(完整版)光纤光栅温度传感器
实验-光纤光栅温度传感
实验名称 光纤光栅温度传感实验一 实验目的1、了解在光纤的纤芯中制作光栅的基本方法(光纤光栅的制作);2、掌握光纤光栅信号传输的原理;3、掌握光纤光栅温度传感的原理;4、进一步掌握新的光纤光栅布喇格波长的检测方法(长周期光纤光栅线性滤波解调方法);5、掌握普通光纤光栅温度传感的优点及其适用范围。
二 实验仪器ASE 自发辐射宽带光源,光纤跳线,法兰盘,光谱仪(单模通信光纤接口),光纤耦合器(测反射谱峰值时用,测透射谱峰值不需要),温度控制仪(模拟实际测量温度场),光纤熔接机(代价大,仅限备用)三 实验原理1. 光纤布喇格光栅原理光纤布喇格光栅的原理是由于光纤芯区折射率周期变化造成光纤波导条件的改变,导致一定波长的光波发生相应的模式祸合,使得其透射光谱和反射光谱对该波长出现奇异性,图1表示了其折射率分布模型。
整个光纤曝光区域的折射率分布可表示为:1121232[1(,,)] r (,,) r rn F r z a n r z n a a n a ϕϕ⎧+≤⎪=≤≤⎨⎪≥⎩ (1)式中 F(r,φ,z )为光致折射率变化函数,具有如下特性:1(,,)(,,)n r z F r z n ϕϕ∆=maxmax 1(,,) (0)n F r z z L n ϕ∆=<< (,,)0 ()F r z z L ϕ=>式中 a 1 为光纤纤芯半径;a 2为光纤包层半径,相应的n 1为纤芯初始折射率;n 2为包层折射率;△n(r,φ,z )为光致折射率变化;△n max 为折射率最大变化量。
因为制作光纤光栅时需要去掉包层,所以这里的n 3一般指空气折射率。
之所以式中出现r 和φ坐标项,是为了描述折射率分布在横截面上的精细结构。
图1 光纤光栅折射率分布示意图为了给出F(r,φ,z )的一般形式,必须对引起这种折射率变化的光波场进行详尽分析。
目前采用的各类写入方法中,紫外光波在光纤芯区沿径向的光场能量分布大致可分为如下几类:均匀正弦型、非均匀正弦型、均匀方波型和非均匀方波型。
光纤光栅传感器
温度传感
温度传感
光纤光栅传感器能够实时监测温度变化,广 泛应用于电力、能源、环保等领域的温度监 控。通过将光纤光栅传感器安装在发热设备 或热流通道中,可以实时监测温度,实现设 备的预防性维护和安全控制。
温度传感特点
光纤光栅传感器具有测温范围广、响应速度 快、精度高、稳定性好等特点,能够实现高 精度的温度测量和实时监测。
航空航天
用于监测飞机和航天器的结构健康状况,如机翼、 机身等关键部位的温度、应变和振动等参数。
智能交通
用于监测高速公路、桥梁和隧道等基础设施的结 构健康状况,以及车辆速度、流量等交通参数。
06 光纤光栅传感器与其他传 感器的比较
电容式传感器
总结词
电容式传感器利用电场感应原理,通过测量电容器极板 间距离的变化来检测位移或形变。
分布式测量
长距离传输
光纤光栅传感器可以实现分布式测量,即 在同一条光纤上布置多个光栅,实现对多 点同时监测。
光纤光栅传感器以光纤为传输媒介,可实 现远距离信号传输,适用于长距离、大规 模监测系统。
THANKS FOR WATCHING
感谢您的观看
抗电磁干扰
光纤光栅传感器采用光信号传输,不 受电磁干扰的影响,特别适合在强电 磁场环境下工作。这使得光纤光栅传 感器在电力、航空航天、军事等领域 具有广泛的应用前景。
光纤光栅传感器的抗电磁干扰特性使 其在复杂环境中能够稳定工作,提高 了测量的可靠性和准确性。
耐腐蚀与高温
光纤光栅传感器采用石英光纤作为传输介质,具有优良的化 学稳定性和耐腐蚀性,能够在恶劣的化学环境下正常工作。 同时,石英光纤的熔点高达1700℃,使得光纤光栅传感器能 够在高温环境下进行测量。
光纤光栅传感器
FBG光栅光纤温度传感器
