等而开发的特种逆变电源等等.随着控制理论的发展与电力电子器件的不断革新,特别是以绝缘栅极双极型晶体管IGBT( Insulated Gate Bipolar Transistor)为代表的自关断可控型功率半导体器件出现,大大简化了正弦逆变电源的换相问题,为各种PWM 型逆变控制技术的实现提供了新的实现方法,从而进一步简化了正弦逆变系统的结构与控制.电力电子器件的发展经历了晶闸管(SCR)、可关断晶闸管(GTO)、晶体管(BJT)、绝缘栅晶体管(IGBT)等阶段。
基于MATLAB的SPWM电压型逆变器的仿真与分析

[ 2 】 高峰 , 俞 力 ,张 文安 等 . 基 于作 物 水 分 胁 迫声发 射 技 术的 无 线传 感 器 网络精 量 灌 溉 系统 的初 步研 究 … .农 业 工 程 学
报 , 2 0 0 8 , 2 4 ( 0 1 ) .
能耗 等因素 。在该系统 中,水 分传 感器是用于 信 息搜集 的,其所搜集信 息数据 的准确性将直 接决 定了整个系统运用分析 的真 实可靠 性,是 该技术在 农 田土壤含水率监测 中具有 实用性的 第一 步。因此,在选择传感器 时,要 充分考虑 到农 田的环 境,使得选择 的传感器不会 受到土 壤的腐蚀 ;要充分考虑到农 田所在 的地 区,选 择那些受土 质影 响较小的传感器 ;要充分考虑 到其对土壤含水率 的分辨率,确保传感器感知
2 us 。
下面详 述系 统模 型 中两个 重要 子模 块,
< <上 接 7 8页
术协议的无线通信 则是最佳选择,其不仅应用 范围极为广泛 ,且其 芯片集成度较高 ,可靠性 高,并具有低能耗 的特点 。
3 . 2 - 3 传 感 器 的 选 型
一
个执行 模块 由 1 个T i n y OS程 序 和 多 个 组 件
波。
3三相S P W M 电压型逆变器的建模与仿真
利用 Ma t l a b软 件,在 S i mu l i n k环境 下 的
P o we r S y s t e m仿 真 工 具箱 搭 建 的三相 S P W M 电 压 型 逆 变 器 的 系 统 电 路模 型 。 系 统 主 电 路 实 现 的 是 交 流 .直 流 .交 流
要是由 Z i g b e e来 实现 的 ,并借 助具 有 z i e e 协调 能力 的设备来促使 自身形成一个新 的网络
基于MATLAB的逆变电路设计

《电力电子技术》基于MATLAB的逆变电路设计目录一项目背景及设计要求 (1)1.1项目背景 (1)1.2设计要求 (2)二小组成员任务分工............................................................................................ 错误!未定义书签。
三逆变主电路设计. (2)3.1逆变电路原理及相关概念 (2)3.2逆变电路方案论证及选择 (5)3.3建立三相桥式逆变电路的SIMULINK仿真模型 (6)四正弦脉宽调制原理及控制方法的SIMULINK仿真 (7)4.1 正弦脉冲宽度调制原理 (7)4.2 SPWM波控制方法及SIMULINK仿真 (8)五升压电路的分析论证及仿真 (12)六滤波器设计 (14)七三相桥式逆变电路模型搭建 (15)八心得体会............................................................................................................ 错误!未定义书签。
参考文献.. (17)一项目背景及设计要求1.1项目背景电力电子技术是一门发展历史比较短的学科,但是这项技术在人们的日常生产生活、工作学习中发挥着举足轻重的作用。
电力电子技术自二十世纪50年代以来,发展到现在,已经成为了理论和科学体系都比较完整,并且又相对较独立的科学技术,涉及电子技术、控制技术、计算机技术及微电子技术多门学科,包括了电力电子设备、电力电子器件、电力电子控制等三个方面的内容。
电力电子技术所变换的“电力”功率可大到数百MW甚至GW,也可以小到数w甚至1W以下,和以信息处理为主的信息电子技术不同,电力电子技术主要用于电力变换。
电力电子技术的应用范围十分广泛,它不仅用于一般工业,也广泛用于交通运输、电力系统、通信系统、计算机系统、新能源系统等,在照明、空调等家用电器及其他领域中也有着广泛的应用。
基于matlab下的spwm三相桥式逆变电路

