数列的概念单元测试题(一) 百度文库
(完整版)数列单元测试卷含答案
![(完整版)数列单元测试卷含答案](https://img.taocdn.com/s3/m/a4251000daef5ef7bb0d3c6c.png)
数列单元测试卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.2.答题前,考生务必将自己的姓名、准考证号等信息填涂在答卷相应位置.第Ⅰ卷(选择题)一.选择题:本大题共12小题,每小题5分,共60分。
每小题给出的四个选项中,只有一项是符合题目要求的.1.数列3,5,9,17,33,…的通项公式a n等于( )A.2n B.2n+1 C.2n-1 D.2n+12.下列四个数列中,既是无穷数列又是递增数列的是( )A.1,12,13,14,…B.-1,2,-3,4,…C.-1,-12,-14,-18,…D.1,2,3,…,n3..记等差数列的前n项和为S n,若a1=1/2,S4=20,则该数列的公差d=________.( ) A.2 B.3 C.6 D.74.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为( )A.49 B.50 C.51 D.525.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是( )A.90 B.100 C.145 D.1906.公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则a5=( )A.1 B.2 C.4 D.87.等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根B.有两个相等实根 C .有两个不等实根 D .不能确定有无实根8.已知数列{a n }中,a 3=2,a 7=1,又数列⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于( ) A .0 B.12 C.23 D .-19.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( )A .第5项 B.第12项 C .第13项 D .第6项10.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则A .1 033 B.1 034 C .2 057 D .2 05811.设n S 为等差数列{}n a 的前n 项和,且28,171==S a .记[]n n a b lg =,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]199lg =.则b 11的值为( ) A.11 B.1 C. 约等于1 D.212.我们把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如下图所示:则第七个三角形数是( )A .27 B.28 C .29 D .30第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N *),则前8项的和S 8=________(用数字作答).14.数列{a n }满足a 1=1,a n =a n -1+n (n ≥2),则a 5=________.15.已知数列{a n }的前n 项和S n =-2n 2+n +2.则{a n }的通项公式a n =________16.在等差数列{a n }中,其前n 项的和为S n ,且S 6<S 7,S 7>S 8,有下列四个命题: ①此数列的公差d <0; ②S 9一定小于S 6; ③a 7是各项中最大的一项; ④S 7一定是S n 中的最大项.其中正确的命题是________.(填入所有正确命题的序号)三.解答题(共70分,解答应写出必要的文字说明、证明过程或演算步骤)17.(12分) (1) (全国卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,求S n(2) 已知{b n }是各项都是正数的等比数列,若b 1=1,且b 2,12b 3,2b 1成等差数列,求数列{b n }的通项公式.18.(12分)等比数列{a n }中,已知a 1=2,a 4=16,(1)求数列{a n }的通项公式; (2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .19. (12分)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前10项和.20.(12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,c n =a n -1.(1)求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.21.(12分)(全国卷)设数列{}n a 满足+3+…+(2n -1) =2n ,.(1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.22.(12分)数列{a n }满足a 1=1,a n +1=2n +1a na n +2n(n ∈N *).(1)证明:数列{2na n}是等差数列;(2)求数列{a n }的通项公式a n ;(3)设b n =n (n +1)a n ,求数列{b n }的前n 项和S n .数列单元测试卷(解答)一、选择题(共12小题,每小题5分,共60分)1.数列3,5,9,17,33,…的通项公式a n等于( )A.2n B.2n+1 C.2n-1 D.2n+1解析:选B 由于3=2+1,5=22+1,9=23+1,…,所以通项公式是a n=2n+1,故选B. 2.下列四个数列中,既是无穷数列又是递增数列的是( )A.1,12,13,14,…B.-1,2,-3,4,…C.-1,-12,-14,-18,…D.1,2,3,…,n解析:选C A为递减数列,B为摆动数列,D为有穷数列.3.记等差数列的前n项和为S n,若a1=1/2,S4=20,则该数列的公差d=________.( ) A.2 B.3 C.6 D.7解析:选B S4-S2=a3+a4=20-4=16,∴a3+a4-S2=(a3-a1)+(a4-a2)=4d=16-4=12,∴d=3.4.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为( )A.49 B.50 C.51 D.52解析:选D ∵2a n+1-2a n=1,∴a n+1-a n=12,∴数列{a n}是首项a1=2,公差d=12的等差数列,∴a101=2+12(101-1)=52.5.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是( )A.90 B.100 C.145 D.190解析:选B 设公差为d , ∴(1+d )2=1×(1+4d ), ∵d ≠0,∴d =2,从而S 10=100.6.公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则a 5=( ) A .1 B.2 C .4 D .8解析:选A 因为a 3a 11=a 27,又数列{a n }的各项都是正数,所以解得a 7=4,由a 7=a 5·22=4a 5,求得a 5=1.7.等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根B.有两个相等实根 C .有两个不等实根D .不能确定有无实根解析:选A 由于a 4+a 6=a 2+a 8=2a 5,即3a 5=9, ∴a 5=3,方程为x 2+6x +10=0,无实数解.8.已知数列{a n }中,a 3=2,a 7=1,又数列⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于( ) A .0 B.12 C.23 D .-1解析:选B 设数列{b n }的通项b n =11+a n ,因{b n }为等差数列,b 3=11+a 3=13,b 7=11+a 7=12,公差d =b 7-b 34=124, ∴b 11=b 3+(11-3)d =13+8×124=23,即得1+a 11=32,a 11=12.9.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( )A .第5项 B.第12项 C .第13项 D .第6项解析:选C 162是数列{a n }的第5项,则它是新数列{b n }的第5+(5-1)×2=13项.10.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则A .1 033 B.1 034 C .2 057 D .2 058 解析:选A 由已知可得a n =n +1,b n =2n -1,于是ab n =b n +1, 因此(b 1+1)+(b 2+1)+…+(b 10+1)=b 1+b 2+…+b 10+10=20+21+…+29+10 =1-2101-2+10=1 033.11.设n S 为等差数列{}n a 的前n 项和,且28,171==S a .记[]n n a b lg =,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]199lg =.则b 11的值为( ) A.11 B.1 C. 约等于1 D.2解析:设{}n a 的公差为d ,据已知有1×72128d +=, 解得 1.d =所以{}n a 的通项公式为.n a n = b 11=[lg11 ]=112.我们把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如下图所示:则第七个三角形数是( )A .27 B.28 C .29 D .30解析:选 B 法一:∵a 1=1,a 2=3,a 3=6,a 4=10,a 5=15,a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,∴a 6-a 5=6,a 6=21,a 7-a 6=7,a 7=28. 法二:由图可知第n 个三角形数为n n +12,∴a 7=7×82=28.二、填空题(共4小题,每小题5分,共20分)13.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N *),则前8项的和S 8=________(用数字作答). 解析:由a 1=1,a n +1=2a n (n ∈N *)知{a n }是以1为首项,以2为公比的等比数列,由通项公式及前n 项和公式知S 8=a 11-q 81-q =1·1-281-2=255.答案: 25514.数列{a n }满足a 1=1,a n =a n -1+n (n ≥2),则a 5=________.解析:由a n =a n -1+n (n ≥2),得a n -a n -1=n .则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,把各式相加,得a 5-a 1=2+3+4+5=14,∴a 5=14+a 1=14+1=15. 答案:1515.已知数列{a n }的前n 项和S n =-2n 2+n +2. 则{a n }的通项公式a n =________ [解] ∵S n =-2n 2+n +2,当n ≥2时,S n -1=-2(n -1)2+(n -1)+2 =-2n 2+5n -1, ∴a n =S n -S n -1=(-2n 2+n +2)-(-2n 2+5n -1) =-4n +3.又a 1=S 1=1,不满足a n =-4n +3, ∴数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧1,n =1,-4n +3,n ≥2.16.在等差数列{a n }中,其前n 项的和为S n ,且S 6<S 7,S 7>S 8,有下列四个命题: ①此数列的公差d <0; ②S 9一定小于S 6; ③a 7是各项中最大的一项; ④S 7一定是S n 中的最大项.其中正确的命题是________.(填入所有正确命题的序号) 解析:∵S 7>S 6,即S 6<S 6+a 7, ∴a 7>0.同理可知a 8<0. ∴d =a 8-a 7<0.又∵S 9-S 6=a 7+a 8+a 9=3a 8<0, ∴S 9<S 6.∵数列{a n }为递减数列,且a 7>0,a 8<0, ∴可知S 7为S n 中的最大项. 答案:①②④三、解答题(共4小题,共50分)17.(12分) (1) (全国卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,求S n(2) 已知{b n }是各项都是正数的等比数列,若b 1=1,且b 2,12b 3,2b 1成等差数列,求数列{b n }的通项公式.解: (1)设等差数列首项为a 1,公差为d, 则a 4+a 5=2a 1+7d=24,① S 6=6a 1+d=6a 1+15d=48,②由①②得d=4.a 1=-2S N =-2n+n(n-1) ×4/2=2n 2-4n(2)由题意可设公比为q ,则q >0,由b 1=1,且b 2,12b 3,2b 1成等差数列得b 3=b 2+2b 1,∴q 2=2+q ,解得q =2或q =-1(舍去), 故数列{b n }的通项公式为b n =1×2n -1=2n -1.18.(12分)等比数列{a n }中,已知a 1=2,a 4=16,(1)求数列{a n }的通项公式; (2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解:(1)设{a n }的公比为q ,由已知得16=2q 3,解得q =2, ∴a n =2n.(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32. 设{b n }的公差为d ,则有⎩⎪⎨⎪⎧b 1+2d =8, b 1+4d =32,解得⎩⎪⎨⎪⎧b 1=-16,d =12.从b n =-16+12(n -1)=12n -28, 所以数列{b n }的前n 项和S n =n -16+12n -282=6n 2-22n .19. (12分)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前10项和. 解:(1)设等差数列{a n }的公差为d, 则a 2=a 1+d,a 3=a 1+2d, 由题意得解得或所以由等差数列通项公式可得a n =2-3(n-1)=-3n+5,或a n =-4+3(n-1)=3n-7. 故a n =-3n+5,或a n =3n-7.(2)当a n =-3n+5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n-7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件. 故|a n |=|3n-7|=记数列{|a n |}的前n 项和为S n . S 10=|a 1|+|a 2|+|a 3|+|a 4|+……+|a 10|=4+1+(3×3-7)+(3×4-7)+……+(3×10-7) =5+[2×8+8×7×3/2] =10520.(12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,c n =a n -1.(1)求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.解:(1)证明:∵a 1=S 1,a n +S n =n ①,∴a 1+S 1=1,得a 1=12. 又a n +1+S n +1=n +1②,①②两式相减得2(a n +1-1)=a n -1,即a n +1-1a n -1=12,也即c n +1c n =12, 故数列{c n }是等比数列. (2)∵c 1=a 1-1=-12, ∴c n =-12n ,a n =c n +1=1-12n , a n -1=1-12n -1.故当n ≥2时,b n =a n -a n -1=12n -1-12n =12n . 又b 1=a 1=12, 所以b n =12n . 21.(12分)(全国卷)设数列{}n a 满足+3+…+(2n -1) =2n ,. (1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和. 解:(1)因为+3+…+(2n -1)=2n ,故当n ≥2时, +3+…+(-3) =2(n -1) 两式相减得(2n -1)=2所以= (n≥2)又因题设可得 =2.从而{} 的通项公式为 =.(2)记 {}的前n 项和为 ,由(1)知 = = - . 则 = - + - +…+ - = .22.(12分)数列{a n }满足a 1=1,a n +1=2n +1a n a n +2n (n ∈N *). (1)证明:数列{2n a n}是等差数列; (2)求数列{a n }的通项公式a n ;(3)设b n =n (n +1)a n ,求数列{b n }的前n 项和S n . 解:(1)证明:由已知可得a n +12n +1=a na n +2n , 即2n +1a n +1=2n a n+1,即2n +1a n +1-2na n =1. ∴数列{2n a n}是公差为1的等差数列. (2)由(1)知2na n =2a 1+(n -1)×1=n +1, ∴a n =2nn +1. (3)由(2)知b n =n ·2n . S n =1·2+2·22+3·23+…+n ·2n , 2S n =1·22+2·23+…+(n -1)·2n +n ·2n +1, 相减得-S n =2+22+23+…+2n -n ·2n +1 =21-2n 1-2-n ·2n +1 =2n +1-2-n ·2n +1,∴S n =(n -1)·2n +1+2.。
数列单元测试卷含答案
![数列单元测试卷含答案](https://img.taocdn.com/s3/m/ea3171017f21af45b307e87101f69e314332fa8e.png)
数列单元测试卷含答案一、选择题1.设等比数列{an}的公比q=2,前n项和为Sn,则S15-S7等于()A. 2^7(S8-S0)B. 2^8(S8-S0)C. 27D. 2(S15-S7)2.已知数列{an}的通项公式an=n^2-3n-4,则a4等于()A. 1B. 2C. 3D. 03.一个等差数列的第5项等于10,前3项的和等于3,那么它的公差是()A. -2B. 2C. -3D. 34.设数列{an}是等差数列,a2=-6,a8=6,Sn是数列{an}的前n项和,则()A. S4<S5B. S4=S5C. S4<S6D. S5=S65.等比数列{an}是递减数列,前n项的积为Tn,若T13/T9=4,则a8*a15等于()A. ±2B. ±4C. 2D. 4二、填空题6.已知等差数列{an}的公差d≠0,且a1,a3,a9成等比数列,则d/a1的值是______。
7.设等比数列{an}的前n项和为Sn,若a2*a4=a3^2=-6,则当Sn取得最大值时,n=______。
8.古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:他们研究过1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称1,4,9,16,…这样的数为正方形数。
下列数中既是三角形数又是正方形数的是()A. 289B. 1024C. 1225D. 1378三、解答题9.已知{an}是一个等差数列,且a2=1,a5=-5。
(1)求{an}的通项公式;(2)求{an}的前n项和的最大值。
10.甲、乙两物体分别从相距70m的两处同时相向运动。
甲第1分钟走2m,以后每分钟比前1分钟多走1m,乙每分钟走5m。
(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1m,乙继续每分钟走5m,那么开始运动几分钟后第二次相遇?答案一、选择题1.B;根据等比数列的性质,有S15-S7=a8+a9+...+a15=q7(S8-S0),故选B。
数列单元测试题及答案解析
![数列单元测试题及答案解析](https://img.taocdn.com/s3/m/1260c13859fafab069dc5022aaea998fcc224085.png)
数列单元测试题及答案解析一、选择题1. 已知等差数列的首项为a1=3,公差为d=2,求第10项的值。
A. 23B. 25C. 27D. 292. 等比数列的首项为a1=2,公比为r=3,求第5项的值。
A. 162B. 243B. 324D. 4863. 一个数列的前5项为1, 3, 6, 10, 15,这个数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法判断二、填空题4. 等差数列的前n项和公式为:S_n = _______。
5. 等比数列的前n项和公式为:S_n = _______。
三、解答题6. 已知等差数列的前10项和为S10=185,求公差d。
7. 已知等比数列的前3项和为S3=28,首项a1=2,求公比r。
四、证明题8. 证明:等差数列中,任意两项的等差中项等于它们的算术平均数。
答案解析:一、选择题1. 答案:A。
解析:根据等差数列的通项公式an = a1 + (n-1)d,代入n=10,得a10 = 3 + 9*2 = 21。
2. 答案:B。
解析:根据等比数列的通项公式an = a1 * r^(n-1),代入n=5,得a5 = 2 * 3^4 = 243。
3. 答案:C。
解析:数列1, 3, 6, 10, 15不是等差也不是等比数列,因为相邻两项的差和比值都不是常数。
二、填空题4. 答案:S_n = n/2 * (2a1 + (n-1)d)。
解析:等差数列前n项和的公式。
5. 答案:S_n = a1 * (1 - r^n) / (1 - r),当r≠1时。
解析:等比数列前n项和的公式。
三、解答题6. 解:根据等差数列前n项和的公式,S10 = 10/2 * (2*3 + 9d) = 185,解得d = 3。
7. 解:根据等比数列前n项和的公式,S3 = a1 * (1 - r^3) / (1 - r) = 28,代入a1=2,解得r = 3。
四、证明题8. 证明:设等差数列中任意两项为an和am,它们的等差中项为a,即a = (an + am) / 2。
江西省高安市高安中学数列的概念单元测试题(一)百度文库
![江西省高安市高安中学数列的概念单元测试题(一)百度文库](https://img.taocdn.com/s3/m/cbb9cfd6fc4ffe473268ab99.png)
一、数列的概念选择题1.已知定义在R 上的函数()f x 是奇函数,且满足3()(),(1)32f x f x f -=-=,数列{}n a 满足11a =,且21n nS a n n=-,(n S 为{}n a 的前n 项和,*)n N ∈,则56()()f a f a +=( )A .1B .3C .-3D .02.数列{}n a 满足 112a =,111n n a a +=-,则2018a 等于( )A .12B .-1C .2D .33.在数列{}n a 中,114a =-,111(1)n n a n a -=->,则2019a 的值为( ) A .45B .14-C .5D .以上都不对4.数列{}n a 中,12a =,121n n a a +=-,则10a =( ) A .511B .513C .1025D .10245.已知数列{}n a 中,11a =,122nn n a a a +=+,则5a 等于( ) A .25B .13 C .23D .126.已知数列{a n }满足112,0,2121, 1.2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若a 1=35,则a 2019 = ( )A .15B .25C .35D .457.已知数列{}n a 的前n 项和为n S ,若*1n S n N n=∈,,则2a =( ) A .12-B .16-C .16D .128.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则20202018a a 等于( ) A .4×20162-1B .4×20172-1C .4×20182-1D .4×201829.在数列{}n a 中,11a =,20192019a =,且*n N ∈都有122n n n a a a ++≥+,则下列结论正确的是( )A .存在正整数0N ,当0n N >时,都有n a n ≤.B .存在正整数0N ,当0n N >时,都有n a n ≥.C .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≤.D .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≥.10.已知lg3≈0.477,[x ]表示不大于x 的最大整数.设S n 为数列{a n }的前n 项和,a 1=2且S n +1=3S n -2n +2,则[lg(a 100-1)]=( ) A .45B .46C .47D .4811.数列{}n a 前n 项和为n S ,若21n n S a =+,则72019a S +的值为( ) A .2B .1C .0D .1-12.大衍数列,来源于《乾坤普》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两翼数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,……则此数列的第40项为( ). A .648B .722C .800D .88213.已知数列{}n a 满足2122111,16,2n n n a a a a a ++===则数列{}n a 的最大项为( ) A .92B .102C .8182D .11214.设数列{}n a 的通项公式为2n n a n+=,要使它的前n 项的乘积大于36,则n 的最小值为( ) A .6B .7C .8D .915.历史上数列的发展,折射出很多有价值的数学思想方法,对时代的进步起了重要的作用,比如意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233……即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2),()*3n n N≥∈,,此数列在现代物理及化学等领域有着广泛的应用,若此数列被4整除后的余数构成一个新数列{}n b ,则b 2020=( ) A .3B .2C .1D .016.下列命题中错误的是( ) A .()()21f n n n N+=-∈是数列的一个通项公式B .数列通项公式是一个函数关系式C .任何一个数列中的项都可以用通项公式来表示D .数列中有无穷多项的数列叫作无穷数列 17.数列{}n a 满足:12a =,111nn na a a ++=-()*n N ∈其前n 项积为n T ,则2018T =( )A .6-B .16-C .16D .618.在数列{}n a 中,11a =,()*122,21n n a n n N a -=≥∈-,则3a =( )A .6B .2C .23D .21119.已知数列{}n a 的前n 项和为n S ,已知13n n S +=,则34a a +=( )A .81B .243C .324D .21620.已知在数列{}n a 中,112,1n n na a a n +==+,则2020a 的值为( ) A .12020B .12019C .11010D .11009二、多选题21.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n n F n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()n nF n ⎡⎤⎥=-⎥⎝⎭⎝⎭⎦ D .()1122n n F n ⎡⎤⎛⎛⎥=+ ⎥⎝⎭⎝⎭⎦22.已知S n 是等差数列{}n a (n ∈N *)的前n 项和,且S 5>S 6>S 4,以下有四个命题,其中正确的有( )A .数列{}n a 的公差d <0B .数列{}n a 中S n 的最大项为S 10C .S 10>0D .S 11>023.设等差数列{}n a 的前n 项和为n S .若30S =,46a =,则( ) A .23n S n n =- B .2392-=n n nSC .36n a n =-D .2n a n =24.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )A .若100S =,则50a >,60a <;B .若412S S =,则使0n S >的最大的n 为15;C .若150S >,160S <,则{}n S 中7S 最大;D .若89S S <,则78S S <.25.记n S 为等差数列{}n a 前n 项和,若81535a a = 且10a >,则下列关于数列的描述正确的是( ) A .2490a a += B .数列{}n S 中最大值的项是25S C .公差0d >D .数列{}na 也是等差数列26.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减 B .数列{}n a 有最大值 C .数列{}n S 单调递减D .数列{}n S 有最大值27.设{}n a 是等差数列,n S 是其前n 项和,且56678,S S S S S <=>,则下列结论正确的是( ) A .0d < B .70a =C .95S S >D .67n S S S 与均为的最大值28.已知等差数列{}n a 的前n 项和为n S ()*n N ∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A .2d =-B .120a =-C .当且仅当10n =时,n S 取最大值D .当0nS <时,n 的最小值为2229.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a >B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列C .0n S <时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项30.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题中正确的有( )A .若100S =,则280S S +=;B .若412S S =,则使0n S >的最大的n 为15C .若150S >,160S <,则{}n S 中8S 最大D .若78S S <,则89S S <31.下面是关于公差0d >的等差数列{}n a 的四个命题,其中的真命题为( ).A .数列{}n a 是递增数列B .数列{}n na 是递增数列C .数列{}na n是递增数列 D .数列{}3n a nd +是递增数列32.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为2133.无穷数列{}n a 的前n 项和2n S an bn c =++,其中a ,b ,c 为实数,则( )A .{}n a 可能为等差数列B .{}n a 可能为等比数列C .{}n a 中一定存在连续三项构成等差数列D .{}n a 中一定存在连续三项构成等比数列34.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .2437d -<<- C .S n <0时,n 的最小值为13 D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项 35.已知{}n a 为等差数列,其前n 项和为n S ,且13623a a S +=,则以下结论正确的是( ). A .10a =0B .10S 最小C .712S S =D .190S =【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.C 解析:C 【分析】判断出()f x 的周期,求得{}n a 的通项公式,由此求得56()()f a f a +.【详解】依题意定义在R 上的函数()f x 是奇函数,且满足3()()2f x f x -=, 所以()333332222f x f x f x fx ⎛⎫⎛⎫⎛⎫⎛⎫+=---=--=-+ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()()()32f x f x f x ⎛⎫=---=--= ⎪⎝⎭,所以()f x 是周期为3的周期函数.由21n n S a n n=-得2n n S a n =-①, 当1n =时,11a =,当2n ≥时,()1121n n S a n --=--②,①-②得11221,21n n n n n a a a a a --=--=+(2n ≥),所以21324354213,217,2115,2131a a a a a a a a =+==+==+==+=,652163a a =+=.所以56()()f a f a +=()()()()()()()316331013211013f f f f f f f +=⨯++⨯=+=--=-故选:C 【点睛】如果一个函数既是奇函数,图象又关于()0x a a =≠对称,则这个函数是周期函数,且周期为4a .2.B解析:B 【分析】先通过列举找到数列的周期,再求2018a . 【详解】n=1时,234511121,1(1)2,1,121,22a a a a =-=-=--==-==-=- 所以数列的周期是3,所以2018(36722)21a a a ⨯+===-. 故选:B 【点睛】本题主要考查数列的递推公式和数列的周期,意在考查学生对这些知识的掌握水平和分析推理能力.3.A解析:A 【分析】根据递推式可得{}n a 为一个周期为3的数列,求{}n a 中一个周期内的项,利用周期性即可求2019a 的值 【详解】由114a =-,111(1)n n a n a -=->知 21115a a =-= 321415a a =-= 4131114a a a =-=-= 故数列{}n a 是周期为3的数列,而2019可被3整除 ∴2019345a a == 故选:A 【点睛】本题主要考查递推数列,考查数列的周期性,考查合情推理,属于基础题4.B解析:B 【分析】根据递推公式构造等比数列{}1n a -,求解出{}n a 的通项公式即可求解出10a 的值. 【详解】因为121n n a a +=-,所以121n n a a +=-,所以()1121n n a a +-=-, 所以1121n n a a +-=-且1110a -=≠, 所以{}1n a -是首项为1,公比为2的等比数列,所以112n n a --=,所以121n n a -=+,所以91021513a =+=,故选:B. 【点睛】本题考查利用递推公式求解数列通项公式,难度一般.对于求解满足()11,0,0n n a pa q p p q +=+≠≠≠的数列{}n a 的通项公式,可以采用构造等比数列的方法进行求解.5.B解析:B 【分析】根据数列{}n a 的递推公式逐项可计算出5a 的值.【详解】在数列{}n a 中,11a =,122n n n a a a +=+,则12122122123a a a ⨯===++,2322221322223a a a ⨯===++, 3431222212522a a a ⨯===++,4542221522325a a a ⨯===++. 故选:B. 【点睛】本题考查利用递推公式写出数列中的项,考查计算能力,属于基础题.6.B解析:B 【分析】根据数列的递推公式,得到数列的取值具备周期性,即可得到结论. 【详解】∵112,02121,12n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩,又∵a 135=,∴a 2=2a 1﹣1=235⨯-115=,a 3=2a 225=, a 4=2a 3=22455⨯=, a 5=2a 4﹣1=245⨯-135=, 故数列的取值具备周期性,周期数是4, 则2019a =50443a ⨯+=325a =, 故选B . 【点睛】本题主要考查数列项的计算,根据数列的递推关系是解决本题的关键.根据递推关系求出数列的取值具备周期性是解决本题的突破口.7.A解析:A 【分析】令1n =得11a =,令2n =得21212S a a =+=可解得2a . 【详解】 因为1n S n =,所以11111a S ===, 因为21212S a a =+=,所以211122a =-=-. 故选:A8.C解析:C 【分析】根据“等差比”数列的定义,得到数列1n n a a +⎧⎫⎨⎬⎩⎭的通项公式,再利用202020202019201820192019a a a a a a =⨯求解.【详解】由题意可得:323a a =,211a a = ,32211a a a a -=, 根据“等差比数列”的定义可知数列1n n a a +⎧⎫⎨⎬⎩⎭是首先为1,公差为2的等差数列, 则()111221n na n n a +=+-⨯=-, 所以20202019220191220181a a =⨯-=⨯+,20192018220181a a =⨯-, 所以()()2202020202019201820192019220181220181420181a a a a a a =⨯=⨯+⨯-=⨯-. 故选:C 【点睛】本题考查数列新定义,等差数列,重点考查理解题意,转化思想,计算能力,属于中档题型.9.A解析:A 【分析】运用数列的单调性和不等式的知识可解决此问题. 【详解】数列{}n a 中,11a =,20192019a =,且*n N ∈都有122n n n a a a ++≥+,121n n n n a a a a +++∴≥--,设1n n n d a a +=-,则1n n d d +≥,∴数列{}n d 是递减数列.对于A ,由11a =,20192019a =, 则201911220182019a a d d d =+++=,所以1220182018d d d +++=,又1232018d d d d ≥≥≥≥,所以1122018201820182018d d d d d ≥+++≥,故120181d d ≥≥,2018n ∴≥时,1n d ≤,02019N ∃=,2019n >时, 20192019202012019111n n a a d d d n -=+++≤++++=即存在正整数0N ,当0n N >时,都有n a n ≤,故A 正确;结合A ,故B 不正确;对于C ,当n →+∞,且0n d >时,数列{}n a 为递增数列, 则n a 无最大值,故C 不正确;对于D ,由数列{}n d 是递减数列,当存在0n d <时,则n a 无最小值,故D 不正确; 故选:A 【点睛】本题考查了数列的单调性以及不等式,属于基础题.10.C解析:C 【分析】利用数列的递推式,得到a n +1=3a n -2,进而得到a n =3n -1+1,然后代入[lg(a 100-1)]可求解 【详解】当n ≥2时,S n =3S n -1-2n +4,则a n +1=3a n -2,于是a n +1-1=3(a n -1),当n =1时,S 2=3S 1-2+2=6,所以a 2=S 2-S 1=4.此时a 2-1=3(a 1-1),则数列{a n -1}是首项为1,公比为3的等比数列.所以a n -1=3n -1,即a n =3n -1+1,则a 100=399+1,则lg(a 100-1)=99lg3≈99×0.477=47.223,故[lg(a 100-1)]=47. 故选C11.A解析:A 【分析】根据21n n S a =+,求出1a ,2a ,3a ,4a ,⋯⋯,寻找规律,即可求得答案. 【详解】21n n S a =+当1n =,1121a a =+,解得:11a = 当2n =,122221a a a +=+,解得:21a =-当3n =,32132221a a a a ++=+,解得:31a = 当4n =,4321422221a a a a a +++=+,解得:41a =-⋯⋯当n 奇数时,1n a = 当n 偶数时,1n a =-∴71a =,20191S =故720192a S += 故选:A. 【点睛】本题主要考查了根据递推公式求数列值,解题关键是掌握数列的基础知识,考查了分析能力和计算能力,属于中档题.12.C解析:C 【分析】由0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:222n a n =,即可得出. 【详解】由0,2,4,8,12,18,24,32,40,50…,可得偶数项的通项公式:222n a n =.则此数列第40项为2220800⨯=. 故选:C13.B解析:B 【分析】本题先根据递推公式进行转化得到21112n n n n a a a a +++=.然后令1n n na b a +=,可得出数列{}n b 是等比数列.即11322nn n a a +⎛⎫= ⎪⎝⎭.然后用累乘法可求出数列{}n a 的通项公式,根据通项公式及二次函数的知识可得数列{}n a 的最大项. 【详解】解:由题意,可知: 21112n n n na a a a +++=. 令1n n n ab a +=,则112n n b b +=. 21116a b a ==,∴数列{}n b 是以16为首项,12为公比的等比数列. 111163222n nn b -⎛⎫⎛⎫∴== ⎪⎪⎝⎭⎝⎭.∴11322nn n a a +⎛⎫= ⎪⎝⎭. ∴1211322aa ⎛⎫= ⎪⎝⎭, 2321322a a ⎛⎫= ⎪⎝⎭,111322n n n a a --⎛⎫= ⎪⎝⎭.各项相乘,可得: 12111111(32)222n n na a --⎛⎫⎛⎫⎛⎫=⋯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)2511()22n n n --⎛⎫= ⎪⎝⎭2115(1)221122n n n ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭211552212n n n --+⎛⎫= ⎪⎝⎭21(1110)212n n -+⎛⎫= ⎪⎝⎭.令2()1110f n n n =-+,则,根据二次函数的知识,可知:当5n =或6n =时,()f n 取得最小值. ()2551151020f =-⨯+=-,()2661161020f =-⨯+=-,()f n ∴的最小值为20-. ∴211(1110)(20)1022101112222n n -+⨯--⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴数列{}n a 的最大项为102.故选:B . 【点睛】本题主要考查根据递推公式得出通项公式,构造新数列的方法,累乘法通项公式的应用,以及利用二次函数思想求最值;14.C解析:C 【分析】先求出数列{}n a 的前n 项的乘积为n D ,令0n D >解不等式,结合*n N ∈,即可求解. 【详解】记数列{}n a 的前n 项的乘积为n D ,则()()12112451232312n n n n n n n D a a a a n n -++++=⋅⋅=⨯⨯⨯⨯⨯=- 依题意有()()12362n n ++>整理得()()23707100n n n n +-=-+> 解得:7n >,因为*n N ∈,所以min 8n =, 故选:C15.A解析:A 【分析】根据条件得出数列{}n b 的周期即可. 【详解】由题意可知“兔子数列”被4整除后的余数构成一个新数列为:1,1,2,3,1,0,1,1,2,3,1,0,……则可得到周期为6,所以b 2020=b 4=3, 故选:A16.C解析:C 【分析】根据通项公式的概念可以判定AB 正确;不难找到一些规律性不强的数列,找不到通项公式,由此判定C 错误,根据无穷数列的概念可以判定D 正确. 【详解】数列的通项公式的概念:将数列{} n a 的第n 项用一个具体式子(含有参数n )表示出来,称作该数列的通项公式,故任意一个定义域为正整数集合的或者是其从1开始的一个子集的函数都可以是数列的通项公式,它是一个函数关系,即对于任意给定的数列,各项的值是由n 唯一确定的,故AB 正确; 并不是所有的数列中的项都可以用一个通项公式来表示,比如所有的质数从小到大排在一起构成的数列,至今没有发现统一可行的公式表示,圆周率的各位数字构成的数列也没有一个通项公式可以表达,还有很多规律性不强的数列也找不到通项公式,故C 是错误的; 根据无穷数列的概念,可知D 是正确的. 故选:C. 【点睛】本题考查数列的通项公式的概念和无穷数列的概念,属基础题,数列的通项公式是一种定义在正整数集上的函数,有穷数列与无穷数列是根据数列的项数来分类的.17.A解析:A 【分析】根据递推公式推导出()4n n a a n N *+=∈,且有12341a a a a=,再利用数列的周期性可计算出2018T 的值. 【详解】12a =,()*111++=∈-nn n a a n N a ,212312a +∴==--,3131132a -==-+,411121312a -==+,51132113a +==-,()4n n a a n N *+∴=∈,且()12341123123a a a a ⎛⎫=⨯-⨯-⨯= ⎪⎝⎭,201845042=⨯+,因此,()5042018450421211236T T a a ⨯+==⨯=⨯⨯-=-.故选:A. 【点睛】本题考查数列递推公式的应用,涉及数列周期性的应用,考查计算能力,属于中等题.18.C解析:C 【分析】利用数列的递推公式逐项计算可得3a 的值. 【详解】()*122,21n n a n n N a -=≥∈-,11a =,212221a a ∴==-,3222213a a ==-. 故选:C. 【点睛】本题考查利用数列的递推公式写出数列中的项,考查计算能力,属于基础题.19.D解析:D 【分析】利用项和关系,1n n n a S S -=-代入即得解. 【详解】利用项和关系,1332443=54=162n n n a S S a S S a S S -=-∴=-=-,34216a a ∴+=故选:D 【点睛】本题考查了数列的项和关系,考查了学生转化与划归,数学运算能力,属于基础题.20.C解析:C 【分析】由累乘法可求得2n a n=,即可求出. 【详解】11n n n a a n +=+,即11n na n a n +=+, 12321123211232121232n n n n n n n a a a a a n n n a a a a a a a n n n --------∴=⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⨯--2n=, 20202120201010a ∴==. 故选:C.二、多选题 21.BC 【分析】根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……, 显然,,,,,所以且,即B 满足条件; 由, 所以 所以数列解析:BC 【分析】根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……,显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,,()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且()()11,21F F ==,即B 满足条件;由()()()11,2F n F n F n n +=+-≥, 所以()()()()11F n n F n n ⎤+-=--⎥⎣⎦所以数列()()1F n n ⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭为公比的等比数列, 所以()()1nF n n +-=⎝⎭11515()n F F n n -+=++, 令112nn n Fb -=⎛⎫+⎪⎝⎭,则11n n b +=+,所以1n n b b +=-, 所以nb ⎧⎪⎨⎪⎪⎩⎭的等比数列,所以1n n b -+,所以()1115n n n nF n --⎤⎤⎛⎫+⎥⎥=+=- ⎪ ⎪⎥⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦; 即C 满足条件; 故选:BC 【点睛】考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题.22.AC 【分析】由,可得,且,然后逐个分析判断即可得答案 【详解】解:因为,所以,且,所以数列的公差,且数列中Sn 的最大项为S5,所以A 正确,B 错误, 所以,,所以C 正确,D 错误, 故选:AC解析:AC 【分析】由564S S S >>,可得650,0a a ,且650a a +>,然后逐个分析判断即可得答案 【详解】解:因为564S S S >>,所以650,0a a ,且650a a +>,所以数列的公差0d <,且数列{}n a 中S n 的最大项为S 5,所以A 正确,B 错误, 所以110105610()5()02a a S a a +==+>,11111611()1102a a S a +==<, 所以C 正确,D 错误, 故选:AC23.BC 【分析】由已知条件列方程组,求出公差和首项,从而可求出通项公式和前项和公式 【详解】解:设等差数列的公差为, 因为,, 所以,解得, 所以, , 故选:BC解析:BC 【分析】由已知条件列方程组,求出公差和首项,从而可求出通项公式和前n 项和公式 【详解】解:设等差数列{}n a 的公差为d , 因为30S =,46a =,所以113230236a d a d ⨯⎧+=⎪⎨⎪+=⎩,解得133a d =-⎧⎨=⎩, 所以1(1)33(1)36n a a n d n n =+-=-+-=-,21(1)3(1)393222n n n n n n nS na d n ---=+=-+=,24.ABD 【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】对于A :因为正数,公差不为0,且,所以公差, 所以,即,根据等差数列的性质可得,又, 所以,,故A 正解析:ABD 【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】对于A :因为正数,公差不为0,且100S =,所以公差0d <, 所以1101010()02a a S +==,即1100a a +=, 根据等差数列的性质可得561100a a a a +=+=,又0d <, 所以50a >,60a <,故A 正确; 对于B :因为412S S =,则1240S S -=,所以561112894()0a a a a a a ++⋅⋅⋅++=+=,又10a >, 所以890,0a a ><, 所以115815815()15215022a a a S a +⨯===>,116891616()16()022a a a a S ++===, 所以使0n S >的最大的n 为15,故B 正确; 对于C :因为115815815()15215022a a a S a +⨯===>,则80a >, 116891616()16()022a a a a S ++===,则890a a +=,即90a <,所以则{}n S 中8S 最大,故C 错误;对于D :因为89S S <,则9980S a S =->,又10a >, 所以8870a S S =->,即87S S >,故D 正确, 故选:ABD 【点睛】解题的关键是先判断d 的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题.25.AB根据已知条件求得的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项. 【详解】依题意,等差数列中,即, .对于A 选项,,所以A 选项正确. 对于C 选项,,,所以,解析:AB 【分析】根据已知条件求得1,a d 的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项. 【详解】依题意,等差数列{}n a 中81535a a =,即()()1137514a d a d +=+,1149249,2a d a d =-=-. 对于A 选项,24912490a a a d +=+=,所以A 选项正确. 对于C 选项,1492a d =-,10a >,所以0d <,所以C 选项错误. 对于B 选项,()()149511122n a a n d d n d n d ⎛⎫=+-=-+-=- ⎪⎝⎭,令0n a ≥得51510,22n n -≤≤,由于n 是正整数,所以25n ≤,所以数列{}n S 中最大值的项是25S ,所以B 选项正确. 对于D 选项,由上述分析可知,125n ≤≤时,0n a ≥,当26n ≥时,0n a <,且0d <.所以数列{}na 的前25项递减,第26项后面递增,不是等差数列,所以D 选项错误.故选:AB 【点睛】等差数列有关知识的题目,主要把握住基本元的思想.要求等差数列前n 项和的最值,可以令0n a ≥或0n a ≤来求解.26.ABD 【分析】由可判断AB ,再由a1>0,d <0,可知等差数列数列先正后负,可判断CD. 【详解】根据等差数列定义可得,所以数列单调递减,A 正确; 由数列单调递减,可知数列有最大值a1,故B 正【分析】由10n n a a d +-=<可判断AB ,再由a 1>0,d <0,可知等差数列数列{}n a 先正后负,可判断CD. 【详解】根据等差数列定义可得10n n a a d +-=<,所以数列{}n a 单调递减,A 正确; 由数列{}n a 单调递减,可知数列{}n a 有最大值a 1,故B 正确;由a 1>0,d <0,可知等差数列数列{}n a 先正后负,所以数列{}n S 先增再减,有最大值,C 不正确,D 正确. 故选:ABD.27.ABD 【分析】由,判断,再依次判断选项. 【详解】 因为,,,所以数列是递减数列,故,AB 正确; ,所以,故C 不正确;由以上可知数列是单调递减数列,因为可知,的最大值,故D 正确. 故选:AB解析:ABD 【分析】由1n n n S S a --=()2n ≥,判断6780,0,0a a a >=<,再依次判断选项. 【详解】因为5665600S S S S a <⇒->⇒>,677670S S S S a =⇒-==,788780S S S S a >⇒-=<,所以数列{}n a 是递减数列,故0d <,AB 正确;()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确;由以上可知数列{}n a 是单调递减数列,因为6780,0,0a a a >=<可知,67n S S S 与均为的最大值,故D 正确. 故选:ABD 【点睛】本题考查等差数列的前n 项和的最值,重点考查等差数列的性质,属于基础题型.28.AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由解不等式可判断D . 【详解】等差数列的前n 项和为,公差,由,可解析:AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由0n S <解不等式可判断D .【详解】等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,得2739a a a =,即()()()2111628a d a d a d +=++,化为1100a d +=,②由①②解得120a =,2d =-,则202(1)222n a n n =--=-,21(20222)212n S n n n n =+-=-,由22144124n S n ⎛⎫=--+ ⎪⎝⎭,可得10n =或11时,n S 取得最大值110; 由2102n S n n -<=,解得21n >,则n 的最小值为22.