光纤光栅传感器结构示意图
传统的电学传感器相比: 光波不产生也不受电磁干扰, 易被各种光探测器件接收,可方便地进行光电或电光转换; 光纤的工作频带宽,动态范围大,适合于遥测遥控,是一种优良的低损耗传输线; 光纤本身不带电,体积小,重量轻,易弯曲,抗辐射和抗腐蚀性能好, 适合于易燃、易爆、强 腐蚀性等恶劣环境下使用。
利用光纤布拉格光栅传感系统复用能力 强,重量轻,体积小等优点,埋入监测材料 中可以方便地实现准分布式测量,因而是 最有希望的智能传感网络技术。 用波长为780nm的飞秒激光脉冲在刻写有光 纤布拉格光栅(FBG)的单模光纤(SMF) 包层 上加工槽状微结构,通过磁控溅射的方法在 其表面沉积温敏薄膜,从而制备一种光纤温度传 感探 头 裸光纤 环状微结构 镀膜后的环状 微结构
膜厚约4.5μm。节距 为80μm 的环状微结构 光纤镀膜后的 扫描电镜 (SEM)图像
光纤光P)混合检测
宽带光源
耦合器
Bragg光纤光栅
光学滤波器
光电探测器
A/ D
数据处理电路
显示器
相关参考文献
基于光纤布拉格光栅的光纤温度传感器 Optical fiber temperature sensor based on fiber Bragg grating
光纤光栅温度传感器应用领域
Fiber Bragg grating sensor development history 1978年 K. O. Hill 及其 同事 在掺锗石英光纤 效率很低且灵活 中发现光纤的光 性差 敏性,并采用驻波 法制成世界上第 一只光纤光栅 紫外激光所形成 的干涉条纹对光 纤进行侧面横向 曝光 首次报导光纤光 栅用于传感 刻写方法效率高, 且灵活性好,可以 刻写不同周期的 光纤光栅 光纤光栅传感系 统开始实际应用
光纤传感技术课件:光纤光栅传感器
光纤光栅传感器
直接测量掺锗光纤紫外吸收谱相对较为困难, 尤其是测 量244 nm处的吸收谱。 一般测量光纤的吸收谱是采用反逆技 术, 在被测光纤的光注入端和输出端都放上单色仪, 测量其 频谱。 用这种方法可以测得掺锗3%(摩尔分数)的玻璃在 325 nm处的吸收峰约为17 dB/m。 考虑到244 nm带的吸收率 是325 nm带的1000倍, 可以认为在244 nm处的衰减约为 17 000 dB/m。 故被测光纤的长度不能大于1 cm, 否则难以用 反逆技术测量。
8
光纤光栅传感器
随着光纤布拉格光栅(FBG)制作工艺的不断提高, 特 别是FBG自动化生产平台的建立, 制作出高性能、 低成本的 可靠FBG已成为可能。 同时, 近几年对波长解调技术的深入 研究和不断成熟, 已经扩大了光纤布拉格光栅传感器的应用, 并为只能传感这一新思路创造了一个新的机遇。 智能结构监 测, 智能油井和管道, 智能土木工程建筑, 以及智能航天、 航海传感都需要高质量、 低成本、 稳定性好、 传感特性精密 的光学传感器, FBG传感器阵列由于其波长编码、 可同时测 量多个物理量(温度、 压力、 应力等)以及一路光纤上应用 波分复用技术等自身的优点, 在上述领域已经得到了广泛关 注。
14
光纤光栅传感器
8.2
所谓的光敏性, 就是指当材料被外部光照射时, 引起 该材料物理或化学性的暂时或永久性变化的一种效应。 光纤 的光敏性通常是指光纤纤芯折射率在外部光源照射时发生改变 的特性。 在一定条件下, 变化的大小与光强成线性关系, 并 可保存下来。
15
光纤光栅传感器
光纤的光敏性首先于1978年通过在掺锗光纤内形成驻波观 察到。 在那个实验中, 发现了两束波长相同但反向传输的氩 离子激光(488 nm或514.5 nm)在掺锗光纤纤芯中激起了周期 性的折射率变化。 此后, 做了许多工作确定这一激光折射率 变化的原因。 Yuen的实验指出, 光纤中的光敏现象与双光子 吸收过程有联系, 确定掺锗光纤对蓝绿光的光敏性与244 nm 处吸收响应的双光子吸收作用有关。