基于MATLAB 下的SPWM 三相桥式逆变电路理论补充:逆变器工作原理:整个实验在三相桥式逆变电路下进行,如下图1,电感电阻性负载,A 、B 、C 相的上下桥臂轮流导通。
当1VT 导通,4VT 截止时,a 点电位位Ud/2;当4VT 导通,1VT 截止时,a 点电位位-Ud/2。
同理可得b 、c 点的电位。
通过控制六个管子的导通时间,达到逆变效果。
图1 实验主电路PWM 是六个VT 管子的触发信号,此信号是通过调制信号(即正弦波)和载波(三角波)的比较得到的,分析1VT 管的通断情况:当正弦波r u 比三角载波c u 大的时候比较器输出1,1VT 导通,否则,比较器输出0,1VT 关断。
同理4VT 导通情况只要与1VT 反相即可。
图2 PWM 波生成原理简图仿真:1.主电路模块搭建:如图3,输入直流电压源大小V U d 250=,输入部分为三相对称电感、电阻性负载,作星形连接,电阻取值大小为Ω=2R ,电感取值mH L 01.0=。
图3 SPWM 三相桥式逆变仿真电路Universal Bridge 元器件说明图4 Universal Bridge 模块和通用桥展开图Universal Bridge 模块的中文名是通用桥模块,它有1个桥臂、2个桥臂和3个桥臂的选择。
它的三个桥臂的展开图如下图4所示,当六列PWM 信号输入通用桥的g 端口时,通用桥会自动分配每一列的信号给每一个管子,控制该管子的开闭。
其输入的顺序是,第一列信号输入到1VT ,第二列信号输入到4VT ,第三列信号输入到3VT ,第四列信号输入到6VT ,第五列信号输入到5VT ,第六列信号输入到2VT 。
2.SPWM 生成模块由图2可知,当调制信号的正弦波r u 大于三角载波c u 时,逆变器输出高电平,否则,输出低电平,可设计如图5触发电路,以A 相电路上下桥臂为例。
图5SPWM中A相的上下桥臂的输入信号图5中用了两个逻辑比较器Relational Operator来比较两列输入波形的大小,Relational Operator的工作原理是,符合图中逻辑关系时,输出1;反之,输出0。
基于SVPWM三相逆变器在MATLAB下的仿真研究.doc

基于SVPWM 三相逆变器在MATLAB 下的仿真研究摘要:介绍了电压空间矢量脉宽调制控制算法的基本概念; 并简要介绍了利用多种实际矢量合成所需电压矢量的方法及具体的实现算法; 最后,利用 Matlab 的 Simulink 工具箱,建立了SVPWM 逆变器的仿真模型,通过仿真波形可知,该算法是正确的,并分析了逆变器输出的交流电压和电流的谐波。
关键词:SVPWM 、Simulink 、三相逆变器0 引 言电压空间矢量脉宽调制( Space Vector PWM,SVPWM) 控制技术,也称作磁链跟踪控制技术,它是从控制交流电动机的角度出发,最终目的是在电动机气隙空间形成旋转磁场,从而产生恒定的电磁转矩。
空间矢量脉宽调制方法依附其优越的性能指标、易于数字化实现等优点,自提出以来就成为研究的热点,不仅可以应用在各种交流电气传动系统中,而且在电力系统功率因数的调节以及各种利用清洁能源发电的分布式发电系统中都有很好的应用前景。
1 SVPWM 逆变器的原理1.1 电压空间矢量电压空间矢量是研究交流电动机三相电压与电动机旋转磁场关系而提出的虚构物理量。
在空间按 120°对称分布的三相电机定子绕组上施加三相对称电压()1)32sin()32sin(sin ⎪⎪⎪⎭⎪⎪⎪⎬⎫+=-==πωπωωt U u t U u t U u m c m b m a在定子绕组中即产生定子电流和磁通。
对单个绕组而言,产生的磁通是脉振的,它仅在固定的绕组轴线位置上有大小和方向的变化,但是在三相绕组的配合作用下,在电机的气隙中就产生了合成的旋转磁场。
电压和电流是时间变量,并没有空间的概念,但是电动机三相绕组产生的旋转磁场是空间和时间的变量,它的大小和空间位置随时间变化,一般以矢量表示。
时空变化的旋转磁场由三相电压产生,为了描述三相电压与电动机旋转磁场的关系,提出了电压空间矢量的概念。
电压空间矢量反映了三相电压综合作用的效果,三相电压与电压空间矢量的关系由 Park 变换来表示:)2()(322401200 j C j B j S e u e u e u u A ++=式中,u s 为电压空间矢量,u A 、u B 、u C 为三相相电压,2/3为变换系数,指数项表示了三相绕组的空间位置。
基于MATLAB的三相桥式电压型逆变电路仿真与分析