故选:AD 【点睛】本题考查等差数列的通项公式和求和公式,以及等比中项的性质,二次函数的最值求法,考查方程思想和运算能力,属于中档题.29.ACD 【分析】由已知得,又,所以,可判断A ;由已知得出,且,得出时,,时,,又,可得出在上单调递增,在上单调递增,可判断B ;由,可判断C ;判断 ,的符号, 的单调性可判断D ; 【详解】 由已知解析:ACD 【分析】 由已知得()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,可判断A ;由已知得出2437d -<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1na 在1,6n n N上单调递增,1na 在7n nN ,上单调递增,可判断B ;由()313117713+12203213a a a S a ⨯==<=,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ; 【详解】由已知得311+212,122d a a a d ===-,()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,故A 正确;由7161671+612+40+512+3>0+2+1124+7>0a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得2437d -<<-,又()()3+312+3n a n d n d a =-=-,当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,所以[]1,6n ∈时,1>0na ,7n ≥时,10n a <,所以1na 在1,6nn N上单调递增,1na 在7nn N ,上单调递增,所以数列1n a ⎧⎫⎨⎬⎩⎭不是递增数列,故B 不正确;由于()313117713+12203213a a a S a ⨯==<=,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,0n S <,所以当[]7,12n ∈时,0n a <,>0n S ,0nnS a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项,故D 正确; 【点睛】本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题.30.BC 【分析】根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案.【详解】 A 选项,若,则, 那么.故A 不正确; B 选项,若,则,又因为,所以前8项为正,从第9项开始为负, 因为解析:BC 【分析】根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案. 【详解】A 选项,若1011091002S a d ⨯=+=,则1290a d +=, 那么()()2811128281029160S S a d a d a d d +=+++=+=-≠.故A 不正确; B 选项,若412S S =,则()5611128940a a a a a a ++++=+=,又因为10a >,所以前8项为正,从第9项开始为负, 因为()()116168916802a a S a a +==+=, 所以使0n S >的最大的n 为15.故B 正确; C 选项,若()115158151502a a S a +==>,()()116168916802a a S a a +==+<, 则80a >,90a <,则{}n S 中8S 最大.故C 正确;D 选项,若78S S <,则80a >,而989S S a -=,不能判断9a 正负情况.故D 不正确. 故选:BC . 【点睛】本题考查等差数列性质的应用,涉及等差数列的求和公式,属于常考题型.31.AD 【分析】根据等差数列的性质,对四个选项逐一判断,即可得正确选项. 【详解】, ,所以是递增数列,故①正确, ,当时,数列不是递增数列,故②不正确, ,当时,不是递增数列,故③不正确, ,因解析:AD 【分析】根据等差数列的性质,对四个选项逐一判断,即可得正确选项. 【详解】0d >,10n n a a d +-=> ,所以{}n a 是递增数列,故①正确,()()2111n na n a n d dn a d n =+-=+-⎡⎤⎣⎦,当12d a n d -<时,数列{}n na 不是递增数列,故②不正确, 1n a a d d n n -=+,当10a d -<时,{}n a n 不是递增数列,故③不正确, 134n a nd nd a d +=+-,因为0d >,所以{}3n a nd +是递增数列,故④正确,故选:AD 【点睛】本题主要考查了等差数列的性质,属于基础题.32.BC 【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由Sn>0解不等式可判断D . 【详解】由公差,可得,即,① 由a7是a解析:BC 【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由S n >0解不等式可判断D . 【详解】由公差60,90d S ≠=,可得161590a d +=,即12530a d +=,①由a 7是a 3与a 9的等比中项,可得2739a a a =,即()()()2111628a d a d a d +=++,化简得110a d =-,②由①②解得120,2a d ==-,故A 错,B 对;由()()22121441201221224n S n n n n n n ⎛⎫=+-⨯-=-=--+ ⎪⎝⎭ *n N ∈,可得10n =或11时,n S 取最大值110,C 对;由S n >0,解得021n <<,可得n 的最大值为20,D 错; 故选:BC 【点睛】本题考查等差数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.33.ABC 【分析】由可求得的表达式,利用定义判定得出答案. 【详解】 当时,. 当时,. 当时,上式=. 所以若是等差数列,则所以当时,是等差数列, 时是等比数列;当时,从第二项开始是等差数列.解析:ABC 【分析】由2n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S a b c ==++.当2n ≥时,()()221112n n n a S S an bn c a n b n c an a b -=-=++-----=-+. 当1n =时,上式=+a b .所以若{}n a 是等差数列,则0.a b a b c c +=++∴=所以当0c 时,{}n a 是等差数列, 00a c b ==⎧⎨≠⎩时是等比数列;当0c ≠时,{}n a 从第二项开始是等差数列. 故选:A B C 【点睛】本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础题.34.ABCD 【分析】S12>0,a7<0,利用等差数列的求和公式及其性质可得:a6+a7>0,a6>0.再利用a3=a1+2d =12,可得<d <﹣3.a1>0.利用S13=13a7<0.可得Sn <0解析:ABCD 【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确. 【详解】∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0, 又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0.对于:7≤n ≤12时,nnS a <0.S n >0,但是随着n 的增大而减小;a n <0,但是随着n 的增大而减小,可得:nnS a <0,但是随着n 的增大而增大. ∴n =7时,nnS a 取得最小值. 综上可得:ABCD 都正确. 故选:ABCD . 【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.35.ACD 【分析】由得,故正确;当时,根据二次函数知识可知无最小值,故错误;根据等差数列的性质计算可知,故正确;根据等差数列前项和公式以及等差数列的性质可得,故正确. 【详解】因为,所以,所以,即解析:ACD 【分析】由13623a a S +=得100a =,故A 正确;当0d <时,根据二次函数知识可知n S 无最小值,故B 错误;根据等差数列的性质计算可知127S S =,故C 正确;根据等差数列前n 项和公式以及等差数列的性质可得190S =,故D 正确. 【详解】因为13623a a S +=,所以111236615a a d a d ++=+,所以190a d +=,即100a =,故A 正确;当0d <时,1(1)(1)922n n n n n S na d dn d --=+=-+2(19)2dn n =-无最小值,故B 错误;因为127891*********S S a a a a a a -=++++==,所以127S S =,故C 正确; 因为()1191910191902a a S a+⨯===,故D 正确.故选:ACD. 【点睛】本题考查了等差数列的通项公式、前n 项和公式,考查了等差数列的性质,属于中档题.。
单元测试1 数列的概念与简单表示法
![单元测试1 数列的概念与简单表示法](https://img.taocdn.com/s3/m/9fc3310aa0116c175f0e48a5.png)
单元测试1 数列的概念与简单表示法一.选择题:1.下列解析式中不.是数列1,1,1,1,1--L ,的通项公式的是( ) A. (1)n n a =- B. 1(1)n n a +=- C. 1(1)n n a -=- D. {11n n a n =-,为奇数,为偶数2,的一个通项公式是( )A. n aB. n a =C. n aD.n a =3.已知数列{}n a ,1()(2)n a n N n n +=∈+,那么1120是这个数列的第( )项. A. 9 B. 10 C. 11 D. 124.数列{}n a ,()n a f n =是一个函数,则它的定义域为( )A. 非负整数集B. 正整数集C. 正整数集或其子集D. 正整数集或{}1,2,3,4,,n L5.已知数列{}n a ,22103n a n n =-+,它的最小项是( )A. 第一项B. 第二项C. 第三项D. 第二项或第三项6.已知数列{}n a ,13a =,26a =,且21n n n a a a ++=-,则数列的第五项为( )A. 6B. 3-C. 12-D. 6-二.填空题:7.已知数列{}n a ,85,11n a kn a =-=且,则17a = .8.已知22()log (7)f x x =+,()n a f n =,则{}n a 的第五项为 .9.数列1524354863,,,,,,25101726L 的一个通项公式为 .10.已知数列{}n a 满足12a =-,1221n n na a a +=+-,则4a = .【整合提高】三.解答题11.已知数列{}n a 中,13a =,1021a =,通项n a 是项数n 的一次函数, ①求{}n a 的通项公式,并求2005a ;②若{}n b 是由2468,,,,,a a a a L 组成,试归纳{}n b 的一个通项公式.12.已知{}n a 满足13a =,121n n a a +=+,试写出该数列的前5项,并用观察法写出这个数列的一个通项公式.单元测试1 数列的概念与简单表示法参考答案1.A2.B3.B4.D5.D6.D7.298.59.22(3)11n n a n +-=+ 10.25- 11.设n a kn b =+,则31021k b k b +=⎧⎨+=⎩,解得21k b =⎧⎨=⎩,∴21()n a n n N *=+∈,∴20054011a =,又∵2a ,4a ,6a ,8a ,L 即为5,9,13,17,…,∴41n b n =+.12. ∵13a =,121n n a a +=+,∴27a =,315a =,431a =,563a =,∴猜得121n n a +=-。
(必考题)高中数学选修二第一单元《数列》测试题(含答案解析)(1)
![(必考题)高中数学选修二第一单元《数列》测试题(含答案解析)(1)](https://img.taocdn.com/s3/m/3b63b2c2fad6195f302ba671.png)
一、选择题1.对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:仿此,若3m 的“分裂数”中有一个是2017,则m 的值为( )3331373152,39,4,5171119⎧⎧⎪⎧⎪⎪⎨⎨⎨⎩⎪⎪⎩⎪⎩A .44B .45C .46D .472.已知等比数列{}n a 的n 项和2n n S a =-,则22212n a a a +++=( )A .()221n -B .()1213n- C .41n -D .()1413n- 3.已知数列{}n a 满足111n n n n a a a a ++-=+,且113a =,则{}n a 的前2021项之积为( ) A .23B .13C .2-D .3-4.数列{}n a 的通项公式为12n n a +=,其前n 项和为n T ,若不等式()2log 4(1)73n n T n n λ+-++对任意*n N ∈恒成立,则实数λ的取值范围为( )A .3λB .4λC .23λ D .34λ5.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=(n N +∈,d 为常数),称{}n a 为“等差比数列”。
已知在“等差比数列”{}n a 中,1231,3a a a ===则20152013a a =( ) A .2420151⨯- B .2420141⨯- C .2420131⨯-D .242013⨯6.数列{}n a 是等差数列,51260a a =>,数列{}n b 满足123n n n n b a a a +++=,*n N ∈,设n S 为{}n b 的前n 项和,则当n S 取得最大值时,n 的值等于( )A .9B .10C .11D .127.数列{}n a 是等比数列,若21a =,518a =,则12231n n a a a a a a ++++的取值范围是( ) A .8,3⎛⎫-∞ ⎪⎝⎭B .2,23⎛⎤ ⎥⎝⎦C .81,3⎡⎫⎪⎢⎣⎭D .82,3⎡⎫⎪⎢⎣⎭8.数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n ﹣1,则a 12+a 22+a 32+…+a n 2等于( )A .n 2(31)-B .()n1912- C .n 91- D .()n1314- 9.已知正项数列{a n }的前n 项和为S n ,a 1>1,且6S n =a n 2+3a n +2.若对于任意实数a ∈[﹣2,2].不等式()2*1211+<+-∈+n a t at n N n 恒成立,则实数t 的取值范围为( ) A .(﹣∞,﹣2]∪[2,+∞) B .(﹣∞,﹣2]∪[1,+∞) C .(﹣∞,﹣1]∪[2,+∞) D .[﹣2,2]10.函数()2cos 2f x x x =-{}n a ,则3a =( ) A .1312πB .54π C .1712πD .76π 11.已知数列{}n a 是等比数列,11a >,且前n 项和n S 满足11lim n n S a →∞=,那么1a 的取值范围是( ) A.(B .()1,4C .()1,2D .()1,+∞12.已知数列{}n a 满足:11a =,()*12nn n a a n N a +=∈+.若()*+11()1n n b n n N a λ⎛⎫=-+∈ ⎪⎝⎭,1b λ=-,且数列{}n b 是单调递增数列,则实数λ的取值范围为( ) A .2λ>B .3λ>C .2λ<D .3λ<二、填空题13.数列{}n a 的前n 项和是11,1,0,31n n n n n S a a S a a +=≠=+,若2020k a =,则k =______.14.将正整数12分解成两个正整数的乘积有112⨯,26⨯,34⨯,三种,其中34⨯是这三种分解中两数差的绝对值最小的,我们称34⨯为12的最佳分解,当(),,p q p q p N q N **⨯≤∈∈是正整数n 的最佳分解时,我们定义函数()f n q p =-,例如(12)431f =-=,则数列(){}3nf 的前2020项和为______.15.已知{}{},n n a b 均为等差数列,其前n 项和分别为,n n S T ,且233n n S n T n -=+,则55a b =________.16.如图所示,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点,,,E F G H ,作第2个正方形EFGH ,然后再取正方形EFGH 各边的中点,,,I J K L ,作第3个正方形IJKL ,依此方法一直继续下去.如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于___2cm ?17.设n S 是数列{}n a 的前n 项和,若点(),n n S a 在直线21y x =+上,则5a =__________. 18.设公差不为零的等差数列{}n a 的前n 项和为n S ,12a =.若存在常数λ,使得2n n a a λ=()*N n ∈恒成立,则910nn S ⎛⎫ ⎪⎝⎭取最大值时,n =________. 19.下表给出一个“直角三角形数阵”:满足每一列成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i 行第j 列的数为(,)i j a (i ,j ∈N *),则(20,20)a =_____. 20.若数列{}n a 满足11a =,且()*1111n nn a a N +∈-=,则 ①数列{}na e是等比数列;②满足不等式:1112n n a a +++≥ ③若函数()f x 在R 上单调递减,则数列(){}n f a 是单调递减数列; ④存在数列{}n a 中的连续三项,能组成三角形的三条边; ⑤满足等式:122311n n n a a a a a a n +++⋅⋅⋅+=+. 正确的序号是________三、解答题21.直线:2l x =与x 轴交于点M ,过动点P 作直线l 的垂线交l 于点N ,若OM 、OP 、PN 成等比数列,其中O 为坐标原点.(1)求动点P 的轨迹方程. (2)求OP PN -的最大值.22.数列{}n a 满足()1121nn n a a n ++-=-,n *∈N 且1a a =(a 为常数).(1)(i )当n 为偶数时,求4n n a a +-的值; (ii )求{}n a 的通顶公式;(2)设n S 是数列{}n a 的前n 项和,求证:48411114n S S S ++⋅⋅⋅+< 23.设等差数列{}n a 的前n 项和为n S ,34a =,43a S =.数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列.(1)求数列{}n a ,{}n b 的通项公式; (2)记n c =*n N ∈,证明:12n c c c +++<.24.已知数列{}n a 是等差数列,数列{}n b 是等比数列,且满足112a b ==,35730a a a ++=,2316b b a =.(1)求数列{}n a 与和{}n b 的通项公式;(2)设数列{}n a ,{}n b 的前n 项和分别为n S ,n T .①是否存在正整数k ,使得132k k k T T b +=++成立?若存在,求出k 的值,若不存在,请说明理由;②解关于n 的不等式n n S b ≥.25.已知数列{a n }的前n 项和S n =3n +1-t ,求证:数列{a n }是等比数列的充要条件为t =3. 26.已知n S 是数列{}n a 的前n 项和,131n n S S +=+,11a =. (1)证明:数列{}n a 是等比数列,并求n a 的通项公式; (2)若()11n n n b na -=-⋅,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由题意,从32到3m ,正好用去从3开始的连续奇数,共123(2)(1)2m m m +++=+-个,再由2017是从3开始的第1008个奇数,可得选项. 【详解】由题意,从32到3m ,正好用去从3开始的连续奇数,共123(2)(1)2m m m +++=+-个,212017n += ,得1008n =, 所以2017是从3开始的第1008个奇数,当45m =时,从32到345,用去从3开始的连续奇数共474410342⨯=个, 当44m =时,从32到344,用去从3开始的连续奇数共46439892⨯=个, 所以45m =, 故选:B . 【点睛】方法点睛:对于新定义的数列问题,关键在于找出相应的规律,再运用等差数列和等比数列的通项公式和求和公式,得以解决.2.D解析:D 【分析】由n a 与n S 的关系可求得12n n a ,进而可判断出数列{}2n a 也为等比数列,确定该数列的首项和公比,利用等比数列的求和公式可求得所化简所求代数式.【详解】已知等比数列{}n a 的n 项和2n n S a =-. 当1n =时,112a S a ==-;当2n ≥时,()()111222nn n n n n a S S a a ---=-=---=.由于数列{}n a 为等比数列,则12a a =-满足12n na ,所以,022a -=,解得1a =,()12n n a n N -*∴=∈,则()221124n n na --==,2121444n n n n a a +-∴==,且211a =, 所以,数列{}2n a 为等比数列,且首项为1,公比为4, 因此,222121441143n n na a a --+++==-. 故选:D. 【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +-=或11n n a a q -=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第1n -项的差是个有规律的数列,就可以利用这种方法; (5)累乘法:当数列{}n a 中有()1nn a f n a -=,即第n 项与第1n -项的商是个有规律的数列,就可以利用这种方法;(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且1k ≠,0k ≠).一般化方法:设()1n n a m k a m -+=+,得到()1b k m =-,1bm k =-,可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 的等比数列,可求出n a ;②取倒数法:这种方法适用于()112,n n n ka a n n N ma p*--=≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b-=+的式子;⑦1nn n a ba c +=+(b 、c 为常数且不为零,n *∈N )型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用⑥中的方法求解即可.3.B解析:B 【分析】由111n n n n a a a a ++-=+,且113a =,可得:111n n n a a a ++=-,可得其周期性,进而得出结论. 【详解】因为111n n n n a a a a ++-=+,且113a =, 所以111nn na a a ++=-, 21132113a +∴==-,33a =-,412a =-,513a =,⋯⋯,4n n a a +∴=.123411···2(3)()132a a a a ∴=⨯⨯--⋅⨯=.则{}n a 的前2021项之积50511133=⨯=.故选:B 【点睛】方法点睛:已知递推关系式求通项:(1)用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.(2)通过具体的前几项找到其规律,如周期性等求解.4.A解析:A 【分析】将不等式()2log 4(1)73n n T n n λ+-++对任意*n N ∈恒成立,转化为271n n n λ-++对任意*n N ∈恒成立,由2min71n n n λ⎛⎫-+ ⎪+⎝⎭求解.【详解】 依题意得,()24122412n n nT +-==--,∴不等式()2log 4(1)73n n T n n λ+-++可化为22log 2(1)73n n n n λ+-++,即27(1)n n n λ-++.又*n N ∈,∴271n n n λ-++对任意*n N ∈恒成立.只需满足2min71n n n λ⎛⎫-+ ⎪+⎝⎭即可.设1n t +=,则*t N ∈,2t ,∴27931n n t n tλ-+=+-+.∵993233t t t t+-⋅-=,当且仅当3t =,即2n =时等号成立, ∴2min731n n n ⎛⎫-+= ⎪+⎝⎭.∴3λ,故选:A. 【点睛】方法点睛:恒(能)成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<. 5.C解析:C 【分析】 利用定义,可得1n n a a +⎧⎫⎨⎬⎩⎭是以1为首项,2为公差的等差数列,从而121n na n a +=-,利用201520152014201320142013a a a a a a =⋅,可得结论. 【详解】121a a ==,33a =,32212a a a a ∴-=, 1n n a a +⎧⎫∴⎨⎬⎩⎭是以1为首项,2为公差的等差数列, 121n na n a +∴=-, ()()20152015201420132014201322014122013140274025a a a a a a ∴=⋅=⨯-⨯-=⨯ 22(40261)(40261)40261420131=+-=-=⨯-.故选:C. 【点睛】数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.6.D解析:D 【分析】由51260a a =>,得到首项和公差的关系以及公差的范围,然后求得通项公式,判断,n n a b 的正负,再利用通项与前n 项和关系求解.【详解】设数列{}n a 的公差为d , 因为51260a a =>,所以()1104116a a d d +=>+,即1625a d =-, 因为512a a >, 所以0d <,所以167(1)5n a n d n d a ⎛⎫=+-=-⎪⎝⎭, 当113n ≤≤时,0n a >,当14n ≥时,0n a <, 所以12101314...0...b b b b b >>>>>>>, 又因为()111213141215131405db b a a a a a a +=+=>, 所以1210S S >,故n S 中12S 最大 , 故选:D 【点睛】本题主要考查等差数列的通项公式以及数列前n 项和的最值问题,还考查逻辑推理的能力,属于中档题.7.D解析:D 【分析】由题意计算出{}n a 的公比q ,由等比数列的性质可得{}1n n a a +也为等比数列,由等比数列前n 项和计算即可得结果. 【详解】因为数列{}n a 是等比数列,21a =,518a =,所以35218a q a ==,即12q =,所以12a =,由等比数列的性质知{}1n n a a +是以2为首项,以14为公比的等比数列. 所以12122311214881813343142n n n n a a a a a a a a +⎛⎫⎛⎫- ⎪⎪ ⎪⎝⎭⎛⎫⎝⎭≤==-< ⎪⎝⎭=+++-, 故选:D. 【点睛】本题主要考查了等比数列的性质以及等比数列前n 项和的计算,属于中档题.8.B解析:B 【分析】由a 1+a 2+a 3+…+a n =3n ﹣1,可求得a n ,从而可知2n a ,利用等比数列的求和公式即可求得答案. 【详解】∵a 1+a 2+a 3+…+a n =3n ﹣1,①,∴a 1+a 2+a 3+…+a n +1=3n +1﹣1,② ②﹣①得:a n +1=3n +1﹣3n =2×3n ,∴a n =2×3n ﹣1()2n ≥. 当n =1时,a 1=31﹣1=2,符合上式,∴a n =2×3n ﹣1. ∴221211249,4,9n n nna a a a -+=⨯∴==,∴{}2n a 是以4为首项,9为公比的等比数列, ∴a 12+a 22+a 32+…+a n 2=()()419191921n n⨯-=--. 故选B . 【点睛】本题考查数列通项公式的确定及等比数列的判断与求和公式的综合应用,属于中档题.9.A解析:A 【分析】根据a n 与S n 的关系,由6S n =a n 2+3a n +2,得6S n ﹣1=a n ﹣12+3a n ﹣1+2,两式相减整理得a n ﹣a n﹣1=3,由等差数列的定义求得a n 的通项公式,然后将不等式()2*1211+<+-∈+n a t at n N n 恒成立,转化为2t 2+at ﹣4≥0,对于任意的a ∈[﹣2,2],n ∈N *恒成立求解. 【详解】由6S n =a n 2+3a n +2,当n =1时,6a 1=a 12+3a 1+2.解得a 1=2, 当n ≥2时,6S n ﹣1=a n ﹣12+3a n ﹣1+2,两式相减得6a n =a n 2+3a n ﹣(a n ﹣12+3a n ﹣1), 整理得(a n +a n ﹣1)(a n ﹣a n ﹣1﹣3)=0,由a n >0,所以a n +a n ﹣1>0,所以a n ﹣a n ﹣1=3, 所以数列{a n }是以2为首项,3为公差的等差数列, 所以a n +1=2+3(n +1﹣1)=3n +2,所以11n a n ++=321++n n =3﹣11n +<3,因此原不等式转化为2t 2+at ﹣1≥3,对于任意的a ∈[﹣2,2],n ∈N *恒成立, 即为:2t 2+at ﹣4≥0,对于任意的a ∈[﹣2,2],n ∈N *恒成立, 设f (a )=2t 2+at ﹣4,a ∈[﹣2,2], 则f (2)≥0且f (﹣2)≥0,即有222020t t t t ⎧+-⎨--⎩,解得t ≥2或t ≤﹣2,则实数t 的取值范围是(﹣∞,﹣2]∪[2,+∞) 故选:A . 【点睛】本题主要考查数列与不等式的,a n 与S n 的关系,等差数列的定义,方程的根的分布问题,还考查了转化化归思想和运算求解的能力,属于中档题.10.B解析:B 【分析】先将函数化简为()2sin 26f x x π⎛⎫=-⎪⎝⎭4x k ππ=+或512x k ππ=+,k Z ∈,再求3a 即可. 【详解】 解:∵()2cos 22sin 26f x x x x π⎛⎫=-=-- ⎪⎝⎭∴ 令()0f x =得:2263x k πππ-=+或22263x k πππ-=+,k Z ∈, ∴4x k ππ=+或512x k ππ=+,k Z ∈, ∴ 正数零点从小到大构成数列为:12355,,,4124a a a πππ===故选:B. 【点睛】本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题.11.A解析:A 【分析】设等比数列{}n a 的公比为q ,可知10q -<<或01q <<,计算出111lim 1n n a S q a →∞==-,可得出q 关于1a 的表达式,结合q 的范围,可解出1a 的取值范围. 【详解】设等比数列{}n a 的公比为q ,由于11lim n n S a →∞=,则10q -<<或01q <<,()111n n a q S q-=-,则()11111lim lim11n n n n a q a S qq a →∞→∞-===--,得211q a =-. ①若10q -<<,则21110a -<-<,即2112a <<,11a >,解得1a <<; ②当01q <<,则21011a <-<,得2101a <<,11a >,则2101a <<不成立.综上所述,1a的取值范围是(. 故选A. 【点睛】本题考查利用极限求等比数列首项的取值范围,解题的关键就是得出公比与首项的关系,结合公比的取值范围得出关于首项的不等式,考查运算求解能力,属于中等题.12.C解析:C 【分析】 数列{a n }满足()*12nn n a a n N a +=∈+,两边取倒数可得1121n na a +=+,从而得到11=2n n a +,于是b n +1=(n ﹣λ)(11a +1)=(n ﹣λ)•2n ,由于数列{b n }是单调递增数列,可得b n +1>b n ,解出即可. 【详解】∵数列{a n }满足:a 1=1,()*12nn n a a n N a +=∈+, ∴1121n n a a +=+,化为111121n n a a +⎛⎫+=+ ⎪⎝⎭, ∴数列11n a ⎧⎫+⎨⎬⎩⎭是首项为11a +1=2,公比为2的等比数列,∴11=2n na +, ∴b n +1=(n ﹣λ)(11a +1)=(n ﹣λ)•2n ,∵数列{b n }是单调递增数列,∴b n +1>b n ,∴n ≥2时,(n ﹣λ)•2n >(n ﹣1﹣λ)•2n ﹣1,化为λ<n +1, ∵数列{n +1}为单调递增数列,∴λ<3.当n =1时,b 2=(1﹣λ)×2>﹣λ=b 1,解得λ<2. 综上可得:实数λ的取值范围为λ<2. 故选:C . 【点睛】本题考查由数列的递推关系式求数列的通项公式、考查由数列的单调性求解参数问题,考查等比数列的通项公式,考查推理能力与计算能力,属于中档题.二、填空题13.1347【分析】当时则两式相减得到得到代入数据计算得到答案【详解】解:当时当时由则两式相减得到因为故数列的奇数项为以为首项3为公差的等差数列;偶数项为以为首项3为公差的等差数列;所以当为奇数时成立;解析:1347 【分析】当2n ≥时131n n n S a a +=+则1131n n n S a a --=+,两式相减得到113n n a a +--=,得到31,2231,2n n n a n n ⎧-⎪⎪=⎨⎪-⎪⎩为奇数为偶数,代入数据计算得到答案.【详解】解:当1n =时,2112312S a a a =+∴=当2n ≥时,由131n n n S a a +=+则1131n n n S a a --=+,两式相减得到()113n n n n a a a a +-=- 因为0n a ≠113n n a a +-∴-=,故数列的奇数项为以1为首项,3为公差的等差数列;偶数项为以2为首项,3为公差的等差数列;所以31,2231,2n n n a n n ⎧-⎪⎪=⎨⎪-⎪⎩为奇数为偶数 当k 为奇数时,202013473122k a k k ==-=∴,成立; 当k 为偶数时,404220203312k a k k ∴==-=,不成立; 故答案为:1347 【点睛】本题考查了数列的通项公式,灵活运用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩是解题的关键.14.【分析】先通过归纳得再利用等比数列求和得解【详解】由题意得归纳得则故答案为:【点睛】关键点睛:解答本题的关键在通过特殊值归纳出归纳出这个结论之后后面利用等比数列求和就迎刃而解了 解析:101031-【分析】 先通过归纳得()()2111233323,3330k kk k k k k f f ---=-=⨯=-=,再利用等比数列求和得解.【详解】由题意得()()232(3)312,3330,333236f f f =-==-==-=⨯=,()4223330f =-=,归纳得()()2111233323,3330k kk k kkkf f ---=-=⨯=-=,则()()()()()()232020352019(3)333(3)333f f f f f f f f ++++=++++012100923232323=⨯+⨯+⨯++⨯()10101210091010132333323113-=⨯++++=⨯=--.故答案为:101031- 【点睛】关键点睛:解答本题的关键在通过特殊值归纳出()()2111233323,3330k k k k k k k f f ---=-=⨯=-=,归纳出这个结论之后,后面利用等比数列求和就迎刃而解了.15.【分析】根据等差数列的前n 项和公式有结合已知条件令即可得进而求【详解】∵均为等差数列令公差分别为则有∴令则有∴故答案为:【点睛】思路点睛:利用等差数列的前n 项和公式结合等差数列通项公式的特点合理假设解析:54【分析】根据等差数列的前n 项和公式有11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+,结合已知条件,令122,1d d ==即可得11,a b ,进而求55a b .【详解】∵{}{},n n a b 均为等差数列,令公差分别为12,d d ,则有11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+, ∴11121222323n n S nd a d n T nd b d n +--==+-+,令122,1d d ==,则有111,22a b =-=, ∴5115124544a a db b d +==+, 故答案为:54【点睛】思路点睛:利用等差数列的前n 项和公式,结合等差数列通项公式的特点合理假设即可得到数列的基本量11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+,则有11121222n n S nd a d T nd b d +-=+-.结合已知233n n S n T n -=+,假设122,1d d ==,即可求11,a b . 16.50【分析】根据题意正方形边长成等比数列正方形的面积等于边长的平方可得代入求出的通项公式然后根据等比数列的前n 项和的公式得到的和即可求解【详解】记第1个正方形的面积为第2个正方形的面积为第n 个正方形解析:50 【分析】根据题意,正方形边长成等比数列,正方形的面积等于边长的平方可得2n n S a =,代入求出n S 的通项公式,然后根据等比数列的前n 项和的公式得到123n s S S S +++⋯+的和即可求解. 【详解】记第1个正方形的面积为1S ,第2个正方形的面积为2S ,⋯,第n 个正方形的面积为n S ,设第n 个正方形的边长为n a ,则第nn , 所以第n +1个正方形的边长为12n n a a +=,12n n a a +∴=, 即数列{n a }是首项为15a =,公比为2的等比数列,15n n a -∴=⋅, 数列{n S }是首项为125S =,公比为12的等比数列, 123125(1)1250(1)1212nn nS S S S -+++⋯+==⋅-∴-,所以如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于50, 故答案为:5017.【分析】由得两式相减得时然后利用等比数列的定义求解【详解】由题意知当时两式相减得即当时所以数列是首项为公比为的等比数列则故答案为:-1【点睛】本题主要考查数列的递推关系还考查了运算求解能力属于中档题解析:1-【分析】由21n n a S =+,得1121n n a S --=+,两式相减得1n n a a -=-,1n =时,11a =-,然后利用等比数列的定义求解. 【详解】由题意知21n n a S =+, 当2n ≥时,1121n n a S --=+, 两式相减,得12n n n a a a --=, 即1n n a a -=-, 当1n =时,11a =-,所以数列{}n a 是首项为1-,公比为1-的等比数列, 则()()45111a =-⨯-=-. 故答案为:-1 【点睛】本题主要考查数列的递推关系,还考查了运算求解能力,属于中档题.18.或19【分析】利用等差数列的通项公式求出再利用等差数列的前项和公式求出记利用作商法判断出数列的单调性即可求解【详解】设等差数列的公差为由题意当时当时所以解得或(舍去)所以记所以当时此时当时时此时所以解析:18或19 【分析】利用等差数列的通项公式求出λ、d ,再利用等差数列的前n 项和公式求出n S ,记910nn n T S ⎛⎫= ⎪⎝⎭,利用作商法判断出数列的单调性即可求解.【详解】设等差数列{}n a 的公差为d ,由题意, 当1n =时,21a a λ=, 当2n =时,42a a λ=,所以()22232d d d λλ+=⎧⎨+=+⎩,解得22d λ=⎧⎨=⎩ 或10d λ=⎧⎨=⎩(舍去),所以()2112n n n dS na n n -=+=+, 记()2991010nnn n n T S n =⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭+,所以()()()12129119210110910n n nnn n T T n n n ++⎛⎫⎡⎤+++ ⎪⎣⎦⎛⎫⎝⎭==+ ⎪⎝⎭⎛⎫+ ⎪⎝⎭, 当118n ≤≤,n *∈N 时,1921110n n T T n +⎛⎫=+≥ ⎪⎝⎭,此时1n n T T +≥, 当10n >时,n *∈N 时,1921110n n T T n +⎛⎫=+< ⎪⎝⎭,此时1n n T T +<, 所以910nn S ⎛⎫ ⎪⎝⎭取最大值时,18n =或19 故答案为:18或19 【点睛】本题考查了差数列的通项公式、等差数列的前n 项和公式、数列的单调性求数列中的最大项,属于中档题.19.【分析】先计算第一列形成的数列再计算第20行形成的数列得到答案【详解】设第一列形成的数列为则是首项为公差为的等差数列故设第20行形成的数列为是首项为公比为的等比数列故即故答案为:【点睛】本题考查了等 解析:1952 【分析】先计算第一列形成的数列205b =,再计算第20行形成的数列201952c =,得到答案. 【详解】设第一列形成的数列为n b ,则{}n b 是首项为14,公差为14的等差数列,故4n n b =,205b =.设第20行形成的数列为n c ,{}n c 是首项为5,公比为12的等比数列,故201952c =. 即(20,20)201952a c ==. 故答案为:1952. 【点睛】本题考查了等差数列和等比数列的综合应用,意在考查学生对于数列公式方法的灵活运用.20.②④⑤【分析】利用所给递推公式求出的通项公式由证明数列不是等比数列根据的单调性求出范围证明②正确根据复合函数的增减性判断规则说明③错误举出例子证明④正确利用裂项相消法求和证明⑤正确【详解】且数列是以解析:②④⑤ 【分析】利用所给递推公式求出{}n a 的通项公式,由3212b b b b ≠证明数列{}n a e 不是等比数列,根据1111(1)1n n a n a n +++=+++的单调性求出范围证明②正确,根据复合函数的增减性判断规则说明③错误,举出例子证明④正确,利用裂项相消法求和证明⑤正确. 【详解】()*1111n n a a n N +-=∈且111a ,∴数列1{}n a 是以1为首项,1为公差的等差数列,则()*1nn n N a =∈, ()*1n a n N n∴=∈. ①设1n n na b e e ==,则1132123,,b e b e b e ===,因为11326212,b b e e b b --==,所以3212b b b b ≠,因此数列{}na e 不是等比数列;②1111(1)1n n a n a n +++=+++,因为1(1)1y n n =+++在[1,)+∞上单调递增,所以115(1)2122n n ++≥+=+,②正确; ③因为若数列{}n a 是单调递减的数列,所以若函数()f x 在R 上单调递减,则数列(){}nf a 是单调递增数列;④234111,,234a a a ===即可构成三角形的三边,所以④正确; ⑤因为1111(1)1n n n n a n a n +==-++,所以1223111112111231n n n a a a a a a n n n +++⋅⋅⋅+=--=++-+++,⑤正确. 故答案为:②④⑤ 【点睛】本题考查由递推公式求数列的通项公式,用定义证明等比数列,复合函数的单调性,裂项相消法求和,属于中档题.三、解答题21.(1)22(1)5x y ++=;(2)4-. 【分析】(1)本题首先可设(,)P x y ,然后根据OM 、OP 、PN 成等比数列得出2222x y x +=⋅-,最后分为2x >、2x <两种情况进行讨论,即可得出结果;(2)本题首先可根据动点P的轨迹方程得出1x ⎡⎤∈⎣⎦,然后将OP PN -转2x +,最后令()2f x x =+,根据导函数性质即可求出最值.【详解】(1)设(,)P x y ,则(2,)N y ,(2,0)M , 因为OM 、OP 、PN 成等比数列,所以2OP P O N M =⋅,即2222x y x +=⋅-,2x ≠, 当2x >时,2224x y x +=-,即22(1)3x y -+=-(舍去);当2x <时,2242x y x +=-,即22(1)5x y ++=,故动点P 的轨迹方程为22(1)5x y ++=.(2)因为动点P 的轨迹方程为22(1)5x y ++=,所以1x ⎡⎤∈⎣⎦,则(2)2OP PN x x -=-=+,令()2f x x =+,则()1f x '=因为当1x ⎡⎤∈⎣⎦时()0f x '>,所以)max ()121134f x f===+=,故OP PN -的最大值为4. 【点睛】关键点点睛:本题考查动点的轨迹方程的求法以及利用导函数求最值,考查等比中项的性质的应用,利用导函数求最值时,可先通过导函数求出函数单调性,然后根据函数单调性求出最值,考查计算能力,体现了综合性,是中档题.22.(1)(i )8;(ii )()()()(),4323,422,4121,4n a n k n a n k a a n k n a n k ⎧=-⎪+-=-⎪=⎨-=-⎪⎪--=⎩;(2)证明见解析. 【分析】(1)(i )推导出当n 为正偶数时,24n n a a n ++=,可得出+4248n n a a n ++=+,两式作差可得出结论成立;(ii )推导出当n 为正奇数时,4n n a a +=,求出2a 、3a 、4a ,对任意的k *∈N ,分43n k =-,42n k =-,41n k =-,4n k =四种情况讨论,结合等差数列的通项公式以及周期数列的定义可求得数列{}n a 的通项公式;(2)计算出4342414n n n n a a a a ---+++,可求得2482n S n n =+,利用放缩法得出4111142121n S n n ⎛⎫<- ⎪-+⎝⎭,结合裂项相消法可证得所证不等式成立. 【详解】(1)(i )当n 为正偶数时,121n n a a n ++=-,2121n n a a n ++-=+, 两式相加得24n n a a n ++=,① 可得+4248n n a a n ++=+,② ②-①得48n n a a +-=;(ii )当n 为正奇数时,121n n a a n +-=-,2121n n a a n +++=+, 两式作差得22n n a a ++=,所以,422n n a a +++=, 上述两个等式作差得4n n a a +=, 又211a a -=,则2111a a a =+=+,323a a +=,则3232a a a =-=-, 435a a -=,则4357a a a =+=-.对任意的k *∈N ,当43n k =-,则1n a a a ==; 当42n k =-时,()()()422811818722723n k a a a k a k a k a n a n -==+-=++-=+-=++-=+-;当41n k =-时,32n a a a ==-;当4n k =时,()()44817818121n k a a a k a k k a n a ==+-=-+-=--=--.综上所述,()()()(),4323,422,4121,4n a n k n a n k a a n k n a n k ⎧=-⎪+-=-⎪=⎨-=-⎪⎪--=⎩; (2)()434241424232241166n n n n a a a a a n a a n a n ---+++=+-+-+-+⨯--=-,()2410166822n n n S n n +-∴==+,()()2241111114212124241n S n n n n n ⎛⎫∴=<=- ⎪-++-⎝⎭, 所以,48411111111111111433521214214n S S S n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅+<-+-++-=-< ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 【点睛】方法点睛:证明数列不等式常用放缩法,常用的放缩公式如下: (1)()()21111211n n n n n n<=-≥--; (2)()()()211111211211n n n n n n ⎛⎫<=-≥ ⎪-+-+⎝⎭; (3)()()2221144112141212121214n n n n n n n ⎛⎫<===- ⎪--+-+⎝⎭-; (4()22n =<=≥. 23.(1)22n a n =-,(1)n b n n =+;(2)证明见解析.【分析】(1)根据等差数列的通项公式求出公差d 可得n a ,根据等差数列的求和公式可得n S ,根据n n S b +,1n n S b ++,2n n S b ++成等比数列可得(1)n b n n =+;(2)将n c 放大后再裂项,利用裂项求和方法求解可证不等式成立.【详解】(1)设等差数列{}n a 的公差为d ,由题意得31413124333a a d a a d S a d =+=⎧⎨=+==+⎩,解得102a d =⎧⎨=⎩, 从而22n a n =-,2(1)(1)2n n n S n n -==-. 因为n n S b +,1n n S b ++,2n n S b ++成等比数列所以()()()212n n n n n n S b S b S b +++=++,从而()211222n n n n n n n n S S b S S b S S +++++=++, 所以2221221(1)(1)(1)(2)2(1)(1)2(1)(1)(2)2(1)2n n n nn n n S S Sn n n n n n n n b n nS S S n n nn n n ++++-+--+++====++--+++-+. (2)证明:因为n c ===<=, 所以122(10211)2n c c c n n n +++<-+-++--=【点睛】关键点点睛:将n c 放大后再裂项,利用裂项求和方法求解是解题关键.24.(1)2n a n =,2n n b =;(2)①存在,5k =;②{}1,2,3,4.【分析】(1)由等差数列以及等比数列的性质以及通项公式得出答案;(2)①11k k k b T T ++-=结合数列{}n b 的通项公式得出k 的值;②由()1n S n n =+将不等式化为()210n n n -+≤,令()()21nf n n n =-+并得出其单调性,再由单调性确定解集. 【详解】(1)因为等差数列{}n a 中,3575330a a a a ++==,所以510a =. 设等差数列{}n a 的公差是d ,所以51251a a d -==- 所以()112n a a n d n =+-=.设等比数列{}n b 的公比是q ,因为2316b b a =所以2331432b q q ==,所以2q ,所以112n n n b b q -==. (2)①若存在正整数k ,使得132k k k T T b +=++成立,则132k k b b +=+ 所以12232k k +=+,即232k =,解得5k =.存在正整数5k =满足条件.②()()112n n n a a S n n +==+ 所以()12n n n +≥,即()210n n n -+≤令()()21nf n n n =-+, 因为()()()()()()11121221221n n n f n f n n n n n n +-⎡⎤+-=-++-++=-+⎣⎦ 所以当4n ≥时,(){}f n 单调递增.又()()210f f -<,()()320f f -<,()()430f f -=所以()()()()()1234f f f f f n >>=<<<因为()10f =,()44f =-,()52f =,所以1n =,2,3,4时,()0f n ≤,5n ≥时,()0f n >,所以不等式n n S b ≥,的解集为{}1,2,3,4.【点睛】解决本题的关键是构造新函数,通过作出确定函数的单调性,从而求得()0f n ≤的解集. 25.证明见解析.【分析】由定义法分别结合n a 和n S 的关系分别证明充分性和必要性成立即可.【详解】当n =1时,S 1=32-t =9-t ,当n ≥2时,由S n =3n +1-t 得S n -1=3n -t ,两式相减得a n =3n +1-3n =2·3n (n ≥2), (1)充分性已知t =3,此时S 1=32-t =9-3=6,令n =1,得a 1=2·31=6=S 1,所以a n =2·3n (n ∈N *) 所以13n na a +=,所以数列{a n }是等比数列. (2)必要性因为数列{a n }是等比数列,所以a 1=2·31=6, 又因为S 1=9-t ,所以9-t =6,所以t =3,综上所述:数列{a n }是等比数列的充要条件为t =3.【点睛】关键点睛:本题考查等比数列的判断和证明,解题的关键是利用n a 和n S 的关系得出()232n n a n =⋅≥,再根据充分必要的定义证明.26.(1)证明见解析,13-=n n a ;(2)()11316164n n n T ⎛⎫=-+⋅- ⎪⎝⎭. 【分析】(1)首先根据131n n S S +=+,131n n S S -=+两式相减得()132n n a a n +=≥,即可得到n a 的通项公式.(2)首先求出()13n n b n -=⋅-,再利用错位相减法求前n 项和n T 即可. 【详解】(1)证明:由131n n S S +=+,当2n ≥时,131n n S S -=+,两式相减得()132n n a a n +=≥,当1n =时,2131S S =+即12131a a a +=+,∴23a =,∴213a a =,∴1n ≥时都有13n n a a +=,∴数列{}n a 是首项为1,公比为3的等比数列,∴13-=n n a .(2)解:()()1113n n n n b na n --=-⋅=⋅-, ∴()()()()()122112333133n n n T n n --=+⋅-+⋅-+⋅⋅⋅+-⋅-+⋅-, ()()()()()12131323133n n n T n n --=⋅-+⋅-+⋅⋅⋅+-⋅-+⋅-, ∴()()()()111413333n n n T n -=+-+-+⋅⋅⋅+--⋅-,∴()()()131********nn n n T n n --⎛⎫=-⋅-=-+⋅- ⎪+⎝⎭∴()11316164n n n T ⎛⎫=-+⋅- ⎪⎝⎭. 【点睛】方法点睛:本题主要考查数列的求和,常见的数列求和方法如下:公式法:直接利用等差、等比数列的求和公式计算即可;分组求和法:把需要求和的数列分成熟悉的数列,再求和即可;裂项求和法:通过把数列的通项公式拆成两项之差,再求和即可;错位相减法:当数列的通项公式由一个等差数列和一个等比数列的乘积构成时,可使用此方法求和.。
数列的概念单元测试题含答案 百度文库
![数列的概念单元测试题含答案 百度文库](https://img.taocdn.com/s3/m/5cef9eee647d27284a735128.png)