光纤Bragg光栅温度传感器温敏实验
光纤Bragg光栅温度传感器温敏实验【摘要】油气田生产测井一个重要任务是测量温度参数。
而由于光纤bragg光栅温度传感器的固有优点,是最热门的油气井下常规温度传感器的潜力替换产品。
将光纤光栅用少量环氧树脂胶粘贴于膨胀系数和光纤相等的特殊材料上,制成温敏元件。
根据油气井下温度的范围,设计了35-105℃裸光纤bragg光栅温度传感特性实验,采用精度±1℃的温控箱进行加热,每隔10℃测量一点,每点温度间隔至少15分钟,无论是温度上升还是下降,温度和中心波长的线性关系都很好,上升时r2=0.9999,下降时r2=1;另外,上升时光栅灵敏度为10pm/℃,下降时光栅灵敏度为9.8 pm/℃,与理论相差很小,说明所封装的温度传感器在35~105℃的工作温度范围内性质稳定,可用于实际油气井动态温度监测。
【关键词】光纤光栅温度传感特性封装1 前言光纤bragg光栅由于其在温度参数测量方面固有的优点,越来越受到业内专家的重视[1-4]。
本文设计了一种光纤bragg光栅温度传感器,对其在35~105℃温度条件下的进行温敏实验。
2 光栅结构及传感原理利用紫外激光的干涉条纹在一定范围内照射具有光敏性的光纤,可使该段光纤纤芯的折射率发生永久周期性的改变,形成光纤bragg光栅。
bragg光纤光栅从本质上来说相当于一个窄带滤波器,当具有一定波谱范围的入射光传输到光纤bragg光栅时,光栅就会把满足bragg条件的、且被外界环境参量(如温度、压力、应力、流量等)调制过的入射光反射回来,通过对反射光谱进行解调,即可获得所需(压力、温度)信息,其结构如图1所示。
3 温度传感器封装结构本次实验选用的基底为圆形,材质采用膨胀系数和光纤相等的特殊材料,长度10cm,直径3cm。
为了使裸光栅能更好地和基底接触,受热均匀,可在圆形基底上划一个3mm深,1mm宽的小槽,裸光纤bragg光栅用少量环氧树脂胶均匀粘贴在凹槽内。
在对温度传感器封装过程中,应对裸光纤光栅施加适当的预应力,并适当加热,防止光纤光栅因胶凝固使中心波长减小。
光纤光栅温度传感器原理及应用
光纤光栅温度传感器原理及应用嘿,朋友们!今天咱来聊聊光纤光栅温度传感器,这玩意儿可神奇啦!你看啊,这光纤光栅温度传感器就像是一个超级敏感的小侦探。
它是咋工作的呢?简单来说,就是利用了光纤光栅对温度变化特别敏感的特性。
就好比人对自己喜欢的东西特别在意一样,温度一变,它立马就能察觉到。
想象一下,在一些高温或者低温的环境里,普通的传感器可能就有点扛不住啦,但光纤光栅温度传感器可不一样,它就像个顽强的小强,啥恶劣环境都能应对自如。
它能在各种复杂的场景中准确地测量温度,是不是很厉害?那它都能用在啥地方呢?这可多了去了!比如说在工业领域,那些大型的机器设备运行的时候,温度可是个关键指标啊,有了它就能随时监控温度,确保设备正常运行,这就像给机器请了个专门的健康顾问。
还有啊,在一些科研实验中,要求温度测量得特别精确,这时候光纤光栅温度传感器就派上大用场了,它能提供超级准确的数据,帮助科学家们取得更好的研究成果,那可真是功不可没呀!在日常生活中,它也能发挥作用呢。
比如说在一些特殊的场合,像博物馆啊,对温度要求很高,它就能帮忙把温度控制得恰到好处,保护那些珍贵的文物。
它就像是一个默默守护的卫士,不声不响地做着重要的工作。
而且啊,它还有个很大的优点,就是不容易受到干扰。
不像有些传感器,稍微有点干扰就不准确了。
它可稳定啦,就像一座稳稳的山。
咱再来说说它的安装和使用。
其实也不难啦,只要按照说明书一步一步来,一般人也能搞定。
不过可得细心点哦,毕竟这是个高科技的玩意儿。