基于MATLAB的三相桥式电压型逆变电路仿真与分析作者:周泽蒲彩霞张坤方玮来源:《科学与财富》2018年第32期摘要:如今伴随着分布式电网的迅速发展,并网逆变器作为供电部门与电网连接的核心环节,其研究和使用也愈发的重要,其性能也直接决定了发电系统并网的质量。
本文介绍了一种基于MATLAB软件搭建三相逆变器仿真的实验过程,其中主要包含了对主电路工作原理的分析、控制电路的设计与调整、以及对最终的输出效果的分析。
关键字:MATLAB、三相逆变、SPWM调制、并网0 引言本项目主要利用MATLAB软件中的Simulink元件库和SimPowerSystems元件库中的元件。
设计中,我们能结合自身需求调用其中相应功能的模块或函数,用搭积木的方式,将各模块按要求以框图流程的形式连接起来,构成所需的控制系统模型;然后利用其中的测量与显示等模块便可以测量电路各环节的电路参数[1]。
主要结合电力电子技术、自动控制原理等科目所学知识,设计搭建了一个可实现并网的三相逆变电路模型。
其中主要应用了SPWM脉宽调制技术、PI控制器的实际应用、三相逆变主电路工作原理等重点知识。
1 系统拓扑结构为了满足并网要求主电路选为三相桥式电压型逆变电路;为了实现谐波含量低,相位偏差小等逆变要求选用SPWM脉宽调制技术;为了减小系统的静差达到较好的稳定输出效果选用PI调节器作为反馈环节的信号处理器[2]。
控制电路的设计思路是采用各相对各相,输入期望值相间相位互差120°的方式来进行控制。
即对于A相而言,仅采集其负载支路的相电流来与电网标准的正弦信号相比较得偏差ΔI 信号;对其进一步处理产生两路相位完全互补的PWM触发信号,来控制逆变桥中A相对应的上下两开关管的导通与关断。
B、C作相应处理[3]。
其具体工作流程如图1所示。
其中各环节的参数及工作要求如表1所示:2 系统工作原理主电路换相方式为纵向换流,开关顺序如表2所示。
由于是采用的IGBT全控型器件故其控制方式为脉宽触发的斩控式[2]。
基于MATLAB的三相桥式PWM逆变电路.doc

基于MATLAB的三相桥式PWM逆变电路交流调速系统课程设计题目:三相桥式SPWM逆变器的仿真设计班级:0 姓名:学号:指导老师:目录摘要………………………………………………………………2关键词……………………………………………………………2绪论………………………………………………………………2三相桥式SPWM逆变器的设计内容及要求………………………3SPWM逆变器的工作原理………………………………………3 1 工作原理…………………………………………………5 2 控制方式…………………………………………………6 3 正弦脉宽调制的算法……………………………………9MATlAB仿真设计………………………………………………12硬件实验…………………………………………………………19实验总结…………………………………………………………23附录Matab 简介………………………………………………24参考文献…………………………………………………………24三相桥式SPWM逆变电路设计摘要:随着电力电子技术的飞速发展,正弦波输出变压变频电源已被广泛应用在各个领域中,与此同时对变压变频电源的输出电压波形质量也提出了越来越高的要求。
对逆变器输出波形质量的要求主要包括两个方面:一是稳态精度高;二是动态性能好。
因此,研究开发既简单又具有优良动、静态性能的逆变器控制策略,已成为电力电子领域的研究热点之一。
在现有的正弦波输出变压变频电源产品中,为了得到SPWM波,一般都采用双极性调制技术。
该调制方法的最大缺点是它的6个功率管都工作在较高频率(载波频率),从而产生了较大的开关损耗,开关频率越高,损耗越大。
本实验针对正弦波输出变压变频电源SPWM调制方式及数字化控制策略进行了研究,以SG3525为主控芯片,以期得到一种较理想的调制方法,实现逆变电源变压、变频输出。
关键词:逆变器SPWM逆变器的工作原理正弦脉宽调制的调制算法单极性正弦脉宽调制双极性正弦脉宽调制自然采样法规则采样法双极性正弦波等面积法一、绪论正弦逆变电源作为一种可将直流电能有效地转换为交流电能的电能变换装置被广泛地应用于国民经济生产生活中,其中有:针对计算机等重要负载进行断电保护的交流不间断电源UPS (Uninterruptle Power Supply) ;针对交流异步电动机变频调速控制的变频调速器;针对智能楼宇消防与安防的应急电源EPS ( EmergencePower Supply) ;针对船舶工业用电的岸电电源SPS(Shore Power Supply) ;还有针对风力发电、太阳能发电等而开发的特种逆变电源等等.随着控制理论的发展与电力电子器件的不断革新,特别是以绝缘栅极双极型晶体管IGBT( Insulated Gate Bipolar Transistor)为代表的自关断可控型功率半导体器件出现,大大简化了正弦逆变电源的换相问题,为各种PWM 型逆变控制技术的实现提供了新的实现方法,从而进一步简化了正弦逆变系统的结构与控制.电力电子器件的发展经历了晶闸管(SCR)、可关断- 三相桥式SPWM逆变器的仿真设计班级:0 姓名:学号:指导老师:目录摘要………………………………………………………………2关键词……………………………………………………………2绪论………………………………………………………………2三相桥式SPWM逆变器的设计内容及要求………………………3SPWM逆变器的工作原理………………………………………3 1 工作原理…………………………………………………5 2 控制方式…………………………………………………6 3 正弦脉宽调制的算法……………………………………9MATlAB仿真设计………………………………………………12硬件实验…………………………………………………………19实验总结…………………………………………………………23附录Matab 简介………………………………………………24参考文献…………………………………………………………24三相桥式SPWM逆变电路设计摘要:随着电力电子技术的飞速发展,正弦波输出变压变频电源已被广泛应用在各个领域中,与此同时对变压变频电源的输出电压波形质量也提出了越来越高的要求。
基于Matlab的三相桥式SPWM逆变器建模与仿真