一、数列的概念选择题1.函数()2cos 2f x x x =-{}n a ,则3a =( ) A .1312πB .54π C .1712πD .76π 2.数列{}n a 的通项公式是276n a n n =-+,4a =( )A .2B .6-C .2-D .13.在数列{}n a 中,10a =,1n a +,则2020a =( ) A .0B .1C.D4.已知数列{}n a ,若()12*Nn n n a a a n ++=+∈,则称数列{}na 为“凸数列”.已知数列{}nb 为“凸数列”,且11b =,22b =-,则数列{}n b 的前2020项和为( ) A .5B .5-C .0D .1-5.已知数列{}n a 的前n 项和为()*22nn S n =+∈N ,则3a=( )A .10B .8C .6D .46.数列{}n a 满足111n na a +=-,12a =,则2a 的值为( ) A .1B .-1C .13D .13-7.在数列{}n a 中,已知11a =,25a =,()*21n n n a a a n N ++=-∈,则5a 等于( )A .4-B .5-C .4D .58.已知数列{}n a ,{}n b ,其中11a =,且n a ,1n a +是方程220nn x b x -+=的实数根,则10b 等于( ) A .24B .32C .48D .649.在数列{}n a 中,11a =,20192019a =,且*n N ∈都有122n n n a a a ++≥+,则下列结论正确的是( )A .存在正整数0N ,当0n N >时,都有n a n ≤.B .存在正整数0N ,当0n N >时,都有n a n ≥.C .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≤.D .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≥. 10.在数列{}n a 中,12a =,111n n a a -=-(2n ≥),则8a =( )A .1-B .12C .1D .211.已知数列{}n a 的前5项为:12a =,232a =,343a =,454a =,565a =,可归纳得数列{}n a 的通项公式可能为( ) A .1+=n n a nB .21n n a n +=+ C .3132n n a n -=-D .221n na n =- 12.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .184B .174C .188D .16013.已知数列{}n a 满足11a =,122n n a a n n+=++,则10a =( ) A .259B .145 C .3111D .17614.数列1111,,,57911--,…的通项公式可能是n a =( ) A .1(1)32n n --+B .(1)32n n -+C .1(1)23n n --+D .(1)23nn -+15.正整数的排列规则如图所示,其中排在第i 行第j 列的数记为,i j a ,例如4,39a =,则645a ,等于( )12345678910A .2019B .2020C .2021D .202216.已知数列{}n a 满足2122111,16,2n n n a a a a a ++===则数列{}n a 的最大项为( ) A .92 B .102C .8182D .11217.数列12,16,112,120,…的一个通项公式是( ) A .()11n a n n =-B .()1221n a n n =-C .111n a n n =-+ D .11n a n=-18.数列{}n a 前n 项和为n S ,若21n n S a =+,则72019a S +的值为( ) A .2B .1C .0D .1-19.数列{}n a 中,()1121nn n a a n ++-=-,则数列{}n a 的前8项和等于( ) A .32B .36C .38D .4020.已知数列{}n a 的通项公式为()()211nn a n=--,则6a =( )A .35B .11-C .35-D .11二、多选题21.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数C .2020201820223a a a =+D .123a a a +++…20202022a a +=22.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n ∈N *),数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3).再将扇形面积设为b n (n ∈N *),则( )A .4(b 2020-b 2019)=πa 2018·a 2021B .a 1+a 2+a 3+…+a 2019=a 2021-1C .a 12+a 22+a 32…+(a 2020)2=2a 2019·a 2021D .a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=023.若不等式1(1)(1)2n na n+--<+对于任意正整数n 恒成立,则实数a 的可能取值为( ) A .2- B .1- C .1 D .224.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( )A .0,2,n n a n ⎧=⎨⎩为奇数为偶数B .1(1)1n n a -=-+C .2sin2n n a π= D .cos(1)1n a n π=-+25.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n n F n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()n nF n ⎡⎤⎥=-⎥⎝⎭⎝⎭⎦ D .()1122n n F n ⎡⎤⎛⎛⎥=+ ⎥⎝⎭⎝⎭⎦26.已知数列{}n a 满足:12a =,当2n ≥时,)212n a =-,则关于数列{}n a 的说法正确的是 ( )A .27a =B .数列{}n a 为递增数列C .221n a n n =+-D .数列{}n a 为周期数列27.等差数列{}n a 是递增数列,公差为d ,前n 项和为n S ,满足753a a =,下列选项正确的是( ) A .0d <B .10a <C .当5n =时n S 最小D .0n S >时n 的最小值为828.已知递减的等差数列{}n a 的前n 项和为n S ,57S S =,则( ) A .60a > B .6S 最大 C .130S >D .110S >29.等差数列{}n a 中,n S 为其前n 项和,151115,a S S ==,则以下正确的是( )A .1d =-B .413a a =C .n S 的最大值为8SD .使得0n S >的最大整数15n =30.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且3201911111a a e e +≤++,则( )A .当数列{}n a 为等差数列时,20210S ≥B .当数列{}n a 为等差数列时,20210S ≤C .当数列{}n a 为等比数列时,20210T >D .当数列{}n a 为等比数列时,20210T < 31.已知等差数列{}n a 的前n 项和为n S ()*n N ∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A .2d =-B .120a =-C .当且仅当10n =时,n S 取最大值D .当0nS <时,n 的最小值为2232.(多选题)等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则下列命题正确的是( )A .若59S S =,则必有14S =0B .若59S S =,则必有7S 是n S 中最大的项C .若67S S >,则必有78S S >D .若67S S >,则必有56S S >33.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题中正确的有( )A .若100S =,则280S S +=;B .若412S S =,则使0n S >的最大的n 为15C .若150S >,160S <,则{}n S 中8S 最大D .若78S S <,则89S S <34.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为2135.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .当9n =或10时,n S 取最大值 C .911a a <D .613S S =【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题1.B 解析:B 【分析】先将函数化简为()2sin 26f x x π⎛⎫=-⎪⎝⎭4x k ππ=+或512x k ππ=+,k Z ∈,再求3a 即可. 【详解】解:∵()2cos 22sin 26f x x x x π⎛⎫=-=-- ⎪⎝⎭∴ 令()0f x =得:2263x k πππ-=+或22263x k πππ-=+,k Z ∈, ∴4x k ππ=+或512x k ππ=+,k Z ∈, ∴ 正数零点从小到大构成数列为:12355,,,4124a a a πππ===故选:B. 【点睛】本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题.2.B解析:B 【分析】 令4n = 代入即解 【详解】令4n =,2447466a =-⨯+=-故选:B. 【点睛】数列通项公式n a 是第n 项与序号n 之间的函数关系,求某项值代入求解.3.A解析:A 【分析】写出数列的前几项,找寻规律,求出数列的周期,问题即可解. 【详解】10a =,1n a +1n =时,2a 2n =时,3a3 n=时,4a;∴数列{}n a的周期是320206733110a a a⨯+∴===故选:A.【点睛】本题考查周期数列. 求解数列的周期问题时,周期数列的解题方法:根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n项的和.4.B解析:B【分析】根据数列的递推关系可求得数{}n b的周期为6,即可求得数列{}n b的前2020项和.【详解】()*21Nn n nb b b n++=-∈,且11b=,22b=-,∴345673,1,2,3,1,b b b b b=-=-===∴{}n b是以6为周期的周期数列,且60S=,∴20203366412345S S b b b b⨯+==+++=-,故选:B.【点睛】本题考查数列的新定义、数列求和,考查运算求解能力,求解时注意通过计算数列的前6项,得到数列的周期.5.D解析:D【分析】根据332a S S=-,代入即可得结果.【详解】()()3233222224a S S=-=+-+=.故选:D.【点睛】本题主要考查了由数列的前n项和求数列中的项,属于基础题.6.B解析:B【分析】根据数列的递推公式,代入计算可得选项.【详解】因为111n n a a +=-,12a =,所以21111112a a ===---, 故选:B. 【点睛】本题考查由数列递推式求数列中的项,属于基础题.7.B解析:B 【分析】根据已知递推条件()*21n n n a a a n N ++=-∈即可求得5a【详解】由()*21n n n a a a n N++=-∈知:3214a a a 4321a a a 5435a a a故选:B 【点睛】本题考查了利用数列的递推关系求项,属于简单题8.D解析:D 【分析】根据题意,得到1n n n a a b ++=,12nn n a a +=,求得22a =,推出112n n a a +-=,进而可求出10a ,11a ,从而可求出结果.【详解】因为n a ,1n a +是方程220nn x b x -+=的实数根, 所以1n n n a a b ++=,12nn n a a +=,又11a =,所以22a =; 当2n ≥时,112n n n a a --=,所以11112n n n n n na a a a a a ++--==, 因此4102232a a =⋅=,5111232a a =⋅=所以101011323264b a a =+=+=. 故选:D. 【点睛】本题主要考查由数列的递推关系求数列中的项,属于常考题型.9.A【分析】运用数列的单调性和不等式的知识可解决此问题. 【详解】数列{}n a 中,11a =,20192019a =,且*n N ∈都有122n n n a a a ++≥+,121n n n n a a a a +++∴≥--,设1n n n d a a +=-,则1n n d d +≥,∴数列{}n d 是递减数列.对于A ,由11a =,20192019a =, 则201911220182019a a d d d =+++=,所以1220182018d d d +++=,又1232018d d d d ≥≥≥≥,所以1122018201820182018d d d d d ≥+++≥,故120181d d ≥≥,2018n ∴≥时,1n d ≤,02019N ∃=,2019n >时, 20192019202012019111n n a a d d d n -=+++≤++++=即存在正整数0N ,当0n N >时,都有n a n ≤,故A 正确;结合A ,故B 不正确;对于C ,当n →+∞,且0n d >时,数列{}n a 为递增数列, 则n a 无最大值,故C 不正确;对于D ,由数列{}n d 是递减数列,当存在0n d <时,则n a 无最小值,故D 不正确; 故选:A 【点睛】本题考查了数列的单调性以及不等式,属于基础题.10.B解析:B 【分析】通过递推公式求出234,,a a a 可得数列{}n a 是周期数列,根据周期即可得答案. 【详解】 解:211111=1=22a a =--,3211121a a =-=-=-,4311112a a =-=+=, 则数列{}n a 周期数列,满足3n n a a -=,4n ≥85212a a a ∴===, 故选:B.本题考查数列的周期性,考查递推公式的应用,是基础题.11.A解析:A 【分析】将前五项的分母整理为1,2,3,4,5,则其分子为2,3,4,5,6,据此归纳即可. 【详解】因为12a =,232a =,343a =,454a =,565a =,故可得1223,12a a ==, 343a =,454a =,565a =,故可归纳得1+=n n a n. 故选:A. 【点睛】本题考查简单数列通项公式的归纳总结,属基础题.12.B解析:B 【分析】根据高阶等差数列的知识,结合累加法求得数列的通项公式,由此求得19a . 【详解】3,4,6,9,13,18,24,1,2,3,4,5,6,所以()1112,3n n a a n n a --=-≥=,所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()1213n n =-+-+++()()()11113322n n n n -+⋅--=+=+.所以19191831742a ⨯=+=. 故选:B 【点睛】本小题主要考查数列新定义,考查累加法,属于基础题.13.B解析:B 【分析】 由122n n a a n n +=++转化为11121n n a a n n +⎛⎫-=- ⎪+⎝⎭,利用叠加法,求得23na n =-,即可求解. 【详解】 由122n n a a n n +=++,可得12112(1)1n n a a n n n n +⎛⎫-==- ⎪++⎝⎭,所以()()()()11223211n n n n n n n a a a a a a a a a a -----=-+-+-++-+11111111222*********n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭⎝⎭122113n n ⎛⎫=-+=- ⎪⎝⎭,所以102143105a =-=. 故选:B. 【点睛】数列的通项公式的常见求法:1、对于递推关系式可转化为1()n n a a f n +-=的数列,通常采用叠加法(逐差相加法)求其通项公式;2、对于递推关系式可转化为1()n na f n a +=的数列,并且容易求数列{()}f n 前n 项积时,通常采用累乘法求其通项公式; 3、对于递推关系式形如1n n a pa q +=+的数列,可采用构造法求解数列的通项公式.14.D解析:D 【分析】根据观察法,即可得出数列的通项公式. 【详解】因为数列1111,,,, (57911)--可写成 ()()()()2342322311111,1,1,12,..24.333-⨯-⨯-⨯+⨯+⨯+⨯+-⨯, 所以其通项公式为(1)(1)23213nnn a n n -=-=++⨯. 故选:D.15.C解析:C 【分析】根据题目中已知数据,进行归总结,得到一般性结论,即可求得结果. 【详解】根据题意,第1行第1列的数为1,此时111(11)112a ⨯-=+=,, 第2行第1列的数为2,此时212(21)122a ⨯-=+=,, 第3行第1列的数为4 ,此时313(31)142a ⨯-=+=,, 据此分析可得:第64行第1列的数为64164(641)120172a ⨯-=+=,,则6452021a =,, 故选:C.16.B解析:B 【分析】本题先根据递推公式进行转化得到21112n n n n a a a a +++=.然后令1n n na b a +=,可得出数列{}n b 是等比数列.即11322nn n a a +⎛⎫= ⎪⎝⎭.然后用累乘法可求出数列{}n a 的通项公式,根据通项公式及二次函数的知识可得数列{}n a 的最大项. 【详解】解:由题意,可知: 21112n n n na a a a +++=. 令1n n n ab a +=,则112n n b b +=. 21116a b a ==, ∴数列{}n b 是以16为首项,12为公比的等比数列. 111163222n nn b -⎛⎫⎛⎫∴== ⎪⎪⎝⎭⎝⎭.∴11322nn n a a +⎛⎫= ⎪⎝⎭. ∴1211322a a ⎛⎫= ⎪⎝⎭, 2321322a a ⎛⎫= ⎪⎝⎭,111322n n n a a --⎛⎫= ⎪⎝⎭.各项相乘,可得: 12111111(32)222n n na a --⎛⎫⎛⎫⎛⎫=⋯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)2511()22n n n --⎛⎫= ⎪⎝⎭ 2115(1)221122n n n ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭211552212n n n --+⎛⎫= ⎪⎝⎭21(1110)212n n -+⎛⎫= ⎪⎝⎭.令2()1110f n n n =-+,则,根据二次函数的知识,可知:当5n =或6n =时,()f n 取得最小值. ()2551151020f =-⨯+=-,()2661161020f =-⨯+=-,()f n ∴的最小值为20-. ∴211(1110)(20)1022101112222n n -+⨯--⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴数列{}n a 的最大项为102.故选:B . 【点睛】本题主要考查根据递推公式得出通项公式,构造新数列的方法,累乘法通项公式的应用,以及利用二次函数思想求最值;17.C解析:C 【分析】根据选项进行逐一验证,可得答案. 【详解】 选项A. ()11n a n n =-,当1n =时,无意义.所以A 不正确.选项B. ()1221n a n n =-,当2n =时,()211122221126a ==≠⨯⨯⨯-,故B 不正确. 选项C.11122=-,111162323==-⨯,1111123434==-⨯,1111204545==-⨯所以111n a n n =-+满足.故C 正确. 选项D. 11n a n =-,当1n =时, 1111012a =-=≠,故D 不正确. 故选:C18.A解析:A 【分析】根据21n n S a =+,求出1a ,2a ,3a ,4a ,⋯⋯,寻找规律,即可求得答案. 【详解】21n n S a =+当1n =,1121a a =+,解得:11a = 当2n =,122221a a a +=+,解得:21a =- 当3n =,32132221a a a a ++=+,解得:31a = 当4n =,4321422221a a a a a +++=+,解得:41a =-⋯⋯当n 奇数时,1n a = 当n 偶数时,1n a =-∴71a =,20191S =故720192a S += 故选:A. 【点睛】本题主要考查了根据递推公式求数列值,解题关键是掌握数列的基础知识,考查了分析能力和计算能力,属于中档题.19.B解析:B 【分析】根据所给数列表达式,递推后可得()121121n n n a a n ++++-=+.并将原式两边同时乘以()1n-后与变形后的式子相加,即可求得2n n a a ++,即隔项和的形式.进而取n 的值,代入即可求解. 【详解】由已知()1121nn n a a n ++-=-,① 得()121121n n n a a n ++++-=+,②由()1n ⨯-+①②得()()()212121nn n a a n n ++=-⋅-++,取1,5,9n =及2,6,10n =,易得13572a a a a +=+=,248a a +=,6824a a +=, 故81234836S a a a a a =++++⋅⋅⋅+=. 故选:B. 【点睛】本题考查了数列递推公式的应用,对数列表达式进行合理变形的解决此题的关键,属于中档题.20.A解析:A 【分析】直接将6n =代入通项公式可得结果. 【详解】 因为()()211nn a n=--,所以626(1)(61)35a =--=.故选:A 【点睛】本题考查了根据通项公式求数列的项,属于基础题.二、多选题 21.AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,,,,故A 正确;对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误; 对于C ,,故C 正确; 对于D ,,,, , 各式相加解析:AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确; 对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,32121,a a a a a ⋅⋅⋅=+=,各式相加得()2022202120202021202020192012182a a a a a a a a a ++⋅⋅⋅+=+++⋅⋅⋅++, 所以202220202019201811a a a a a a =++⋅⋅⋅+++,故D 错误. 故选:AC. 【点睛】关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项.22.ABD 【分析】对于A ,由题意得bn=an2,然后化简4(b2020-b2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{an}满足a1=a2=1,an =an -1+an -2 (n≥3解析:ABD 【分析】对于A ,由题意得b n =4πa n 2,然后化简4(b 2020-b 2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,然后累加求解;对于D ,由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2,化简可得结果 【详解】由题意得b n =4πa n 2,则4(b 2020-b 2019)=4(4πa 20202-4πa 20192)=π(a 2020+a 2019)(a 2020-a 2019)=πa 2018·a 2021,则选项A 正确; 又数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),所以a n -2=a n -a n -1(n ≥3),a 1+a 2+a 3+…+a 2019=(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+…+(a 2021-a 2020)=a 2021-a 2=a 2021-1,则选项B 正确;数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n-12=a n -1 a n -2-a n -1 a n ,则a 12+a 22+a 32…+(a 2020)2=a 12+(a 2a 1-a 2a 3)+(a 3a 2-a 3a 4)+…+(a 2020a 2019-a 2020a 2021)=a 12-a 2020a 2021=1-a 2020a 2021,则选项C 错误;由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=a 2019·(a 2021-a 2019)+a 2020·(a 2018-a 2020)=a 2019·a 2020+a 2020·(-a 2019)=0,则选项D 正确; 故选:ABD. 【点睛】此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题23.ABC 【分析】根据不等式对于任意正整数n 恒成立,即当n 为奇数时有恒成立,当n 为偶数时有恒成立,分别计算,即可得解. 【详解】根据不等式对于任意正整数n 恒成立, 当n 为奇数时有:恒成立, 由递减解析:ABC 【分析】根据不等式1(1)(1)2n na n +--<+对于任意正整数n 恒成立,即当n 为奇数时有12+a n-<恒成立,当n 为偶数时有12a n<-恒成立,分别计算,即可得解. 【详解】根据不等式1(1)(1)2n na n +--<+对于任意正整数n 恒成立, 当n 为奇数时有:12+a n-<恒成立,由12+n 递减,且1223n<+≤,所以2a -≤,即2a ≥-, 当n 为偶数时有:12a n<-恒成立, 由12n -第增,且31222n ≤-<, 所以32a <, 综上可得:322a -≤<, 故选:ABC . 【点睛】本题考查了不等式的恒成立问题,考查了分类讨论思想,有一定的计算量,属于中当题.24.BD 【分析】根据选项求出数列的前项,逐一判断即可. 【详解】解:因为数列的前4项为2,0,2,0, 选项A :不符合题设; 选项B : ,符合题设; 选项C :, 不符合题设;选项D : ,符合题设解析:BD 【分析】根据选项求出数列的前4项,逐一判断即可. 【详解】解:因为数列{}n a 的前4项为2,0,2,0, 选项A :不符合题设;选项B :01(1)12,a =-+=12(1)10,a =-+=23(1)12,a =-+=34(1)10a =-+=,符合题设;选项C :,12sin2,2a π==22sin 0,a π==332sin22a π==-不符合题设; 选项D :1cos 012,a =+=2cos 10,a π=+=3cos 212,a π=+=4cos310a π=+=,符合题设.故选:BD. 【点睛】本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题.25.BC 【分析】根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……, 显然,,,,,所以且,即B 满足条件; 由, 所以 所以数列解析:BC 【分析】根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……,显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,,()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且()()11,21F F ==,即B 满足条件;由()()()11,2F n F n F n n +=+-≥, 所以()()()()11F n n F n n ⎤+-=--⎥⎣⎦所以数列()()1F n n ⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭为公比的等比数列, 所以()()1nF n n +-=⎝⎭1115()n F F n n -+=++, 令1nn n F b-=⎝⎭,则11n n b +=+,所以1n n b b +=-, 所以nb ⎧⎪⎨⎪⎪⎩⎭的等比数列,所以1n n b -+,所以()1115n n n nF n --⎤⎤⎛⎫+⎥⎥=+=- ⎪ ⎪⎥⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦; 即C 满足条件; 故选:BC 【点睛】考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题.26.ABC 【分析】由,变形得到,再利用等差数列的定义求得,然后逐项判断. 【详解】 当时,由, 得, 即,又,所以是以2为首项,以1为公差的等差数列, 所以,即,故C 正确; 所以,故A 正确; ,解析:ABC 【分析】由)212n a =-1=,再利用等差数列的定义求得n a ,然后逐项判断. 【详解】当2n ≥时,由)212n a =-,得)221n a +=,1=,又12a =,所以是以2为首项,以1为公差的等差数列,2(1)11n n =+-⨯=+,即221n a n n =+-,故C 正确;所以27a =,故A 正确;()212n a n =+-,所以{}n a 为递增数列,故正确;数列{}n a 不具有周期性,故D 错误; 故选:ABC27.BD 【分析】由题意可知,由已知条件可得出,可判断出AB 选项的正误,求出关于的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】由于等差数列是递增数列,则,A 选项错误解析:BD 【分析】由题意可知0d >,由已知条件753a a =可得出13a d =-,可判断出AB 选项的正误,求出n S 关于d 的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】由于等差数列{}n a 是递增数列,则0d >,A 选项错误;753a a =,则()11634a d a d +=+,可得130a d =-<,B 选项正确;()()()22171117493222224n n n d n n d n n d S na nd n d -⎡⎤--⎛⎫=+=-+==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 当3n =或4时,n S 最小,C 选项错误;令0n S >,可得270n n ->,解得0n <或7n >.n N *∈,所以,满足0n S >时n 的最小值为8,D 选项正确.故选:BD.28.ABD【分析】转化条件为,进而可得,,再结合等差数列的性质及前n 项和公式逐项判断即可得解.【详解】因为,所以,即,因为数列递减,所以,则,,故A 正确;所以最大,故B 正确;所以,故C 错误解析:ABD【分析】转化条件为670a a +=,进而可得60a >,70a <,再结合等差数列的性质及前n 项和公式逐项判断即可得解.【详解】因为57S S =,所以750S S -=,即670a a +=,因为数列{}n a 递减,所以67a a >,则60a >,70a <,故A 正确;所以6S 最大,故B 正确;所以()113137131302a a S a +⨯==<,故C 错误; 所以()111116111102a a S a +⨯==>,故D 正确. 故选:ABD.29.BCD【分析】设等差数列的公差为,由等差数列的通项公式及前n 项和公式可得,再逐项判断即可得解.【详解】设等差数列的公差为,由题意,,所以,故A 错误;所以,所以,故B 正确;因为,所以当解析:BCD【分析】设等差数列{}n a 的公差为d ,由等差数列的通项公式及前n 项和公式可得1215d a =-⎧⎨=⎩,再逐项判断即可得解.【详解】设等差数列{}n a 的公差为d , 由题意,1115411105112215a d a d a ⨯⨯⎧+=+⎪⎨⎪=⎩,所以1215d a =-⎧⎨=⎩,故A 错误; 所以1131439,129a a d a d a =+==+=-,所以413a a =,故B 正确;因为()()2211168642n n n a n d n n n S -=+=-+=--+, 所以当且仅当8n =时,n S 取最大值,故C 正确; 要使()28640n S n =--+>,则16n <且n N +∈,所以使得0n S >的最大整数15n =,故D 正确.故选:BCD.30.AC【分析】将变形为,构造函数,利用函数单调性可得,再结合等差数列与等比数列性质即可判断正确选项【详解】由,可得,令,,所以是奇函数,且在上单调递减,所以,所以当数列为等差数列时,;解析:AC【分析】 将3201911111a a e e +≤++变形为32019111101212a a e e -+-≤++,构造函数()1112x f x e =-+,利用函数单调性可得320190a a +≥,再结合等差数列与等比数列性质即可判断正确选项由3201911111a a e e +≤++,可得32019111101212a a e e -+-≤++,令()1112x f x e =-+, ()()1111101111xx x x x e f x f x e e e e --+=+-=+-=++++, 所以()1112x f x e =-+是奇函数,且在R 上单调递减,所以320190a a +≥, 所以当数列{}n a 为等差数列时,()320192*********a a S +=≥; 当数列{}n a 为等比数列时,且3a ,1011a ,2019a 同号,所以3a ,1011a ,2019a 均大于零, 故()2021202110110T a =>.故选:AC【点睛】本题考查等差数列与等比数列,考查逻辑推理能力,转化与化归的数学思想,属于中档题 31.AD【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由解不等式可判断D .【详解】等差数列的前n 项和为,公差,由,可解析:AD【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由0nS <解不等式可判断D . 【详解】等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,得2739a a a =,即()()()2111628a d a d a d +=++,化为1100a d +=,②由①②解得120a =,2d =-,则202(1)222n a n n =--=-,21(20222)212n S n n n n =+-=-, 由22144124n S n ⎛⎫=--+ ⎪⎝⎭,可得10n =或11时,n S 取得最大值110; 由2102n S n n -<=,解得21n >,则n 的最小值为22.【点睛】本题考查等差数列的通项公式和求和公式,以及等比中项的性质,二次函数的最值求法,考查方程思想和运算能力,属于中档题.32.ABC【分析】根据等差数列性质依次分析即可得答案.【详解】解:对于A.,若,则,所以,所以,故A 选项正确;对于B 选项,若,则,由于,公差,故,故,所以是中最大的项;故B 选项正确;C. 若解析:ABC【分析】根据等差数列性质依次分析即可得答案.【详解】解:对于A.,若59S S =,则67890a a a a +++=,所以781140a a a a +=+=,所以()114141402a a S +==,故A 选项正确; 对于B 选项,若59S S =,则780+=a a ,由于10a >,公差0d ≠,故0d <,故780,0a a ><,所以7S 是n S 中最大的项;故B 选项正确;C. 若67S S >,则70a <,由于10a >,公差0d ≠,故0d <,故80a <,6a 的符号不定,故必有78S S >,56S S >无法确定;故C 正确,D 错误.故选:ABC .【点睛】本题考查数列的前n 项和的最值问题与等差数列的性质,是中档题.33.BC【分析】根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案.【详解】A 选项,若,则,那么.故A 不正确;B 选项,若,则,又因为,所以前8项为正,从第9项开始为负,因为解析:BC根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案.【详解】A 选项,若1011091002S a d ⨯=+=,则1290a d +=, 那么()()2811128281029160S S a d a d a d d +=+++=+=-≠.故A 不正确; B 选项,若412S S =,则()5611128940a a a a a a ++++=+=,又因为10a >,所以前8项为正,从第9项开始为负,因为()()116168916802a a S a a +==+=, 所以使0n S >的最大的n 为15.故B 正确;C 选项,若()115158151502a a S a +==>,()()116168916802a a S a a +==+<, 则80a >,90a <,则{}n S 中8S 最大.故C 正确;D 选项,若78S S <,则80a >,而989S S a -=,不能判断9a 正负情况.故D 不正确. 故选:BC .【点睛】本题考查等差数列性质的应用,涉及等差数列的求和公式,属于常考题型.34.BC【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由Sn>0解不等式可判断D .【详解】由公差,可得,即,①由a7是a解析:BC【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由S n >0解不等式可判断D .【详解】由公差60,90d S ≠=,可得161590a d +=,即12530a d +=,①由a 7是a 3与a 9的等比中项,可得2739a a a =,即()()()2111628a d a d a d +=++,化简得110a d =-,②由①②解得120,2a d ==-,故A 错,B 对;由()()22121441201221224n S n n n n n n ⎛⎫=+-⨯-=-=--+ ⎪⎝⎭ *n N ∈,可得10n =或11时,n S 取最大值110,C 对;由S n >0,解得021n <<,可得n 的最大值为20,D 错;故选:BC【点睛】本题考查等差数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题. 35.AD【分析】由求出,即,由此表示出、、、,可判断C 、D 两选项;当时,,有最小值,故B 错误.【详解】解:,,故正确A.由,当时,,有最小值,故B 错误.,所以,故C 错误.,,故D 正确.解析:AD【分析】由1385a a S +=求出100a =,即19a d =-,由此表示出9a 、11a 、6S 、13S ,可判断C 、D 两选项;当0d >时,10a <,n S 有最小值,故B 错误.【详解】解:1385a a S +=,111110875108,90,02d a a d a a d a ⨯++=++==,故正确A. 由190a d +=,当0d >时,10a <,n S 有最小值,故B 错误.9101110,a a d d a a d d =-==+=,所以911a a =,故C 错误.61656+5415392d S a d d d ⨯==-+=-, 131131213+11778392d S a d d d ⨯==-+=-,故D 正确. 故选:AD【点睛】考查等差数列的有关量的计算以及性质,基础题.。
数列的概念单元测试题含答案百度文库
![数列的概念单元测试题含答案百度文库](https://img.taocdn.com/s3/m/a330b8f90912a2161579291e.png)
一、数列的概念选择题1.删去正整数1,2,3,4,5,…中的所有完全平方数与立方数(如4,8),得到一个新数列,则这个数列的第2020项是( ) A .2072B .2073C .2074D .20752.已知数列{}n a 满足1221n n n a a a ++=+,n *∈N ,若1102a <<,则( ) A .8972a a a +< B .91082a a a +> C .6978a a a a +>+D .71089a a a a +>+3.在数列{}n a 中,11a =,11n n a a n +=++,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,若n S m <对一切正整数n 恒成立,则实数m 的取值范围为( ) A .()3,+∞ B .[)3,+∞C .()2,+∞D .[)2,+∞4.数列{}n a 的通项公式是276n a n n =-+,4a =( )A .2B .6-C .2-D .15.在数列{}n a 中,10a =,1n a +,则2020a =( ) A .0B .1C.D6.已知数列{}n a 的前n 项和223n S n n =-,则10a =( )A .35B .40C .45D .507.已知数列{}n a 满足1n n n a a +-=,则20201a a -=( ) A .20201010⨯ B .20191010⨯C .20202020⨯D .20192019⨯8.已知数列,21,n -21是这个数列的( )A .第10项B .第11项C .第12项D .第21项9.在数列{}n a 中,11a =,20192019a =,且*n N ∈都有122n n n a a a ++≥+,则下列结论正确的是( )A .存在正整数0N ,当0n N >时,都有n a n ≤.B .存在正整数0N ,当0n N >时,都有n a n ≥.C .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≤.D .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≥.10.已知数列{}n a ,{}n b ,其中11a =,且n a ,1n a +是方程220nn x b x -+=的实数根,则10b 等于( )A .24B .32C .48D .6411.已知数列{}n a 满足12n n a a n +=+,且133a =,则na n的最小值为( ) A .21B .10C .212 D .17212.已知数列{}n a 的通项公式为()()211nn a n=--,则6a =( )A .35B .11-C .35-D .1113.数列{}n a 满足12a =,1111n n n a a a ++-=+,则2019a =( ) A .3-B .12-C .13D .214.数列1111,,,57911--,…的通项公式可能是n a =( ) A .1(1)32n n --+B .(1)32n n -+C .1(1)23n n --+D .(1)23nn -+15.已知数列{}n a满足112n a +=+112a =,则该数列前2016项的和为( ) A .2015B .2016C .1512D .3025216.在数列{}n a 中,11(1)1,2(2)nn n a a n a --==+≥,则3a =( ) A .0B .53C .73D .317.公元13世纪意大利数学家斐波那契在自己的著作《算盘书》中记载着这样一个数列:1,1,2,3,5,8,13,21,34,…满足21(1),n n n a a a n ++=+≥那么24620201a a a a +++++=( )A .2021aB .2022aC .2023aD .2024a18.下列命题中错误的是( ) A .()()21f n n n N+=-∈是数列的一个通项公式B .数列通项公式是一个函数关系式C .任何一个数列中的项都可以用通项公式来表示D .数列中有无穷多项的数列叫作无穷数列 19.在数列{}n a 中,11a =,()*122,21n n a n n N a -=≥∈-,则3a =( )A .6B .2C .23 D .21120.数列{}n a 满足 112a =,111n na a +=-,则2018a 等于( )A .12B .-1C .2D .3二、多选题21.已知数列{}n a :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68S a = B .733S =C .135********a a a a a ++++= D .2222123202020202021a a a a a a ++++=22.已知数列0,2,0,2,0,2,,则前六项适合的通项公式为( )A .1(1)nn a =+-B .2cos2n n a π= C .(1)2sin2n n a π+= D .1cos(1)(1)(2)n a n n n π=--+--23.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( ) A .0,2,n n a n ⎧=⎨⎩为奇数为偶数B .1(1)1n n a -=-+C .2sin2n n a π= D .cos(1)1n a n π=-+24.已知数列{}n a 满足112a =-,111n n a a +=-,则下列各数是{}n a 的项的有( )A .2-B .23C .32D .325.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足11140(2),4n n n a S S n a -+=≥=,则下列说法正确的是( )A .数列{}n a 的前n 项和为1S 4n n=B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1{}nS 为递增数列 26.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .911a a = C .当9n =或10时,n S 取得最大值D .613S S =27.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有m n m n a a a +=+,则下列结论正确的是( )A .11285a a a a +=+B .56110a a a a <C .若该数列的前三项依次为x ,1x -,3x ,则10103a = D .数列n S n ⎧⎫⎨⎬⎩⎭为递减的等差数列 28.已知数列{}2nna n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6D .a 1,a 2,a 3可能成等差数列29.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减 B .数列{}n a 有最大值 C .数列{}n S 单调递减D .数列{}n S 有最大值30.公差不为零的等差数列{}n a 满足38a a =,n S 为{}n a 前n 项和,则下列结论正确的是( ) A .110S =B .10n n S S -=(110n ≤≤)C .当110S >时,5n S S ≥D .当110S <时,5n S S ≥ 31.设{}n a 是等差数列,n S 是其前n 项和,且56678,S S S S S <=>,则下列结论正确的是( ) A .0d < B .70a =C .95S S >D .67n S S S 与均为的最大值32.设等差数列{}n a 的前n 项和为n S ,若39S =,47a =,则( )A .2n S n =B .223n S n n =-C .21n a n =-D .35n a n =-33.下面是关于公差0d >的等差数列{}n a 的四个命题,其中的真命题为( ). A .数列{}n a 是递增数列 B .数列{}n na 是递增数列 C .数列{}na n是递增数列 D .数列{}3n a nd +是递增数列34.已知数列{}n a 满足:13a =,当2n ≥时,)211n a =-,则关于数列{}n a 说法正确的是( )A .28a =B .数列{}n a 为递增数列C .数列{}n a 为周期数列D .22n a n n =+35.等差数列{}n a 的前n 项和为n S ,若90a <,100a >,则下列结论正确的是( ) A .109S S >B .170S <C .1819S S >D .190S >【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.C 解析:C 【分析】由于数列22221,2,3,2,5,6,7,8,3,45⋯共有2025项,其中有45个平方数,12个立方数,有3个既是平方数,又是立方数的数,所以还剩余20254512+31971--=项,所以去掉平方数和立方数后,第2020项是在2025后的第()20201971=49-个数,从而求得结果. 【详解】∵2452025=,2462116=,20202025<,所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉45个平方数,因为331217282025132197=<<=,所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉12个立方数,又66320254<<,所以在从数列22221,2,3,2,5,6,7,8,3,45⋯中有3个数即是平方数, 又是立方数的数,重复去掉了3个即是平方数,又是立方数的数, 所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉平方数和立方数后还有20254512+31971--=项,此时距2020项还差2020197149-=项, 所以这个数列的第2020项是2025492074+=, 故选:C. 【点睛】本题考查学生的实践创新能力,解决该题的关键是找出第2020项的大概位置,所以只要弄明白在数列22221,2,3,2,5,6,7,8,3,45⋯去掉哪些项,去掉多少项,问题便迎刃而解,属于中档题.2.C解析:C 【分析】 由递推公式1221n n n a a a ++=+得出25445n n n a a a ++=+,计算出25,24a ⎛⎫∈ ⎪⎝⎭,利用递推公式推导得出()0,1n a ∈(n 为正奇数),1n a >(n 为正偶数),利用定义判断出数列{}()21n a n N *-∈和{}()2n a n N *∈的单调性,进而可得出结论.【详解】()()113212132221212221n n n n n n a a a a a a ++++===++++,110,2a ⎛⎫∈ ⎪⎝⎭,25,24a ⎛⎫∴∈ ⎪⎝⎭, ()()121259245221545944221454544452121n n n n n n n n n n n n a a a a a a a a a a a a ++++++-+++=====-+++++⨯++, 且()2241544545n n n n n n n a a a a a a a +-+-=-=++,()212122121n n n n n n n a a a a a a a +-+-=-=++. 110,2a ⎛⎫∈ ⎪⎝⎭,则101a <<,则()()3590,14445n a a =-∈+, 如此继续可得知()()210,1n a n N *-∈∈,则()22121212141=045n n n n a aa a -+---->+,所以,数列{}()21n a n N *-∈单调递增;同理可知,()21na n N *>∈,数列{}()2na n N *∈单调递减.对于A 选项,78a a <且79a a <,8972a a a ∴+>,A 选项错误; 对于B 选项,89a a >且108a a <,则91082a a a +<,B 选项错误; 对于C 选项,68a a >,97a a >,则6978a a a a +>+,C 选项正确; 对于D 选项,79a a <,108a a <,则71098a a a a +<+,D 选项错误. 故选:C. 【点睛】本题考查数列不等式的判断,涉及数列递推公式的应用,解题的关键就是推导出数列{}()21n a n N *-∈和{}()2n a n N *∈的单调性,考查推理能力,属于难题.3.D解析:D 【分析】利用累加法求出数列{}n a 的通项公式,并利用裂项相消法求出n S ,求出n S 的取值范围,进而可得出实数m 的取值范围. 【详解】11n n a a n +=++,11n n a a n +∴-=+且11a =,由累加法可得()()()()12132111232n n n n n a a a a a a a a n -+=+-+-++-=++++=,()122211n a n n n n ∴==-++,22222222222311n S n n n ⎛⎫⎛⎫⎛⎫∴=-+-++-=-< ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, 由于n S m <对一切正整数n 恒成立,2m ∴≥,因此,实数m 的取值范围是[)2,+∞.故选:D. 【点睛】本题考查数列不等式恒成立问题的求解,同时也考查了累加法求通项以及裂项求和法,考查计算能力,属于中等题.4.B解析:B 【分析】 令4n = 代入即解 【详解】令4n =,2447466a =-⨯+=-故选:B. 【点睛】数列通项公式n a 是第n 项与序号n 之间的函数关系,求某项值代入求解.5.A解析:A【分析】写出数列的前几项,找寻规律,求出数列的周期,问题即可解.【详解】10a =,1n a+1n=时,2a 2n =时,3a 3n =时,4a ; ∴ 数列{}n a 的周期是320206733110a a a ⨯+∴===故选:A. 【点睛】本题考查周期数列. 求解数列的周期问题时,周期数列的解题方法:根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n 项的和.6.A解析:A 【分析】利用()n n n a S S n 12-=-,根据题目已知条件求出数列的通项公式,问题得解.【详解】223n S n n =-,n 2∴≥时,1n n n a S S -=-22(23[2(1)3(1)]n n n n )=-----=45n1n = 时满足11a S = ∴ =45n a n ,∴ 10a =35故选:A. 【点睛】本题考查利用n a 与n S 的关系求通项. 已知n S 求n a 的三个步骤: (1)先利用11a S =求出1a .(2)用1n -替换n S 中的n 得到一个新的关系,利用()n n n a S S n 12-=-便可求出当n 2≥时n a 的表达式.(3)对1n =时的结果进行检验,看是否符合n 2≥时n a 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分1n =与n 2≥两段来写. .7.B解析:B 【分析】由题意可得211a a -=,322a a -=,433a a -=,……202020192019a a -=,再将这2019个式子相加得到结论. 【详解】由题意可知211a a -=,322a a -=,433a a -=,……202020192019a a -=, 这2019个式子相加可得()20201201912019123 (2019201910102)a a +-=++++==⨯.故选:B. 【点睛】本题考查累加法,重点考查计算能力,属于基础题型.8.B解析:B 【分析】根据题中所给的通项公式,令2121n -=,求得n =11,得到结果. 【详解】令2121n -=,解得n =11是这个数列的第11项. 故选:B. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有判断数列的项,属于基础题目.9.A解析:A 【分析】运用数列的单调性和不等式的知识可解决此问题. 【详解】数列{}n a 中,11a =,20192019a =,且*n N ∈都有122n n n a a a ++≥+,121n n n n a a a a +++∴≥--,设1n n n d a a +=-,则1n n d d +≥,∴数列{}n d 是递减数列.对于A ,由11a =,20192019a =, 则201911220182019a a d d d =+++=,所以1220182018d d d +++=,又1232018d d d d ≥≥≥≥,所以1122018201820182018d d d d d ≥+++≥,故120181d d ≥≥,2018n ∴≥时,1n d ≤,02019N ∃=,2019n >时, 20192019202012019111n n a a d d d n -=+++≤++++=即存在正整数0N ,当0n N >时,都有n a n ≤,故A 正确;结合A ,故B 不正确;对于C ,当n →+∞,且0n d >时,数列{}n a 为递增数列, 则n a 无最大值,故C 不正确;对于D ,由数列{}n d 是递减数列,当存在0n d <时,则n a 无最小值,故D 不正确; 故选:A 【点睛】本题考查了数列的单调性以及不等式,属于基础题.10.D解析:D 【分析】根据题意,得到1n n n a a b ++=,12nn n a a +=,求得22a =,推出112n n a a +-=,进而可求出10a ,11a ,从而可求出结果.