总之呢,光纤光栅温度传感器真的是个很了不起的发明。
它让我们对温度的测量和控制变得更加容易和准确。
有了它,我们的生活和工作都变得更加安全和可靠啦!它就像一把神奇的钥匙,打开了温度测量的新世界大门,让我们能更好地了解和掌控周围的世界。
难道不是吗?。
光纤光栅传感器的工作原理和应用实例
光纤光栅传感器的工作原理和应用实例一、本文概述光纤光栅传感器作为一种先进的光学传感器,近年来在多个领域中都得到了广泛的应用。
本文旨在全面介绍光纤光栅传感器的工作原理及其在各领域中的应用实例。
我们将详细阐述光纤光栅传感器的基本原理,包括其结构、光学特性以及如何实现传感功能。
接着,我们将通过一系列应用实例,展示光纤光栅传感器在结构健康监测、温度测量、压力传感以及安全防护等领域的实际应用。
通过本文的阅读,读者将能够对光纤光栅传感器有一个全面深入的了解,并理解其在现代科技中的重要地位。
二、光纤光栅传感器的基本概念和原理光纤光栅传感器,也被称为光纤布拉格光栅(Fiber Bragg Grating, FBG)传感器,是一种基于光纤光栅技术的传感元件。
其基本概念源于光纤中的光栅效应,即当光在光纤中传播时,遇到周期性折射率变化的结构(即光栅),会发生特定波长的反射或透射。
光纤光栅传感器的工作原理基于光纤中的光栅对光的反射作用。
在制造过程中,通过在光纤芯部形成周期性的折射率变化,即形成光栅,当入射光满足布拉格条件时,即入射光的波长等于光栅周期的两倍与光纤有效折射率的乘积时,该波长的光将被反射回来。
当外界环境(如温度、压力、应变等)发生变化时,光纤光栅的周期或折射率会发生变化,从而改变反射光的波长,通过对这些波长变化的检测和分析,就可以实现对环境参数的测量。
光纤光栅传感器具有许多独特的优点,如抗电磁干扰、灵敏度高、测量范围大、响应速度快、能够实现分布式测量等。
这使得它在许多领域,如结构健康监测、航空航天、石油化工、环境监测、医疗设备、智能交通等,都有广泛的应用前景。
光纤光栅传感器的工作原理决定了其可以通过测量光栅反射光的波长变化来感知外界环境的变化。
因此,在实际应用中,通常需要将光纤光栅传感器与光谱分析仪、解调器等设备配合使用,以实现对环境参数的精确测量。
光纤光栅传感器的基本概念和原理为其在各种应用场景中的广泛应用提供了坚实的基础。
光纤光栅传感器的温度灵敏度研究
光纤光栅传感器的温度灵敏度研究一、光纤光栅传感器概述光纤光栅传感器是一种利用光纤光栅的特性来检测物理量变化的传感器。
与传统的传感器相比,光纤光栅传感器具有抗电磁干扰能力强、尺寸小、重量轻、可实现分布式测量等优点。
光纤光栅传感器通过在光纤中写入周期性的折射率变化来形成光栅,当外部环境发生变化时,光栅的周期或折射率也会随之变化,从而引起反射或透射光的波长发生变化,通过测量这些变化可以检测出温度、压力、应力等物理量。
1.1 光纤光栅传感器的工作原理光纤光栅传感器的工作原理基于光的干涉和衍射现象。
当光波在光纤中传播时,遇到光栅结构会发生衍射,产生多个衍射级。
这些衍射级相互干涉,形成特定的反射和透射光谱。
当光栅的周期或折射率发生变化时,衍射光谱也会相应地移动,通过测量光谱的移动量,可以推算出外部环境的变化。
1.2 光纤光栅传感器的分类根据光栅的类型,光纤光栅传感器可以分为布拉格光栅传感器、长周期光栅传感器和光纤布拉格光栅传感器等。
根据测量的物理量,又可以分为温度传感器、压力传感器、应力传感器等。
每种类型的传感器都有其独特的优势和应用场景。
二、光纤光栅传感器的温度灵敏度研究温度是光纤光栅传感器中最常见的测量对象之一。
温度的变化会影响光纤的折射率,进而影响光栅的周期和反射光谱的位置。
因此,研究光纤光栅传感器的温度灵敏度对于提高测量精度和应用范围具有重要意义。