基于Matlab的三相桥式SPWM逆变器建模与仿真柳凌;钱祥忠【期刊名称】《电子设计工程》【年(卷),期】2014(22)14【摘要】对三相桥式逆变电路原理及其SPWM控制原理进行简单的分析,针对开环SPWM电压的不稳定提出一种电压闭环SPWM控制模型。
在Matlab/Simulink软件环境中分别建立了三相SPWM逆变器开环仿真模型和具有电压调节作用的SPWM闭环仿真模型,分别对其进行仿真分析。
仿真结果表明电压闭环SPWM控制比开环SPWM控制具有更好的动静态特性。
得出的结论对三相桥式逆变器的原理的理解、参数的确定、电路的设计有一定的参考价值和指导意义。
%This paper analyzed simply three phase full bridge active inverter principle and the SPWM control theory, to overcome disadvantages of open loop control, a voltage close loop control model is proposed. The three-phase SPWM inverter open loop simulation model and the SPWM voltage close loop control simulation model with the voltage regulating function has been established respectivly in Matlab /Simulink software environment,each of them was analyzed through the simulation. The simulation results show that the voltage close loop control has better dynamic and static characters. the conclusion has some reference value and guiding significance to understand the principle of three-phase bridge inverter ,the determ, ination of parameters,The design of the circuit.【总页数】4页(P139-141,145)【作者】柳凌;钱祥忠【作者单位】温州大学浙江温州 325035;温州大学浙江温州 325035【正文语种】中文【中图分类】TN99【相关文献】1.基于Matlab/Simulink的三相桥式全控电路的建模与仿真 [J], 孟庆波;吉鹏霄2.基于MATLAB三相桥式全控整流电路的仿真 [J], 蔡明学;3.基于MATLAB三相桥式全控整流电路的仿真 [J], 蔡明学;4.基于Matlab/Simulink的三相桥式全控整流电路的仿真研究 [J], 孟卓;柴钰5.三相桥式有源逆变电路的MATLAB建模仿真 [J], 翟羽;翟凯;骆蒙;因版权原因,仅展示原文概要,查看原文内容请购买。
基于MATLAB的脉宽调制(PWM,SPWM,SVPWM)

第1章绪论1.1 脉宽调制技术的研究背景——电气传动的发展随着电力电子技术、微处理器技术的发展以及材料技术尤其是永磁材料技术的进步,电气传动系统,包括交、直流电动机调速及伺服系统,正在向系统高性能、控制数字化、一体化机电的方向发展。
直流传动系统控制简单、调速特性好,一直是调速传动领域中的重要组成部分。
现代的直流传动系统的发展方向是电动机主极永磁化及换向无刷化,而无刷直流电动机正是在这样的趋势下所发展起来的机电一体化电动机系统。
一般意义上的无刷直流电动机(Bruhless DC Motor,BLDCM)是指方波无刷直流电动机,其特征是只需简单的开关位置信号即可通过逆变桥驱动永磁电动机工作。
1975年无刷直流电动机首次出现在NASA报告中。
之后,由于高性能、低成本的第三代永磁材料的出现,以及大功率、全控型功率器件的出现,使无刷直流电动机系统获得了迅速的发展。
1977年,出现了采用钐钻永磁材料的无刷直流电动机。
之后不久,无刷直流电动机系统开始广泛采用高磁能积、高矫顽力、低成本的第三代NdFeB永磁材料,且采用霍尔元件作位置传感器,采用三相全桥驱动方式,以提高输出转矩,使其更加实用。
1986年,H.R.Bolton对方波无刷直流电动机系统进行了全面的总结,这标志着方波无刷直流电动机系统在理论上、驱动控制方法上已基本成熟。
近年来,虽然永磁直流电动机也随着永磁材料技术的发展而得到了性能的提高,依然在直流传动系统中被广泛应用,但直流传动系统已经处于无刷直流电动机大规模普及与应用的阶段。
现代交流传动系统已经由感应电动机为主发展为多机种,尤其是以永磁同步电动机的发展最为显著。
一方面,由感应电动机构成的交流调速系统性能依然不断提高,变压变频(VVVF)技术及矢量控制技术完全成熟。
通过模仿直流电动机中转矩控制的思路,采用坐标变换,把交流感应电动机的定子电流分解成励磁分量和转矩分量,并通过对磁通和转矩的独立控制、使感应电动机获得类似直流电动机的控制特性。
三相SVPWM逆变电路MATLAB仿真