【详解】因为n a ,1n a +是方程220nn x b x -+=的实数根, 所以1n n n a a b ++=,12nn n a a +=,又11a =,所以22a =; 当2n ≥时,112n n n a a --=,所以11112n n n n n na a a a a a ++--==, 因此4102232a a =⋅=,5111232a a =⋅=所以101011323264b a a =+=+=. 故选:D. 【点睛】本题主要考查由数列的递推关系求数列中的项,属于常考题型.11.C解析:C 【分析】由累加法求出233n a n n =+-,所以331n a n n n,设33()1f n n n=+-,由此能导出5n =或6时()f n 有最小值,借此能得到na n的最小值. 【详解】解:()()()112211n n n n n a a a a a a a a ---=-+-+⋯+-+22[12(1)]3333n n n =++⋯+-+=+-所以331n a n nn设33()1f n n n=+-,由对勾函数的性质可知, ()f n 在(上单调递减,在)+∞上单调递减,又因为n ∈+N ,所以当5n =或6时()f n 可能取到最小值. 又因为56536321,55662a a ===, 所以n a n的最小值为62162a =.故选:C. 【点睛】本题考查了递推数列的通项公式的求解以及对勾函数的单调性,考查了同学们综合运用知识解决问题的能力.12.A解析:A【分析】直接将6n =代入通项公式可得结果. 【详解】 因为()()211nn a n=--,所以626(1)(61)35a =--=.故选:A 【点睛】本题考查了根据通项公式求数列的项,属于基础题.13.B解析:B 【分析】由递推关系,可求出{}n a 的前5项,从而可得出该数列的周期性,进而求出2019a 即可. 【详解】 由1111n n n a a a ++-=+,可得111nn n a a a ++=-,由12a =,可得23a =-,312a =-,413a =,52a =,由15a a =,可知数列{}n a 是周期数列,周期为4, 所以2019312a a ==-. 故选:B.14.D解析:D 【分析】根据观察法,即可得出数列的通项公式. 【详解】因为数列1111,,,, (57911)--可写成 ()()()()2342322311111,1,1,12,..24.333-⨯-⨯-⨯+⨯+⨯+⨯+-⨯, 所以其通项公式为(1)(1)23213nnn a n n -=-=++⨯. 故选:D.15.C解析:C 【分析】通过计算出数列的前几项确定数列{}n a 是以2为周期的周期数列,进而计算可得结论. 【详解】依题意,11 2a=,211122a=,3111222a=+=,⋯从而数列{}n a是以2为周期的周期数列,于是所求值为20161(1)151222⨯+=,故选:C【点睛】关键点睛:解答本题的关键是联想到数列的周期性并找到数列的周期.16.B解析:B【分析】由数列的递推关系式以及11a=求出2a,进而得出3a.【详解】11a =,21123aa∴=+=,321523aa-=+=故选:B17.A解析:A【分析】根据数列的递推关系式即可求解.【详解】由21(1),n n na a a n++=+≥则2462020246210201aa a a a a a a a+++++++++=+3462020562020201920202021a a a a a a a a a a=+++=+++=+=.故选:A18.C解析:C【分析】根据通项公式的概念可以判定AB正确;不难找到一些规律性不强的数列,找不到通项公式,由此判定C错误,根据无穷数列的概念可以判定D正确.【详解】数列的通项公式的概念:将数列{}n a的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式,故任意一个定义域为正整数集合的或者是其从1开始的一个子集的函数都可以是数列的通项公式,它是一个函数关系,即对于任意给定的数列,各项的值是由n 唯一确定的,故AB 正确; 并不是所有的数列中的项都可以用一个通项公式来表示,比如所有的质数从小到大排在一起构成的数列,至今没有发现统一可行的公式表示,圆周率的各位数字构成的数列也没有一个通项公式可以表达,还有很多规律性不强的数列也找不到通项公式,故C 是错误的; 根据无穷数列的概念,可知D 是正确的. 故选:C. 【点睛】本题考查数列的通项公式的概念和无穷数列的概念,属基础题,数列的通项公式是一种定义在正整数集上的函数,有穷数列与无穷数列是根据数列的项数来分类的.19.C解析:C 【分析】利用数列的递推公式逐项计算可得3a 的值. 【详解】()*122,21n n a n n N a -=≥∈-,11a =,212221a a ∴==-,3222213a a ==-. 故选:C. 【点睛】本题考查利用数列的递推公式写出数列中的项,考查计算能力,属于基础题.20.B解析:B 【分析】先通过列举找到数列的周期,再求2018a . 【详解】n=1时,234511121,1(1)2,1,121,22a a a a =-=-=--==-==-=- 所以数列的周期是3,所以2018(36722)21a a a ⨯+===-. 故选:B 【点睛】本题主要考查数列的递推公式和数列的周期,意在考查学生对这些知识的掌握水平和分析推理能力.二、多选题 21.BCD 【分析】根据题意写出,,,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】对A ,,,故A 不正确; 对B ,,故B 正确; 对C ,由,,解析:BCD 【分析】根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】对A ,821a =,620S =,故A 不正确; 对B ,761333S S =+=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020a a a =-,可得135********a a a a a +++⋅⋅⋅+=,故C 正确;对D ,该数列总有21n n n a a a ++=+,2121a a a =,则()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018a a a a -,220202020202120202019a a a a a =-, 故2222123202*********a a a a a a +++⋅⋅⋅+=,故D 正确.故选:BCD 【点睛】关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n n a a a ++=+对所给式子进行变形.22.AC 【分析】对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案. 【详解】对于选项A ,取前六项得:,满足条件; 对于选项B ,取前六项得:,不满足条件; 对于选项C ,取前六项得:,解析:AC 【分析】对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案. 【详解】对于选项A ,1(1)nn a =+-取前六项得:0,2,0,2,0,2,满足条件;对于选项B ,2cos 2n n a π=取前六项得:0,2,0,2,0,2--,不满足条件; 对于选项C ,(1)2sin2n n a π+=取前六项得:0,2,0,2,0,2,满足条件; 对于选项D ,1cos(1)(1)(2)n a n n n π=--+--取前六项得:0,2,2,8,12,22,不满足条件; 故选:AC23.BD 【分析】根据选项求出数列的前项,逐一判断即可. 【详解】解:因为数列的前4项为2,0,2,0, 选项A :不符合题设; 选项B : ,符合题设; 选项C :, 不符合题设; 选项D : ,符合题设解析:BD 【分析】根据选项求出数列的前4项,逐一判断即可. 【详解】解:因为数列{}n a 的前4项为2,0,2,0, 选项A :不符合题设;选项B :01(1)12,a =-+=12(1)10,a =-+=23(1)12,a =-+=34(1)10a =-+=,符合题设;选项C :,12sin2,2a π==22sin 0,a π==332sin22a π==-不符合题设; 选项D :1cos 012,a =+=2cos 10,a π=+=3cos 212,a π=+=4cos310a π=+=,符合题设.故选:BD. 【点睛】本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题.24.BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】 因为数列满足,, ; ; ;数列是周期为3的数列,且前3项为,,3; 故选:. 【点睛】 本题主要解析:BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】因为数列{}n a 满足112a =-,111n n a a +=-,212131()2a ∴==--;32131a a ==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3; 故选:BD . 【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.25.AD 【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求,最后根据和项与通项关系得. 【详解】因此数列为以为首项,为公差的等差数列,也是递增数列,即D 正确;解析:AD 【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求S n ,最后根据和项与通项关系得n a . 【详解】11140(2),40n n n n n n n a S S n S S S S ---+=≥∴-+= 11104n n n S S S -≠∴-= 因此数列1{}n S 为以114S =为首项,4为公差的等差数列,也是递增数列,即D 正确; 所以1144(1)44n n n n S S n=+-=∴=,即A 正确; 当2n ≥时111144(1)4(1)n n n a S S n n n n -=-=-=--- 所以1,141,24(1)n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,即B ,C 不正确;故选:AD 【点睛】本题考查由和项求通项、等差数列定义与通项公式以及数列单调性,考查基本分析论证与求解能力,属中档题.26.ABD 【分析】由题意利用等差数列的通项公式、求和公式可得,结合等差数列的性质,逐一判断即可得出结论. 【详解】∵等差数列的前项和为,, ∴,解得, 故,故A 正确; ∵,,故有,故B 正确; 该数解析:ABD 【分析】由题意利用等差数列的通项公式、求和公式可得19a d =-,结合等差数列的性质,逐一判断即可得出结论.【详解】∵等差数列{}n a 的前n 项和为n S ,1385a a S +=, ∴()111875282a a d a d ⨯++=+,解得19a d =-, 故10190a a d =+=,故A 正确;∵918a a d d d =+=-=,11110a a d d =+=,故有911a a =,故B 正确; 该数列的前n 项和()21119222n n n n S na d d d n -=+=-⋅ ,它的最值,还跟d 的值有关,故C 错误; 由于61656392S a d d ⨯=+=-,131131213392S a d d ⨯=+=-,故613S S =,故D 正确, 故选:ABD. 【点睛】思路点睛:利用等差数列的通项公式以及前n 项和公式进行化简,直接根据性质判断结果.27.AC 【分析】令,则,根据,可判定A 正确;由,可判定B 错误;根据等差数列的性质,可判定C 正确;,根据,可判定D 错误. 【详解】令,则,因为,所以为等差数列且公差,故A 正确; 由,所以,故B 错误;解析:AC 【分析】令1m =,则11n n a a a +-=,根据10a >,可判定A 正确;由256110200a a a a d -=>,可判定B 错误;根据等差数列的性质,可判定C 正确;122n d d n a n S ⎛⎫=+- ⎪⎝⎭,根据02>d ,可判定D 错误. 【详解】令1m =,则11n n a a a +-=,因为10a >,所以{}n a 为等差数列且公差0d >,故A 正确;由()()22225611011119209200a a a a a a d daa d d -=++-+=>,所以56110a a a a >,故B错误;根据等差数列的性质,可得()213x x x -=+,所以13x =,213x -=, 故1011109333a =+⨯=,故C 正确;由()111222nn n na dS d d n a nn -+⎛⎫==+- ⎪⎝⎭,因为02>d ,所以n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列,故D 错误. 故选:AC . 【点睛】解决数列的单调性问题的三种方法;1、作差比较法:根据1n n a a +-的符号,判断数列{}n a 是递增数列、递减数列或是常数列;2、作商比较法:根据1(0n n na a a +>或0)n a <与1的大小关系,进行判定; 3、数形结合法:结合相应的函数的图象直观判断.28.ACD 【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】因为,,所以a1=3,an =[1+(n-1)d](n+2n).若d =1,则an =n(n+2n);若d =0,则a2=解析:ACD 【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】 因为1112a =+,1(1)2n n a n d n =+-+,所以a 1=3,a n =[1+(n -1)d ](n +2n ).若d =1,则a n =n (n +2n );若d =0,则a 2=6.因为a 2=6+6d ,a 3=11+22d ,所以若a 1,a 2,a 3成等差数列,则a 1+a 3=a 2,即14+22d =12+12d ,解得15d =-. 故选ACD29.ABD 【分析】由可判断AB ,再由a1>0,d <0,可知等差数列数列先正后负,可判断CD. 【详解】根据等差数列定义可得,所以数列单调递减,A 正确; 由数列单调递减,可知数列有最大值a1,故B 正解析:ABD 【分析】由10n n a a d +-=<可判断AB ,再由a 1>0,d <0,可知等差数列数列{}n a 先正后负,可判断CD.【详解】根据等差数列定义可得10n n a a d +-=<,所以数列{}n a 单调递减,A 正确; 由数列{}n a 单调递减,可知数列{}n a 有最大值a 1,故B 正确;由a 1>0,d <0,可知等差数列数列{}n a 先正后负,所以数列{}n S 先增再减,有最大值,C 不正确,D 正确. 故选:ABD.30.BC 【分析】设公差d 不为零,由,解得,然后逐项判断. 【详解】 设公差d 不为零, 因为, 所以, 即, 解得, ,故A 错误; ,故B 正确;若,解得,,故C 正确;D 错误; 故选:BC解析:BC 【分析】 设公差d 不为零,由38a a =,解得192a d =-,然后逐项判断.【详解】 设公差d 不为零, 因为38a a =,所以1127a d a d +=+, 即1127a d a d +=--, 解得192a d =-,11191111551155022S a d d d d ⎛⎫=+=⨯-+=≠ ⎪⎝⎭,故A 错误;()()()()()()221101110910,10102222n n n n n n dd na d n n n a n n S S d ----=+=-=-+=-,故B 正确;若11191111551155022S a d d d d ⎛⎫=+=⨯-+=> ⎪⎝⎭,解得0d >,()()22510525222n d d d n n S n S =-=--≥,故C 正确;D 错误; 故选:BC 31.ABD【分析】由,判断,再依次判断选项.【详解】因为,,,所以数列是递减数列,故,AB 正确;,所以,故C 不正确;由以上可知数列是单调递减数列,因为可知,的最大值,故D 正确.故选:AB解析:ABD【分析】由1n n n S S a --=()2n ≥,判断6780,0,0a a a >=<,再依次判断选项.【详解】因为5665600S S S S a <⇒->⇒>,677670S S S S a =⇒-==,788780S S S S a >⇒-=<,所以数列{}n a 是递减数列,故0d <,AB 正确; ()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确;由以上可知数列{}n a 是单调递减数列,因为6780,0,0a a a >=<可知,67n S S S 与均为的最大值,故D 正确.故选:ABD【点睛】本题考查等差数列的前n 项和的最值,重点考查等差数列的性质,属于基础题型.32.AC【分析】利用等差数列的前项和公式、通项公式列出方程组,求出,,由此能求出与.【详解】等差数列的前项和为.,,,解得,,.故选:AC .【点睛】本题考查等差数列的通项公式求和公解析:AC【分析】利用等差数列{}n a 的前n 项和公式、通项公式列出方程组,求出11a =,2d =,由此能求出n a 与n S .【详解】等差数列{}n a 的前n 项和为n S .39S =,47a =, ∴31413239237S a d a a d ⨯⎧=+=⎪⎨⎪=+=⎩, 解得11a =,2d =,1(1)221n a n n ∴+-⨯=-=.()21212n n n S n +-== 故选:AC .【点睛】本题考查等差数列的通项公式求和公式的应用,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.33.AD【分析】根据等差数列的性质,对四个选项逐一判断,即可得正确选项.【详解】, ,所以是递增数列,故①正确,,当时,数列不是递增数列,故②不正确,,当时,不是递增数列,故③不正确,,因解析:AD【分析】根据等差数列的性质,对四个选项逐一判断,即可得正确选项.【详解】0d >,10n n a a d +-=> ,所以{}n a 是递增数列,故①正确,()()2111n na n a n d dn a d n =+-=+-⎡⎤⎣⎦,当12d a n d-<时,数列{}n na 不是递增数列,故②不正确,1n a a d d n n -=+,当10a d -<时,{}n a n不是递增数列,故③不正确, 134n a nd nd a d +=+-,因为0d >,所以{}3n a nd +是递增数列,故④正确, 故选:AD【点睛】本题主要考查了等差数列的性质,属于基础题.34.ABD【分析】由已知递推式可得数列是首项为,公差为1的等差数列,结合选项可得结果.【详解】得,∴,即数列是首项为,公差为1的等差数列,∴,∴,得,由二次函数的性质得数列为递增数列,解析:ABD【分析】由已知递推式可得数列2=,公差为1的等差数列,结合选项可得结果.【详解】 )211n a =-得)211n a +=,1=,即数列2=,公差为1的等差数列,2(1)11n n =+-⨯=+,∴22n a n n =+,得28a =,由二次函数的性质得数列{}n a 为递增数列,所以易知ABD 正确,故选:ABD.【点睛】本题主要考查了通过递推式得出数列的通项公式,通过通项公式研究数列的函数性质,属于中档题.35.ABD【分析】先根据题意可知前9项的和最小,判断出正确;根据题意可知数列为递减数列,则,又,进而可知,判断出不正确;利用等差中项的性质和求和公式可知,,故正确.【详解】根据题意可知数列为递增解析:ABD【分析】先根据题意可知前9项的和最小,判断出A 正确;根据题意可知数列为递减数列,则190a >,又181919S S a =-,进而可知1516S S >,判断出C 不正确;利用等差中项的性质和求和公式可知()01179179172171722a a a S a <+⨯⨯===,()1191019101921919022a a a S a +⨯⨯===>,故BD 正确. 【详解】根据题意可知数列为递增数列,90a <,100a >,∴前9项的和最小,故A 正确;()11791791721717022a a a S a +⨯⨯===<,故B 正确; ()1191019101921919022a a a S a +⨯⨯===>,故D 正确; 190a >,181919S S a ∴=-,1819S S ∴<,故C 不正确.故选:ABD .【点睛】本题考查等差数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.。
《数列》单元测试题(含答案)
![《数列》单元测试题(含答案)](https://img.taocdn.com/s3/m/f9d0fc411a37f111f0855bb0.png)
《数列》单元练习试题一、选择题1.已知数列}{n a 的通项公式432--=n n a n (∈n N *),则4a 等于( )(A )1 (B )2 (C)3 (D )02.一个等差数列的第5项等于10,前3项的和等于3,那么( )(A)它的首项是2-,公差是3 (B )它的首项是2,公差是3-(C )它的首项是3-,公差是2 (D )它的首项是3,公差是2-3.设等比数列}{n a 的公比2=q ,前n 项和为n S ,则=24a S ( ) (A )2 (B )4 (C )215 (D )217 4.设数列{}n a 是等差数列,且62-=a ,68=a ,n S 是数列{}n a 的前n 项和,则( )(A )54S S < (B )54S S = (C )56S S < (D )56S S =5.已知数列}{n a 满足01=a ,1331+-=+n n n a a a (∈n N *),则=20a ( )(A)0 (B )3- (C )3 (D )23 6.等差数列{}n a 的前m 项和为30,前m 2项和为100,则它的前m 3项和为( )(A )130 (B)170 (C )210 (D )2607.已知1a ,2a ,…,8a 为各项都大于零的等比数列,公比1≠q ,则( )(A )5481a a a a +>+ (B )5481a a a a +<+(C )5481a a a a +=+ (D)81a a +和54a a +的大小关系不能由已知条件确定8.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )(A )13项 (B )12项 (C )11项 (D )10项9.设}{n a 是由正数组成的等比数列,公比2=q ,且30303212=⋅⋅⋅⋅a a a a ,那么30963a a a a ⋅⋅⋅⋅ 等于( )(A )210 (B )220 (C )216 (D )21510.古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )(A )289 (B )1024 (C )1225 (D )1378二、填空题11.已知等差数列}{n a 的公差0≠d ,且1a ,3a ,9a 成等比数列,则1042931a a a a a a ++++的值是 . 12.等比数列}{n a 的公比0>q .已知12=a ,n n n a a a 612=+++,则}{n a 的前4项和=4S .13.在通常情况下,从地面到10km 高空,高度每增加1km ,气温就下降某一固定值.如果1km高度的气温是8.5℃,5km 高度的气温是-17。
数列的概念练习题
![数列的概念练习题](https://img.taocdn.com/s3/m/4bf7f89d8ad63186bceb19e8b8f67c1cfad6eeda.png)
数列的概念练习题一、选择题1. 数列是按照一定次序排列的一列数,其中每一个数称为该数列的项。
数列中的第1个数称为首项,第2个数称为第二项,依此类推。
以下哪个是数列的项?A. 数列的首项B. 数列的第二项C. 数列的第n项D. 数列的末项2. 等差数列中,相邻两项的差是一个常数,这个常数称为等差数列的公差。
以下哪个不是等差数列的公差?A. 2B. 0C. -3D. 1.53. 等比数列中,相邻两项的比值是一个常数,这个常数称为等比数列的公比。
以下哪个不是等比数列的公比?A. 2B. 0C. 1D. -14. 数列的通项公式是指表示数列中任意一项与项数n之间关系的公式。
以下哪个不是数列的通项公式?A. a_n = a_1 + (n-1)dB. a_n = a_1 * r^(n-1)C. a_n = n^2D. a_n = a_1 * n5. 数列的前n项和是指数列前n项的总和。
以下哪个不是数列前n项和的公式?A. S_n = n/2 * (a_1 + a_n)B. S_n = (n/2) * (2a_1 + (n-1)d)C. S_n = a_1 * (1-r^n) / (1-r)D. S_n = a_1 * (n+1)二、填空题6. 一个数列的第1项是3,第2项是6,第3项是9,这个数列是______数列。
7. 一个数列的通项公式是a_n = 2n,这个数列的前5项和S_5是______。
8. 一个等差数列的首项是5,公差是3,这个数列的第10项a_10是______。
9. 一个等比数列的首项是2,公比是2,这个数列的第5项a_5是______。
10. 数列1, 4, 9, 16, ...的通项公式是a_n = ______。
三、解答题11. 已知数列的前3项分别是1, 2, 4,求证这个数列是等比数列,并求出数列的通项公式。
12. 已知等差数列的前5项和是40,首项是3,求出数列的公差和第6项。
(1)数列的概念
![(1)数列的概念](https://img.taocdn.com/s3/m/23d6686fb4daa58da1114a30.png)
(1)数列的概念●网络体系总览●知识梳理1.数列:按 的一列数叫做数列. 数列可视为特殊函数,它的定义域是2.数列的前n 项和S n 与通项a n 的基本关系是:. 其中S n =a 1+a 2+…+a n . ●点击双基1.已知数列{a n }中,a 1=1,a 2=3,a n =a n -1+21 n a (n ≥3),则a 5等于( )A.1255 B.313C.4D.52.根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量S n (万件)近似地满足关系式S n =90n(21n -n 2-5)(n =1,2,…,12),按此预测,在本年度内,需求量超过1.5万件的月份是( )A.5、6月B.6、7月C.7、8月D.8、9月3.如果无穷数列{a n }的第n 项与n 之间的函数关系线用一个公式a n = f (n )来表示,则该函数的定义域是 ( )A .ZB .Z_C .N *D .N *的有限子集{1,2,3,…,n } 4.数列通项是nn a n ++=11,当其前n 项和为9时,项数n 是 ( )A .9B .99C .10D .100 5.设a n =-n 2+10n +11,则数列{a n }从首项到第( )项的和最大. A.10 B.11 C.10或11 D.12 6.(江苏10)将全体正整数排成一个三角形数阵: 1 2 3 4 5 6 7 8 9 10。
。
。
。
。
按照以上排列的规律,第n 行(3≥n )从左向右的第3个数为 7. 有一数列{a n },a 1=a ,由递推公式a n +1=nna a +12,写出这个数列的前4项,并根据前4项观察规律,写出该数列的一个通项公式.8. 已知数列{a n }的通项公式a n =cn +nd ,且a 2=23,a 4=23,求a 10.9.(2004年春季上海,8)根据下列5测第n 个图中有___________________个点.10.已知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.(1)数列的概念参考解答1)解析:令n =3,4,5,求a 5即可. 答案:A2)解法一:由S n 解出a n =301(-n 2+15n -9),再解不等式301(-n 2+15n -9)>1.5,得6<n <9.解法二:将选项中的月份代入计算验证. 答案:C 3)C 4)5)解析:a n =-n 2+10n +11是关于n 的二项函数,它是抛物线f (x )=-x 2+10x +11上的一些离散的点,从图象可看出前10项都是正数,第11项是0,所以前10项或前11项的和最大.另解: 由-n 2+10n +11≥0得-1≤n ≤11, 又n ∈N *,∴0<n ≤11.∴前10项为正,第11项为0. 答案:C6)262n n -+7)剖析:可根据递推公式写出数列的前4项,然后分析每一项与该项的序号之间的关系,归纳概括出a n 与n 之间的一般规律,从而作出猜想,写出满足前4项的该数列的一个通项公式.解:∵a 1=a ,a n +1=nn a a +12,∴a 2=aa+12, a 3=2212a a+=aaa a+++12114=aa314+,a 4=3312a a+=aa aa3141318+++=aa 718+.观察规律:a n =yaxa +1形式,其中x 与n 的关系可由n =1,2,3,4得出x =2n -1.而y 比x 小1,∴a n =aan n )12(1211-+--.评述:从特殊的事例,通过分析、归纳、抽象总结出一般规律,再进行科学地证明,这是创新意识的具体体现,这种探索问题的方法,在解数列的有关问题中经常用到,应引起足够的重视.8)剖析:要求a 10,只需求出c 、d 即可.解:由题意知⎪⎪⎩⎪⎪⎨⎧=+=+,2344,2322d c d c 解得⎪⎩⎪⎨⎧==.2,41d c ∴a n =41n +n2.∴a 10=41×10+102=1027.评述:在解题过程中渗透了函数与方程的思想.9)解析:观察图中五个图形点的个数分别为1,1×2+1,2×3+1,3×4+1,4×5+1,故第n 个图中个数为(n -1)×n+1=n2-n+1.答案:n 2-n +110)解:由已知S n +1=2n -1,得S n =2n +1-1,故当n =1时,a 1=S 1=3;当n ≥2时,a n =S n-S n -1=2n ,故a n =⎩⎨⎧n 23).2(),1(≥=n n。
江西省高安二中数列的概念单元测试题含答案百度文库
![江西省高安二中数列的概念单元测试题含答案百度文库](https://img.taocdn.com/s3/m/05e8262b102de2bd970588a1.png)
一、数列的概念选择题1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:()()22221211236n n n n ++++++=)A .1624B .1198C .1024D .15602.3……,则 ) A .第8项B .第9项C .第10项D .第11项3.已知数列{}n a 满足: 12a =,111n na a +=-,设数列{}n a 的前n 项和为n S ,则2017S =( ) A .1007B .1008C .1009.5D .10104.数列{}n a 的通项公式是276n a n n =-+,4a =( )A .2B .6-C .2-D .15.设数列{}n a 的前n 项和为n S 已知()*123n n a a n n N++=+∈且1300nS=,若23a <,则n 的最大值为( )A .49B .50C .51D .526.数列{}n a 中,11a =,12n n a a n +=+,则n a =( ) A .2n n 1-+ B .21n +C .2(1)1n -+D .2n7.数列23451,,,,,3579的一个通项公式n a 是( ) A .21nn + B .23nn + C .23nn - D .21nn - 8.数列{}n a 满足111n na a +=-,12a =,则2a 的值为( ) A .1B .-1C .13D .13-9.设()f x 是定义在R 上恒不为零的函数,且对任意的实数x 、y R ∈,都有()()()f x f y f x y ⋅=+,若112a =,()()*n a f n n N =∈,则数列{}n a 的前n 项和n S 应满足( )A .1324n S ≤< B .314n S ≤< C .102n S <≤D .112n S ≤< 10.删去正整数1,2,3,4,5,…中的所有完全平方数与立方数(如4,8),得到一个新数列,则这个数列的第2020项是( ) A .2072B .2073C .2074D .207511.数列{}n a 中,()1121nn n a a n ++-=-,则数列{}n a 的前8项和等于( ) A .32B .36C .38D .4012.函数()2cos 2f x x x =-{}n a ,则3a =( ) A .1312πB .54π C .1712πD .76π 13.已知数列{}n a 的前n 项和为n S ,若*1n S n N n =∈,,则2a =( ) A .12-B .16-C .16D .1214.已知数列{}n a 的前n 项和2n S n n =+,则4a 的值为( ) A .4B .6C .8D .1015.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则20202018a a 等于( ) A .4×20162-1B .4×20172-1C .4×20182-1D .4×2018216.数列{}n a 满足1111,(2)2n n n a a a n a --==≥+,则5a 的值为( )A .18B .17 C .131D .1617.公元13世纪意大利数学家斐波那契在自己的著作《算盘书》中记载着这样一个数列:1,1,2,3,5,8,13,21,34,…满足21(1),n n n a a a n ++=+≥那么24620201a a a a +++++=( )A .2021aB .2022aC .2023aD .2024a18.已知数列{}n a 的前n 项和为n S ,已知13n n S +=,则34a a +=( )A .81B .243C .324D .21619.数列{}n a 前n 项和为n S ,若21n n S a =+,则72019a S +的值为( ) A .2B .1C .0D .1-20.在数列{}n a 中,114a =-,111(1)n n a n a -=->,则2019a 的值为( )A .45B .14-C .5D .以上都不对二、多选题21.已知数列{}n a 满足0n a >,121n n n a na a n +=+-(N n *∈),数列{}n a 的前n 项和为n S ,则( )A .11a =B .121a a =C .201920202019S a =D .201920202019S a >22.已知数列{}n a 满足()*111n na n N a +=-∈,且12a =,则( ) A .31a =- B .201912a =C .332S =D . 2 01920192S =23.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .01q <<B .681a a >C .n S 的最大值为7SD .n T 的最大值为6T24.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n n F n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()n nF n ⎡⎤⎥=-⎥⎝⎭⎝⎭⎦ D .()1122n n F n ⎡⎤⎛⎛⎥=+ ⎥⎝⎭⎝⎭⎦25.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .911a a = C .当9n =或10时,n S 取得最大值D .613S S =26.设等差数列{}n a 的前n 项和为n S .若30S =,46a =,则( )A .23n S n n =- B .2392-=n n nSC .36n a n =-D .2n a n =27.已知等差数列{}n a 的前n 项和为n S ,公差为d ,且35a =,73a =,则( ) A .12d =B .12d =-C .918S =D .936S =28.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( ) A .2d =- B .122a =C .3430a a +=D .当且仅当11n =时,n S 取得最大值29.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S >D .若67S S >则56S S >.30.已知等差数列{}n a 的前n 项和为,n S 且15110,20,a a a 则( )A .80a <B .当且仅当n = 7时,n S 取得最大值C .49S S =D .满足0n S >的n 的最大值为1231.已知等差数列{}n a 的公差不为0,其前n 项和为n S ,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( ) A .59823a a S +=B .27S S =C .5S 最小D .50a =32.等差数列{}n a 中,n S 为其前n 项和,151115,a S S ==,则以下正确的是( )A .1d =-B .413a a =C .n S 的最大值为8SD .使得0n S >的最大整数15n =33.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =C .95S S >D .6S 与7S 均为n S 的最大值34.设{}n a 是等差数列,n S 是其前n 项和,且56678,S S S S S <=>,则下列结论正确的是( ) A .0d < B .70a =C .95S S >D .67n S S S 与均为的最大值35.已知数列{}n a 为等差数列,则下列说法正确的是( )A .1n n a a d +=+(d 为常数)B .数列{}n a -是等差数列C .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列 D .1n a +是n a 与2n a +的等差中项【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.C 解析:C 【分析】设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b ,则n c n =,依次用累加法,可求解.【详解】设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b , 设{}n c 的前n 项和为n C ,易得n c n =,()()()111121n n n n n n n C c c c b b b b b b +----=+++=++++-所以11n n b b C +=-,1213b a a -==22n n n C +=,进而得21332n n n nb C ++=+=+, 所以()21133222n n n n b n -=+=-+,()()()()2221111121233226n n n n B n n n n +-=+++-++++=+同理:()()()111112n n n n n n n B b b b a a a a a a +---=+++=+++--11n n a a B +-=所以11n n a B +=+,所以191024a =. 故选:C 【点睛】本题考查构造数列,用累加法求数列的通项公式,属于中档题.2.D解析:D 【解析】 【分析】根据根号下的数字规律,可知为等差数列.利用等差数列性质求得通项公式,即可判断为第几项. 【详解】根据数列中的项,… 由前几项可知,根式下的数列是以5为首项, 4为公差的等差数列 则根式下的数字组成的等差数列通项公式为()51441n a n n =+-⨯=+而=所以4541n =+ 解得11n = 故选:D 【点睛】本题考查了等差数列通项公式的求法及简单应用,属于基础题.3.D解析:D 【分析】根据题设条件,可得数列{}n a 是以3为周期的数列,且3132122S =+-=,从而求得2017S 的值,得到答案. 【详解】由题意,数列{}n a 满足: 12a =,111n na a +=-, 可得234111,121,1(1)2,22a a a =-==-=-=--=,可得数列{}n a 是以3为周期的数列,且3132122S =+-= 所以20173672210102S =⨯+=. 故选:D. 【点睛】本题主要考查了数列的递推公式的应用,其中解答中得出数列{}n a 是以3为周期的数列,是解答的关键,着重考查了推理与运算能力,属于中档试题.4.B解析:B 【分析】 令4n = 代入即解 【详解】令4n =,2447466a =-⨯+=-故选:B. 【点睛】数列通项公式n a 是第n 项与序号n 之间的函数关系,求某项值代入求解.5.A解析:A 【分析】对n 分奇偶性分别讨论,当n 为偶数时,可得2+32n n nS =,发现不存在这样的偶数能满足此式,当n 为奇数时,可得21+342n n n S a -=+,再结合23a <可讨论出n 的最大值.【详解】当n 为偶数时,12341()()()n n n S a a a a a a -=++++⋅⋅⋅++(213)(233)[2(1)3]n =⨯++⨯++⋅⋅⋅+-+ 2[13(1)]32n n =⨯++⋅⋅⋅+-+⨯2+32n n=,因为22485048+348503501224,132522S S ⨯+⨯====,所以n 不可能为偶数;当n 为奇数时,123451()()()n n n S a a a a a a a -=+++++⋅⋅⋅++1(223)(243)[2(1)3]a n =+⨯++⨯++⋅⋅⋅+-+21342n n a +-=+因为2491149349412722S a a +⨯-=+=+,2511151351413752S a a +⨯-=+=+,又因为23a <,125a a +=,所以 12a > 所以当1300n S =时,n 的最大值为49 故选:A 【点睛】此题考查的是数列求和问题,利用了并项求和的方法,考查了分类讨论思想,属于较难题.6.A解析:A 【分析】由题意,根据累加法,即可求出结果. 【详解】因为12n n a a n +=+,所以12n n a a n +-=,因此212a a -=,324a a -=,436a a -=,…,()121n n a a n --=-, 以上各式相加得:()()()21246.1221..212n n n a a n n n ⎡⎤-+-⎣⎦-=+++==+--,又11a =,所以21n a n n =-+.故选:A. 【点睛】本题主要考查累加法求数列的通项,属于基础题型.7.D解析:D 【分析】根据数列分子分母的规律求得通项公式. 【详解】由于数列的分母是奇数列,分子是自然数列,故通项公式为21n na n =-. 故选:D 【点睛】本小题主要考查根据数列的规律求通项公式,属于基础题.8.B解析:B 【分析】根据数列的递推公式,代入计算可得选项. 【详解】 因为111n n a a +=-,12a =,所以21111112a a ===---, 故选:B. 【点睛】本题考查由数列递推式求数列中的项,属于基础题.9.D解析:D 【分析】根据题意得出1112n n n a a a a +==,从而可知数列{}n a 为等比数列,确定该等比数列的首项和公比,可计算出n S ,然后利用数列{}n S 的单调性可得出n S 的取值范围. 【详解】取1x =,()y n n N*=∈,由题意可得()()()111112n n n af n f f n a a a +=+=⋅==,112n n a a +∴=,所以,数列{}n a 是以12为首项,以12为公比的等比数列, 11112211212n n n S ⎛⎫- ⎪⎝⎭∴==--,所以,数列{}n S 为单调递增数列,则11n S S ≤<,即112n S ≤<. 故选:D. 【点睛】本题考查等比数列前n 项和范围的求解,解题的关键就是判断出数列{}n a 是等比数列,考查推理能力与计算能力,属于中等题.10.C解析:C 【分析】由于数列22221,2,3,2,5,6,7,8,3,45⋯共有2025项,其中有45个平方数,12个立方数,有3个既是平方数,又是立方数的数,所以还剩余20254512+31971--=项,所以去掉平方数和立方数后,第2020项是在2025后的第()20201971=49-个数,从而求得结果. 【详解】∵2452025=,2462116=,20202025<,所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉45个平方数,因为331217282025132197=<<=,所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉12个立方数,又66320254<<,所以在从数列22221,2,3,2,5,6,7,8,3,45⋯中有3个数即是平方数, 又是立方数的数,重复去掉了3个即是平方数,又是立方数的数, 所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉平方数和立方数后还有20254512+31971--=项,此时距2020项还差2020197149-=项, 所以这个数列的第2020项是2025492074+=, 故选:C. 【点睛】本题考查学生的实践创新能力,解决该题的关键是找出第2020项的大概位置,所以只要弄明白在数列22221,2,3,2,5,6,7,8,3,45⋯去掉哪些项,去掉多少项,问题便迎刃而解,属于中档题.11.B解析:B 【分析】根据所给数列表达式,递推后可得()121121n n n a a n ++++-=+.并将原式两边同时乘以()1n-后与变形后的式子相加,即可求得2n n a a ++,即隔项和的形式.进而取n 的值,代入即可求解. 【详解】由已知()1121nn n a a n ++-=-,① 得()121121n n n a a n ++++-=+,②由()1n ⨯-+①②得()()()212121nn n a a n n ++=-⋅-++,取1,5,9n =及2,6,10n =,易得13572a a a a +=+=,248a a +=,6824a a +=, 故81234836S a a a a a =++++⋅⋅⋅+=. 故选:B. 【点睛】本题考查了数列递推公式的应用,对数列表达式进行合理变形的解决此题的关键,属于中档题.12.B解析:B 【分析】先将函数化简为()2sin 26f x x π⎛⎫=-⎪⎝⎭4x k ππ=+或512x k ππ=+,k Z ∈,再求3a 即可. 【详解】解:∵()2cos 22sin 26f x x x x π⎛⎫=-=-- ⎪⎝⎭∴ 令()0f x =得:2263x k πππ-=+或22263x k πππ-=+,k Z ∈, ∴4x k ππ=+或512x k ππ=+,k Z ∈, ∴ 正数零点从小到大构成数列为:12355,,,4124a a a πππ===故选:B. 【点睛】本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题.13.A解析:A 【分析】令1n =得11a =,令2n =得21212S a a =+=可解得2a . 【详解】 因为1n S n =,所以11111a S ===, 因为21212S a a =+=,所以211122a =-=-. 故选:A14.C解析:C【分析】利用443a S S =-计算.【详解】由已知22443(44)(33)8a S S =-=+-+=.故选:C .15.C解析:C【分析】 根据“等差比”数列的定义,得到数列1n n a a +⎧⎫⎨⎬⎩⎭的通项公式,再利用202020202019201820192019a a a a a a =⨯求解.【详解】 由题意可得:323a a =,211a a = ,32211a a a a -=, 根据“等差比数列”的定义可知数列1n n a a +⎧⎫⎨⎬⎩⎭是首先为1,公差为2的等差数列, 则()111221n na n n a +=+-⨯=-, 所以20202019220191220181a a =⨯-=⨯+,20192018220181a a =⨯-, 所以()()2202020202019201820192019220181220181420181a a a a a a =⨯=⨯+⨯-=⨯-. 故选:C【点睛】本题考查数列新定义,等差数列,重点考查理解题意,转化思想,计算能力,属于中档题型.16.C解析:C【分析】根据条件依次算出2a 、3a 、4a 、5a 即可.【详解】 因为1111,(2)2n n n a a a n a --==≥+, 所以211123a ==+,31131723a ==+,411711527a ==+,51115131215a ==+ 故选:C17.A解析:A【分析】根据数列的递推关系式即可求解.【详解】由21(1),n n n a a a n ++=+≥则2462020246210201a a a a a a a a a +++++++++=+3462020562020201920202021a a a a a a a a a a =+++=+++=+=.故选:A 18.D解析:D【分析】利用项和关系,1n n n a S S -=-代入即得解.【详解】利用项和关系,1332443=54=162n n n a S S a S S a S S -=-∴=-=-,34216a a ∴+=故选:D【点睛】本题考查了数列的项和关系,考查了学生转化与划归,数学运算能力,属于基础题.19.A解析:A【分析】根据21n n S a =+,求出1a ,2a ,3a ,4a ,⋯⋯,寻找规律,即可求得答案. 【详解】21n n S a =+当1n =,1121a a =+,解得:11a =当2n =,122221a a a +=+,解得:21a =-当3n =,32132221a a a a ++=+,解得:31a =当4n =,4321422221a a a a a +++=+,解得:41a =-⋯⋯当n 奇数时,1n a =当n 偶数时,1n a =-∴71a =,20191S =故720192a S +=故选:A.【点睛】本题主要考查了根据递推公式求数列值,解题关键是掌握数列的基础知识,考查了分析能力和计算能力,属于中档题.20.A解析:A【分析】根据递推式可得{}n a 为一个周期为3的数列,求{}n a 中一个周期内的项,利用周期性即可求2019a 的值【详解】 由114a =-,111(1)n n a n a -=->知 21115a a =-= 321415a a =-= 4131114a a a =-=-= 故数列{}n a 是周期为3的数列,而2019可被3整除 ∴2019345a a ==故选:A【点睛】本题主要考查递推数列,考查数列的周期性,考查合情推理,属于基础题二、多选题21.BC【分析】根据递推公式,得到,令,得到,可判断A 错,B 正确;根据求和公式,得到,求出,可得C 正确,D 错.【详解】由可知,即,当时,则,即得到,故选项B 正确;无法计算,故A 错;,所以,则解析:BC【分析】 根据递推公式,得到11n n n n n a a a +-=-,令1n =,得到121a a =,可判断A 错,B 正确;根据求和公式,得到1n n n S a +=,求出201920202019S a =,可得C 正确,D 错. 【详解】 由121n n n a n a a n +=+-可知2111n n n n n a n n n a a a a ++--==+,即11n n nn n a a a +-=-, 当1n =时,则121a a =,即得到121a a =,故选项B 正确;1a 无法计算,故A 错; 1221321111102110n n n n n n n n n n S a a a a a a a a a a a a +++⎛⎫⎛⎫⎛⎫-=+++=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以1n n S a n +=,则201920202019S a =,故选项C 正确,选项D 错误.故选:BC.【点睛】方法点睛:由递推公式求通项公式的常用方法:(1)累加法,形如()1n n a a f n +=+的数列,求通项时,常用累加法求解;(2)累乘法,形如()1n na f n a +=的数列,求通项时,常用累乘法求解; (3)构造法,形如1n n a pa q +=+(0p ≠且1p ≠,0q ≠,n ∈+N )的数列,求通项时,常需要构造成等比数列求解;(4)已知n a 与n S 的关系求通项时,一般可根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解. 22.ACD【分析】先计算出数列的前几项,判断AC ,然后再寻找规律判断BD .由题意,,A正确,,C正确;,∴数列是周期数列,周期为3.,B错;,D正确.故选:ACD.【点睛】本解析:ACD【分析】先计算出数列的前几项,判断AC,然后再寻找规律判断BD.【详解】由题意211 122a=-=,311112a=-=-,A正确,313 2122S=+-=,C正确;41121a=-=-,∴数列{}n a是周期数列,周期为3.2019367331a a a⨯===-,B错;201932019 67322S=⨯=,D正确.故选:ACD.【点睛】本题考查由数列的递推式求数列的项与和,解题关键是求出数列的前几项后归纳出数列的性质:周期性,然后利用周期函数的定义求解.23.AD【分析】分类讨论大于1的情况,得出符合题意的一项.【详解】①, 与题设矛盾.②符合题意.③与题设矛盾.④ 与题设矛盾.得,则的最大值为.B,C,错误.故选:AD.【点睛】解析:AD分类讨论67,a a 大于1的情况,得出符合题意的一项.【详解】①671,1a a >>, 与题设67101a a -<-矛盾. ②671,1,a a ><符合题意.③671,1,a a <<与题设67101a a -<-矛盾. ④ 671,1,a a <>与题设11a >矛盾.得671,1,01a a q ><<<,则n T 的最大值为6T .∴B ,C ,错误.故选:AD.【点睛】考查等比数列的性质及概念. 补充:等比数列的通项公式:()1*1n n a a q n N -=∈. 24.BC【分析】根据数列的前几项归纳出数列的通项公式,再验证即可;【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……,显然,,,,,所以且,即B 满足条件;由,所以所以数列解析:BC【分析】根据数列的前几项归纳出数列的通项公式,再验证即可;【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……,显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,,()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且()()11,21F F ==,即B 满足条件;由()()()11,2F n F n F n n +=+-≥,所以()()()()11F n n F n n ⎤+-=--⎥⎣⎦所以数列()()1F n n ⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭是以12+为首项,12+为公比的等比数列, 所以()()1nF n n +-=⎝⎭11515()n F F n n -+=++, 令1nn n Fb -=⎝⎭,则11n n b +=+,所以1n n b b +=-, 所以n b⎧⎪⎨⎪⎪⎩⎭的等比数列,所以1n n b -+, 所以()1115n n n n F n --⎤⎤⎛⎫+⎥⎥=+=- ⎪ ⎪⎥⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦; 即C 满足条件;故选:BC【点睛】考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题.25.ABD【分析】由题意利用等差数列的通项公式、求和公式可得,结合等差数列的性质,逐一判断即可得出结论.