数列的概念单元测试题(一) 百度文库

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、数列的概念选择题

1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .174

B .184

C .188

D .160

2.已知数列{}n a 满足: 12a =,11

1n n

a a +=-,设数列{}n a 的前n 项和为n S ,则2017S =( ) A .1007

B .1008

C .1009.5

D .1010

3.已知数列{}n a 的前n 项和2

23n S n n =-,则10a =( )

A .35

B .40

C .45

D .50

4.已知数列{}n a 的前n 项和为n S ,且2

1n S n n =++,则{}n a 的通项公式是( )

A .2n a n =

B .3,1

2,2

n n a n n =⎧=⎨

≥⎩ C .21n a n =+

D .3n a n =

5.在数列{}n a 中,11a =,对于任意自然数n ,都有12n

n n a a n +=+⋅,则15a =( )

A .151422⋅+

B .141322⋅+

C .151423⋅+

D .151323⋅+

6.已知数列{}n a 的前n 项和为n S ,且满足1221,1n n a a S a +===-,则下列命题错误的是

A .21n n n a a a ++=+

B .13599100a a a a a ++++=

C .2499a a a a ++

+=

D .12398100100S S S S S +++

+=-

7.已知等差数列{}n a 中,13920a a a ++=,则574a a -=( ) A .30

B .20

C .40

D .50

8.数列{}n a 的前n 项和记为n S ,()

*

11N ,2n n n a a a n n ++=-∈≥,12018a =,

22017a =,则100S =( )

A .2016

B .2017

C .2018

D .2019

9.已知数列{}n a 满足1221n n n a a a ++=+,n *∈N ,若11

02

a <<,则( ) A .8972a a a +< B .91082a a a +> C .6978a a a a +>+

D .71089a a a a +>+

10.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数

之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )

(注:()()

22221211236

n n n n ++++++=

A .1624

B .1198

C .1024

D .1560

11.已知数列{}n a 满足12n n a a n +=+,且133a =,则n

a n

的最小值为( ) A .21

B .10

C .

212 D .

172

12.若数列{a n }满足1112,1n

n n

a a a a ++==-,则2020a 的值为( ) A .2

B .-3

C .12

-

D .

13

13.已知数列{}n a 的前n 项和2n S n n =+,则4a 的值为( ) A .4

B .6

C .8

D .10

14.已知数列{}n a 满足:11a =,145n n a a +=+,则n a =( ) A .8523

3n

⨯- B .1

852

3

3n -⨯- C .8543

3

n

⨯-

D .1

854

3

3

n -⨯- 15.正整数的排列规则如图所示,其中排在第i 行第j 列的数记为,i j a ,例如4,39a =,则

645a ,等于( )

123

456

78910

A .2019

B .2020

C .2021

D .2022

16.历史上数列的发展,折射出很多有价值的数学思想方法,对时代的进步起了重要的作用,比如意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233……即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2),(

)*

3n n N

≥∈,,此数列在现代物理及化学等领域有着广泛的应用,

若此数列被4整除后的余数构成一个新数列{}n b ,则b 2020=( ) A .3

B .2

C .1

D .0

17.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开

相关文档
最新文档