基于电压空间矢量控制的三相逆变器的研究1、SVPWM 逆变电路的基本原理及控制算法图1.1中所示的三相逆变器有6个开关,其中每个桥臂上的开关工作在互补状态, 三相桥臂的上下开关模式得到八个电压矢量,包括6个非零矢量(001)、(010)、(011)、(100)、(101)、(110)和两个零矢量 (000)、(111).图1.-1 三相桥式电压型有源逆变器拓扑结构在平面上绘出不同的开关状态对应的电压矢量,如图1.2所示。
由于逆变器能够产生的电压矢量只有8个,对与任意给定的参考电压矢量,都可以运用这8个已知的参考电压矢量来控制逆变器开关来合成。
3U (011)1(001)5β图1.2 空间电压矢量分区图1.2中,当参考电压矢量在1扇区时,用1扇区对应的三个空间矢量U sv 1、U sv 2、U sv 3来等效参考电压矢量。
若1.2 合成矢量ref U 所处扇区N 的判断三相坐标变换到两相βα-坐标:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡)()()(23- 23 021- 21- 132)()(t t t t t u u u u u co bo ao βα (1.1)根据u α、u β的正负及大小关系就很容易判断参考电压矢量所处的扇区位置。
如表1.1所示。
表1.1 参考电压矢量扇区位置的判断条件可以发现,扇区的位置是与u β、 u u βα-3及u u βα--3的正负有关。
为判断方便,我们设空间电压矢量所在的扇区NN=A+2B+3C (1.2)其中,如果u β >0,那么A=1,否则A=0如果u u βα-3 >0,那么B=1,否则B=0 如果u u βα--3 >0,那么C=1,否则C=01.3 每个扇区中基本矢量作用时间的计算在确定参考电压矢量的扇区位置后,根据伏秒特性等效原理,采用该扇区三个顶点所对应的三个电压空间矢量来逼近参考电压矢量。
以参考电压矢量位于3扇区为例,如图1.3所示,参考电压U ref 与U 4的夹角为γ。
基于MATLAB_SIMULINK三相交流异步电机SPWM控制调速的仿真与研究

基于MATLAB_SIMULINK实现三相交流异步电机SPWM调速控制的仿真与研究课程名称:电气工程课程设计基于MATLAB_SIMULINK三相交流异步电机SPWM控制调速的仿真与研究一.PWM控制的基本原理在采样控制理论中有一个重要的结论:冲量相等而形状不同的窄脉冲在具有惯性的环节上,其效果基本相同。
冲量即指窄脉冲的面积。
这里所说的效果基本相同,是指环节的输出响应波形基本相同。
如果把各输出波形用傅里叶变换分析,则其低频段非常相近,仅在高频段略有差异。
当窄脉冲的形状不同,而它们的面积相等,那么,当它们分别加在具有惯性的同一个环节上时,其输出响应基本相同。
当窄脉冲变为单位冲击函数时,环节的响应即为该环节的脉冲过渡函数。
脉冲越窄,各脉冲响应波形的差异也越小。
如果周期性的施加脉冲,则响应也是周期的,用傅里叶级数分解后将可看出各波形在低频段的特性将非常接近,仅在高频段有所不同。
上述原理即称之为面积等效原理,它是PWM控制技术的重要理论基础。
下面分析如何使用一系列等副不等宽的脉冲来代替一个正弦波。
将正弦半波分成N等份,就可以把正弦半波看成是由N个彼此相连的脉冲序列所组成的波形。
这些脉冲宽度相等,都等于π/N,但幅值不等,且脉冲顶部不是水平直线,而是曲线,各脉冲的幅值按正弦规律变化。
如果把上述脉冲序列利用相同数量的等副而不等宽的矩形脉冲代替,使矩形脉冲的中点和相应正弦波部分的中点重合,且使矩形脉冲和相应的正弦半波部分面积相等,而得到一系列的脉冲序列,即PWM波形。
根据面积等效原理,PWM波形和正弦半波是等效的。
对于正弦半波的负半周,也可以用同样的方法得到PWM波形。
像这种脉冲的宽度按正弦规律变化而和正弦波等效的PWM波形,也称之为SPWM(Sinusoidal PWM)波形。
二.电压型PWM逆变电路及其控制方法本实验采用调制法,即把希望输出的波形(正弦波)作为调制信号,把接受调制的信号作为载波,通过信号波的调制得到所期望的PWM波形。
三相桥式spwm逆变电路的设计及仿真课程设计