【详解】∵等差数列的前项和为,,∴,解得,故,故A 正确;∵,,故有,故B 正确;该数解析:ABD【分析】由题意利用等差数列的通项公式、求和公式可得19a d =-,结合等差数列的性质,逐一判断即可得出结论.【详解】∵等差数列{}n a 的前n 项和为n S ,1385a a S +=,∴()111875282a a d a d ⨯++=+,解得19a d =-, 故10190a a d =+=,故A 正确; ∵918a a d d d =+=-=,11110a a d d =+=,故有911a a =,故B 正确; 该数列的前n 项和()21119222n n n n S na d d d n -=+=-⋅ ,它的最值,还跟d 的值有关,故C 错误; 由于61656392S a d d ⨯=+=-,131131213392S a d d ⨯=+=-,故613S S =,故D 正确,故选:ABD.【点睛】思路点睛:利用等差数列的通项公式以及前n 项和公式进行化简,直接根据性质判断结果. 26.BC【分析】由已知条件列方程组,求出公差和首项,从而可求出通项公式和前项和公式【详解】解:设等差数列的公差为,因为,,所以,解得,所以,,故选:BC解析:BC【分析】由已知条件列方程组,求出公差和首项,从而可求出通项公式和前n 项和公式【详解】解:设等差数列{}n a 的公差为d ,因为30S =,46a =, 所以113230236a d a d ⨯⎧+=⎪⎨⎪+=⎩,解得133a d =-⎧⎨=⎩,所以1(1)33(1)36n a a n d n n =+-=-+-=-,21(1)3(1)393222n n n n n n n S na d n ---=+=-+=, 故选:BC27.BD【分析】由等差数列下标和性质结合前项和公式,求出,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B .【详解】因为,所以.因为,,所以公差.故选:BD解析:BD【分析】由等差数列下标和性质结合前n 项和公式,求出9S ,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B .【详解】因为1937538a a a a +=+=+=,所以()1999983622a a S +⨯===. 因为35a =,73a =,所以公差731732a a d -==--. 故选:BD28.AC【分析】先根据题意得等差数列的公差,进而计算即可得答案.【详解】解:设等差数列的公差为,则,解得.所以,,,所以当且仅当或时,取得最大值.故选:AC【点睛】本题考查等差数列的解析:AC【分析】先根据题意得等差数列{}n a 的公差2d =-,进而计算即可得答案.【详解】解:设等差数列{}n a 的公差为d ,则52318312a a d d =+=+=,解得2d =-.所以120a =,342530a a a a +=+=,11110201020a a d =+=-⨯=, 所以当且仅当10n =或11时,n S 取得最大值.故选:AC【点睛】本题考查等差数列的基本计算,前n 项和n S 的最值问题,是中档题. 等差数列前n 项和n S 的最值得求解常见一下两种情况: (1)当10,0a d ><时,n S 有最大值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +<且0n a >的n 的取值范围确定;(2)当10,0a d <>时,n S 有最小值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +>且0n a <的n 的取值范围确定;29.BC【分析】根据等差数列的前项和性质判断.【详解】A 错:;B 对:对称轴为7;C 对:,又,;D 错:,但不能得出是否为负,因此不一定有. 故选:BC .【点睛】关键点点睛:本题考查等差数列解析:BC【分析】根据等差数列的前n 项和性质判断.【详解】A 错:67895911415000S a a a a a S a S ⇒+++<>⇒+<⇒<;B 对:n S 对称轴为n =7;C 对:6770S S a >⇒<,又10a >,887700a S a d S ⇒⇒<<⇒<>;D 错:6770S S a >⇒<,但不能得出6a 是否为负,因此不一定有56S S >. 故选:BC .【点睛】关键点点睛:本题考查等差数列的前n 项和性质,(1)n S 是关于n 的二次函数,可以利用二次函数性质得最值;(2)1n n n S S a -=+,可由n a 的正负确定n S 与1n S -的大小;(3)1()2n n n a a S +=,因此可由1n a a +的正负确定n S 的正负. 30.ACD 【分析】由题可得,,,求出可判断A ;利用二次函数的性质可判断B ;求出可判断C ;令,解出即可判断D. 【详解】设等差数列的公差为,则,解得, ,,且,对于A ,,故A 正确; 对于B ,的对称解析:ACD 【分析】由题可得16a d =-,0d <,21322n d d S n n =-,求出80a d =<可判断A ;利用二次函数的性质可判断B ;求出49,S S 可判断C ;令213022n d dS n n =->,解出即可判断D. 【详解】设等差数列{}n a 的公差为d ,则()5111122+4++100a a a d a d +==,解得16a d =-,10a >,0d ∴<,且()21113+222n n n d d S na d n n -==-, 对于A ,81+7670a a d d d d ==-+=<,故A 正确;对于B ,21322n d d S n n =-的对称轴为132n =,开口向下,故6n =或7时,n S 取得最大值,故B 错误; 对于C ,4131648261822d d S d d d =⨯-⨯=-=-,9138191822d d S d =⨯-⨯=-,故49S S =,故C 正确;对于D ,令213022n d dS n n =->,解得013n <<,故n 的最大值为12,故D 正确. 故选:ACD. 【点睛】方法点睛:由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值.31.BD 【分析】设等差数列的公差为,根据条件、、成等差数列可求得与的等量关系,可得出、的表达式,进而可判断各选项的正误. 【详解】设等差数列的公差为,则,, 因为、、成等差数列,则,即, 解得,,解析:BD 【分析】设等差数列{}n a 的公差为d ,根据条件12a 、8S 、9S 成等差数列可求得1a 与d 的等量关系,可得出n a 、n S 的表达式,进而可判断各选项的正误. 【详解】设等差数列{}n a 的公差为d ,则8118788282S a d a d ⨯=+=+,9119899362S a d a d ⨯=+=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,解得14a d =-,()()115n a a n d n d ∴=+-=-,()()219122n n n d n n d S na --=+=. 对于A 选项,59233412a a d d +=⨯=,()2888942d S d -⨯==-,A 选项错误; 对于B 选项,()2229272d Sd -⨯==-,()2779772d Sd -⨯==-,B 选项正确;对于C 选项,()2298192224n d d S n n n ⎡⎤⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误; 对于D 选项,50a =,D 选项正确. 故选:BD. 【点睛】在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和n S 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解.【分析】设等差数列的公差为,由等差数列的通项公式及前n 项和公式可得,再逐项判断即可得解. 【详解】设等差数列的公差为, 由题意,,所以,故A 错误; 所以,所以,故B 正确; 因为, 所以当解析:BCD 【分析】设等差数列{}n a 的公差为d ,由等差数列的通项公式及前n 项和公式可得1215d a =-⎧⎨=⎩,再逐项判断即可得解. 【详解】设等差数列{}n a 的公差为d ,由题意,1115411105112215a d a d a ⨯⨯⎧+=+⎪⎨⎪=⎩,所以1215d a =-⎧⎨=⎩,故A 错误; 所以1131439,129a a d a d a =+==+=-,所以413a a =,故B 正确; 因为()()2211168642n n n a n d n n n S -=+=-+=--+,所以当且仅当8n =时,n S 取最大值,故C 正确; 要使()28640n S n =--+>,则16n <且n N +∈, 所以使得0n S >的最大整数15n =,故D 正确. 故选:BCD.33.BD 【分析】设等差数列的公差为,依次分析选项即可求解. 【详解】根据题意,设等差数列的公差为,依次分析选项: 是等差数列,若,则,故B 正确; 又由得,则有,故A 错误; 而C 选项,,即,可得,【分析】设等差数列{}n a 的公差为d ,依次分析选项即可求解. 【详解】根据题意,设等差数列{}n a 的公差为d ,依次分析选项:{}n a 是等差数列,若67S S =,则7670S S a -==,故B 正确;又由56S S <得6560S S a -=>,则有760d a a =-<,故A 错误; 而C 选项,95S S >,即67890a a a a +++>,可得()7820a a +>, 又由70a =且0d <,则80a <,必有780a a +<,显然C 选项是错误的. ∵56S S <,678S S S =>,∴6S 与7S 均为n S 的最大值,故D 正确; 故选:BD. 【点睛】本题考查了等差数列以及前n 项和的性质,需熟记公式,属于基础题.34.ABD 【分析】由,判断,再依次判断选项. 【详解】 因为,,,所以数列是递减数列,故,AB 正确; ,所以,故C 不正确;由以上可知数列是单调递减数列,因为可知,的最大值,故D 正确. 故选:AB解析:ABD 【分析】由1n n n S S a --=()2n ≥,判断6780,0,0a a a >=<,再依次判断选项. 【详解】因为5665600S S S S a <⇒->⇒>,677670S S S S a =⇒-==,788780S S S S a >⇒-=<,所以数列{}n a 是递减数列,故0d <,AB 正确;()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确;由以上可知数列{}n a 是单调递减数列,因为6780,0,0a a a >=<可知,67n S S S 与均为的最大值,故D 正确. 故选:ABD 【点睛】本题考查等差数列的前n 项和的最值,重点考查等差数列的性质,属于基础题型.【分析】由等差数列的性质直接判断AD 选项,根据等差数列的定义的判断方法判断BC 选项. 【详解】A.因为数列是等差数列,所以,即,所以A 正确;B. 因为数列是等差数列,所以,那么,所以数解析:ABD 【分析】由等差数列的性质直接判断AD 选项,根据等差数列的定义的判断方法判断BC 选项. 【详解】A.因为数列{}n a 是等差数列,所以1n n a a d +-=,即1n n a a d +=+,所以A 正确;B. 因为数列{}n a 是等差数列,所以1n n a a d +-=,那么()()()11n n n n a a a a d ++---=--=-,所以数列{}n a -是等差数列,故B 正确;C.111111n n n n n n n n a a d a a a a a a ++++---==,不是常数,所以数列1n a ⎧⎫⎨⎬⎩⎭不是等差数列,故C 不正确;D.根据等差数列的性质可知122n n n a a a ++=+,所以1n a +是n a 与2n a +的等差中项,故D 正确. 故选:ABD 【点睛】本题考查等差数列的性质与判断数列是否是等差数列,属于基础题型.。
数列的概念基础练习题
![数列的概念基础练习题](https://img.taocdn.com/s3/m/9df6d70089eb172dec63b7a6.png)
一、数列的概念选择题1.已知数列{}n a 中,11a =,122nn n a a a +=+,则5a 等于( ) A .25B .13 C .23D .122.在数列{}n a 中,10a =,1n a +,则2020a =( ) A .0B .1C.D3.已知数列{}n a 满足1n n n a a +-=,则20201a a -=( ) A .20201010⨯B .20191010⨯C .20202020⨯D .20192019⨯4.已知数列{}n a 的前n 项和为()*22nn S n =+∈N ,则3a=( )A .10B .8C .6D .45.在数列{}n a 中,11a =,对于任意自然数n ,都有12nn n a a n +=+⋅,则15a =( )A .151422⋅+B .141322⋅+C .151423⋅+D .151323⋅+6.数列{}n a 中,11a =,12n n a a n +=+,则n a =( ) A .2n n 1-+ B .21n +C .2(1)1n -+D .2n7.已知数列,21,n -21是这个数列的( )A .第10项B .第11项C .第12项D .第21项8.数列23451,,,,,3579的一个通项公式n a 是( ) A .21nn + B .23nn + C .23nn - D .21nn - 9.在数列{}n a 中,11a =,11n na a n +=++,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,若n S m <对一切正整数n 恒成立,则实数m 的取值范围为( )A .()3,+∞B .[)3,+∞C .()2,+∞D .[)2,+∞10.数列{}n a 满足 112a =,111n na a +=-,则2018a 等于( )A .12B .-1C .2D .311.在数列{}n a 中,11a =,()*122,21n n a n n N a -=≥∈-,则3a =( )A .6B .2C .23D .21112.已知数列{}n a 的通项公式为()()211nn a n=--,则6a =( )A .35B .11-C .35-D .1113.已知数列{a n }满足112,0,2121, 1.2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若a 1=35,则a 2019 = ( )A .15B .25C .35D .4514.设数列{},{}n n a b 满足*172700,,105n n n n n a b a a b n N ++==+∈若6400=a ,则( ) A .43a a >B .43<b bC .33>a bD .44<a b15.已知数列{}n a 的前n 项和为n S ,若*1n S n N n =∈,,则2a =( ) A .12-B .16-C .16D .1216.已知数列{}n a 满足2122111,16,2n n n a a a a a ++===则数列{}n a 的最大项为( ) A .92B .102C .8182D .11217.已知数列{}n a 满足1N a *∈,1,2+3,nn n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数,若{}n a 为周期数列,则1a 的可能取到的数值有( ) A .4个B .5个C .6个D .无数个18.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开始,每项等于其前两相邻两项之和,记该数{}n F 的前n 项和为n S ,则下列结论正确的是( )A .201920212S F =+B .201920211S F =-C .201920202S F =+D .201920201S F =-19.意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…即()()121F F ==,()()()12F n F n F n =-+- (3n ≥,n *∈N ),此数列在现代物理、化学等方面都有着广泛的应用,若此数列的每一项被2除后的余数构成一个新数列{}n a ,则数列{}n a 的前2020项的和为( ) A .1348B .1358C .1347D .135720.在数列{}n a 中,已知11a =,25a =,()*21n n n a a a n N ++=-∈,则5a 等于( )A .4-B .5-C .4D .5二、多选题21.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数C .2020201820223a a a =+D .123a a a +++…20202022a a +=22.若不等式1(1)(1)2n na n+--<+对于任意正整数n 恒成立,则实数a 的可能取值为( ) A .2- B .1- C .1 D .223.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .733S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 24.(多选题)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的值不可能为( ) A .2B .5C .3D .425.已知数列{}n a 满足112a =-,111n n a a +=-,则下列各数是{}n a 的项的有( )A .2-B .23C .32D .326.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >27.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .911a a = C .当9n =或10时,n S 取得最大值D .613S S =28.在等差数列{}n a 中,公差0d ≠,前n 项和为n S ,则( ) A .4619a a a a >B .130S >,140S <,则78a a >C .若915S S =,则n S 中的最大值是12SD .若2n S n n a =-+,则0a =29.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有m n m n a a a +=+,则下列结论正确的是( )A .11285a a a a +=+B .56110a a a a <C .若该数列的前三项依次为x ,1x -,3x ,则10103a = D .数列n S n ⎧⎫⎨⎬⎩⎭为递减的等差数列 30.等差数列{}n a 的前n 项和记为n S ,若10a >,717S S =,则( ) A .0d < B .120a > C .13n S S ≤D .当且仅当0nS <时,26n ≥31.(多选题)在数列{}n a 中,若221n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}2n a 是等方差数列B .(){}1n-是等方差数列C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列32.{} n a 是等差数列,公差为d ,前项和为n S ,若56S S <,678S S S =>,则下列结论正确的是( ) A .0d <B .70a =C .95S S >D .170S <33.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且3201911111a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥ B .当数列{}n a 为等差数列时,20210S ≤ C .当数列{}n a 为等比数列时,20210T > D .当数列{}n a 为等比数列时,20210T <34.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( )A .45n a n =-B .23n a n =+C .223n S n n =-D .24n S n n =+35.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d <B .70a >C .{}n S 中5S 最大D .49a a <【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.B 解析:B 【分析】根据数列{}n a 的递推公式逐项可计算出5a 的值. 【详解】在数列{}n a 中,11a =,122n n n a a a +=+,则12122122123a a a ⨯===++,2322221322223a a a ⨯===++, 3431222212522a a a ⨯===++,4542221522325a a a ⨯===++. 故选:B. 【点睛】本题考查利用递推公式写出数列中的项,考查计算能力,属于基础题.2.A解析:A 【分析】写出数列的前几项,找寻规律,求出数列的周期,问题即可解. 【详解】10a =,1n a +1n =时,2a 2n =时,3a 3n =时,4a ; ∴ 数列{}n a 的周期是320206733110a a a ⨯+∴===故选:A. 【点睛】本题考查周期数列. 求解数列的周期问题时,周期数列的解题方法:根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n 项的和.3.B解析:B 【分析】由题意可得211a a -=,322a a -=,433a a -=,……202020192019a a -=,再将这2019个式子相加得到结论. 【详解】由题意可知211a a -=,322a a -=,433a a -=,……202020192019a a -=, 这2019个式子相加可得()20201201912019123 (2019201910102)a a +-=++++==⨯.故选:B. 【点睛】本题考查累加法,重点考查计算能力,属于基础题型.4.D解析:D 【分析】根据332a S S =-,代入即可得结果. 【详解】()()3233222224a S S =-=+-+=.故选:D. 【点睛】本题主要考查了由数列的前n 项和求数列中的项,属于基础题.5.D解析:D 【分析】在数列的递推公式中依次取1,2,3,1n n =- ,得1n -个等式,累加后再利用错位相减法求15a .12n n n a a n +=+⋅, 12n n n a a n +-=⋅,12112a a ∴-=⋅, 23222a a -=⋅, 34332a a -=⋅11(1)2n n n a a n ---=-⋅,以上1n -个等式,累加得12311122232(1)2n n a a n --=⋅+⋅+⋅++-⋅①又2341122122232(2)2(1)2n n n a a n n --=⋅+⋅+⋅++-⋅+-⋅②①- ②得23112222(1)2n n n a a n --=++++--⋅12(12)(1)2(2)2212n n n n n --=--⋅=-⋅--,(2)23n n a n ∴=-⋅+ ,151515(152)231323a ∴=-⋅+=⋅+,故选:D 【点睛】本题主要考查了累加法求数列通项,乘公比错位相减法求数列的和,由通项公式求数列中的项,属于中档题.6.A解析:A 【分析】由题意,根据累加法,即可求出结果. 【详解】因为12n n a a n +=+,所以12n n a a n +-=,因此212a a -=,324a a -=,436a a -=,…,()121n n a a n --=-, 以上各式相加得:()()()21246.1221..212n n n a a n n n ⎡⎤-+-⎣⎦-=+++==+--,又11a =,所以21n a n n =-+.故选:A. 【点睛】本题主要考查累加法求数列的通项,属于基础题型.7.B解析:B根据题中所给的通项公式,令2121n -=,求得n =11,得到结果. 【详解】令2121n -=,解得n =11是这个数列的第11项. 故选:B. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有判断数列的项,属于基础题目.8.D解析:D 【分析】根据数列分子分母的规律求得通项公式. 【详解】由于数列的分母是奇数列,分子是自然数列,故通项公式为21n na n =-. 故选:D 【点睛】本小题主要考查根据数列的规律求通项公式,属于基础题.9.D解析:D 【分析】利用累加法求出数列{}n a 的通项公式,并利用裂项相消法求出n S ,求出n S 的取值范围,进而可得出实数m 的取值范围. 【详解】11n n a a n +=++,11n n a a n +∴-=+且11a =,由累加法可得()()()()12132111232n n n n n a a a a a a a a n -+=+-+-++-=++++=,()122211n a n n n n ∴==-++,22222222222311n S n n n ⎛⎫⎛⎫⎛⎫∴=-+-++-=-< ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, 由于n S m <对一切正整数n 恒成立,2m ∴≥,因此,实数m 的取值范围是[)2,+∞.故选:D. 【点睛】本题考查数列不等式恒成立问题的求解,同时也考查了累加法求通项以及裂项求和法,考查计算能力,属于中等题.10.B【分析】先通过列举找到数列的周期,再求2018a . 【详解】n=1时,234511121,1(1)2,1,121,22a a a a =-=-=--==-==-=- 所以数列的周期是3,所以2018(36722)21a a a ⨯+===-. 故选:B 【点睛】本题主要考查数列的递推公式和数列的周期,意在考查学生对这些知识的掌握水平和分析推理能力.11.C解析:C 【分析】利用数列的递推公式逐项计算可得3a 的值. 【详解】()*122,21n n a n n N a -=≥∈-,11a =,212221a a ∴==-,3222213a a ==-. 故选:C. 【点睛】本题考查利用数列的递推公式写出数列中的项,考查计算能力,属于基础题.12.A解析:A 【分析】直接将6n =代入通项公式可得结果. 【详解】 因为()()211nn a n=--,所以626(1)(61)35a =--=.故选:A 【点睛】本题考查了根据通项公式求数列的项,属于基础题.13.B解析:B 【分析】根据数列的递推公式,得到数列的取值具备周期性,即可得到结论. 【详解】∵112,02121,12n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩,又∵a 135=,∴a 2=2a 1﹣1=235⨯-115=,a 3=2a 225=, a 4=2a 3=22455⨯=, a 5=2a 4﹣1=245⨯-135=, 故数列的取值具备周期性,周期数是4, 则2019a =50443a ⨯+=325a =, 故选B . 【点睛】本题主要考查数列项的计算,根据数列的递推关系是解决本题的关键.根据递推关系求出数列的取值具备周期性是解决本题的突破口.14.C解析:C 【分析】 由题意有1328010n n a a +=+且6400=a ,即可求34,a a ,进而可得34,b b ,即可比较它们的大小. 【详解】 由题意知:1328010n n a a +=+,6400=a , ∴345400a a a ===,而700n n a b +=, ∴34300b b ==, 故选:C 【点睛】本题考查了根据数列间的递推关系比较项的大小,属于简单题.15.A解析:A 【分析】令1n =得11a =,令2n =得21212S a a =+=可解得2a . 【详解】 因为1n S n =,所以11111a S ===,因为21212S a a =+=,所以211122a =-=-. 故选:A16.B解析:B 【分析】本题先根据递推公式进行转化得到21112n n n n a a a a +++=.然后令1n n na b a +=,可得出数列{}n b 是等比数列.即11322nn n a a +⎛⎫= ⎪⎝⎭.然后用累乘法可求出数列{}n a 的通项公式,根据通项公式及二次函数的知识可得数列{}n a 的最大项. 【详解】解:由题意,可知: 21112n n n na a a a +++=. 令1n n n ab a +=,则112n n b b +=. 21116a b a ==, ∴数列{}n b 是以16为首项,12为公比的等比数列. 111163222n nn b -⎛⎫⎛⎫∴== ⎪⎪⎝⎭⎝⎭.∴11322nn n a a +⎛⎫= ⎪⎝⎭. ∴1211322aa ⎛⎫= ⎪⎝⎭, 2321322a a ⎛⎫= ⎪⎝⎭,111322n n n a a --⎛⎫= ⎪⎝⎭.各项相乘,可得: 12111111(32)222n n n a a --⎛⎫⎛⎫⎛⎫=⋯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)2511()22n n n --⎛⎫= ⎪⎝⎭2115(1)221122n n n---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭211552212n n n --+⎛⎫= ⎪⎝⎭21(1110)212n n -+⎛⎫= ⎪⎝⎭.令2()1110f n n n =-+,则,根据二次函数的知识,可知:当5n =或6n =时,()f n 取得最小值. ()2551151020f =-⨯+=-,()2661161020f =-⨯+=-,()f n ∴的最小值为20-. ∴211(1110)(20)1022101112222n n -+⨯--⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴数列{}n a 的最大项为102.故选:B . 【点睛】本题主要考查根据递推公式得出通项公式,构造新数列的方法,累乘法通项公式的应用,以及利用二次函数思想求最值;17.B解析:B 【分析】讨论出当1a 分别取1、2、3、4、6时,数列{}n a 为周期数列,然后说明当19a ≥时,分1a 为正奇数和正偶数两种情况分析出数列{}n a 不是周期数列,即可得解. 【详解】已知数列{}n a 满足1N a *∈,1,2+3,nn n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数. ①若11a =,则24a =,32a =,41a =,54a =,,以此类推,可知对任意的n *∈N ,3n n a a +=,此时,{}n a 为周期数列;②若12a =,则21a =,34a =,42a =,51a =,,以此类推,可知对任意的n *∈N ,3n n a a +=,此时,{}n a 为周期数列;③若13a =,则26a =,33a =,46a =,,以此类推,可知对任意的n *∈N ,2n n a a +=,此时,{}n a 为周期数列;④若14a =,则22a =,31a =,44a =,52a =,,以此类推,可知对任意的n *∈N ,3n n a a +=,此时,{}n a 为周期数列;⑤若15a =,则28a =,34a =,42a =,51a =,64a =,,以此类推,可知对任意的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑥若16a =,则23a =,36a =,43a =,,以此类推,可知对任意的n *∈N ,2n n a a +=,此时,{}n a 为周期数列;⑦若17a =,则210a =,35a =,48a =,54a =,,以此类推,可知对任意的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑧若18a =,则24a =,32a =,41a =,54a =,,以此类推,可知对任意的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列.下面说明,当19a ≥且1N a *∈时,数列{}n a 不是周期数列.(1)当(3412,2a ⎤∈⎦且1N a *∈时,由列举法可知,数列{}n a 不是周期数列;(2)假设当(()112,23,k k a k k N +*⎤∈≥∈⎦且1N a *∈时,数列{}n a 不是周期数列,那么当(()1212,23,k k a k k N ++*⎤∈≥∈⎦时. 若1a 为正偶数,则(1122,22k k a a +⎤=∈⎦,则数列{}n a 从第二项开始不是周期数列,从而可知,数列{}n a 不是周期数列; 若1a 为正奇数,则((121321323,232,2k k k k a a ++++⎤⎤=+∈++⊆⎦⎦且2a 为偶数,由上可知,数列{}n a 从第二项开始不是周期数列,进而可知数列{}n a 不是周期数列.综上所述,当19a ≥且1N a *∈时,数列{}n a 不是周期数列.因此,若{}n a 为周期数列,则1a 的取值集合为{}1,2,3,4,6. 故选:B. 【点睛】本题解题的关键是抓住“数列{}n a 为周期数列”进行推导,对于1a 的取值采取列举法以及数学归纳法进行论证,对于这类问题,我们首先应弄清问题的本质,然后根据数列的基本性质以及解决数列问题时常用的方法即可解决.18.B解析:B 【分析】利用迭代法可得21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,可得21n n F S +=+,代入2019n =即可求解.【详解】由题意可得该数列从第三项开始,每项等于其前两相邻两项之和, 则211112n n n n n n n n n n F F F F F F F F F F ++----=+=++=+++1211232n n n n n n n n n F F F F F F F F F -------=+++=++++=123211n n n n F F F F F F ---=+++++++,所以21n n F S +=+,令2019n =,可得201920211S F =-,故选:B 【点睛】关键点点睛:本题的关键点是理解数列新定义的含义得出21n n n F F F ++=+,利用迭代法得出21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,进而得出21n n F S +=+.19.C解析:C 【分析】由题意可知,得数列{}n a 是周期为3的周期数列,前3项和为1102++=,又202067331=⨯+,由此可得答案 【详解】解:由数列1,1,2,3,5,8,13,21,34,55,…,各项除以2的余数,可得数列{}n a 为1,1,0,1,1,0,1,1,0,⋅⋅⋅,所以数列{}n a 是周期为3的周期数列,前3项和为1102++=, 因为202067331=⨯+,所以数列{}n a 的前2020项的和为673211347⨯+= 故选:C20.B解析:B 【分析】根据已知递推条件()*21n n n a a a n N ++=-∈即可求得5a【详解】由()*21n n n a a a n N++=-∈知:3214a a a 4321a a a 5435a a a故选:B本题考查了利用数列的递推关系求项,属于简单题二、多选题 21.AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,,,,故A 正确;对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误; 对于C ,,故C 正确; 对于D ,,,, , 各式相加解析:AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确; 对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,32121,a a a a a ⋅⋅⋅=+=,各式相加得()2022202120202021202020192012182a a a a a a a a a ++⋅⋅⋅+=+++⋅⋅⋅++, 所以202220202019201811a a a a a a =++⋅⋅⋅+++,故D 错误. 故选:AC. 【点睛】关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项.22.ABC 【分析】根据不等式对于任意正整数n 恒成立,即当n 为奇数时有恒成立,当n 为偶数时有恒成立,分别计算,即可得解. 【详解】根据不等式对于任意正整数n 恒成立, 当n 为奇数时有:恒成立,解析:ABC 【分析】根据不等式1(1)(1)2n na n +--<+对于任意正整数n 恒成立,即当n 为奇数时有12+a n-<恒成立,当n 为偶数时有12a n<-恒成立,分别计算,即可得解. 【详解】根据不等式1(1)(1)2n na n +--<+对于任意正整数n 恒成立, 当n 为奇数时有:12+a n-<恒成立,由12+n 递减,且1223n <+≤,所以2a -≤,即2a ≥-,当n 为偶数时有:12a n<-恒成立, 由12n -第增,且31222n ≤-<, 所以32a <, 综上可得:322a -≤<, 故选:ABC . 【点睛】本题考查了不等式的恒成立问题,考查了分类讨论思想,有一定的计算量,属于中当题.23.ABD 【分析】根据,,,计算可知正确;根据,,,,,,累加可知不正确;根据,,,,,,累加可知正确. 【详解】依题意可知,,,, ,,,,故正确; ,所以,故正确; 由,,,,,, 可得,故不解析:ABD 【分析】根据11a =,21a =,21n n n a a a ++=+,计算可知,A B 正确;根据12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,累加可知C 不正确;根据2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,累加可知D 正确. 【详解】依题意可知,11a =,21a =,21n n n a a a ++=+,312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确; 7565813a a a =+=+=,所以712345671123581333S a a a a a a a =++++++=++++++=,故B 正确;由12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,可得13572019a a a a a +++++=242648620202018a a a a a a a a a +-+-+-++-2020a =,故C 不正确;2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,所以2222212342019a a a a a +++++122312342345342019202020182019a a a a a a a a a a a a a a a a a a =+-+-+-+- 20192020a a =,所以22212201920202019a a a a a +++=,故D 正确. 故选:ABD. 【点睛】本题考查了数列的递推公式,考查了累加法,属于中档题.24.BD 【分析】利用递推关系可得,再利用数列的单调性即可得出答案. 【详解】 解:∵, ∴时,, 化为:,由于数列单调递减,可得:时,取得最大值2. ∴的最大值为3. 故选:BD . 【点睛】 本解析:BD 【分析】 利用递推关系可得1211n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】 解:∵23n n n S a +=, ∴2n ≥时,112133n n n n n n n a S S a a --++=-=-, 化为:112111n n a n a n n -+==+--, 由于数列21n ⎧⎫⎨⎬-⎩⎭单调递减, 可得:2n =时,21n -取得最大值2. ∴1nn a a -的最大值为3. 故选:BD . 【点睛】本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题.25.BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】 因为数列满足,, ; ; ;数列是周期为3的数列,且前3项为,,3; 故选:. 【点睛】本题主要解析:BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】因为数列{}n a 满足112a =-,111n na a +=-,212131()2a ∴==--;32131a a ==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3; 故选:BD . 【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.26.ABC 【分析】因为是等差数列,由可得,利用通项转化为和即可判断选项A ;利用前项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质即可判断选项C ;由可得且,即可判断选项D ,进而得出正确选项解析:ABC 【分析】因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,140a <即可判断选项D ,进而得出正确选项.【详解】因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()()118910181818022a a a a S ++===,故选项B 正确;对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,所以614a a <,故选项D 不正确, 故选:ABC 【点睛】关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.27.ABD 【分析】由题意利用等差数列的通项公式、求和公式可得,结合等差数列的性质,逐一判断即可得出结论. 【详解】∵等差数列的前项和为,, ∴,解得, 故,故A 正确; ∵,,故有,故B 正确; 该数解析:ABD 【分析】由题意利用等差数列的通项公式、求和公式可得19a d =-,结合等差数列的性质,逐一判断即可得出结论. 【详解】∵等差数列{}n a 的前n 项和为n S ,1385a a S +=, ∴()111875282a a d a d ⨯++=+,解得19a d =-, 故10190a a d =+=,故A 正确;∵918a a d d d =+=-=,11110a a d d =+=,故有911a a =,故B 正确; 该数列的前n 项和()21119222n n n n S na d d d n -=+=-⋅ ,它的最值,还跟d 的值有关,故C 错误; 由于61656392S a d d ⨯=+=-,131131213392S a d d ⨯=+=-,故613S S =,故D 正确, 故选:ABD.【点睛】思路点睛:利用等差数列的通项公式以及前n 项和公式进行化简,直接根据性质判断结果.28.AD 【分析】对于,作差后利用等差数列的通项公式运算可得答案;对于,根据等差数列的前项和公式得到和, 进而可得,由此可知,故不正确; 对于,由得到,,然后分类讨论的符号可得答案; 对于,由求出及解析:AD 【分析】对于A ,作差后利用等差数列的通项公式运算可得答案;对于B ,根据等差数列的前n 项和公式得到70a >和780a a +<, 进而可得80a <,由此可知78||||a a <,故B 不正确;对于C ,由915S S =得到,12130a a +=,然后分类讨论d 的符号可得答案; 对于D ,由n S 求出n a 及1a ,根据数列{}n a 为等差数列可求得0a =. 【详解】对于A ,因为46191111(3)(5)(8)a a a a a d a d a a d -=++-+215d =,且0d ≠,所以24619150a a a a d -=>,所以4619a a a a >,故A 正确;对于B ,因为130S >,140S <,所以77713()1302a a a +=>,即70a >,787814()7()02a a a a +=+<,即780a a +<,因为70a >,所以80a <,所以7878||||0a a a a -=+<,即78||||a a <,故B 不正确;对于C ,因为915S S =,所以101114150a a a a ++++=,所以12133()0a a +=,即12130a a +=,当0d >时,等差数列{}n a 递增,则12130,0a a <>,所以n S 中的最小值是12S ,无最大值;当0d <时,等差数列{}n a 递减,则12130,0a a ><,所以n S 中的最大值是12S ,无最小值,故C 不正确;对于D ,若2n S n n a =-+,则11a S a ==,2n ≥时,221(1)(1)n n n a S S n n a n n a -=-=-+--+--22n =-,因为数列{}n a 为等差数列,所以12120a a =⨯-==,故D 正确. 故选:AD 【点睛】关键点点睛:熟练掌握等差数列的通项公式、前n 项和公式是解题关键.29.AC 【分析】令,则,根据,可判定A 正确;由,可判定B 错误;根据等差数列的性质,可判定C 正确;,根据,可判定D 错误. 【详解】令,则,因为,所以为等差数列且公差,故A 正确; 由,所以,故B 错误;解析:AC 【分析】令1m =,则11n n a a a +-=,根据10a >,可判定A 正确;由256110200a a a a d -=>,可判定B 错误;根据等差数列的性质,可判定C 正确;122n d d n a n S ⎛⎫=+- ⎪⎝⎭,根据02>d ,可判定D 错误. 【详解】令1m =,则11n n a a a +-=,因为10a >,所以{}n a 为等差数列且公差0d >,故A 正确;由()()22225611011119209200a a a a a a d daa d d -=++-+=>,所以56110a a a a >,故B错误;根据等差数列的性质,可得()213x x x -=+,所以13x =,213x -=, 故1011109333a =+⨯=,故C 正确; 由()111222nn n na dS d d n a nn -+⎛⎫==+- ⎪⎝⎭,因为02>d ,所以n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列,故D 错误. 故选:AC . 【点睛】解决数列的单调性问题的三种方法;1、作差比较法:根据1n n a a +-的符号,判断数列{}n a 是递增数列、递减数列或是常数列;2、作商比较法:根据1(0n n na a a +>或0)n a <与1的大小关系,进行判定; 3、数形结合法:结合相应的函数的图象直观判断.30.AB 【分析】根据等差数列的性质及可分析出结果. 【详解】 因为等差数列中, 所以,又, 所以,所以,,故AB 正确,C 错误; 因为,故D 错误, 故选:AB 【点睛】关键点睛:本题突破口在于由解析:AB 【分析】根据等差数列的性质及717S S =可分析出结果. 【详解】因为等差数列中717S S =, 所以89161712135()0a a a a a a ++++=+=,又10a >,所以12130,0a a ><,所以0d <,12n S S ≤,故AB 正确,C 错误; 因为125251325()2502a a S a +==<,故D 错误, 故选:AB 【点睛】关键点睛:本题突破口在于由717S S =得到12130a a +=,结合10a >,进而得到12130,0a a ><,考查学生逻辑推理能力.31.BCD 【分析】根据定义以及举特殊数列来判断各选项中结论的正误. 【详解】对于A 选项,取,则不是常数,则不是等方差数列,A 选项中的结论错误; 对于B 选项,为常数,则是等方差数列,B 选项中的结论正解析:BCD 【分析】根据定义以及举特殊数列来判断各选项中结论的正误. 【详解】对于A 选项,取n a n =,则()()()422444221111n n a a n n n n n n +⎡⎤⎡⎤-=+-=+-⋅++⎣⎦⎣⎦()()221221n n n =+++不是常数,则{}2n a 不是等方差数列,A 选项中的结论错误;对于B 选项,()()22111110n n+⎡⎤⎡⎤---=-=⎣⎦⎣⎦为常数,则(){}1n-是等方差数列,B 选项中的结论正确;对于C 选项,若{}n a 是等方差数列,则存在常数p R ∈,使得221n n a a p +-=,则数列{}2na 为等差数列,所以()221kn k n a a kp +-=,则数列{}kn a (*k N ∈,k 为常数)也是等方差数列,C 选项中的结论正确;对于D 选项,若数列{}n a 为等差数列,设其公差为d ,则存在m R ∈,使得n a dn m =+,则()()()()2221112222n n n n n n a a a a a a d dn m d d n m d d +++-=-+=++=++,由于数列{}n a 也为等方差数列,所以,存在实数p ,使得221n n a a p +-=,则()222d n m d d p ++=对任意的n *∈N 恒成立,则()2202d m d d p ⎧=⎪⎨+=⎪⎩,得0p d ==,此时,数列{}n a 为常数列,D 选项正确.故选BCD. 【点睛】本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题.32.ABD 【分析】结合等差数列的性质、前项和公式,及题中的条件,可选出答案. 【详解】由,可得,故B 正确; 由,可得, 由,可得,所以,故等差数列是递减数列,即,故A 正确; 又,所以,故C 不正确解析:ABD 【分析】结合等差数列的性质、前n 项和公式,及题中的条件,可选出答案. 【详解】由67S S =,可得7670S S a -==,故B 正确; 由56S S <,可得6560S S a -=>, 由78S S >,可得8780S S a -=<,所以876a a a <<,故等差数列{}n a 是递减数列,即0d <,故A 正确; 又()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确;又因为等差数列{}n a 是单调递减数列,且80a <,所以90a <, 所以()117179171702a a S a +==<,故D 正确.故选:ABD. 【点睛】关键点点睛:本题考查等差数列性质的应用,解题的关键是熟练掌握等差数列的增减性及前n 项和的性质,本题要从题中条件入手,结合公式()12n n n a S S n --≥=,及()12n n n a a S +=,对选项逐个分析,可判断选项是否正确.考查学生的运算求解能力与逻辑推理能力,属于中档题. 33.AC 【分析】将变形为,构造函数,利用函数单调性可得,再结合等差数列与等比数列性质即可判断正确选项 【详解】 由,可得,令, ,所以是奇函数,且在上单调递减,所以, 所以当数列为等差数列时,;解析:AC 【分析】 将3201911111a a e e +≤++变形为32019111101212a a e e -+-≤++,构造函数()1112xf x e =-+,利用函数单调性可得320190a a +≥,再结合等差数列与等比数列性质即可判断正确选项 【详解】 由3201911111a a e e +≤++,可得32019111101212a a e e -+-≤++,令()1112x f x e =-+, ()()1111101111x x x x x e f x f x e e e e --+=+-=+-=++++,所以()1112x f x e =-+是奇函数,且在R 上单调递减,所以320190a a +≥, 所以当数列{}n a 为等差数列时,()320192*********a a S +=≥;当数列{}n a 为等比数列时,且3a ,1011a ,2019a 同号,所以3a ,1011a ,2019a 均大于零, 故()2021202110110T a =>.故选:AC 【点睛】本题考查等差数列与等比数列,考查逻辑推理能力,转化与化归的数学思想,属于中档题34.AC 【分析】由求出,再由可得公差为,从而可求得其通项公式和前项和公式 【详解】由题可知,,即,所以等差数列的公差, 所以,. 故选:AC. 【点睛】本题考查等差数列,考查运算求解能力.解析:AC 【分析】由535S =求出37a =,再由411a =可得公差为434d a a =-=,从而可求得其通项公式和前n 项和公式 【详解】由题可知,53535S a ==,即37a =,所以等差数列{}n a 的公差434d a a =-=, 所以()4445n a a n d n =+-=-,()2451232n n n S n n --==-.故选:AC. 【点睛】本题考查等差数列,考查运算求解能力.35.AD 【分析】先根据题意得,,再结合等差数列的性质得,,,中最大,,即:.进而得答案. 【详解】解:根据等差数列前项和公式得:, 所以,, 由于,, 所以,, 所以,中最大, 由于, 所以,即:解析:AD 【分析】先根据题意得1110a a +>,1120a a +<,再结合等差数列的性质得60a >,70a <,0d <,{}n S 中6S 最大,49a a <-,即:49a a <.进而得答案.【详解】解:根据等差数列前n 项和公式得:()111111102a a S +=>,()112121202a a S +=< 所以1110a a +>,1120a a +<, 由于11162a a a +=,11267a a a a +=+, 所以60a >,760a a <-<, 所以0d <,{}n S 中6S 最大, 由于11267490a a a a a a +=+=+<, 所以49a a <-,即:49a a <. 故AD 正确,BC 错误. 故选:AD. 【点睛】本题考查等差数列的前n 项和公式与等差数列的性质,是中档题.。
1.1数列的概念练习题
![1.1数列的概念练习题](https://img.taocdn.com/s3/m/e0c370b8c77da26925c5b00e.png)
1.1数列的概念练习题1.下列叙述正确的是 。
A 、数列1,3,5,7和数列3,1,5,7是同一数列。
B 、同一个数在数列中可能重复出现C 、数列的通项公式是定义域为正整数集*N 的函数D 、数列的通项公式是唯一的。
2.下列说法正确的是 。
A .数列1,3,5,7可表示为{1,3,5,7} B .数列0,2,4,6,…可记为{2n}C .数列12,13,14,…1n ,…的通项公式为an =1nD .数列{n +1n }的第k 项为1+1k3.已知数列⋅⋅⋅则是它的 。
A 、第22项 B 、第23项 C 、第24项 D 、第28项 4.数列3,12,30,60,…的一个通项公式是 。
A .32)1(9+-=n n a nB .a n =5n 2-6n +4C .2)2)(1(++=n n n a nD .21217l 12+-=n n a n5.若2n na n =+,则1n n a a +与的大小关系为 。
A .1n n a a +> B .1n n a a +< C .1n n a a += D .不能确定6.以下公式中:①()112n n a ⎤=--⎣⎦;②n a =③()()0,n n a n =⎨⎪⎩为奇数为偶数,可以通项公式的是 。