院(系):电气工程学院摘要根据三相桥式SPWM逆变电路的工作原理以及特点,采用Simulink中的相关模块建立仿真模型,仿真分析其典型电流、电压波形和工作过程,得到了三相桥式SPWM控制波、负载线电压、负载相电压、负载相电流、负载中性点电压、电源电流波形,解决了三相桥式SPWM逆变电路教学中的难点问题。
利用该模型辅助三相桥式SPWM逆变电路教学,直观生动,交互性强,动态显示传真波形。
论述了单项正弦波逆变器的工作原理,介绍了SG3524的功能及产生SPWM波的方法,对逆变器的控制及保护电路做了详细介绍,给出了输出电压波形的实验结果。
关键词:三相桥式SPWM逆变;Simulink;仿真;波形;目录第1章绪论 (1)第2章课程设计的方案 (2)2.1三相桥式SPWM逆变电路的设计内容及要求........ 错误!未定义书签。
2.2SPWM逆变器的工作原理 ........................ 错误!未定义书签。
第3章 SPWM逆变器的工作原理. (4)3.1工作原理 (4)3.2 控制方式 (5)3.2.1单极性正弦脉宽调制 (5)3.2.2双极性正弦脉宽调制 (6)3.3 正弦脉宽调制的调制算法 (7)3.3.1 自然采样法 (7)3.3.2规则采样法 (7)3.3.3 双极性正弦波等面积法 (7)第四章MATLAB仿真设计 (8)4.1 主电路 (8)4.2 控制电路设计 (9)4.3仿真结果与分析 (10)第五章课程设计总结 (15)参考文献 (16)第1章绪论电力电子技术是跨越电力技术、电子技术和控制技术理论三个领域的一门新兴交叉学科,它主要研究应用了电路领域的各种电力半导体器件及其装置,以实现对电能的变换和控制。
它可以看成是弱电控制强电的技术,是弱电和强电之间的接口。
电力电子技术广泛应用于一般工业、交通运输、电力系统、通信系统、计算机系统、新能源系统等。
该课程已成为电气工程与自动化、自动化、电力系统自动化等电类专业的重要专业基础课。
三相逆变电路MATLAB仿真word精品

三相逆变电路仿真姓名:朱龙胜班级:电气1102 ________学号:11291065 ________日期:2014年6月6日指导老师:郭希铮北京交通大学计算机仿真技术作业六题目:三相逆变电路仿真直流电压53OV :逆变器用Universal Bndge 模块,器件选IGBT ;逆变器输出电压频率 50Hz ;负我用阻感负載,电阻10欧姆,电感5亳亨,三相星接。
驱动信号町用6个Pulse Generator 产生,移相60度 输出电压频率为50Hz1、180°导电模式仿真:驱动信号可用6个Pulse Generator 产生,相互移相60。
;仿真时间0.2s,算法ode23tb, 最人步长限制为0 lmso建立仿真模型如下图所示(1) 记录a 相电压波形:(2) 记录a 柑电流波形; ⑶记录ab 线电压波形;如下图所示⑷用Extra Libi'aiy/Measurements/Founer 模块计於a 相电H (的基波.5次谐波.7次谐波 幅值.并与理论公式对比。
对相电斥进行傅里叶分解得到下式1 1 1 \sin^ + -s ta 5^+-sin7^ + -sinll^+..J»o.n ' JT0・ 二•匕IO08 O(H0 0B0 801 0 130 14Q IB2•T20・ 0 ■ 20 -亠 ___1 ___________ Ix-i111111 1 i 1 1 1 > 1■ — —1 1O 08 O.M0 OB0 0S30.120.140 W Qt8 021 500 - 0 - SOO -11 1 • 1 1[n u n L yi u n LJ n u n1 1 1 1 1 11 11I0B 2 OCO 0.11 • 140 W 01t02对线电压进行傅里叶分解得到卞式2\l3U d ( 1 1 1U an = ------ 1 sill a)t + —sin5o)t +-sin 7cot + —sinllcot + …7i \ 5 7 112U Aa相基波电压幅值:U Q= — = 0.637— = 337.41V na相5次谐波电压幅值:仏5 = * = 67.48V5a7a5y = 48.2V方波逆变器(a= 180°)的特点(1)只能调频,直流电压恒定时不能调压(2)谐波较大(3)直流电压利用率不高2、SPWM三相逆变器仿真:采用离散系统仿真,在命令行窗I I中输入powei'lib,将其中的“powergin”模块拖到仿真界面中,双击并选为离散仿貞模式(discretize electrical model).本题中采样时间口J"设为le-6秒;用Extra Library/discrete control blocks/discrete PWM generator 模块产生PWM 信号,:选择三相桥式电路,载波频率设为1kHz,调制度09 频率50Hz:仿真时间0.1秒即可。
三相无源电压型SPWM逆变器的构建及其MATLAB仿真