A .①②B .②③C .①③D .①②③ 7.已知数列{a n }中,a 1=1,a 2=3,211--+=n n n a a a (n ≥3)则a 5等于 。
A .1255B .313C .4D .58.数列0,23,45,67,…的一个通项公式为 。
A .()*11n n a n N n -=∈+B .()*121n n a n N n -=∈+C .()()*2121n n a n N n -=∈-D .()*221n na n N n =∈-9.由1,3,5,21,n ⋅⋅⋅-⋅⋅⋅构成数列}{,n a 数列}{n b 满足1b =2,当2n ≥时,1n n b b a -=, 则5b = 。
(完整版)数列单元测试题(含答案)
![(完整版)数列单元测试题(含答案)](https://img.taocdn.com/s3/m/980286ddcf84b9d528ea7ab5.png)
《数列》一、选择题(每小题3分,共33分)1、数列⋯--,924,715,58,1的一个通项公式是 ( )A .12)1(3++-=n nn a nnB .12)3()1(++-=n n n a nnC .121)1()1(2--+-=n n a n nD .12)2()1(++-=n n n a nn 2、已知数列{a n }的通项公式)(43*2N n n n a n ∈--=,则a 4等于( ). A 1 B 2 C 3 D 0 3、在等比数列}{n a 中,,8,1641=-=a a 则=7a ( )A 4-B 4±C 2-D 2± 4、已知等差数列}{n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a 等于( ) A 4- B 6- C 8- D 10-5、等比数列{a n }的前3项的和等于首项的3倍,则该等比数列的公比为( )A .-2B .1C .-2或1D .2或-16、等差数列}a {n 中,已知前15项的和90S 15=,则8a 等于( ).A .245B .12C .445 D .67、已知等比数列{a n } 的前n 项和为S n ,若S 4=1,S 8=4,则a 13+a 14+a 15+a 16=( ).A .7B .16C .27D .648、一个三角形的三个内角A 、B 、C 成等差数列,那么()tan A C +的值是( )A B .C .D .不确定 9、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边数为( )A .6B .8C .10D .1210、在等比数列{a n }中4S =1,8S =3,则20191817a a a a +++的值是 ( )A .14B .16C .18D .2011、计算机的成本不断降低,若每隔3年计算机价格降低31,现在价格为8100元的计算机,9年后的价格可降为( ) A .2400元B .900元C .300元D .3600元二、填空题(每小题4分,共20分)12、已知等比数列{n a }中,1a =2,4a =54,则该等比数列的通项公式n a = 13、 等比数列的公比为2, 且前4项之和等于30, 那么前8项之和等于 14、数列11111,2,3,,,2482n n ++++……的前n 项和是 . 15、 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案: 则第n 个图案中有白色地面砖_________________块.16、在数列{}n a 中,11a =,且对于任意自然数n ,都有1n n a a n +=+,则100a = 三、解答题17、(本小题满分8分)等差数列{}n a 中,已知33,4,31521==+=n a a a a ,试求n 的值18、(本小题满分8分)在等比数列{}n a 中,5162a =,公比3q =,前n 项和242n S =,求首项1a 和项数n .19、(本小题满分10分)已知:等差数列{n a }中,4a =14,前10项和18510=S . (1)求n a ;(2)将{n a }中的第2项,第4项,…,第n 2项按原来的顺序排成一个新数列,求此数列的前n 项和n G .20、(本小题满分10分)某城市2001年底人口为500万,人均住房面积为6 m 2,如果该城市每年人口平均增长率为1%,则从2002年起,每年平均需新增住房面积为多少万m 2,才能使2020年底该城市人均住房面积至少为24m 2?(可参考的数据1.0118=1.20,1.0119=1.21,1.0120=1.22).21、(本小题满分11分)已知等差数列{a n }的首项a 1=1,公差d >0,且第二项,第五项,第十四项分别是等比数列{b n }的第二项,第三项,第四项. (1)求数列{a n }与{b n }的通项公式; (2)设数列{c n }对任意自然数n ,均有1332211+=+⋯⋯+++n nn a b c b c b c b c , 求c 1+c 2+c 3+……+c 2006值.题号 1 2 3 4 5 6 7 8 9 10 11 答案 DDABCDCBABA12、3.2n-1 13、510 14、n (n+1)+1-2n 15、4n+2 16、4951 17、d=32,n=50 18、解:由已知,得51113162,(13)242,13n a a -⎧⋅=⎪⎨-=⎪-⎩①②由①得181162a =,解得 12a =.将12a =代入②得()21324213n =--,即 3243n =,解得 n =5.∴ 数列{}n a 的首项12a =,项数n =5. 19、解析:(1)、由41014185a S =⎧⎨=⎩ ∴ 11314,1101099185,2a d a d +=⎧⎪⎨+⋅⋅⋅=⎪⎩ 153a d =⎧⎨=⎩ 23+=∴n a n (2)、设新数列为{n b },由已知,223+⋅=n n bn n G n n n 2)12(62)2222(3321+-=+++++=∴ *)(,62231N n n n ∈-+⋅=+20.解 设从2002年起,每年平均需新增住房面积为x 万m 2,则由题设可得下列不等式19500619500(10.01)24x ⨯+≥⨯+⨯解得605x ≥.答:设从2002年起,每年平均需新增住房面积为605万m 2.21、解:(1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2(d >0) 解得d =2,∴a n =2n -1,b n =3n -1.(2)当n =1时,c 1=3 当n ≥2时,,1n n nna abc -=+ 132-⋅=n n c ,⎩⎨⎧≥⋅==-)2(32)1(31n n c n n22005200612200632323233c c c ∴++⋯+=+⨯+⨯+⋯+⨯=。
数列的概念练习题(有答案) 百度文库
![数列的概念练习题(有答案) 百度文库](https://img.taocdn.com/s3/m/308ab5b2f46527d3250ce02b.png)
一、数列的概念选择题1.已知数列{}n a 的通项公式为()()211nn a n=--,则6a =( )A .35B .11-C .35-D .112.在数列{}n a 中,11a =,11n n a a n +=++,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,若n S m <对一切正整数n 恒成立,则实数m 的取值范围为( ) A .()3,+∞ B .[)3,+∞C .()2,+∞D .[)2,+∞3.已知数列{}n a 的前n 项和为n S ,且21n S n n =++,则{}n a 的通项公式是( )A .2n a n =B .3,12,2n n a n n =⎧=⎨≥⎩ C .21n a n =+D .3n a n =4.在数列{}n a 中,11a =,对于任意自然数n ,都有12nn n a a n +=+⋅,则15a =( )A .151422⋅+B .141322⋅+C .151423⋅+D .151323⋅+5.数列23451,,,,,3579的一个通项公式n a 是( ) A .21nn + B .23nn + C .23nn - D .21nn - 6.已知数列{}n a 的前n 项和为n S ,且满足1221,1n n a a S a +===-,则下列命题错误的是A .21n n n a a a ++=+B .13599100a a a a a ++++=C .2499a a a a +++=D .12398100100S S S S S ++++=-7.已知数列{}n a ,{}n b ,其中11a =,且n a ,1n a +是方程220nn x b x -+=的实数根,则10b 等于( ) A .24B .32C .48D .648.在数列{}n a 中,114a =-,111(1)n n a n a -=->,则2019a 的值为( ) A .45B .14-C .5D .以上都不对9.设()f x 是定义在R 上恒不为零的函数,且对任意的实数x 、y R ∈,都有()()()f x f y f x y ⋅=+,若112a =,()()*n a f n n N =∈,则数列{}n a 的前n 项和n S 应满足( )A .1324n S ≤< B .314n S ≤< C .102n S <≤D .112n S ≤< 10.数列1,3,5,7,9,--的一个通项公式为( )A .21n a n =-B .()1(21)nn a n =--C .()11(21)n n a n +=--D .()11(21)n n a n +=-+11.在数列{}n a 中,已知13a =,26a =,且21n n n a a a ++=-,则2020a =( ) A .-6 B .6 C .-3D .312.在数列{}n a 中,12a =,111n n a a -=-(2n ≥),则8a =( ) A .1-B .12C .1D .213.若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有1n n a a +=成立,则称数列{}n a 为周期数列,周期为T .已知数列{}n a 满足()111,10,{1,01n n n n na a a m m a a a +->=>=<≤ ,则下列结论错误的是( ) A .若34a =,则m 可以取3个不同的数; B.若m =,则数列{}n a 是周期为3的数列;C .存在m Q ∈,且2m ≥,数列{}n a 是周期数列;D .对任意T N *∈且2T ≥,存在1m >,使得{}n a 是周期为T 的数列. 14.已知数列{}n a 的前n 项和为n S ,若*1n S n N n =∈,,则2a =( ) A .12-B .16-C .16D .1215.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则20202018a a 等于( ) A .4×20162-1B .4×20172-1C .4×20182-1D .4×2018216.已知lg3≈0.477,[x ]表示不大于x 的最大整数.设S n 为数列{a n }的前n 项和,a 1=2且S n +1=3S n -2n +2,则[lg(a 100-1)]=( ) A .45B .46C .47D .4817.已知数列{}n a满足112n a +=+112a =,则该数列前2016项的和为( ) A .2015 B .2016C .1512D .3025218.数列12,16,112,120,…的一个通项公式是( ) A .()11n a n n =-B .()1221n a n n =-C .111n a n n =-+ D .11n a n=-19.在数列{}n a 中,11a =,()*122,21n n a n n N a -=≥∈-,则3a =( )A .6B .2C .23 D .21120.已知等差数列{}n a 中,13920a a a ++=,则574a a -=( ) A .30B .20C .40D .50二、多选题21.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数C .2020201820223a a a =+D .123a a a +++…20202022a a +=22.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .135********a a a a a +++⋅⋅⋅+=D .22212201920202019a a a a a ++⋅⋅⋅⋅⋅⋅+= 23.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足11140(2),4n n n a S S n a -+=≥=,则下列说法正确的是( ) A .数列{}n a 的前n 项和为1S 4n n= B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1{}nS 为递增数列 24.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( )A .100a =B .911a a =C .当9n =或10时,n S 取得最大值D .613S S =25.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( ) A .2d =- B .122a =C .3430a a +=D .当且仅当11n =时,n S 取得最大值26.等差数列{}n a 是递增数列,公差为d ,前n 项和为n S ,满足753a a =,下列选项正确的是( ) A .0d <B .10a <C .当5n =时n S 最小D .0n S >时n 的最小值为827.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有m n m n a a a +=+,则下列结论正确的是( )A .11285a a a a +=+B .56110a a a a <C .若该数列的前三项依次为x ,1x -,3x ,则10103a = D .数列n S n ⎧⎫⎨⎬⎩⎭为递减的等差数列 28.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减 B .数列{}n a 有最大值 C .数列{}n S 单调递减D .数列{}n S 有最大值29.已知等差数列{}n a 的公差不为0,其前n 项和为n S ,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( ) A .59823a a S +=B .27S S =C .5S 最小D .50a =30.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =C .95S S >D .6S 与7S 均为n S 的最大值31.{} n a 是等差数列,公差为d ,前项和为n S ,若56S S <,678S S S =>,则下列结论正确的是( ) A .0d <B .70a =C .95S S >D .170S <32.在数列{}n a 中,若22*1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}n a 是等方差数列B .{(1)}n -是等方差数列C .若{}n a 是等方差数列,则{}()*,kn a k Nk ∈为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列33.等差数列{}n a 的首项10a >,设其前n 项和为{}n S ,且611S S =,则( ) A .0d > B .0d <C .80a =D .n S 的最大值是8S 或者9S34.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .2437d -<<- C .S n <0时,n 的最小值为13 D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项 35.已知数列{}n a 是递增的等差数列,5105a a +=,6914a a ⋅=-.12n n n n b a a a ++=⋅⋅,数列{}n b 的前n 项和为n T ,下列结论正确的是( )A .320n a n =-B .325n a n =-+C .当4n =时,n T 取最小值D .当6n =时,n T 取最小值【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.A 解析:A 【分析】直接将6n =代入通项公式可得结果. 【详解】 因为()()211nn a n=--,所以626(1)(61)35a =--=.故选:A 【点睛】本题考查了根据通项公式求数列的项,属于基础题.2.D【分析】利用累加法求出数列{}n a 的通项公式,并利用裂项相消法求出n S ,求出n S 的取值范围,进而可得出实数m 的取值范围. 【详解】11n n a a n +=++,11n n a a n +∴-=+且11a =,由累加法可得()()()()12132111232n n n n n a a a a a a a a n -+=+-+-++-=++++=,()122211n a n n n n ∴==-++,22222222222311n S n n n ⎛⎫⎛⎫⎛⎫∴=-+-++-=-< ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, 由于n S m <对一切正整数n 恒成立,2m ∴≥,因此,实数m 的取值范围是[)2,+∞.故选:D. 【点睛】本题考查数列不等式恒成立问题的求解,同时也考查了累加法求通项以及裂项求和法,考查计算能力,属于中等题.3.B解析:B 【分析】 根据11,1,2n nS n a S S n -=⎧=⎨-≥⎩计算可得;【详解】解:因为21n S n n =++①,当1n =时,211113S =++=,即13a =当2n ≥时,()()21111n S n n -=-+-+②,①减②得,()()2211112n n n n n n a ⎡⎤++--+-+=⎦=⎣所以3,12,2n n a n n =⎧=⎨≥⎩故选:B 【点睛】本题考查利用定义法求数列的通项公式,属于基础题.4.D解析:D在数列的递推公式中依次取1,2,3,1n n =- ,得1n -个等式,累加后再利用错位相减法求15a . 【详解】12n n n a a n +=+⋅, 12n n n a a n +-=⋅,12112a a ∴-=⋅, 23222a a -=⋅,34332a a -=⋅11(1)2n n n a a n ---=-⋅,以上1n -个等式,累加得12311122232(1)2n n a a n --=⋅+⋅+⋅++-⋅①又2341122122232(2)2(1)2n n n a a n n --=⋅+⋅+⋅++-⋅+-⋅②①- ②得23112222(1)2n n n a a n --=++++--⋅12(12)(1)2(2)2212n n n n n --=--⋅=-⋅--,(2)23n n a n ∴=-⋅+ ,151515(152)231323a ∴=-⋅+=⋅+,故选:D 【点睛】本题主要考查了累加法求数列通项,乘公比错位相减法求数列的和,由通项公式求数列中的项,属于中档题.5.D解析:D 【分析】根据数列分子分母的规律求得通项公式. 【详解】由于数列的分母是奇数列,分子是自然数列,故通项公式为21n na n =-. 故选:D 【点睛】本小题主要考查根据数列的规律求通项公式,属于基础题.6.C解析:C 【分析】21n n S a +=-,则111n n S a -+=-,两式相减得到A 正确;由A 选项得到13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=进而得到B正确;同理可得到C 错误;由21n n S a +=-得到12398S S S S +++⋯+=123451002111......1a a a a a a +-+-+-+-++-=100100.S -进而D 正确. 【详解】已知21n n S a +=-,则111n n S a -+=-,两式相减得到2121n n n n n n a a a a a a ++++=-⇒=+,故A 正确;根据A 选项得到13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=,故B 正确;24698a a a a +++⋯+=2234569697a a a a a a a a ++++++⋯++=1234569697a a a a a a a a ++++++⋯++=97991S a =-,故C 不正确;根据2123981n n S a S S S S +=-+++⋯+=,123451002111......1a a a a a a +-+-+-+-++-= 100100.S -故D 正确. 故答案为C. 【点睛】这个题目考查了数列的应用,根据题干中所给的条件进行推广,属于中档题,这类题目不是常规的等差或者等比数列,要善于发现题干中所给的条件,应用选项中正确的结论进行其它条件的推广.7.D解析:D 【分析】根据题意,得到1n n n a a b ++=,12nn n a a +=,求得22a =,推出112n n a a +-=,进而可求出10a ,11a ,从而可求出结果.【详解】因为n a ,1n a +是方程220nn x b x -+=的实数根, 所以1n n n a a b ++=,12nn n a a +=,又11a =,所以22a =; 当2n ≥时,112n n n a a --=,所以11112n n n n n na a a a a a ++--==, 因此4102232a a =⋅=,5111232a a =⋅=所以101011323264b a a =+=+=. 故选:D.【点睛】本题主要考查由数列的递推关系求数列中的项,属于常考题型.8.A解析:A 【分析】根据递推式可得{}n a 为一个周期为3的数列,求{}n a 中一个周期内的项,利用周期性即可求2019a 的值 【详解】由114a =-,111(1)n n a n a -=->知21115a a =-= 321415a a =-= 4131114a a a =-=-= 故数列{}n a 是周期为3的数列,而2019可被3整除 ∴2019345a a == 故选:A 【点睛】本题主要考查递推数列,考查数列的周期性,考查合情推理,属于基础题9.D解析:D 【分析】根据题意得出1112n n n a a a a +==,从而可知数列{}n a 为等比数列,确定该等比数列的首项和公比,可计算出n S ,然后利用数列{}n S 的单调性可得出n S 的取值范围. 【详解】取1x =,()y n n N*=∈,由题意可得()()()111112n n n af n f f n a a a +=+=⋅==, 112n n a a +∴=,所以,数列{}n a 是以12为首项,以12为公比的等比数列, 11112211212n n n S ⎛⎫- ⎪⎝⎭∴==--,所以,数列{}n S 为单调递增数列,则11n S S ≤<,即112n S ≤<. 故选:D.【点睛】本题考查等比数列前n 项和范围的求解,解题的关键就是判断出数列{}n a 是等比数列,考查推理能力与计算能力,属于中等题.10.C解析:C 【分析】分别观察各项的符号、绝对值即可得出. 【详解】数列1,-3,5,-7,9,…的一个通项公式()()112nn a n =--. 故选C . 【点睛】本题考查了球数列的通项公式的方法,属于基础题.11.C解析:C 【分析】根据题设条件,得到数列{}n a 是以6项为周期的数列,其中1234560a a a a a a +++++=,再由2020336644a a a ⨯+==,即可求解.【详解】由题意,数列{}n a 中,13a =,26a =,且21n n n a a a ++=-, 可得3214325436547653,3,6,3,3,a a a a a a a a a a a a a a a =-==-=-=-=-=-=-=-=,可得数列{}n a 是以6项为周期的数列,其中1234560a a a a a a +++++=, 所以20203366443a a a ⨯+===-. 故选:C. 【点睛】本题主要考查了数列的递推关系式,以及数列的周期性的应用,其中解答中得出数列的周期性是解答的关键,着重考查了推理与运算能力,属于基础题.12.B解析:B 【分析】通过递推公式求出234,,a a a 可得数列{}n a 是周期数列,根据周期即可得答案. 【详解】解:211111=1=22a a =--,3211121a a =-=-=-,4311112a a =-=+=, 则数列{}n a 周期数列,满足3n n a a -=,4n ≥85212a a a ∴===, 故选:B. 【点睛】本题考查数列的周期性,考查递推公式的应用,是基础题.13.C解析:C 【解析】试题分析:A:当01m <≤时,由34a =得1;125m m =<≤时,由34a =得54m =; 2m >时,()2311,,24a m a m =-∈+∞=-= 得6m = ;正确 .B:234111,11,1,m a a a =>∴====> 所以3T =,正确.C :命题较难证明,先考察命题D .D :命题的否定为“对任意的T N *∈,且2T ≥,不存在1m >,使得{}n a 是周期为T 的数列”,而由B 显然这个命题是错误的,因此D 正确,从而只有C 是错误. 考点:命题的真假判断与应用.【名师点睛】本题主要考查周期数列的推导和应用,考查学生的推理能力.此题首先要理解新定义“周期为T 的数列”,然后对A 、B 、C 、D 四个命题一一验证,A 、B 两个命题按照数列的递推公式进行计算即可,命题C 较难证明,但出现在选择题中,考虑到数学选择题中必有一个选项正确,因此我们先研究D 命题,并且在命题D 本身也很难的情况下,采取“正难则反”的方法,考虑命题D 的否定,命题D 的否定由命题B 很容易得出是错误的,从而命题D 是正确的.14.A解析:A 【分析】令1n =得11a =,令2n =得21212S a a =+=可解得2a . 【详解】 因为1n S n =,所以11111a S ===, 因为21212S a a =+=,所以211122a =-=-. 故选:A15.C解析:C 【分析】根据“等差比”数列的定义,得到数列1n n a a +⎧⎫⎨⎬⎩⎭的通项公式,再利用202020202019201820192019a a a a a a =⨯求解. 【详解】由题意可得:323a a =,211a a = ,32211a a a a -=, 根据“等差比数列”的定义可知数列1n n a a +⎧⎫⎨⎬⎩⎭是首先为1,公差为2的等差数列,则()111221n na n n a +=+-⨯=-, 所以20202019220191220181a a =⨯-=⨯+,20192018220181aa =⨯-, 所以()()2202020202019201820192019220181220181420181a a a a a a =⨯=⨯+⨯-=⨯-. 故选:C 【点睛】本题考查数列新定义,等差数列,重点考查理解题意,转化思想,计算能力,属于中档题型.16.C解析:C 【分析】利用数列的递推式,得到a n +1=3a n -2,进而得到a n =3n -1+1,然后代入[lg(a 100-1)]可求解 【详解】当n ≥2时,S n =3S n -1-2n +4,则a n +1=3a n -2,于是a n +1-1=3(a n -1),当n =1时,S 2=3S 1-2+2=6,所以a 2=S 2-S 1=4.此时a 2-1=3(a 1-1),则数列{a n -1}是首项为1,公比为3的等比数列.所以a n -1=3n -1,即a n =3n -1+1,则a 100=399+1,则lg(a 100-1)=99lg3≈99×0.477=47.223,故[lg(a 100-1)]=47. 故选C17.C解析:C 【分析】通过计算出数列的前几项确定数列{}n a 是以2为周期的周期数列,进而计算可得结论. 【详解】依题意,11 2a=,211122a=,3111222a=+=,⋯从而数列{}n a是以2为周期的周期数列,于是所求值为20161(1)151222⨯+=,故选:C【点睛】关键点睛:解答本题的关键是联想到数列的周期性并找到数列的周期.18.C解析:C【分析】根据选项进行逐一验证,可得答案.【详解】选项A. ()11nan n=-,当1n=时,无意义.所以A不正确.选项B. ()1221nan n=-,当2n=时,()211122221126a==≠⨯⨯⨯-,故B不正确.选项C.11122=-,111162323==-⨯,1111123434==-⨯,1111204545==-⨯所以111nan n=-+满足.故C正确.选项D.11nan=-,当1n=时,1111012a=-=≠,故D不正确.故选:C19.C解析:C【分析】利用数列的递推公式逐项计算可得3a的值.【详解】()*122,21nna n n Na-=≥∈-,11a=,212221aa∴==-,3222213aa==-.故选:C.【点睛】本题考查利用数列的递推公式写出数列中的项,考查计算能力,属于基础题.20.B解析:B 【分析】利用等差数列{}n a 的通项公式代入可得574a a -的值. 【详解】由13920a a a ++=,得131020a d +=,则有5711144(4)631020a a a d a d a d -=+--=+=. 故选:B. 【点睛】考查等差数列通项公式的运用,知识点较为简单.二、多选题 21.AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,,,,故A 正确;对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误; 对于C ,,故C 正确; 对于D ,,,, , 各式相加解析:AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确; 对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,32121,a a a a a ⋅⋅⋅=+=,各式相加得()2022202120202021202020192012182a a a a a a a a a ++⋅⋅⋅+=+++⋅⋅⋅++, 所以202220202019201811a a a a a a =++⋅⋅⋅+++,故D 错误. 故选:AC. 【点睛】关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项.22.ABCD 【分析】由题意可得数列满足递推关系,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为,故A 正确; 对B ,,故B 正确; 对C ,由,,,……,,可得:.故是斐波那契数列中的第解析:ABCD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对B ,71123581333S =++++++=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-, 可得:135********a a a a a +++⋅⋅⋅+=.故1352019a a a a +++⋅⋅⋅+是斐波那契数列中的第2020项.对D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-2222123201920192020a a a a a a +++⋅⋅⋅⋅⋅⋅+=,故D 正确;故选:ABCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换.23.AD 【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求,最后根据和项与通项关系得. 【详解】因此数列为以为首项,为公差的等差数列,也是递增数列,即D 正确;解析:AD 【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求S n ,最后根据和项与通项关系得n a . 【详解】11140(2),40n n n n n n n a S S n S S S S ---+=≥∴-+= 11104n n n S S S -≠∴-= 因此数列1{}n S 为以114S =为首项,4为公差的等差数列,也是递增数列,即D 正确; 所以1144(1)44n n n n S S n=+-=∴=,即A 正确; 当2n ≥时111144(1)4(1)n n n a S S n n n n -=-=-=--- 所以1,141,24(1)n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,即B ,C 不正确;故选:AD 【点睛】本题考查由和项求通项、等差数列定义与通项公式以及数列单调性,考查基本分析论证与求解能力,属中档题.24.ABD 【分析】由题意利用等差数列的通项公式、求和公式可得,结合等差数列的性质,逐一判断即可得出结论. 【详解】∵等差数列的前项和为,, ∴,解得, 故,故A 正确; ∵,,故有,故B 正确; 该数解析:ABD 【分析】由题意利用等差数列的通项公式、求和公式可得19a d =-,结合等差数列的性质,逐一判断即可得出结论. 【详解】∵等差数列{}n a 的前n 项和为n S ,1385a a S +=, ∴()111875282a a d a d ⨯++=+,解得19a d =-, 故10190a a d =+=,故A 正确;∵918a a d d d =+=-=,11110a a d d =+=,故有911a a =,故B 正确; 该数列的前n 项和()21119222n n n n S na d d d n -=+=-⋅ ,它的最值,还跟d 的值有关,故C 错误; 由于61656392S a d d ⨯=+=-,131131213392S a d d ⨯=+=-,故613S S =,故D 正确, 故选:ABD. 【点睛】思路点睛:利用等差数列的通项公式以及前n 项和公式进行化简,直接根据性质判断结果.25.AC 【分析】先根据题意得等差数列的公差,进而计算即可得答案. 【详解】解:设等差数列的公差为, 则,解得. 所以,,,所以当且仅当或时,取得最大值. 故选:AC 【点睛】本题考查等差数列的解析:AC 【分析】先根据题意得等差数列{}n a 的公差2d =-,进而计算即可得答案. 【详解】解:设等差数列{}n a 的公差为d , 则52318312a a d d =+=+=,解得2d =-.所以120a =,342530a a a a +=+=,11110201020a a d =+=-⨯=, 所以当且仅当10n =或11时,n S 取得最大值. 故选:AC 【点睛】本题考查等差数列的基本计算,前n 项和n S 的最值问题,是中档题. 等差数列前n 项和n S 的最值得求解常见一下两种情况:(1)当10,0a d ><时,n S 有最大值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +<且0n a >的n 的取值范围确定;(2)当10,0a d <>时,n S 有最小值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +>且0n a <的n 的取值范围确定;26.BD 【分析】由题意可知,由已知条件可得出,可判断出AB 选项的正误,求出关于的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】由于等差数列是递增数列,则,A 选项错误解析:BD 【分析】由题意可知0d >,由已知条件753a a =可得出13a d =-,可判断出AB 选项的正误,求出n S 关于d 的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】由于等差数列{}n a 是递增数列,则0d >,A 选项错误;753a a =,则()11634a d a d +=+,可得130a d =-<,B 选项正确;()()()22171117493222224n n n d n n d n n d S na nd n d -⎡⎤--⎛⎫=+=-+==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当3n =或4时,n S 最小,C 选项错误; 令0n S >,可得270n n ->,解得0n <或7n >.n N *∈,所以,满足0n S >时n 的最小值为8,D 选项正确.故选:BD.27.AC 【分析】令,则,根据,可判定A 正确;由,可判定B 错误;根据等差数列的性质,可判定C 正确;,根据,可判定D 错误. 【详解】令,则,因为,所以为等差数列且公差,故A 正确; 由,所以,故B 错误;解析:AC 【分析】令1m =,则11n n a a a +-=,根据10a >,可判定A 正确;由256110200a a a a d -=>,可判定B 错误;根据等差数列的性质,可判定C 正确;122n d d n a n S ⎛⎫=+- ⎪⎝⎭,根据02>d ,可判定D 错误. 【详解】令1m =,则11n n a a a +-=,因为10a >,所以{}n a 为等差数列且公差0d >,故A 正确;由()()22225611011119209200a a a a a a d daa d d -=++-+=>,所以56110a a a a >,故B错误;根据等差数列的性质,可得()213x x x -=+,所以13x =,213x -=, 故1011109333a =+⨯=,故C 正确; 由()111222nn n na dS d d n a nn -+⎛⎫==+- ⎪⎝⎭,因为02>d ,所以n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列,故D 错误. 故选:AC . 【点睛】解决数列的单调性问题的三种方法;1、作差比较法:根据1n n a a +-的符号,判断数列{}n a 是递增数列、递减数列或是常数列;2、作商比较法:根据1(0n n na a a +>或0)n a <与1的大小关系,进行判定; 3、数形结合法:结合相应的函数的图象直观判断.28.ABD 【分析】由可判断AB ,再由a1>0,d <0,可知等差数列数列先正后负,可判断CD. 【详解】根据等差数列定义可得,所以数列单调递减,A 正确; 由数列单调递减,可知数列有最大值a1,故B 正解析:ABD 【分析】由10n n a a d +-=<可判断AB ,再由a 1>0,d <0,可知等差数列数列{}n a 先正后负,可判断CD. 【详解】根据等差数列定义可得10n n a a d +-=<,所以数列{}n a 单调递减,A 正确;由数列{}n a 单调递减,可知数列{}n a 有最大值a 1,故B 正确;由a 1>0,d <0,可知等差数列数列{}n a 先正后负,所以数列{}n S 先增再减,有最大值,C 不正确,D 正确. 故选:ABD.29.BD 【分析】设等差数列的公差为,根据条件、、成等差数列可求得与的等量关系,可得出、的表达式,进而可判断各选项的正误. 【详解】设等差数列的公差为,则,, 因为、、成等差数列,则,即, 解得,,解析:BD 【分析】设等差数列{}n a 的公差为d ,根据条件12a 、8S 、9S 成等差数列可求得1a 与d 的等量关系,可得出n a 、n S 的表达式,进而可判断各选项的正误. 【详解】设等差数列{}n a 的公差为d ,则8118788282S a d a d ⨯=+=+,9119899362S a d a d ⨯=+=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,解得14a d =-,()()115n a a n d n d ∴=+-=-,()()219122n n n d n n d S na --=+=. 对于A 选项,59233412a a d d +=⨯=,()2888942d S d -⨯==-,A 选项错误; 对于B 选项,()2229272d Sd -⨯==-,()2779772d Sd -⨯==-,B 选项正确;对于C 选项,()2298192224n d d S n n n ⎡⎤⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误; 对于D 选项,50a =,D 选项正确. 故选:BD. 【点睛】在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和n S 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解.30.BD【分析】设等差数列的公差为,依次分析选项即可求解.【详解】根据题意,设等差数列的公差为,依次分析选项:是等差数列,若,则,故B 正确;又由得,则有,故A 错误;而C 选项,,即,可得,解析:BD【分析】设等差数列{}n a 的公差为d ,依次分析选项即可求解.【详解】根据题意,设等差数列{}n a 的公差为d ,依次分析选项:{}n a 是等差数列,若67S S =,则7670S S a -==,故B 正确;又由56S S <得6560S S a -=>,则有760d a a =-<,故A 错误;而C 选项,95S S >,即67890a a a a +++>,可得()7820a a +>,又由70a =且0d <,则80a <,必有780a a +<,显然C 选项是错误的.∵56S S <,678S S S =>,∴6S 与7S 均为n S 的最大值,故D 正确;故选:BD.【点睛】本题考查了等差数列以及前n 项和的性质,需熟记公式,属于基础题.31.ABD【分析】结合等差数列的性质、前项和公式,及题中的条件,可选出答案.【详解】由,可得,故B 正确;由,可得,由,可得,所以,故等差数列是递减数列,即,故A 正确;又,所以,故C 不正确解析:ABD【分析】结合等差数列的性质、前n 项和公式,及题中的条件,可选出答案.【详解】由67S S =,可得7670S S a -==,故B 正确;由56S S <,可得6560S S a -=>,由78S S >,可得8780S S a -=<,所以876a a a <<,故等差数列{}n a 是递减数列,即0d <,故A 正确;又()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确; 又因为等差数列{}n a 是单调递减数列,且80a <,所以90a <,所以()117179171702a a S a +==<,故D 正确.故选:ABD.【点睛】关键点点睛:本题考查等差数列性质的应用,解题的关键是熟练掌握等差数列的增减性及前n 项和的性质,本题要从题中条件入手,结合公式()12n n n a S S n --≥=,及()12n n n a a S +=,对选项逐个分析,可判断选项是否正确.考查学生的运算求解能力与逻辑推理能力,属于中档题. 32.BCD【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可.【详解】对于A ,若是等差数列,如,则不是常数,故不是等方差数列,故A 错误;对于B ,数列中,是常数,是等方差数解析:BCD【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可.【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}n a 不是等方差数列,故A 错误; 对于B ,数列(){}1n -中,222121[(1)][(1)]0n n n n a a ---=---=是常数, {(1)}n ∴-是等方差数列,故B 正确;对于C ,数列{}n a 中的项列举出来是,1a ,2a ,,k a ,,2k a ,数列{}kn a 中的项列举出来是,k a ,2k a ,3k a ,,()()()()2222222212132221k k k k k k k k aa a a a a a a p +++++--=-=-==-=,将这k 个式子累加得()()()()2222222212132221k k k k k k k k a a a a a a a a kp +++++--+-+-++-=,222k k a a kp ∴-=,()221kn k n a a kp +∴-=,{}*(,kn a k N ∴∈k 为常数)是等方差数列,故C 正确; 对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BCD.【点睛】本题考查了数列的新定义问题和等差数列的定义,属于中档题.33.BD【分析】由,即,进而可得答案.【详解】解:,因为所以,,最大,故选:.【点睛】本题考查等差数列的性质,解题关键是等差数列性质的应用,属于中档题. 解析:BD【分析】由6111160S S S S =⇒-=,即950a =,进而可得答案.【详解】解:1167891011950S S a a a a a a -=++++==,因为10a >所以90a =,0d <,89S S =最大,故选:BD .【点睛】本题考查等差数列的性质,解题关键是等差数列性质的应用,属于中档题.34.ABCD【分析】S12>0,a7<0,利用等差数列的求和公式及其性质可得:a6+a7>0,a6>0.再利用a3=a1+2d =12,可得<d <﹣3.a1>0.利用S13=13a7<0.可得Sn <0解析:ABCD【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确.【详解】∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0,又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13. 数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0. 对于:7≤n ≤12时,n nS a <0.S n >0,但是随着n 的增大而减小;a n <0, 但是随着n 的增大而减小,可得:n nS a <0,但是随着n 的增大而增大. ∴n =7时,n nS a 取得最小值. 综上可得:ABCD 都正确.故选:ABCD .【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.35.AC【分析】由已知求出数列的首项与公差,得到通项公式判断与;再求出,由的项分析的最小值.【详解】解:在递增的等差数列中,由,得,又,联立解得,,则,..故正确,错误;可得数列的解析:AC【分析】由已知求出数列{}n a 的首项与公差,得到通项公式判断A 与B ;再求出n T ,由{}n b 的项分析n T 的最小值.【详解】解:在递增的等差数列{}n a 中,由5105a a +=,得695a a +=,又6914a a =-,联立解得62a =-,97a =, 则967(2)3963a a d ---===-,16525317a a d =-=--⨯=-. 173(1)320n a n n ∴=-+-=-.故A 正确,B 错误;12(320)(317)(314)n n n n b a a a n n n ++==---可得数列{}n b 的前4项为负,第5项为正,第六项为负,第六项以后均为正. 而5610820b b +=-=>.∴当4n =时,n T 取最小值,故C 正确,D 错误.故选:AC .【点睛】本题考查等差数列的通项公式,考查数列的求和,考查分析问题与解决问题的能力,属于中档题.。
福建省莆田市第二十五中学数列的概念单元测试题(一)doc
![福建省莆田市第二十五中学数列的概念单元测试题(一)doc](https://img.taocdn.com/s3/m/3dfc0bca0740be1e640e9ac0.png)
一、数列的概念选择题1.数列23451,,,,,3579的一个通项公式n a 是( )A .21nn + B .23nn + C .23nn - D .21nn - 2.已知数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=-,则2019a =( ) A .1B .3C .2D .3-3.已知数列{}n a 满足: 12a =,111n na a +=-,设数列{}n a 的前n 项和为n S ,则2017S =( ) A .1007B .1008C .1009.5D .10104.已知数列{}n a 满足11a =),2n N n *=∈≥,且()2cos3n n n a b n N π*=∈,则数列{}n b 的前18项和为( ) A .120B .174C .204-D .37325.在数列{}n a 中,11a =,11n na a n +=++,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,若n S m <对一切正整数n 恒成立,则实数m 的取值范围为( )A .()3,+∞B .[)3,+∞C .()2,+∞D .[)2,+∞6.已知数列22333311313571351,,,,,,,...,,,,...2222222222n n n,则该数列第2019项是( ) A .1019892 B .1020192 C .1119892 D .1120192 7.设数列{}n a 的前n 项和为n S 已知()*123n n a a n n N++=+∈且1300nS=,若23a <,则n 的最大值为( )A .49B .50C .51D .528.已知数列{}n a ,若()12*Nn n n a a a n ++=+∈,则称数列{}na 为“凸数列”.已知数列{}nb 为“凸数列”,且11b =,22b =-,则数列{}n b 的前2020项和为( ) A .5B .5-C .0D .1-9.3……,则 )A .第8项B .第9项C .第10项D .第11项10.已知数列,21,n -21是这个数列的( )A .第10项B .第11项C .第12项D .第21项11.在数列{}n a 中,11(1)1,2(2)nn n a a n a --==+≥,则3a =( ) A .0B .53C .73D .312.已知数列{}n a 的前n 项和为n S ,且满足1221,1n n a a S a +===-,则下列命题错误的是A .21n n n a a a ++=+B .13599100a a a a a ++++=C .2499a a a a +++=D .12398100100S S S S S ++++=-13.已知数列{}n a ,{}n b ,其中11a =,且n a ,1n a +是方程220nn x b x -+=的实数根,则10b 等于( ) A .24B .32C .48D .6414.已知数列{}n a 的首项为1,第2项为3,前n 项和为n S ,当整数1n >时,1112()nnn S S S S 恒成立,则15S 等于( )A .210B .211C .224D .22515.历史上数列的发展,折射出许多有价值的数学思想方法,对时代的进步起了重要的作用.比如意大利数学家列昂纳多—斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233…即121a a ==,当n ≥3时,12n n n a a a --=+,此数列在现代物理及化学等领域有着广泛的应用.若此数列的各项依次被4整除后的余数构成一个新的数列{}n b ,记数列{}n b 的前n 项和为n S ,则20S 的值为( ) A .24B .26C .28D .3016.已知数列{}n a 的前n 项和为n S ,若*1n S n N n =∈,,则2a =( ) A .12-B .16-C .16D .1217.已知数列{}n a 满足11a =,122n n a a n n+=++,则10a =( ) A .259B .145 C .3111D .17618.设数列{}n a 的通项公式为2n n a n+=,要使它的前n 项的乘积大于36,则n 的最小值为( ) A .6B .7C .8D .919.历史上数列的发展,折射出很多有价值的数学思想方法,对时代的进步起了重要的作用,比如意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233……即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2),()*3n n N≥∈,,此数列在现代物理及化学等领域有着广泛的应用,若此数列被4整除后的余数构成一个新数列{}n b ,则b 2020=( ) A .3B .2C .1D .020.数列{}n a 中,11a =,12n n a a n +=+,则n a =( ) A .2n n 1-+B .21n +C .2(1)1n -+D .2n二、多选题21.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( ) A .a 8=34 B .S 8=54C .S 2020=a 2022-1D .a 1+a 3+a 5+…+a 2021=a 202222.已知数列{}n a 满足112a =-,111n na a +=-,则下列各数是{}n a 的项的有( )A .2-B .23C .32D .323.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,114a =,则下列说法错误的是( ) A .数列{}n a 的前n 项和为4n S n = B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1n S ⎧⎫⎨⎬⎩⎭为递增数列 24.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减 B .数列{}n a 有最大值 C .数列{}n S 单调递减D .数列{}n S 有最大值25.等差数列{}n a 的前n 项和记为n S ,若10a >,717S S =,则( ) A .0d < B .120a > C .13n S S ≤D .当且仅当0nS <时,26n ≥26.(多选题)在数列{}n a 中,若221n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}2n a 是等方差数列B .(){}1n-是等方差数列C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 27.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且3201911111a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥ B .当数列{}n a 为等差数列时,20210S ≤ C .当数列{}n a 为等比数列时,20210T > D .当数列{}n a 为等比数列时,20210T <28.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <29.设d 为正项等差数列{}n a 的公差,若0d >,32a =,则( ) A .244a a ⋅<B .224154a a +≥C .15111a a +> D .1524a a a a ⋅>⋅30.已知数列{}n a 的前n 项和为,n S 25,n S n n =-则下列说法正确的是( )A .{}n a 为等差数列B .0n a >C .n S 最小值为214-D .{}n a 为单调递增数列31.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( ) A .45n a n =-B .23n a n =+C .223n S n n =-D .24n S n n =+32.设等差数列{}n a 的前n 项和为n S ,若39S =,47a =,则( )A .2n S n =B .223n S n n =-C .21n a n =-D .35n a n =-33.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为2134.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d <B .70a >C .{}n S 中5S 最大D .49a a <35.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .当9n =或10时,n S 取最大值 C .911a a <D .613S S =【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.D 解析:D 【分析】根据数列分子分母的规律求得通项公式. 【详解】由于数列的分母是奇数列,分子是自然数列,故通项公式为21n na n =-. 故选:D 【点睛】本小题主要考查根据数列的规律求通项公式,属于基础题.2.C解析:C 【分析】根据数列{}n a 的前两项及递推公式,可求得数列的前几项,判断出数列为周期数列,即可求得2019a 的值.【详解】数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=- 当1n =时,321322a a a =-=-= 当2n =时,432231a a a =-=-=- 当3n =时,543123a a a =-=--=- 当4n =时,()654312a a a =-=---=- 当5n =时,()765231a a a =-=---=当6n =时,()876123a a a =-=--= 由以上可知,数列{}n a 为周期数列,周期为6T = 而201933663=⨯+ 所以201932a a == 故选:C 【点睛】本题考查了数列递推公式的简单应用,周期数列的简单应用,属于基础题.3.D解析:D 【分析】根据题设条件,可得数列{}n a 是以3为周期的数列,且3132122S =+-=,从而求得2017S 的值,得到答案. 【详解】由题意,数列{}n a 满足: 12a =,111n na a +=-, 可得234111,121,1(1)2,22a a a =-==-=-=--=,可得数列{}n a 是以3为周期的数列,且3132122S =+-= 所以20173672210102S =⨯+=. 故选:D. 【点睛】本题主要考查了数列的递推公式的应用,其中解答中得出数列{}n a 是以3为周期的数列,是解答的关键,着重考查了推理与运算能力,属于中档试题.4.B解析:B 【分析】将题干中的等式化简变形得211n n a n a n --⎛⎫= ⎪⎝⎭,利用累乘法可求得数列{}n a 的通项公式,由此计算出()32313k k k b b b k N *--++∈,进而可得出数列{}nb 的前18项和.【详解】)1,2n a n N n *--=∈≥,将此等式变形得211n n a n a n --⎛⎫= ⎪⎝⎭,由累乘法得22232121211211123n n n aa a n a a a a a n n--⎛⎫⎛⎫⎛⎫=⋅⋅=⨯⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()2cos3n n n a b n N π*=∈,22cos 3n n b n π∴=, ()()222323134232cos 231cos 29cos 233k k k b b b k k k k k k πππππ--⎛⎫⎛⎫∴++=--+--+ ⎪ ⎪⎝⎭⎝⎭592k =-,因此,数列{}n b 的前18项和为()591234566921151742⨯+++++-⨯=⨯-=. 故选:B. 【点睛】本题考查并项求和法,同时也涉及了利用累乘法求数列的通项,求出32313k k k b b b --++是解答的关键,考查计算能力,属于中等题.5.D解析:D 【分析】利用累加法求出数列{}n a 的通项公式,并利用裂项相消法求出n S ,求出n S 的取值范围,进而可得出实数m 的取值范围. 【详解】11n n a a n +=++,11n n a a n +∴-=+且11a =,由累加法可得()()()()12132111232n n n n n a a a a a a a a n -+=+-+-++-=++++=,()122211n a n n n n ∴==-++,22222222222311n S n n n ⎛⎫⎛⎫⎛⎫∴=-+-++-=-< ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, 由于n S m <对一切正整数n 恒成立,2m ∴≥,因此,实数m 的取值范围是[)2,+∞.故选:D. 【点睛】本题考查数列不等式恒成立问题的求解,同时也考查了累加法求通项以及裂项求和法,考查计算能力,属于中等题.6.C解析:C 【分析】由观察可得()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭项数为21,1,2,4,8,...,2,...k -,注意到101110242201922048=<<=,第2019项是第12个括号里的第995项. 【详解】 由数列()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,可发现其项数为 21,1,2,4,8,...,2,...k -,则前11个括号里共有1024项,前12个括号里共有2048项,故原数列第2019项是第12个括号里的第995项,第12个括号里的数列通项为11212m -, 所以第12个括号里的第995项是1119892. 故选:C. 【点睛】本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.7.A解析:A 【分析】对n 分奇偶性分别讨论,当n 为偶数时,可得2+32n n nS =,发现不存在这样的偶数能满足此式,当n 为奇数时,可得21+342n n n S a -=+,再结合23a <可讨论出n 的最大值.【详解】当n 为偶数时,12341()()()n n n S a a a a a a -=++++⋅⋅⋅++(213)(233)[2(1)3]n =⨯++⨯++⋅⋅⋅+-+ 2[13(1)]32n n =⨯++⋅⋅⋅+-+⨯2+32n n=,因为22485048+348503501224,132522S S ⨯+⨯====,所以n 不可能为偶数;当n 为奇数时,123451()()()n n n S a a a a a a a -=+++++⋅⋅⋅++1(223)(243)[2(1)3]a n =+⨯++⨯++⋅⋅⋅+-+21342n n a +-=+因为2491149349412722S a a +⨯-=+=+,2511151351413752S a a +⨯-=+=+,又因为23a <,125a a +=,所以 12a > 所以当1300n S =时,n 的最大值为49 故选:A 【点睛】此题考查的是数列求和问题,利用了并项求和的方法,考查了分类讨论思想,属于较难题.8.B解析:B 【分析】根据数列的递推关系可求得数{}n b 的周期为6,即可求得数列{}n b 的前2020项和. 【详解】()*21N n n n b b b n ++=-∈,且11b =,22b =-, ∴345673,1,2,3,1,b b b b b =-=-=== ∴{}n b 是以6为周期的周期数列,且60S =, ∴20203366412345S S b b b b ⨯+==+++=-,故选:B. 【点睛】本题考查数列的新定义、数列求和,考查运算求解能力,求解时注意通过计算数列的前6项,得到数列的周期.9.D解析:D 【解析】 【分析】根据根号下的数字规律,可知为等差数列.利用等差数列性质求得通项公式,即可判断为第几项. 【详解】根据数列中的项,… 由前几项可知,根式下的数列是以5为首项, 4为公差的等差数列 则根式下的数字组成的等差数列通项公式为()51441n a n n =+-⨯=+而=所以4541n =+ 解得11n = 故选:D 【点睛】本题考查了等差数列通项公式的求法及简单应用,属于基础题.10.B解析:B 【分析】根据题中所给的通项公式,令2121n -=,求得n =11,得到结果. 【详解】令2121n -=,解得n =11是这个数列的第11项. 故选:B. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有判断数列的项,属于基础题目.11.B解析:B 【分析】由数列的递推关系式以及11a =求出2a ,进而得出3a . 【详解】11a =,21123a a ∴=+=,321523a a -=+= 故选:B12.C解析:C 【分析】21n n S a +=-,则111n n S a -+=-,两式相减得到A 正确;由A 选项得到13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=进而得到B正确;同理可得到C 错误;由21n n S a +=-得到12398S S S S +++⋯+=123451002111......1a a a a a a +-+-+-+-++-=100100.S -进而D 正确. 【详解】已知21n n S a +=-,则111n n S a -+=-,两式相减得到2121n n n n n n a a a a a a ++++=-⇒=+,故A 正确;根据A 选项得到13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=,故B 正确;24698a a a a +++⋯+=2234569697a a a a a a a a ++++++⋯++=1234569697a a a a a a a a ++++++⋯++=97991S a =-,故C 不正确;根据2123981n n S a S S S S +=-+++⋯+=,123451002111......1a a a a a a +-+-+-+-++-= 100100.S -故D 正确. 故答案为C.这个题目考查了数列的应用,根据题干中所给的条件进行推广,属于中档题,这类题目不是常规的等差或者等比数列,要善于发现题干中所给的条件,应用选项中正确的结论进行其它条件的推广.13.D解析:D 【分析】根据题意,得到1n n n a a b ++=,12nn n a a +=,求得22a =,推出112n n a a +-=,进而可求出10a ,11a ,从而可求出结果.【详解】因为n a ,1n a +是方程220nn x b x -+=的实数根, 所以1n n n a a b ++=,12nn n a a +=,又11a =,所以22a =; 当2n ≥时,112n n n a a --=,所以11112n n n n n na a a a a a ++--==, 因此4102232a a =⋅=,5111232a a =⋅=所以101011323264b a a =+=+=. 故选:D. 【点睛】本题主要考查由数列的递推关系求数列中的项,属于常考题型.14.D解析:D 【分析】利用已知条件转化推出1122n n a a a +-==,说明数列是等差数列,然后求解数列的和即可. 【详解】 解:结合1112()nnn S S S S 可知,11122n n n S S S a +-+-=,得到1122n n a a a +-==,故数列{}n a 为首项为1,公差为2的等差数列,则12(1)21n a n n =+-=-,所以1529a =,所以11515()15(291)1522522a a S ++===, 故选:D . 【点睛】本题考查数列的递推关系式的应用,考查数列求和,是基本知识的考查.15.B【分析】先写出新数列的各项,找到数列的周期,即得解. 【详解】由题意可知“斐波那契数列”的各项依次被4整除后的余数构成一个新的数列{}n b , 此数列的各项求得:1,1,2,3,1,0,1,1,2,3,1,0,1……,则其周期为6, 其中1+1+2+3+1+0=8,则201819201812S S b b S b b =++=++381126=⨯++=, 故选:B.16.A解析:A 【分析】令1n =得11a =,令2n =得21212S a a =+=可解得2a . 【详解】 因为1n S n =,所以11111a S ===, 因为21212S a a =+=,所以211122a =-=-. 故选:A17.B解析:B 【分析】 由122n n a a n n +=++转化为11121n n a a n n +⎛⎫-=- ⎪+⎝⎭,利用叠加法,求得23n a n =-,即可求解. 【详解】 由122n n a a n n +=++,可得12112(1)1n n a a n n n n +⎛⎫-==- ⎪++⎝⎭,所以()()()()11223211n n n n n n n a a a a a a a a a a -----=-+-+-++-+11111111222*********n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭⎝⎭122113n n ⎛⎫=-+=- ⎪⎝⎭,所以102143105a =-=. 故选:B. 【点睛】数列的通项公式的常见求法:1、对于递推关系式可转化为1()n n a a f n +-=的数列,通常采用叠加法(逐差相加法)求其通项公式;2、对于递推关系式可转化为1()n na f n a +=的数列,并且容易求数列{()}f n 前n 项积时,通常采用累乘法求其通项公式; 3、对于递推关系式形如1n n a pa q +=+的数列,可采用构造法求解数列的通项公式.18.C解析:C 【分析】先求出数列{}n a 的前n 项的乘积为n D ,令0n D >解不等式,结合*n N ∈,即可求解. 【详解】记数列{}n a 的前n 项的乘积为n D ,则()()12112451232312n n n n n n n D a a a a n n -++++=⋅⋅=⨯⨯⨯⨯⨯=- 依题意有()()12362n n ++>整理得()()23707100n n n n +-=-+> 解得:7n >,因为*n N ∈,所以min 8n =, 故选:C19.A解析:A 【分析】根据条件得出数列{}n b 的周期即可. 【详解】由题意可知“兔子数列”被4整除后的余数构成一个新数列为:1,1,2,3,1,0,1,1,2,3,1,0,……则可得到周期为6,所以b 2020=b 4=3, 故选:A20.A解析:A 【分析】由题意,根据累加法,即可求出结果. 【详解】因为12n n a a n +=+,所以12n n a a n +-=,因此212a a -=,324a a -=,436a a -=,…,()121n n a a n --=-, 以上各式相加得:()()()21246.1221..212n n n a a n n n ⎡⎤-+-⎣⎦-=+++==+--,又11a =,所以21n a n n =-+.故选:A. 【点睛】本题主要考查累加法求数列的通项,属于基础题型.二、多选题 21.BCD 【分析】由题意可得数列满足递推关系,依次判断四个选项,即可得正确答案. 【详解】对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,,故B 正确; 对于C ,可解析:BCD 【分析】由题意可得数列{}n a 满足递推关系()12211,1,+3n n n a a a a a n --===≥,依次判断四个选项,即可得正确答案. 【详解】对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,81+1+2+3+5+8+13+2154S ==,故B 正确; 对于C ,可得()112n n n a a a n +-=-≥, 则()()()()1234131425311++++++++++n n n a a a a a a a a a a a a a a +-=----即212++1n n n n S a a a a ++=-=-,∴202020221S a =-,故C 正确; 对于D ,由()112n n n a a a n +-=-≥可得,()()()135202124264202220202022++++++++a a a a a a a a a a a a =---=,故D 正确.故选:BCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,解题的关键是得出数列的递推关系,()12211,1,+3n n n a a a a a n --===≥,能根据数列性质利用累加法求解.22.BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论.因为数列满足,, ; ; ;数列是周期为3的数列,且前3项为,,3; 故选:. 【点睛】 本题主要解析:BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】因为数列{}n a 满足112a =-,111n na a +=-,212131()2a ∴==--;32131a a ==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3; 故选:BD . 【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.23.ABC 【分析】数列的前项和为,且满足,,可得:,化为:,利用等差数列的通项公式可得,,时,,进而求出. 【详解】数列的前项和为,且满足,, ∴,化为:,∴数列是等差数列,公差为4, ∴,可得【分析】数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114a =,可得:1140n n n n S S S S ---+=,化为:1114n n S S --=,利用等差数列的通项公式可得1nS ,n S ,2n ≥时,()()111144141n n n a S S n n n n -=-=-=---,进而求出n a . 【详解】数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114a =, ∴1140n n n n S S S S ---+=,化为:1114n n S S --=, ∴数列1n S ⎧⎫⎨⎬⎩⎭是等差数列,公差为4, ∴()14414n n n S =+-=,可得14n S n=, ∴2n ≥时,()()111144141n n n a S S n n n n -=-=-=---, ∴()1(1)41(2)41n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,对选项逐一进行分析可得,A ,B ,C 三个选项错误,D 选项正确. 故选:ABC. 【点睛】本题考查数列递推式,解题关键是将已知递推式变形为1114n n S S --=,进而求得其它性质,考查逻辑思维能力和运算能力,属于常考题24.ABD 【分析】由可判断AB ,再由a1>0,d <0,可知等差数列数列先正后负,可判断CD. 【详解】根据等差数列定义可得,所以数列单调递减,A 正确; 由数列单调递减,可知数列有最大值a1,故B 正解析:ABD 【分析】由10n n a a d +-=<可判断AB ,再由a 1>0,d <0,可知等差数列数列{}n a 先正后负,可判断CD. 【详解】根据等差数列定义可得10n n a a d +-=<,所以数列{}n a 单调递减,A 正确; 由数列{}n a 单调递减,可知数列{}n a 有最大值a 1,故B 正确;由a 1>0,d <0,可知等差数列数列{}n a 先正后负,所以数列{}n S 先增再减,有最大值,C 不正确,D 正确. 故选:ABD.25.AB 【分析】根据等差数列的性质及可分析出结果. 【详解】 因为等差数列中, 所以, 又, 所以,所以,,故AB 正确,C 错误; 因为,故D 错误, 故选:AB 【点睛】关键点睛:本题突破口在于由解析:AB 【分析】根据等差数列的性质及717S S =可分析出结果. 【详解】因为等差数列中717S S =, 所以89161712135()0a a a a a a ++++=+=,又10a >,所以12130,0a a ><,所以0d <,12n S S ≤,故AB 正确,C 错误; 因为125251325()2502a a S a +==<,故D 错误, 故选:AB 【点睛】关键点睛:本题突破口在于由717S S =得到12130a a +=,结合10a >,进而得到12130,0a a ><,考查学生逻辑推理能力.26.BCD 【分析】根据定义以及举特殊数列来判断各选项中结论的正误. 【详解】对于A 选项,取,则不是常数,则不是等方差数列,A 选项中的结论错误; 对于B 选项,为常数,则是等方差数列,B 选项中的结论正解析:BCD 【分析】根据定义以及举特殊数列来判断各选项中结论的正误. 【详解】对于A 选项,取n a n =,则()()()422444221111n n a a n n n n n n +⎡⎤⎡⎤-=+-=+-⋅++⎣⎦⎣⎦()()221221n n n =+++不是常数,则{}2n a 不是等方差数列,A 选项中的结论错误; 对于B 选项,()()22111110n n +⎡⎤⎡⎤---=-=⎣⎦⎣⎦为常数,则(){}1n-是等方差数列,B 选项中的结论正确;对于C 选项,若{}n a 是等方差数列,则存在常数p R ∈,使得221n n a a p +-=,则数列{}2na 为等差数列,所以()221kn k n a a kp +-=,则数列{}kn a (*k N ∈,k 为常数)也是等方差数列,C 选项中的结论正确;对于D 选项,若数列{}n a 为等差数列,设其公差为d ,则存在m R ∈,使得n a dn m =+,则()()()()2221112222n n n n n n a a a a a a d dn m d d n m d d +++-=-+=++=++,由于数列{}n a 也为等方差数列,所以,存在实数p ,使得221n n a a p +-=,则()222d n m d d p ++=对任意的n *∈N 恒成立,则()2202d m d d p ⎧=⎪⎨+=⎪⎩,得0p d ==,此时,数列{}n a 为常数列,D 选项正确.故选BCD. 【点睛】本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题.27.AC 【分析】将变形为,构造函数,利用函数单调性可得,再结合等差数列与等比数列性质即可判断正确选项 【详解】 由,可得,令, ,所以是奇函数,且在上单调递减,所以, 所以当数列为等差数列时,;解析:AC 【分析】 将3201911111a a e e +≤++变形为32019111101212a a e e -+-≤++,构造函数()1112x f x e =-+,利用函数单调性可得320190a a +≥,再结合等差数列与等比数列性质即可判断正确选项 【详解】 由3201911111a a e e +≤++,可得32019111101212a a e e -+-≤++,令()1112xf x e =-+, ()()1111101111x x x x x e f x f x e e e e --+=+-=+-=++++,所以()1112xf x e =-+是奇函数,且在R 上单调递减,所以320190a a +≥, 所以当数列{}n a 为等差数列时,()320192*********a a S +=≥;当数列{}n a 为等比数列时,且3a ,1011a ,2019a 同号,所以3a ,1011a ,2019a 均大于零, 故()2021202110110T a =>.故选:AC 【点睛】本题考查等差数列与等比数列,考查逻辑推理能力,转化与化归的数学思想,属于中档题28.AD 【分析】利用等差数列的通项公式可以求,,即可求公差,然后根据等差数列的性质判断四个选项是否正确. 【详解】 因为,所以 , 因为,所以, 所以等差数列公差, 所以是递减数列,故最大,选项A解析:AD 【分析】利用等差数列的通项公式可以求70a >,80a <,即可求公差0d <,然后根据等差数列的性质判断四个选项是否正确. 【详解】因为67S S <,所以7670S S a -=> , 因为78S S >,所以8780S S a -=<, 所以等差数列{}n a 公差870d a a =-<, 所以{}n a 是递减数列,故1a 最大,选项A 正确;选项B 不正确;10345678910770S S a a a a a a a a -=++++++=>,所以310S S ≠,故选项C 不正确;当8n ≥时,80n a a ≤<,即0n a <,故选项D 正确; 故选:AD 【点睛】本题主要考查了等差数列的性质和前n 项和n S ,属于基础题.29.ABC 【分析】由已知求得公差的范围:,把各选项中的项全部用表示,并根据判断各选项. 【详解】 由题知,只需, ,A 正确; ,B 正确; ,C 正确; ,所以,D 错误. 【点睛】本题考查等差数列的性解析:ABC 【分析】由已知求得公差d 的范围:01d <<,把各选项中的项全部用d 表示,并根据01d <<判断各选项. 【详解】由题知,只需1220010a d d d =->⎧⇒<<⎨>⎩,()()2242244a a d d d ⋅=-⋅+=-<,A 正确;()()2222415223644a a d d d d +=-++=-+>≥,B 正确; 21511111122221a a d d d +=+=>-+-,C 正确; ()()()()2152422222230a a a a d d d d d ⋅-⋅=-⋅+--⋅+=-<,所以1524a a a a ⋅<⋅,D 错误.【点睛】本题考查等差数列的性质,解题方法是由已知确定d 的范围,由通项公式写出各项(用d 表示)后,可判断.30.AD【分析】利用求出数列的通项公式,可对A ,B ,D 进行判断,对进行配方可对C 进行判断【详解】解:当时,,当时,,当时,满足上式,所以,由于,所以数列为首项为,公差为2的等差数列,因解析:AD【分析】利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列的通项公式,可对A ,B ,D 进行判断,对25,n S n n =-进行配方可对C 进行判断【详解】解:当1n =时,11154a S ==-=-,当2n ≥时,2215[(1)5(1)]26n n n a S S n n n n n -=-=-----=-,当1n =时,14a =-满足上式,所以26n a n =-,由于()122n n a a n --=≥,所以数列{}n a 为首项为4-,公差为2的等差数列, 因为公差大于零,所以{}n a 为单调递增数列,所以A ,D 正确,B 错误,由于225255()24n S n n n =-=--,而n ∈+N ,所以当2n =或3n =时,n S 取最小值,且最小值为6-,所以C 错误,故选:AD【点睛】此题考查,n n a S 的关系,考查由递推式求通项并判断等差数列,考查等差数列的单调性和前n 项和的最值问题,属于基础题31.AC【分析】由求出,再由可得公差为,从而可求得其通项公式和前项和公式【详解】由题可知,,即,所以等差数列的公差,所以,.故选:AC.【点睛】本题考查等差数列,考查运算求解能力.解析:AC【分析】由535S =求出37a =,再由411a =可得公差为434d a a =-=,从而可求得其通项公式和前n 项和公式【详解】由题可知,53535S a ==,即37a =,所以等差数列{}n a 的公差434d a a =-=, 所以()4445n a a n d n =+-=-,()2451232n n n S n n --==-. 故选:AC.【点睛】本题考查等差数列,考查运算求解能力. 32.AC【分析】利用等差数列的前项和公式、通项公式列出方程组,求出,,由此能求出与.【详解】等差数列的前项和为.,,,解得,,.故选:AC .【点睛】本题考查等差数列的通项公式求和公解析:AC【分析】利用等差数列{}n a 的前n 项和公式、通项公式列出方程组,求出11a =,2d =,由此能求出n a 与n S .【详解】等差数列{}n a 的前n 项和为n S .39S =,47a =, ∴31413239237S a d a a d ⨯⎧=+=⎪⎨⎪=+=⎩, 解得11a =,2d =,1(1)221n a n n ∴+-⨯=-=.()21212n n n S n +-== 故选:AC .【点睛】本题考查等差数列的通项公式求和公式的应用,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.33.BC【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由Sn>0解不等式可判断D .【详解】由公差,可得,即,①由a7是a解析:BC【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由S n >0解不等式可判断D .【详解】由公差60,90d S ≠=,可得161590a d +=,即12530a d +=,①由a 7是a 3与a 9的等比中项,可得2739a a a =,即()()()2111628a d a d a d +=++,化简得110a d =-,②由①②解得120,2a d ==-,故A 错,B 对; 由()()22121441201221224n S n n n n n n ⎛⎫=+-⨯-=-=--+ ⎪⎝⎭ *n N ∈,可得10n =或11时,n S 取最大值110,C 对;由S n >0,解得021n <<,可得n 的最大值为20,D 错;故选:BC【点睛】本题考查等差数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题. 34.AD【分析】先根据题意得,,再结合等差数列的性质得,,,中最大,,即:.进而得答案.【详解】解:根据等差数列前项和公式得:,所以,,由于,,所以,,所以,中最大,由于,所以,即:解析:AD【分析】先根据题意得1110a a +>,1120a a +<,再结合等差数列的性质得60a >,70a <,0d <,{}n S 中6S 最大,49a a <-,即:49a a <.进而得答案.【详解】解:根据等差数列前n 项和公式得:()111111102a a S +=>,()112121202a a S +=< 所以1110a a +>,1120a a +<,由于11162a a a +=,11267a a a a +=+,所以60a >,760a a <-<,所以0d <,{}n S 中6S 最大,由于11267490a a a a a a +=+=+<,所以49a a <-,即:49a a <.故AD 正确,BC 错误.故选:AD.【点睛】本题考查等差数列的前n 项和公式与等差数列的性质,是中档题.35.AD【分析】由求出,即,由此表示出、、、,可判断C 、D 两选项;当时,,有最小值,故B 错误.【详解】解:,,故正确A.由,当时,,有最小值,故B 错误.,所以,故C 错误.,,故D 正确.解析:AD【分析】由1385a a S +=求出100a =,即19a d =-,由此表示出9a 、11a 、6S 、13S ,可判断C 、D 两选项;当0d >时,10a <,n S 有最小值,故B 错误.【详解】解:1385a a S +=,111110875108,90,02d a a d a a d a ⨯++=++==,故正确A. 由190a d +=,当0d >时,10a <,n S 有最小值,故B 错误.9101110,a a d d a a d d =-==+=,所以911a a =,故C 错误.61656+5415392d S a d d d ⨯==-+=-, 131131213+11778392d S a d d d ⨯==-+=-,故D 正确. 故选:AD【点睛】考查等差数列的有关量的计算以及性质,基础题.。
数列的概念经典例题
![数列的概念经典例题](https://img.taocdn.com/s3/m/e40b8d7065ce05087732133c.png)
一、数列的概念选择题1.数列{}n a 中,12a =,121n n a a +=-,则10a =( )A .511B .513C .1025D .10242.在数列{}n a 中,11a =,11n n a a n +=++,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,若n S m <对一切正整数n 恒成立,则实数m 的取值范围为( ) A .()3,+∞ B .[)3,+∞C .()2,+∞D .[)2,+∞3.在数列{}n a 中,10a =,1n a +,则2020a =( ) A .0B .1C.D4.在数列{}n a 中,11a =,对于任意自然数n ,都有12nn n a a n +=+⋅,则15a =( )A .151422⋅+B .141322⋅+C .151423⋅+D .151323⋅+5.数列{}n a 满足111n na a +=-,12a =,则2a 的值为( ) A .1B .-1C .13D .13-6.数列{}n a 满足 112a =,111n na a +=-,则2018a 等于( )A .12B .-1C .2D .37.若数列的前4项分别是1111,,,2345--,则此数列的一个通项公式为( ) A .1(1)n n --B .(1)n n -C .1(1)1n n +-+D .(1)1n n -+8.已知数列{}n a ,{}n b ,其中11a =,且n a ,1n a +是方程220nn x b x -+=的实数根,则10b 等于( ) A .24B .32C .48D .649.已知数列{}n a 满足11a =),2n N n *=∈≥,且()2cos3n n n a b n N π*=∈,则数列{}n b 的前18项和为( ) A .120B .174C .204-D .373210.已知等差数列{}n a 中,13920a a a ++=,则574a a -=( ) A .30B .20C .40D .5011.已知数列{}n a 的前n 项和为n S ,已知13n n S +=,则34a a +=( )A .81B .243C .324D .21612.设数列{},{}n n a b 满足*172700,,105n n n n n a b a a b n N ++==+∈若6400=a ,则( ) A .43a a >B .43<b bC .33>a bD .44<a b13.历史上数列的发展,折射出许多有价值的数学思想方法,对时代的进步起了重要的作用.比如意大利数学家列昂纳多—斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233…即121a a ==,当n ≥3时,12n n n a a a --=+,此数列在现代物理及化学等领域有着广泛的应用.若此数列的各项依次被4整除后的余数构成一个新的数列{}n b ,记数列{}n b 的前n 项和为n S ,则20S 的值为( ) A .24B .26C .28D .3014.已知数列{}n a 的前n 项和2n S n n =+,则4a 的值为( ) A .4B .6C .8D .1015.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则20202018a a 等于( ) A .4×20162-1B .4×20172-1C .4×20182-1D .4×2018216.已知lg3≈0.477,[x ]表示不大于x 的最大整数.设S n 为数列{a n }的前n 项和,a 1=2且S n +1=3S n -2n +2,则[lg(a 100-1)]=( ) A .45B .46C .47D .4817.正整数的排列规则如图所示,其中排在第i 行第j 列的数记为,i j a ,例如4,39a =,则645a ,等于( )12345678910A .2019B .2020C .2021D .202218.设数列{}n a 的通项公式为2n n a n+=,要使它的前n 项的乘积大于36,则n 的最小值为( ) A .6B .7C .8D .919.历史上数列的发展,折射出很多有价值的数学思想方法,对时代的进步起了重要的作用,比如意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233……即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2),()*3n n N≥∈,,此数列在现代物理及化学等领域有着广泛的应用,若此数列被4整除后的余数构成一个新数列{}n b ,则b 2020=( ) A .3B .2C .1D .020.已知数列{}n a 满足()()*622,6,6n n p n n a n p n -⎧--≤=∈⎨>⎩N ,且对任意的*n ∈N 都有1n n a a +>,则实数p 的取值范围是( )A .71,4⎛⎫ ⎪⎝⎭B .101,7⎛⎫⎪⎝⎭C .()1,2D .10,27⎛⎫⎪⎝⎭二、多选题21.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数C .2020201820223a a a =+D .123a a a +++…20202022a a +=22.若数列{}n a 满足112,02121,12n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为( ) A .15B .25C .45D .6523.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,114a =,则下列说法错误的是( ) A .数列{}n a 的前n 项和为4n S n = B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1n S ⎧⎫⎨⎬⎩⎭为递增数列 24.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小B .130S =C .49S S =D .70a =25.已知S n 是等差数列{}n a (n ∈N *)的前n 项和,且S 5>S 6>S 4,以下有四个命题,其中正确的有( )A .数列{}n a 的公差d <0B .数列{}n a 中S n 的最大项为S 10C .S 10>0D .S 11>026.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有m n m n a a a +=+,则下列结论正确的是( )A .11285a a a a +=+B .56110a a a a <C .若该数列的前三项依次为x ,1x -,3x ,则10103a = D .数列n S n ⎧⎫⎨⎬⎩⎭为递减的等差数列 27.已知数列{}2nna n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6D .a 1,a 2,a 3可能成等差数列28.等差数列{}n a 中,n S 为其前n 项和,151115,a S S ==,则以下正确的是( )A .1d =-B .413a a =C .n S 的最大值为8SD .使得0n S >的最大整数15n =29.已知数列{}n a 为等差数列,则下列说法正确的是( ) A .1n n a a d +=+(d 为常数) B .数列{}n a -是等差数列 C .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列 D .1n a +是n a 与2n a +的等差中项30.数列{}n a 满足11,121nn n a a a a +==+,则下列说法正确的是( ) A .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列B .数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和2n S n =C .数列{}n a 的通项公式为21n a n =-D .数列{}n a 为递减数列31.已知等差数列{}n a 的前n 项和为n S ()*n N ∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A .2d =-B .120a =-C .当且仅当10n =时,n S 取最大值D .当0nS <时,n 的最小值为2232.下面是关于公差0d >的等差数列{}n a 的四个命题,其中的真命题为( ).A .数列{}n a 是递增数列B .数列{}n na 是递增数列C .数列{}na n是递增数列 D .数列{}3n a nd +是递增数列33.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .2437d -<<- C .S n <0时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项34.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d <B .70a >C .{}n S 中5S 最大D .49a a <35.设等差数列{}n a 的前n 项和为n S ,公差为d ,且满足10a >,1118S S =,则对n S 描述正确的有( ) A .14S 是唯一最小值 B .15S 是最小值 C .290S =D .15S 是最大值【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.B 解析:B 【分析】根据递推公式构造等比数列{}1n a -,求解出{}n a 的通项公式即可求解出10a 的值. 【详解】因为121n n a a +=-,所以121n n a a +=-,所以()1121n n a a +-=-, 所以1121n n a a +-=-且1110a -=≠, 所以{}1n a -是首项为1,公比为2的等比数列,所以112n n a --=,所以121n n a -=+,所以91021513a =+=,故选:B. 【点睛】本题考查利用递推公式求解数列通项公式,难度一般.对于求解满足()11,0,0n n a pa q p p q +=+≠≠≠的数列{}n a 的通项公式,可以采用构造等比数列的方法进行求解.2.D解析:D 【分析】利用累加法求出数列{}n a 的通项公式,并利用裂项相消法求出n S ,求出n S 的取值范围,进而可得出实数m 的取值范围. 【详解】11n n a a n +=++,11n n a a n +∴-=+且11a =,由累加法可得()()()()12132111232n n n n n a a a a a a a a n -+=+-+-++-=++++=,()122211n a n n n n ∴==-++,22222222222311n S n n n ⎛⎫⎛⎫⎛⎫∴=-+-++-=-< ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, 由于n S m <对一切正整数n 恒成立,2m ∴≥,因此,实数m 的取值范围是[)2,+∞.故选:D. 【点睛】本题考查数列不等式恒成立问题的求解,同时也考查了累加法求通项以及裂项求和法,考查计算能力,属于中等题.3.A解析:A【分析】写出数列的前几项,找寻规律,求出数列的周期,问题即可解.【详解】10a =,1n a+1n =时,2a2n =时,3a 3n =时,4a ; ∴ 数列{}n a 的周期是320206733110a a a ⨯+∴===故选:A. 【点睛】本题考查周期数列. 求解数列的周期问题时,周期数列的解题方法:根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n 项的和.4.D解析:D 【分析】在数列的递推公式中依次取1,2,3,1n n =- ,得1n -个等式,累加后再利用错位相减法求15a . 【详解】12n n n a a n +=+⋅, 12n n n a a n +-=⋅,12112a a ∴-=⋅, 23222a a -=⋅,34332a a -=⋅11(1)2n n n a a n ---=-⋅,以上1n -个等式,累加得12311122232(1)2n n a a n --=⋅+⋅+⋅++-⋅①又2341122122232(2)2(1)2n n n a a n n --=⋅+⋅+⋅++-⋅+-⋅②①- ②得23112222(1)2n n n a a n --=++++--⋅12(12)(1)2(2)2212n n n n n --=--⋅=-⋅--,(2)23n n a n ∴=-⋅+ ,151515(152)231323a ∴=-⋅+=⋅+,故选:D 【点睛】本题主要考查了累加法求数列通项,乘公比错位相减法求数列的和,由通项公式求数列中的项,属于中档题.5.B解析:B 【分析】根据数列的递推公式,代入计算可得选项. 【详解】因为111n n a a +=-,12a =,所以21111112a a ===---, 故选:B. 【点睛】本题考查由数列递推式求数列中的项,属于基础题.6.B解析:B 【分析】先通过列举找到数列的周期,再求2018a . 【详解】n=1时,234511121,1(1)2,1,121,22a a a a =-=-=--==-==-=- 所以数列的周期是3,所以2018(36722)21a a a ⨯+===-. 故选:B 【点睛】本题主要考查数列的递推公式和数列的周期,意在考查学生对这些知识的掌握水平和分析推理能力.7.C解析:C 【分析】根据数列的前几项的规律,可推出一个通项公式. 【详解】设所求数列为{}n a ,可得出()111111a+-=+,()212121a+-=+,()313131a+-=+,()414141a+-=+,因此,该数列的一个通项公式为()111n na n +-=+.故选:C. 【点睛】本题考查利用数列的前几项归纳数列的通项公式,考查推理能力,属于基础题.8.D解析:D 【分析】根据题意,得到1n n n a a b ++=,12nn n a a +=,求得22a =,推出112n n a a +-=,进而可求出10a ,11a ,从而可求出结果.【详解】因为n a ,1n a +是方程220nn x b x -+=的实数根,所以1n n n a a b ++=,12nn n a a +=,又11a =,所以22a =; 当2n ≥时,112n n n a a --=,所以11112n n n n n na a a a a a ++--==, 因此4102232a a =⋅=,5111232a a =⋅=所以101011323264b a a =+=+=. 故选:D. 【点睛】本题主要考查由数列的递推关系求数列中的项,属于常考题型.9.B解析:B 【分析】将题干中的等式化简变形得211n n a n a n --⎛⎫= ⎪⎝⎭,利用累乘法可求得数列{}n a 的通项公式,由此计算出()32313k k k b b b k N *--++∈,进而可得出数列{}nb 的前18项和.【详解】)1,2n a n N n *--=∈≥,将此等式变形得211n n a n a n --⎛⎫= ⎪⎝⎭,由累乘法得22232121211211123n n n aa a n a a a a a n n--⎛⎫⎛⎫⎛⎫=⋅⋅=⨯⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()2cos3n n n a b n N π*=∈,22cos 3n n b n π∴=, ()()222323134232cos 231cos 29cos 233k k k b b b k k k k k k πππππ--⎛⎫⎛⎫∴++=--+--+ ⎪ ⎪⎝⎭⎝⎭592k =-,因此,数列{}n b 的前18项和为()591234566921151742⨯+++++-⨯=⨯-=. 故选:B. 【点睛】本题考查并项求和法,同时也涉及了利用累乘法求数列的通项,求出32313k k k b b b --++是解答的关键,考查计算能力,属于中等题.10.B解析:B 【分析】利用等差数列{}n a 的通项公式代入可得574a a -的值.【详解】由13920a a a ++=,得131020a d +=,则有5711144(4)631020a a a d a d a d -=+--=+=. 故选:B. 【点睛】考查等差数列通项公式的运用,知识点较为简单.11.D解析:D 【分析】利用项和关系,1n n n a S S -=-代入即得解. 【详解】利用项和关系,1332443=54=162n n n a S S a S S a S S -=-∴=-=-,34216a a ∴+=故选:D 【点睛】本题考查了数列的项和关系,考查了学生转化与划归,数学运算能力,属于基础题.12.C解析:C 【分析】 由题意有1328010n n a a +=+且6400=a ,即可求34,a a ,进而可得34,b b ,即可比较它们的大小. 【详解】 由题意知:1328010n n a a +=+,6400=a , ∴345400a a a ===,而700n n a b +=, ∴34300b b ==, 故选:C 【点睛】本题考查了根据数列间的递推关系比较项的大小,属于简单题.13.B解析:B 【分析】先写出新数列的各项,找到数列的周期,即得解. 【详解】由题意可知“斐波那契数列”的各项依次被4整除后的余数构成一个新的数列{}n b , 此数列的各项求得:1,1,2,3,1,0,1,1,2,3,1,0,1……,则其周期为6,其中1+1+2+3+1+0=8,则201819201812S S b b S b b =++=++381126=⨯++=, 故选:B.14.C解析:C 【分析】利用443a S S =-计算. 【详解】由已知22443(44)(33)8a S S =-=+-+=.故选:C .15.C解析:C 【分析】根据“等差比”数列的定义,得到数列1n n a a +⎧⎫⎨⎬⎩⎭的通项公式,再利用202020202019201820192019a a a a a a =⨯求解. 【详解】 由题意可得:323a a =,211a a = ,32211a a a a -=, 根据“等差比数列”的定义可知数列1n n a a +⎧⎫⎨⎬⎩⎭是首先为1,公差为2的等差数列, 则()111221n na n n a +=+-⨯=-, 所以20202019220191220181a a =⨯-=⨯+,20192018220181a a =⨯-, 所以()()2202020202019201820192019220181220181420181a a a a a a =⨯=⨯+⨯-=⨯-. 故选:C 【点睛】本题考查数列新定义,等差数列,重点考查理解题意,转化思想,计算能力,属于中档题型.16.C解析:C 【分析】利用数列的递推式,得到a n +1=3a n -2,进而得到a n =3n -1+1,然后代入[lg(a 100-1)]可求解 【详解】当n ≥2时,S n =3S n -1-2n +4,则a n +1=3a n -2,于是a n +1-1=3(a n -1),当n =1时,S 2=3S 1-2+2=6,所以a 2=S 2-S 1=4.此时a 2-1=3(a 1-1),则数列{a n -1}是首项为1,公比为3的等比数列.所以a n -1=3n -1,即a n =3n -1+1,则a 100=399+1,则lg(a 100-1)=99lg3≈99×0.477=47.223,故[lg(a 100-1)]=47. 故选C17.C解析:C 【分析】根据题目中已知数据,进行归总结,得到一般性结论,即可求得结果. 【详解】根据题意,第1行第1列的数为1,此时111(11)112a ⨯-=+=,, 第2行第1列的数为2,此时212(21)122a ⨯-=+=,, 第3行第1列的数为4 ,此时313(31)142a ⨯-=+=,, 据此分析可得:第64行第1列的数为64164(641)120172a ⨯-=+=,,则6452021a =,, 故选:C.18.C解析:C 【分析】先求出数列{}n a 的前n 项的乘积为n D ,令0n D >解不等式,结合*n N ∈,即可求解. 【详解】记数列{}n a 的前n 项的乘积为n D ,则()()12112451232312n n n n n n n D a a a a n n -++++=⋅⋅=⨯⨯⨯⨯⨯=- 依题意有()()12362n n ++>整理得()()23707100n n n n +-=-+> 解得:7n >,因为*n N ∈,所以min 8n =, 故选:C19.A解析:A 【分析】根据条件得出数列{}n b 的周期即可. 【详解】由题意可知“兔子数列”被4整除后的余数构成一个新数列为:1,1,2,3,1,0,1,1,2,3,1,0,……则可得到周期为6,所以b 2020=b 4=3, 故选:A20.D解析:D 【分析】根据题意,得到数列是增数列,结合通项公式,列出不等式组求解,即可得出结果. 【详解】因为对任意的*n ∈N 都有1n n a a +>, 则数列{}n a 单调递增;又()()*622,6,6n n p n n a n p n -⎧--≤=∈⎨>⎩N , 所以只需67201p p a a ->⎧⎪>⎨⎪<⎩,即21106p p p p<⎧⎪>⎨⎪-<⎩,解得1027p <<. 故选:D. 【点睛】本题主要考查由数列的单调性求参数,属于基础题型.二、多选题 21.AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,,,,故A 正确;对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误; 对于C ,,故C 正确; 对于D ,,,, , 各式相加解析:AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确; 对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,32121,a a a a a ⋅⋅⋅=+=,各式相加得()2022202120202021202020192012182a a a a a a a a a ++⋅⋅⋅+=+++⋅⋅⋅++, 所以202220202019201811a a a a a a =++⋅⋅⋅+++,故D 错误. 故选:AC. 【点睛】关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项.22.ABC 【分析】利用数列满足的递推关系及,依次取代入计算,能得到数列是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】数列满足,,依次取代入计算得, ,,,,因此继续下去会循环解析:ABC 【分析】利用数列{}n a 满足的递推关系及135a =,依次取1,2,3,4n =代入计算2345,,,a a a a ,能得到数列{}n a 是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】数列{}n a 满足112,02121,12n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,依次取1,2,3,4,...n =代入计算得,211215a a =-=,32225a a ==,43425a a ==,5413215a a a =-==,因此继续下去会循环,数列{}n a 是周期为4的周期数列,所有可能取值为:1234,,,5555. 故选:ABC. 【点睛】本题考查了数列的递推公式的应用和周期数列,属于基础题.23.ABC 【分析】数列的前项和为,且满足,,可得:,化为:,利用等差数列的通项公式可得,,时,,进而求出. 【详解】数列的前项和为,且满足,, ∴,化为:,∴数列是等差数列,公差为4, ∴,可得解析:ABC 【分析】数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114a =,可得:1140n n n n S S S S ---+=,化为:1114n n S S --=,利用等差数列的通项公式可得1nS ,n S ,2n ≥时,()()111144141n n n a S S n n n n -=-=-=---,进而求出n a . 