三相无源电压型SPWM逆变器的构建及其MATLAB仿真摘要:本文简要介绍了三相无源电压型SPWM输出的逆变器的构建和工作方式及其MATLAB 仿真。
关键词:三相逆变器正弦脉宽调制(SPWM)技术MATLAB仿真Abstract: This paper introduces briefly the construction of 3-phase inverter which output SPWM wave and the MATLAB-based simulation.Key word:Three-phase inverter Sinusoidal Pulse Width Modulation Power electronic technology1逆变器1.1逆变器的概念逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。
相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。
这是与整流相反的变换,因而称为逆变。
[1]1.2逆变器涉及的技术逆变器的构建应用了电力电子学科中的很多关键技术。
电路中电流的可控流通断开的过程中应用了多种可控硅类型的电力电子器件;开关的控制过程应用了基于微处理器的现代控制技术;对于正弦波形的仿制过程应用了正弦波脉宽调制(SPWM)技术等等。
1.3逆变器的分类现代逆变技术的种类很多,可以按照不同的形式进行分类。
其主要的分类方式如下:1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。
2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。
3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。
4)按逆变主开关器件的类型,可分为晶闸管逆变、晶体管逆变、场效应管逆变等等。
5)按输出稳定的参量,可分为电压型逆变和电流型逆变。
6)按输出电压或电流的波形,可分为正弦波输出逆变和非正弦波输出逆变。
基于MATLAB的三相SPWM逆变电路与Dead time 对其影响的仿真

基于MATLAB的三相SPWM逆变电路与Dead time 对其影响的仿真电子信息工程学院通信工程二班顾问 2012214485一、MATLAB与Simulink简介MATLAB程序设计语言是美国MathWorks公司在20世纪80年代中期推出的高性能数值计算软件。
该公司经过三十年的开发、扩充、不断完善与更新换代,MATLAB已经发展成适合多学科切功能特别强、特别全的大型软件。
Simulink是MATLAB的一个附加组件,为用户提供了一个建模与仿真的工作平台。
由于它的许多功能都是必须基于MATLAB环境下运行的,因此也有人将其称之为MATLAB的一个工具箱。
它能够实现动态系统建模与仿真的环境集成,且可以根据设计及使用的要求,对系统进行修改与优化,以提高系统工作的性能,实现高效开发系统的目的。
二、三相SPWM逆变电路三相PWM 逆变器主电路 三相SPWM 逆变电路中,载波信号c u 仍为对称三角波,幅值为cm U ,频率为c f ,调制信号为三相正弦波sa u 、sb u 与sm u ,幅值为sm U ,频率为s f ,对于a 相桥臂,当sa u >c u 时,S1导通S4关断,当sa u <c u 时,S4导通S1关断,b 相和c 相类似。
下图为载波比p=3时的三相SPWM 逆变电路基本波形输出电压的谐波集中分布在s s k np k ωωω)(n c ±=±处,其中n=1,3,5,…时,k=3(2m-1)±1,m=1,2,3,…n=2,4,6,…时,k=6m+1,m=0,1,2,…,或k=6m-1,m=1,2,3,…所以,在载波频率的整数倍处的高次谐波不再存在。
SPWM的谐波分布一组一组集中分布于载波频率的整数倍频率两侧,且在每一组谐波中,随着k的增大,谐波值通常逐渐减小。
三、三相SPWM半桥逆变电路的仿真在仿真在Simpowersystems的“Electrical Sources”库中选择电压源模块,直流电压设置为530V,选择“Universal Bridge”模块,在对话框中选择桥臂数为3,构成三相半桥电路,开关器件选择带反并联二极管的IGBT,三相串联RLC负载模块选择Y型连接,设定额定电压为413V,额定功率为50Hz,有功为1kW,感性无功为500Var,SPWM控制信号由Simpowersystems中的“Discrete PWM Generator”产生,选择三桥臂六脉冲模式。
基于Matlab的三电平逆变器SVPWM算法设计

3
V=
2 (Va + αVb + α 2Vc )(α = e j 2π 3 ) 3
这一思想也可以用来分析三相逆变器供电时异步电机气隙中磁通矢量的运行轨迹。设 此时逆变器输出端电压为 Vao , Vbo , Vco ,电机上的相电压为 VaN , VbN , VcN ,电机中性点 对逆变器参考点电压为 VNo ,也就是零序电压。这里 N 为电机中性点,o 为逆变器直流侧零 电位参考点,此时,前述电机的定子电压空间矢量为 Vs = 2 2 (VaN + αVbN + α 2VcN ) = (Vao + αVbo + α 2Vco ) = Vsα + jVsβ 3 3
其中, S x = 1 ,第 x 相输出电平 p; S x = 0 ,第 x 相输出电平 o,这里 x 为 a、b 或 c; , 第 x 相输出电平 n。 因此,三相三电平逆变器就可以输出 33 = 27 种电压状态组合,对应 27 组不同的逆变 器开关状态。此时,仍定义电压空间矢量为 V 1 V (k ) = Vdc ( Sa + α Sb + α 2 Sc ) = dc [(2 Sa − Sb − Sc ) + j 3( Sb − Sc )] 3 6 则在 α − β 平面上,三电平逆变器 27 组开关状态所对应的空间矢量如图 2-1 所示。图 中标出了不同开关状态组合和空间矢量的对应关系,如其中 pon 表示 a、b、c 三相输出对 应的开关状态为正、零、负。另外可以看出,同一电压矢量可以对应不同的开关状态,越 往内层,对应的冗余开关状态越多。从最外层的六边形向里每进一层,矢量对应的开关状 态冗余度增加 1,例如最外层的长矢量及中矢量冗余度为 1,即只有一个对应的开关状态; 短矢量的冗余度为 2,最里层的零矢量的冗余度为 3。因此, α − β 平面上的 27 组开关状 态实际上只对应着 19 个空间矢量,这些矢量被称为三电平逆变器的基本空间矢量,简称
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于MATLAB 下的SPWM 三相桥式逆变电路
理论补充:
逆变器工作原理:整个实验在三相桥式逆变电路下进行,如下图1,电感电阻性负载,A 、B 、C 相的上下桥臂轮流导通。
当1VT 导通,4VT 截止时,a 点电位
位Ud/2;当4VT 导通,1VT 截止时,a 点电位位-Ud/2。
同理可得b 、c 点的电位。
通过控制六个管子的导通时间,达到逆变效果。
图1 实验主电路
PWM 是六个VT 管子的触发信号,此信号是通过调制信号(即正弦波)和载波(三角波)的比较得到的,分析1VT 管的通断情况:当正弦波r u 比三角载波c u 大的时候比较器输出1,1VT 导通,否则,比较器输出0,1VT 关断。
同理4VT 导通情况只要与1VT 反相即可。
图2 PWM 波生成原理简图
仿真:
1.主电路模块搭建:
如图3,输入直流电压源大小V U d 250
=,输入部分为三相对称电感、电阻性负载,作星形连接,电阻取值大小为Ω=2R ,电感取值mH L 01.0=。
图3 SPWM 三相桥式逆变仿真电路
Universal Bridge 元器件说明
图4 Universal Bridge 模块和通用桥展开图
Universal Bridge 模块的中文名是通用桥模块,它有1个桥臂、2个桥臂和3个桥臂的选择。
它的三个桥臂的展开图如下图4所示,当六列PWM 信号输入通用桥的g 端口时,通用桥会自动分配每一列的信号给每一个管子,控制该管子的开闭。
其输入的顺序是,第一列信号输入到1VT ,第二列信号输入到4VT ,第三列信号输入到3VT ,第四列信号输入到6VT ,第五列信号输入到5VT ,第六列信号输
入到2VT 。
2.SPWM 生成模块
由图2可知,当调制信号的正弦波r u 大于三角载波c u 时,逆变器输出高电平,否则,输出低电平,可设计如图5触发电路,以A 相电路上下桥臂为例。
图5SPWM中A相的上下桥臂的输入信号
图5中用了两个逻辑比较器Relational Operator来比较两列输入波形的大小,Relational Operator的工作原理是,符合图中逻辑关系时,输出1;反之,输出0。
当调制比为0.8,载波比为12,仿真时间为s
.
0时,有以下输出波形,如
04
图6,第一栏为输入的调制波和载波信号,第二栏为A相电路上桥臂开关信号,第三栏为A相电路下桥臂开关信号,与上桥臂反相。
同时可以看到,当调制波比三角载波大时上桥臂的开关信号为1,开关管导通,当调制波比三角载波小时上桥臂的开关信号为0,开关管关闭,上下桥臂交替导通,形成逆变。
图6 M=0.8,C=12时A相上下桥臂的开关信号整个仿真电路如图7,左边的三个模块是SPWM的生成模块,六列信号输入到通用桥中,控制通用桥内管子的导通顺序。
主电路电感为0.02H,电阻为2 。
图7完整电路仿真图
参数的设置
A相正弦模块设置,幅值为0.8,频率为100*pi,初相位为0.
图8 A相正弦模块
同样B、C相只需要设置初相位时有个120°的差值就可以了,注意,在MATLAB中要把120°转换为弧度输入,即为pi/3。
载波设置,三角模块是一个时间值对应一个幅值的大小的,至于载波频率是多少,根据实验需要,读者可以自己改。
图9三角载波设置
万用表参数设置
三个万用表参数设置如下(可拉大看),第一个测的是负载相电压,第二个和第三个测的都是相电流,第二个是把电流分别用示波器展开看,第三个是把三个电流在同一示波器下显示。
图10 万用表的参数设置
仿真结果
仿真时调整算法为ode45,仿真步长为可变步长,最大步为1e-5,最小步为1e-6,仿真时间为0.08s 。
如下图11所示。
图11 算法参数设置
为了便于分析,本论文的仿真结果均经过顺序调整,使得第一个图均为初相位为0的正弦波形。
图12 相电压an U 、bn U 、cn U 波形图
图13三相电流波形图
图14三相电流波形在同一坐标下显示图
分析所得到的相电压波形有正弦的趋势,但谐波含量还是比较高,这时因为没有滤波电路的缘故。
仿真结果达到预期效果。