【详解】数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114a =, ∴1140n n n n S S S S ---+=,化为:1114n n S S --=, ∴数列1n S ⎧⎫⎨⎬⎩⎭是等差数列,公差为4,∴()14414n n n S =+-=,可得14n S n=, ∴2n ≥时,()()111144141n n n a S S n n n n -=-=-=---, ∴()1(1)41(2)41n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,对选项逐一进行分析可得,A ,B ,C 三个选项错误,D 选项正确. 故选:ABC. 【点睛】本题考查数列递推式,解题关键是将已知递推式变形为1114n n S S --=,进而求得其它性质,考查逻辑思维能力和运算能力,属于常考题24.BCD 【分析】由是等差数列及,求出与的关系,结合等差数列的通项公式及求和公式即可进行判断.设等差数列数列的公差为. 由有,即所以,则选项D 正确.选项A. ,无法判断其是否有最小解析:BCD 【分析】由{}n a 是等差数列及13522,a a S +=,求出1a 与d 的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】设等差数列数列{}n a 的公差为d .由13522,a a S +=有()1112542252a a a d d ⨯+=++,即160a d += 所以70a =,则选项D 正确. 选项A. ()71176773212S a d a d d ⨯=+=+=-,无法判断其是否有最小值,故A 错误. 选项B. 113137131302a S a a +=⨯==,故B 正确. 选项C. 9876579450a a a a S a a S -=++++==,所以49S S =,故C 正确. 故选:BCD 【点睛】关键点睛:本题考查等差数列的通项公式及求和公式的应用,解答本题的关键是由条件13522,a a S +=得到160a d +=,即70a =,然后由等差数列的性质和前n 项和公式判断,属于中档题.25.AC 【分析】由,可得,且,然后逐个分析判断即可得答案 【详解】解:因为,所以,且,所以数列的公差,且数列中Sn 的最大项为S5,所以A 正确,B 错误, 所以,,所以C 正确,D 错误, 故选:AC解析:AC 【分析】由564S S S >>,可得650,0a a ,且650a a +>,然后逐个分析判断即可得答案解:因为564S S S >>,所以650,0a a ,且650a a +>,所以数列的公差0d <,且数列{}n a 中S n 的最大项为S 5,所以A 正确,B 错误, 所以110105610()5()02a a S a a +==+>,11111611()1102a a S a +==<, 所以C 正确,D 错误, 故选:AC26.AC 【分析】令,则,根据,可判定A 正确;由,可判定B 错误;根据等差数列的性质,可判定C 正确;,根据,可判定D 错误. 【详解】令,则,因为,所以为等差数列且公差,故A 正确; 由,所以,故B 错误;解析:AC 【分析】令1m =,则11n n a a a +-=,根据10a >,可判定A 正确;由256110200a a a a d -=>,可判定B 错误;根据等差数列的性质,可判定C 正确;122n d d n a n S ⎛⎫=+- ⎪⎝⎭,根据02>d ,可判定D 错误. 【详解】令1m =,则11n n a a a +-=,因为10a >,所以{}n a 为等差数列且公差0d >,故A 正确;由()()22225611011119209200a a a a a a d daa d d -=++-+=>,所以56110a a a a >,故B错误;根据等差数列的性质,可得()213x x x -=+,所以13x =,213x -=, 故1011109333a =+⨯=,故C 正确; 由()111222nn n na dS d d n a nn -+⎛⎫==+- ⎪⎝⎭,因为02>d ,所以n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列,故D 错误. 故选:AC . 【点睛】解决数列的单调性问题的三种方法;1、作差比较法:根据1n n a a +-的符号,判断数列{}n a 是递增数列、递减数列或是常数列;2、作商比较法:根据1(0n n na a a +>或0)n a <与1的大小关系,进行判定; 3、数形结合法:结合相应的函数的图象直观判断.27.ACD 【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】因为,,所以a1=3,an =[1+(n-1)d](n+2n).若d =1,则an =n(n+2n);若d =0,则a2=解析:ACD 【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】 因为1112a =+,1(1)2n n a n d n =+-+,所以a 1=3,a n =[1+(n -1)d ](n +2n ).若d =1,则a n =n (n +2n );若d =0,则a 2=6.因为a 2=6+6d ,a 3=11+22d ,所以若a 1,a 2,a 3成等差数列,则a 1+a 3=a 2,即14+22d =12+12d ,解得15d =-. 故选ACD28.BCD 【分析】设等差数列的公差为,由等差数列的通项公式及前n 项和公式可得,再逐项判断即可得解. 【详解】设等差数列的公差为, 由题意,,所以,故A 错误; 所以,所以,故B 正确; 因为, 所以当解析:BCD 【分析】设等差数列{}n a 的公差为d ,由等差数列的通项公式及前n 项和公式可得1215d a =-⎧⎨=⎩,再逐项判断即可得解. 【详解】设等差数列{}n a 的公差为d ,由题意,1115411105112215a d a d a ⨯⨯⎧+=+⎪⎨⎪=⎩,所以1215d a =-⎧⎨=⎩,故A 错误; 所以1131439,129a a d a d a =+==+=-,所以413a a =,故B 正确; 因为()()2211168642n n n a n d n n n S -=+=-+=--+,所以当且仅当8n =时,n S 取最大值,故C 正确; 要使()28640n S n =--+>,则16n <且n N +∈, 所以使得0n S >的最大整数15n =,故D 正确. 故选:BCD.29.ABD 【分析】由等差数列的性质直接判断AD 选项,根据等差数列的定义的判断方法判断BC 选项. 【详解】A.因为数列是等差数列,所以,即,所以A 正确;B. 因为数列是等差数列,所以,那么,所以数解析:ABD 【分析】由等差数列的性质直接判断AD 选项,根据等差数列的定义的判断方法判断BC 选项. 【详解】A.因为数列{}n a 是等差数列,所以1n n a a d +-=,即1n n a a d +=+,所以A 正确;B. 因为数列{}n a 是等差数列,所以1n n a a d +-=,那么()()()11n n n n a a a a d ++---=--=-,所以数列{}n a -是等差数列,故B 正确;C.111111n n n n n n n n a a d a a a a a a ++++---==,不是常数,所以数列1n a ⎧⎫⎨⎬⎩⎭不是等差数列,故C 不正确;D.根据等差数列的性质可知122n n n a a a ++=+,所以1n a +是n a 与2n a +的等差中项,故D 正确. 故选:ABD 【点睛】本题考查等差数列的性质与判断数列是否是等差数列,属于基础题型.30.ABD 【分析】首项根据得到,从而得到是以首项为,公差为的等差数列,再依次判断选项即可. 【详解】对选项A ,因为,, 所以,即所以是以首项为,公差为的等差数列,故A 正确. 对选项B ,由A 知:解析:ABD 【分析】 首项根据11,121n n n a a a a +==+得到1112n n a a +-=,从而得到1n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,再依次判断选项即可.【详解】对选项A ,因为121nn n a a a +=+,11a =, 所以121112n n n n a a a a ++==+,即1112n na a +-= 所以1n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,故A 正确. 对选项B ,由A 知:112121nn n a数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和()21212nn n S n +-==,故B 正确. 对选项C ,因为121n n a =-,所以121n a n =-,故C 错误. 对选项D ,因为121n a n =-,所以数列{}n a 为递减数列,故D 正确. 故选:ABD 【点睛】本题主要考查等差数列的通项公式和前n 项和前n 项和,同时考查了递推公式,属于中档题.31.AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由解不等式可判断D . 【详解】等差数列的前n 项和为,公差,由,可解析:AD【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由0nS <解不等式可判断D . 【详解】等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,得2739a a a =,即()()()2111628a d a d a d +=++,化为1100a d +=,②由①②解得120a =,2d =-,则202(1)222n a n n =--=-,21(20222)212n S n n n n =+-=-, 由22144124n S n ⎛⎫=--+ ⎪⎝⎭,可得10n =或11时,n S 取得最大值110; 由2102n S n n -<=,解得21n >,则n 的最小值为22. 故选:AD【点睛】本题考查等差数列的通项公式和求和公式,以及等比中项的性质,二次函数的最值求法,考查方程思想和运算能力,属于中档题.32.AD【分析】根据等差数列的性质,对四个选项逐一判断,即可得正确选项.【详解】, ,所以是递增数列,故①正确,,当时,数列不是递增数列,故②不正确,,当时,不是递增数列,故③不正确,,因解析:AD【分析】根据等差数列的性质,对四个选项逐一判断,即可得正确选项.【详解】0d >,10n n a a d +-=> ,所以{}n a 是递增数列,故①正确,()()2111n na n a n d dn a d n =+-=+-⎡⎤⎣⎦,当12d a n d-<时,数列{}n na 不是递增数列,故②不正确,1n a a d d n n -=+,当10a d -<时,{}n a n不是递增数列,故③不正确, 134n a nd nd a d +=+-,因为0d >,所以{}3n a nd +是递增数列,故④正确, 故选:AD【点睛】本题主要考查了等差数列的性质,属于基础题.33.ABCD【分析】S12>0,a7<0,利用等差数列的求和公式及其性质可得:a6+a7>0,a6>0.再利用a3=a1+2d =12,可得<d <﹣3.a1>0.利用S13=13a7<0.可得Sn <0解析:ABCD【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确.【详解】∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0,又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13. 数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0. 对于:7≤n ≤12时,n nS a <0.S n >0,但是随着n 的增大而减小;a n <0, 但是随着n 的增大而减小,可得:n nS a <0,但是随着n 的增大而增大. ∴n =7时,n nS a 取得最小值. 综上可得:ABCD 都正确.故选:ABCD .【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.34.AD【分析】先根据题意得,,再结合等差数列的性质得,,,中最大,,即:.进而得答案.【详解】解:根据等差数列前项和公式得:,所以,,由于,,所以,,所以,中最大,由于,所以,即:解析:AD【分析】先根据题意得1110a a +>,1120a a +<,再结合等差数列的性质得60a >,70a <,0d <,{}n S 中6S 最大,49a a <-,即:49a a <.进而得答案.【详解】解:根据等差数列前n 项和公式得:()111111102a a S +=>,()112121202a a S +=< 所以1110a a +>,1120a a +<,由于11162a a a +=,11267a a a a +=+,所以60a >,760a a <-<,所以0d <,{}n S 中6S 最大,由于11267490a a a a a a +=+=+<,所以49a a <-,即:49a a <.故AD 正确,BC 错误.故选:AD.【点睛】本题考查等差数列的前n 项和公式与等差数列的性质,是中档题. 35.CD【分析】根据等差数列中可得数列的公差,再根据二次函数的性质可知是最大值,同时可得,进而得到,即可得答案;【详解】,,设,则点在抛物线上,抛物线的开口向下,对称轴为,且为的最大值,解析:CD【分析】根据等差数列中1118S S =可得数列的公差0d <,再根据二次函数的性质可知15S 是最大值,同时可得150a =,进而得到290S =,即可得答案;【详解】1118S S =,∴0d <,设2n S An Bn =+,则点(,)n n S 在抛物线2y Ax Bx =+上,抛物线的开口向下,对称轴为14.5x =,∴1514S S =且为n S 的最大值,1118S S =12131815070a a a a ⇒+++=⇒=, ∴129291529()2902a a S a +===, 故选:CD.【点睛】本题考查利用二次函数的性质研究等差数列的前n 项和的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、数列的概念选择题1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .174B .184C .188D .1602.已知数列{}n a 满足: 12a =,111n na a +=-,设数列{}n a 的前n 项和为n S ,则2017S =( ) A .1007B .1008C .1009.5D .10103.已知数列{}n a 的前n 项和223n S n n =-,则10a =( )A .35B .40C .45D .504.已知数列{}n a 的前n 项和为n S ,且21n S n n =++,则{}n a 的通项公式是( )A .2n a n =B .3,12,2n n a n n =⎧=⎨≥⎩ C .21n a n =+D .3n a n =5.在数列{}n a 中,11a =,对于任意自然数n ,都有12nn n a a n +=+⋅,则15a =( )A .151422⋅+B .141322⋅+C .151423⋅+D .151323⋅+6.已知数列{}n a 的前n 项和为n S ,且满足1221,1n n a a S a +===-,则下列命题错误的是A .21n n n a a a ++=+B .13599100a a a a a ++++=C .2499a a a a +++=D .12398100100S S S S S ++++=-7.已知等差数列{}n a 中,13920a a a ++=,则574a a -=( ) A .30B .20C .40D .508.数列{}n a 的前n 项和记为n S ,()*11N ,2n n n a a a n n ++=-∈≥,12018a =,22017a =,则100S =( )A .2016B .2017C .2018D .20199.已知数列{}n a 满足1221n n n a a a ++=+,n *∈N ,若1102a <<,则( ) A .8972a a a +< B .91082a a a +> C .6978a a a a +>+D .71089a a a a +>+10.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:()()22221211236n n n n ++++++=)A .1624B .1198C .1024D .156011.已知数列{}n a 满足12n n a a n +=+,且133a =,则na n的最小值为( ) A .21B .10C .212 D .17212.若数列{a n }满足1112,1nn na a a a ++==-,则2020a 的值为( ) A .2B .-3C .12-D .1313.已知数列{}n a 的前n 项和2n S n n =+,则4a 的值为( ) A .4B .6C .8D .1014.已知数列{}n a 满足:11a =,145n n a a +=+,则n a =( ) A .85233n⨯- B .185233n -⨯- C .85433n⨯-D .185433n -⨯- 15.正整数的排列规则如图所示,其中排在第i 行第j 列的数记为,i j a ,例如4,39a =,则645a ,等于( )12345678910A .2019B .2020C .2021D .202216.历史上数列的发展,折射出很多有价值的数学思想方法,对时代的进步起了重要的作用,比如意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233……即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2),()*3n n N≥∈,,此数列在现代物理及化学等领域有着广泛的应用,若此数列被4整除后的余数构成一个新数列{}n b ,则b 2020=( ) A .3B .2C .1D .017.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开始,每项等于其前两相邻两项之和,记该数{}n F 的前n 项和为n S ,则下列结论正确的是( )A .201920212S F =+B .201920211S F =-C .201920202S F =+D .201920201S F =-18.公元13世纪意大利数学家斐波那契在自己的著作《算盘书》中记载着这样一个数列:1,1,2,3,5,8,13,21,34,…满足21(1),n n n a a a n ++=+≥那么24620201a a a a +++++=( )A .2021aB .2022aC .2023aD .2024a19.在数列{}n a 中,11a =,()*122,21n n a n n N a -=≥∈-,则3a =( )A .6B .2C .23D .21120.数列1,3,5,7,9,--的一个通项公式为( )A .21n a n =-B .()1(21)nn a n =--C .()11(21)n n a n +=--D .()11(21)n n a n +=-+二、多选题21.已知数列0,2,0,2,0,2,,则前六项适合的通项公式为( )A .1(1)nn a =+-B .2cos2n n a π= C .(1)2sin2n n a π+= D .1cos(1)(1)(2)n a n n n π=--+--22.设数列{}n a 满足1102a <<,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列说法正确的是( ) A .2112a << B .{}n a 是递增数列 C .2020312a <<D .2020314a << 23.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212na t a t a a n<--++-+恒成立,则实数a 可能为( ) A .-4 B .-2C .0D .224.若不等式1(1)(1)2n na n+--<+对于任意正整数n 恒成立,则实数a 的可能取值为( )A .2-B .1-C .1D .225.若数列{}n a 满足112,02121,12n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为( ) A .15B .25C .45D .6526.已知递减的等差数列{}n a 的前n 项和为n S ,57S S =,则( ) A .60a > B .6S 最大 C .130S >D .110S >27.等差数列{}n a 中,n S 为其前n 项和,151115,a S S ==,则以下正确的是( )A .1d =-B .413a a =C .n S 的最大值为8SD .使得0n S >的最大整数15n =28.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =C .95S S >D .6S 与7S 均为n S 的最大值29.在数列{}n a 中,若22*1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .{(1)}n -是等方差数列C .若{}n a 是等方差数列,则{}()*,kn a k Nk ∈为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 30.数列{}n a 满足11,121nn n a a a a +==+,则下列说法正确的是( ) A .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列B .数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和2n S n =C .数列{}n a 的通项公式为21n a n =-D .数列{}n a 为递减数列31.(多选题)等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则下列命题正确的是( )A .若59S S =,则必有14S =0B .若59S S =,则必有7S 是n S 中最大的项C .若67S S >,则必有78S S >D .若67S S >,则必有56S S >32.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题中正确的有( )A .若100S =,则280S S +=;B .若412S S =,则使0n S >的最大的n 为15C .若150S >,160S <,则{}n S 中8S 最大D .若78S S <,则89S S <33.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为2134.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( )A .a 6>0B .2437d -<<- C .S n <0时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项35.设公差不为0的等差数列{}n a 的前n 项和为n S ,若1718S S =,则下列各式的值为0的是( ) A .17aB .35SC .1719a a -D .1916S S -【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.A 解析:A 【分析】根据已知条件求得11n n n a a -=--,利用累加法求得19a . 【详解】依题意:3,4,6,9,13,18,24,1,2,3,4,5,6,所以11n n n a a -=--(2n ≥),且13a =,所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()12213n n =-+-++++()()()11113322n n n n -+--=+=+.所以19191831742a ⨯=+=. 故选:A 【点睛】本小题主要考查累加法,属于中档题.2.D解析:D 【分析】根据题设条件,可得数列{}n a 是以3为周期的数列,且3132122S =+-=,从而求得2017S 的值,得到答案. 【详解】由题意,数列{}n a 满足: 12a =,111n na a +=-, 可得234111,121,1(1)2,22a a a =-==-=-=--=,可得数列{}n a 是以3为周期的数列,且3132122S =+-= 所以20173672210102S =⨯+=. 故选:D. 【点睛】本题主要考查了数列的递推公式的应用,其中解答中得出数列{}n a 是以3为周期的数列,是解答的关键,着重考查了推理与运算能力,属于中档试题.3.A解析:A 【分析】利用()n n n a S S n 12-=-,根据题目已知条件求出数列的通项公式,问题得解.【详解】223n S n n =-,n 2∴≥时,1n n n a S S -=-22(23[2(1)3(1)]n n n n )=-----=45n1n = 时满足11a S = ∴ =45n a n ,∴ 10a =35故选:A. 【点睛】本题考查利用n a 与n S 的关系求通项. 已知n S 求n a 的三个步骤: (1)先利用11a S =求出1a .(2)用1n -替换n S 中的n 得到一个新的关系,利用()n n n a S S n 12-=-便可求出当n 2≥时n a 的表达式.(3)对1n =时的结果进行检验,看是否符合n 2≥时n a 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分1n =与n 2≥两段来写. .4.B解析:B 【分析】根据11,1,2n nS n a S S n -=⎧=⎨-≥⎩计算可得;【详解】解:因为21n S n n =++①,当1n =时,211113S =++=,即13a =当2n ≥时,()()21111n S n n -=-+-+②,①减②得,()()2211112n n n n n n a ⎡⎤++--+-+=⎦=⎣所以3,12,2n n a n n =⎧=⎨≥⎩故选:B 【点睛】本题考查利用定义法求数列的通项公式,属于基础题.5.D解析:D 【分析】在数列的递推公式中依次取1,2,3,1n n =- ,得1n -个等式,累加后再利用错位相减法求15a . 【详解】12n n n a a n +=+⋅, 12n n n a a n +-=⋅,12112a a ∴-=⋅, 23222a a -=⋅,34332a a -=⋅11(1)2n n n a a n ---=-⋅,以上1n -个等式,累加得12311122232(1)2n n a a n --=⋅+⋅+⋅++-⋅①又2341122122232(2)2(1)2n n n a a n n --=⋅+⋅+⋅++-⋅+-⋅②①- ②得23112222(1)2n n n a a n --=++++--⋅12(12)(1)2(2)2212n n n n n --=--⋅=-⋅--,(2)23n n a n ∴=-⋅+ ,151515(152)231323a ∴=-⋅+=⋅+,故选:D 【点睛】本题主要考查了累加法求数列通项,乘公比错位相减法求数列的和,由通项公式求数列中的项,属于中档题.6.C解析:C 【分析】21n n S a +=-,则111n n S a -+=-,两式相减得到A 正确;由A 选项得到13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=进而得到B正确;同理可得到C 错误;由21n n S a +=-得到12398S S S S +++⋯+=123451002111......1a a a a a a +-+-+-+-++-=100100.S -进而D 正确. 【详解】已知21n n S a +=-,则111n n S a -+=-,两式相减得到2121n n n n n n a a a a a a ++++=-⇒=+,故A 正确;根据A 选项得到13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=,故B 正确;24698a a a a +++⋯+=2234569697a a a a a a a a ++++++⋯++=1234569697a a a a a a a a ++++++⋯++=97991S a =-,故C 不正确;根据2123981n n S a S S S S +=-+++⋯+=,123451002111......1a a a a a a +-+-+-+-++-= 100100.S -故D 正确. 故答案为C. 【点睛】这个题目考查了数列的应用,根据题干中所给的条件进行推广,属于中档题,这类题目不是常规的等差或者等比数列,要善于发现题干中所给的条件,应用选项中正确的结论进行其它条件的推广.7.B解析:B 【分析】利用等差数列{}n a 的通项公式代入可得574a a -的值. 【详解】由13920a a a ++=,得131020a d +=,则有5711144(4)631020a a a d a d a d -=+--=+=. 故选:B. 【点睛】考查等差数列通项公式的运用,知识点较为简单.8.A解析:A 【分析】根据题意,由数列的递推公式求出数列的前8项,分析可得数列{}n a 是周期为6的数列,且1234560a a a a a a +++++=,进而可得1001234S a a a a =+++,计算即可得答案. 【详解】解:因为12018a =,22017a =,()*11N ,2n n n a a a n n +-=-∈≥,则321201720181a a a =-=-=-, 432(1)20172018a a a =-=--=-, 543(2018)(1)2017a a a =-=---=-, 654(2017)(2018)1a a a =-=---=, 76511(2017)2018a a a a =-=--==, 8762201812017a a a a =-=-==,…,所以数列{}n a 是周期数列,周期为6, 因为12560a a a a ++⋅⋅⋅++=,所以()100125697989910016S a a a a a a a a =++⋅⋅⋅++++++12342016a a a a =+++=.故选:A . 【点睛】本题考查数列的递推公式的应用,关键是分析数列各项变化的规律,属于基础题.9.C解析:C 【分析】 由递推公式1221n n n a a a ++=+得出25445n n n a a a ++=+,计算出25,24a ⎛⎫∈ ⎪⎝⎭,利用递推公式推导得出()0,1n a ∈(n 为正奇数),1n a >(n 为正偶数),利用定义判断出数列{}()21n a n N *-∈和{}()2n a n N *∈的单调性,进而可得出结论.【详解】()()113212132221212221n n n n n n a a a a a a ++++===++++,110,2a ⎛⎫∈ ⎪⎝⎭,25,24a ⎛⎫∴∈ ⎪⎝⎭, ()()121259245221545944221454544452121n n n n n n n n n n n n a a a a a a a a a a a a ++++++-+++=====-+++++⨯++,且()2241544545n n n n n n n a a a a a a a +-+-=-=++,()212122121n n n n n n n a a a a a a a +-+-=-=++. 110,2a ⎛⎫∈ ⎪⎝⎭,则101a <<,则()()3590,14445na a =-∈+, 如此继续可得知()()210,1n a n N *-∈∈,则()22121212141=045n n n n a aa a -+---->+,所以,数列{}()21n a n N *-∈单调递增;同理可知,()21na n N *>∈,数列{}()2na n N *∈单调递减.对于A 选项,78a a <且79a a <,8972a a a ∴+>,A 选项错误; 对于B 选项,89a a >且108a a <,则91082a a a +<,B 选项错误; 对于C 选项,68a a >,97a a >,则6978a a a a +>+,C 选项正确; 对于D 选项,79a a <,108a a <,则71098a a a a +<+,D 选项错误. 故选:C. 【点睛】本题考查数列不等式的判断,涉及数列递推公式的应用,解题的关键就是推导出数列{}()21n a n N *-∈和{}()2n a n N *∈的单调性,考查推理能力,属于难题.10.C解析:C 【分析】设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b ,则n c n =,依次用累加法,可求解.【详解】设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b , 设{}n c 的前n 项和为n C ,易得n c n =,()()()111121n n n n n n n C c c c b b b b b b +----=+++=++++-所以11n n b b C +=-,1213b a a -==22n n n C +=,进而得21332n n n nb C ++=+=+, 所以()21133222n n n n b n -=+=-+,()()()()2221111121233226n n n n B n n n n +-=+++-++++=+同理:()()()111112n n n n n n n B b b b a a a a a a +---=+++=+++--11n n a a B +-=所以11n n a B +=+,所以191024a =. 故选:C 【点睛】本题考查构造数列,用累加法求数列的通项公式,属于中档题.11.C解析:C 【分析】由累加法求出233n a n n =+-,所以331n a n n n,设33()1f n n n=+-,由此能导出5n =或6时()f n 有最小值,借此能得到na n的最小值. 【详解】解:()()()112211n n n n n a a a a a a a a ---=-+-+⋯+-+22[12(1)]3333n n n =++⋯+-+=+-所以331n a n nn设33()1f n n n=+-,由对勾函数的性质可知,()f n在(上单调递减,在)+∞上单调递减,又因为n ∈+N ,所以当5n =或6时()f n 可能取到最小值. 又因为56536321,55662a a ===, 所以n a n的最小值为62162a =.故选:C. 【点睛】本题考查了递推数列的通项公式的求解以及对勾函数的单调性,考查了同学们综合运用知识解决问题的能力.12.D解析:D 【分析】分别求出23456,,,,a a a a a ,得到数列{}n a 是周期为4的数列,利用周期性即可得出结果. 【详解】由题意知,212312a +==--,3131132a -==-+,411121312a -==+,51132113a +==-,612312a +==--,…,因此数列{}n a 是周期为4的周期数列, ∴20205054413a a a ⨯===. 故选D. 【点睛】本题主要考查的是通过观察法求数列的通项公式,属于基础题.13.C解析:C 【分析】利用443a S S =-计算. 【详解】由已知22443(44)(33)8a S S =-=+-+=.故选:C .14.D解析:D 【分析】取特殊值即可求解. 【详解】当1n =时,11a =,显然AC 不正确,当2n =时,21459a a =+=,显然B 不符合,D 符合 故选:D15.C解析:C 【分析】根据题目中已知数据,进行归总结,得到一般性结论,即可求得结果. 【详解】根据题意,第1行第1列的数为1,此时111(11)112a ⨯-=+=,, 第2行第1列的数为2,此时212(21)122a ⨯-=+=,, 第3行第1列的数为4 ,此时313(31)142a ⨯-=+=,, 据此分析可得:第64行第1列的数为64164(641)120172a ⨯-=+=,,则6452021a =,, 故选:C.16.A解析:A 【分析】根据条件得出数列{}n b 的周期即可. 【详解】由题意可知“兔子数列”被4整除后的余数构成一个新数列为:1,1,2,3,1,0,1,1,2,3,1,0,……则可得到周期为6,所以b 2020=b 4=3, 故选:A17.B解析:B 【分析】利用迭代法可得21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,可得21n n F S +=+,代入2019n =即可求解.【详解】由题意可得该数列从第三项开始,每项等于其前两相邻两项之和, 则211112n n n n n n n n n n F F F F F F F F F F ++----=+=++=+++1211232n n n n n n n n n F F F F F F F F F -------=+++=++++=123211n n n n F F F F F F ---=+++++++,所以21n n F S +=+,令2019n =,可得201920211S F =-,故选:B 【点睛】关键点点睛:本题的关键点是理解数列新定义的含义得出21n n n F F F ++=+,利用迭代法得出21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,进而得出21n n F S +=+.18.A解析:A 【分析】根据数列的递推关系式即可求解. 【详解】由21(1),n n n a a a n ++=+≥ 则2462020246210201a a a a a a a a a +++++++++=+3462020562020201920202021a a a a a a a a a a =+++=+++=+=.故选:A19.C解析:C 【分析】利用数列的递推公式逐项计算可得3a 的值. 【详解】()*122,21n n a n n N a -=≥∈-,11a =,212221a a ∴==-,3222213a a ==-. 故选:C. 【点睛】本题考查利用数列的递推公式写出数列中的项,考查计算能力,属于基础题.20.C解析:C 【分析】分别观察各项的符号、绝对值即可得出. 【详解】数列1,-3,5,-7,9,…的一个通项公式()()112nn a n =--. 故选C . 【点睛】本题考查了球数列的通项公式的方法,属于基础题.二、多选题21.AC 【分析】对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案. 【详解】对于选项A ,取前六项得:,满足条件; 对于选项B ,取前六项得:,不满足条件; 对于选项C ,取前六项得:,解析:AC 【分析】对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案. 【详解】对于选项A ,1(1)nn a =+-取前六项得:0,2,0,2,0,2,满足条件;对于选项B ,2cos 2n n a π=取前六项得:0,2,0,2,0,2--,不满足条件; 对于选项C ,(1)2sin2n n a π+=取前六项得:0,2,0,2,0,2,满足条件; 对于选项D ,1cos(1)(1)(2)n a n n n π=--+--取前六项得:0,2,2,8,12,22,不满足条件; 故选:AC22.ABD 【分析】构造函数,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】 由, 设, 则,所以当时,,即在上为单调递增函数, 所以函数在为单调递增函数, 即, 即, 所以 ,解析:ABD 【分析】构造函数()()ln 2f x x x =+-,再利用导数判断出函数的单调性,利用单调性即可求解.【详解】由()1ln 2n n n a a a +=+-,1102a << 设()()ln 2f x x x =+-, 则()11122xf x x x-'=-=--, 所以当01x <<时,0f x ,即()f x 在0,1上为单调递增函数, 所以函数在10,2⎛⎫ ⎪⎝⎭为单调递增函数,即()()102f f x f ⎛⎫<< ⎪⎝⎭,即()131ln 2ln ln 1222f x <<<+<+=, 所以()112f x << , 即11(2)2n a n <<≥, 所以2112a <<,2020112a <<,故A 正确;C 不正确; 由()f x 在0,1上为单调递增函数,112n a <<,所以{}n a 是递增数列,故B 正确; 2112a <<,所以 23132131113ln(2)ln ln 222234a a a e =+->+>+=+> 因此20202020333144a a a ∴<><>,故D 正确 故选:ABD 【点睛】本题考查了数列性质的综合应用,属于难题.23.AB 【分析】由题意可得,利用裂项相相消法求和求出,只需对于任意的恒成立,转化为对于任意的恒成立,然后将选项逐一验证即可求解. 【详解】 ,, 则,,,,上述式子累加可得:,,对于任意的恒成立解析:AB 【分析】 由题意可得11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.【详解】111n n n a a n n++-=,11111(1)1n n a a n n n n n n +∴-==-+++,则11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111122a a -=-, 上述式子累加可得:111n a a n n -=-,122n a n n∴=-<,()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦,包含[]1,2,故A 正确;对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦,包含[]1,2,故B 正确;对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故C 错误;对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故D 错误,故选:AB. 【点睛】本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.24.ABC 【分析】根据不等式对于任意正整数n 恒成立,即当n 为奇数时有恒成立,当n 为偶数时有恒成立,分别计算,即可得解. 【详解】根据不等式对于任意正整数n 恒成立, 当n 为奇数时有:恒成立, 由递减解析:ABC 【分析】根据不等式1(1)(1)2n na n +--<+对于任意正整数n 恒成立,即当n 为奇数时有12+a n-<恒成立,当n 为偶数时有12a n<-恒成立,分别计算,即可得解. 【详解】根据不等式1(1)(1)2n na n +--<+对于任意正整数n 恒成立, 当n 为奇数时有:12+a n-<恒成立,由12+n 递减,且1223n<+≤,所以2a -≤,即2a ≥-, 当n 为偶数时有:12a n<-恒成立, 由12n -第增,且31222n ≤-<, 所以32a <, 综上可得:322a -≤<, 故选:ABC . 【点睛】本题考查了不等式的恒成立问题,考查了分类讨论思想,有一定的计算量,属于中当题.25.ABC 【分析】利用数列满足的递推关系及,依次取代入计算,能得到数列是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】数列满足,,依次取代入计算得, ,,,,因此继续下去会循环解析:ABC 【分析】利用数列{}n a 满足的递推关系及135a =,依次取1,2,3,4n =代入计算2345,,,a a a a ,能得到数列{}n a 是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】数列{}n a 满足112,02121,12n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,依次取1,2,3,4,...n =代入计算得,211215a a =-=,32225a a ==,43425a a ==,5413215a a a =-==,因此继续下去会循环,数列{}n a 是周期为4的周期数列,所有可能取值为:1234,,,5555. 故选:ABC. 【点睛】本题考查了数列的递推公式的应用和周期数列,属于基础题.26.ABD 【分析】转化条件为,进而可得,,再结合等差数列的性质及前n 项和公式逐项判断即可得解. 【详解】 因为,所以,即,因为数列递减,所以,则,,故A 正确; 所以最大,故B 正确; 所以,故C 错误解析:ABD 【分析】转化条件为670a a +=,进而可得60a >,70a <,再结合等差数列的性质及前n 项和公式逐项判断即可得解. 【详解】因为57S S =,所以750S S -=,即670a a +=,因为数列{}n a 递减,所以67a a >,则60a >,70a <,故A 正确; 所以6S 最大,故B 正确; 所以()113137131302a a S a+⨯==<,故C 错误; 所以()111116111102a a S a+⨯==>,故D 正确.故选:ABD.27.BCD 【分析】设等差数列的公差为,由等差数列的通项公式及前n 项和公式可得,再逐项判断即可得解.【详解】设等差数列的公差为, 由题意,,所以,故A 错误; 所以,所以,故B 正确; 因为, 所以当解析:BCD 【分析】设等差数列{}n a 的公差为d ,由等差数列的通项公式及前n 项和公式可得1215d a =-⎧⎨=⎩,再逐项判断即可得解. 【详解】设等差数列{}n a 的公差为d ,由题意,1115411105112215a d a d a ⨯⨯⎧+=+⎪⎨⎪=⎩,所以1215d a =-⎧⎨=⎩,故A 错误; 所以1131439,129a a d a d a =+==+=-,所以413a a =,故B 正确; 因为()()2211168642n n n a n d n n n S -=+=-+=--+,所以当且仅当8n =时,n S 取最大值,故C 正确; 要使()28640n S n =--+>,则16n <且n N +∈, 所以使得0n S >的最大整数15n =,故D 正确. 故选:BCD.28.BD 【分析】设等差数列的公差为,依次分析选项即可求解. 【详解】根据题意,设等差数列的公差为,依次分析选项: 是等差数列,若,则,故B 正确; 又由得,则有,故A 错误; 而C 选项,,即,可得,解析:BD 【分析】设等差数列{}n a 的公差为d ,依次分析选项即可求解. 【详解】根据题意,设等差数列{}n a 的公差为d ,依次分析选项:{}n a 是等差数列,若67S S =,则7670S S a -==,故B 正确;又由56S S <得6560S S a -=>,则有760d a a =-<,故A 错误; 而C 选项,95S S >,即67890a a a a +++>,可得()7820a a +>, 又由70a =且0d <,则80a <,必有780a a +<,显然C 选项是错误的. ∵56S S <,678S S S =>,∴6S 与7S 均为n S 的最大值,故D 正确; 故选:BD. 【点睛】本题考查了等差数列以及前n 项和的性质,需熟记公式,属于基础题.29.BCD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若是等差数列,如,则不是常数,故不是等方差数列,故A 错误; 对于B ,数列中,是常数, 是等方差数解析:BCD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}n a 不是等方差数列,故A 错误;对于B ,数列(){}1n-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确;对于C ,数列{}n a 中的项列举出来是,1a ,2a ,,k a ,,2k a ,数列{}kn a 中的项列举出来是,k a ,2k a ,3k a ,,()()()()2222222212132221k k k k k k k k aa a a a a a a p +++++--=-=-==-=,将这k 个式子累加得()()()()2222222212132221k kk k k k k k aa a a a a a a kp +++++--+-+-++-=,222k k a a kp ∴-=,()221kn k n a a kp +∴-=,{}*(,kn a k N ∴∈k 为常数)是等方差数列,故C 正确; 对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BCD. 【点睛】本题考查了数列的新定义问题和等差数列的定义,属于中档题.30.ABD 【分析】首项根据得到,从而得到是以首项为,公差为的等差数列,再依次判断选项即可. 【详解】对选项A ,因为,, 所以,即所以是以首项为,公差为的等差数列,故A 正确. 对选项B ,由A 知:解析:ABD 【分析】 首项根据11,121n n n a a a a +==+得到1112n n a a +-=,从而得到1n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,再依次判断选项即可.【详解】对选项A ,因为121nn n a a a +=+,11a =, 所以121112n n n n a a a a ++==+,即1112n na a +-= 所以1n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,故A 正确. 对选项B ,由A 知:112121nn n a数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和()21212nn n S n +-==,故B 正确. 对选项C ,因为121n n a =-,所以121n a n =-,故C 错误. 对选项D ,因为121n a n =-,所以数列{}n a 为递减数列,故D 正确. 故选:ABD 【点睛】本题主要考查等差数列的通项公式和前n 项和前n 项和,同时考查了递推公式,属于中档题.31.ABC 【分析】根据等差数列性质依次分析即可得答案. 【详解】解:对于A.,若,则,所以,所以,故A 选项正确;对于B 选项,若,则,由于,公差,故,故,所以是中最大的项;故B 选项正确; C. 若解析:ABC 【分析】根据等差数列性质依次分析即可得答案. 【详解】解:对于A.,若59S S =,则67890a a a a +++=,所以781140a a a a +=+=,所以()114141402a a S +==,故A 选项正确; 对于B 选项,若59S S =,则780+=a a ,由于10a >,公差0d ≠,故0d <,故780,0a a ><,所以7S 是n S 中最大的项;故B 选项正确;C. 若67S S >,则70a <,由于10a >,公差0d ≠,故0d <,故80a <,6a 的符号不定,故必有78S S >,56S S >无法确定;故C 正确,D 错误. 故选:ABC . 【点睛】本题考查数列的前n 项和的最值问题与等差数列的性质,是中档题.32.BC 【分析】根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案. 【详解】 A 选项,若,则, 那么.故A 不正确; B 选项,若,则,又因为,所以前8项为正,从第9项开始为负, 因为解析:BC 【分析】根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案. 【详解】A 选项,若1011091002S a d ⨯=+=,则1290a d +=, 那么()()2811128281029160S S a d a d a d d +=+++=+=-≠.故A 不正确; B 选项,若412S S =,则()5611128940a a a a a a ++++=+=,又因为10a >,所以前8项为正,从第9项开始为负, 因为()()116168916802a a S a a +==+=, 所以使0n S >的最大的n 为15.故B 正确; C 选项,若()115158151502a a S a +==>,()()116168916802a a S a a +==+<, 则80a >,90a <,则{}n S 中8S 最大.故C 正确;D 选项,若78S S <,则80a >,而989S S a -=,不能判断9a 正负情况.故D 不正确. 故选:BC . 【点睛】本题考查等差数列性质的应用,涉及等差数列的求和公式,属于常考题型.33.BC 【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由Sn>0解不等式可判断D . 【详解】由公差,可得,即,① 由a7是a解析:BC 【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由S n >0解不等式可判断D . 【详解】由公差60,90d S ≠=,可得161590a d +=,即12530a d +=,①由a 7是a 3与a 9的等比中项,可得2739a a a =,即()()()2111628a d a d a d +=++,化简得110a d =-,②由①②解得120,2a d ==-,故A 错,B 对;由()()22121441201221224n S n n n n n n ⎛⎫=+-⨯-=-=--+ ⎪⎝⎭*n N ∈,可得10n =或11时,n S 取最大值110,C 对;由S n >0,解得021n <<,可得n 的最大值为20,D 错; 故选:BC 【点睛】本题考查等差数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.34.ABCD 【分析】S12>0,a7<0,利用等差数列的求和公式及其性质可得:a6+a7>0,a6>0.再利用a3=a1+2d =12,可得<d <﹣3.a1>0.利用S13=13a7<0.可得Sn <0解析:ABCD 【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确. 【详解】∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0, 又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0.对于:7≤n ≤12时,nnS a <0.S n >0,但是随着n 的增大而减小;a n <0, 但是随着n 的增大而减小,可得:nn S a <0,但是随着n 的增大而增大.∴n =7时,nnS a 取得最小值.综上可得:ABCD 都正确.故选:ABCD . 【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.35.BD 【分析】由得,利用可知不正确;;根据可知 正确;根据可知不正确;根据可知正确. 【详解】因为,所以,所以, 因为公差,所以,故不正确; ,故正确; ,故不正确; ,故正确. 故选:BD.解析:BD 【分析】 由1718S S =得180a =,利用17180a a d d =-=-≠可知A 不正确;;根据351835S a =可知 B 正确;根据171920a a d -=-≠可知C 不正确;根据19161830S S a -==可知D 正确. 【详解】因为1718S S =,所以18170S S -=,所以180a =,因为公差0d ≠,所以17180a a d d =-=-≠,故A 不正确;13518351835()35235022a a a S a +⨯====,故B 正确; 171920a a d -=-≠,故C 不正确;19161718191830S S a a a a -=++==,故D 正确.故选:BD. 【点睛】本题考查了等差数列的求和公式,考查了等差数列的下标性质,属于基础题.。