2.1 温度对光纤光栅传感器的影响温度的变化会引起光纤材料的热膨胀和折射率的变化,从而影响光栅的周期和波长。
这种影响可以通过温度系数来量化。
不同的光纤材料具有不同的温度系数,选择合适的材料可以提高传感器的温度灵敏度。
2.2 提高温度灵敏度的方法为了提高光纤光栅传感器的温度灵敏度,研究者们提出了多种方法,包括优化光栅的参数、使用特殊的光纤材料、采用复合光栅结构等。
这些方法可以有效地提高传感器对温度变化的响应速度和精度。
2.3 温度灵敏度的测量与标定温度灵敏度的测量通常采用实验方法,通过将传感器暴露在不同温度下,测量反射光谱的变化,从而计算出温度灵敏度。
采用光纤光栅传感器的温度测量与控制技术
采用光纤光栅传感器的温度测量与控制技术一、引言随着科技的不断发展,温度测量与控制技术在各个领域得到了广泛的应用。
其中,采用光纤光栅传感器进行温度测量与控制的技术因其高精度、高稳定性和抗电磁干扰能力强等优点备受关注。
二、光纤光栅传感器的原理光纤光栅传感器的原理基于光纤光栅所具备的波长选择特性。
当光纤光栅受到外力(如温度变化)作用时,其周期性结构也会发生改变,从而引起反射光的波长发生偏移。
通过测量这个波长偏移量,可以推算出温度的变化情况。
三、光纤光栅传感器的特点1. 高精度:光纤光栅传感器的精度可以达到0.01℃,远高于其他温度传感器的精度。
2. 高稳定性:光纤光栅传感器不受电磁干扰影响,具有较高的稳定性。
3. 抗腐蚀性强:由于光纤光栅传感器采用光纤作为传感材料,对腐蚀性气体和液体有较强的抵抗能力。
4. 抗干扰能力强:光纤光栅传感器的信号传输过程中不受外界电磁干扰的影响。
四、光纤光栅传感器在温度测量与控制中的应用光纤光栅传感器在温度测量与控制领域具有广泛的应用。
以下是其中几个典型的应用案例。
1. 工业领域在工业生产过程中,温度监测和控制是非常重要的一个环节。
光纤光栅传感器可以被广泛应用于高温环境下的温度监测和控制,如冶炼、玻璃制造等行业。
光纤光栅传感器精准的测量结果可以为工业生产过程提供重要参考,确保产品质量和工作环境的安全。
2. 医疗领域在医疗行业中,温度测量与控制同样至关重要。
光纤光栅传感器可以被应用于体外或体内的温度测量,如耳温计、心脏导管等。
通过采集患者体内或设备表面的温度数据,医护人员可以实时监测患者体温的变化,并采取相应的处理措施。
3. 环境监测光纤光栅传感器还可以被用于环境温度的监测与控制。
例如,可以将光纤光栅传感器应用于辐射监测、大气温度监测等环境监测领域。
通过实时监测环境的温度变化,可以及时预警并采取相应的环境改善措施,保障人员和设备的安全。
五、光纤光栅传感器的发展趋势随着科技的不断进步,光纤光栅传感器也在不断发展,具备了更多的功能和特点。
光纤温度传感器
5、荧光光纤温度传感器
传光型
功能型 传光型:采用荧光材料粘接或涂敷在光纤端头或被测
物体表面作为敏感部分
功能型:在光纤中掺杂一定浓度的稀有元素作为敏感部
分。 • 根据对荧光信号处理方式的不同,荧光光纤温度传感器可分为荧光强度 型、荧光寿命型。
外汞灯
光纤荧光温度传感器
测温范围为-30~200℃ ,精度为 5℃ .在0~70℃的测温范围内,连 续测温偏差0.04℃ 简单的工作流程图如右图所示
4.光纤光栅温度传感器
工作原理:借助于某种装置将被测参量的变化转化为作用于光纤光栅上的应变 或温度的变化,从而引起光纤光栅布喇格波长的变化通过建立并标定光纤光栅的 应变或温度响应与被测参量变化的关系,就可以由光纤光栅布喇格波长的变化,测 量出被测量的变化。
将被测参 量的变化
光纤光栅上 的应变或温 度的变化
优点: 1、蓝宝石单晶物理化学性能稳定、机械强度好、本质绝缘, 耐腐蚀 2、在0.3~0.4μm波段范围内透光性很好,熔点高达2 045℃ . 3、蓝宝石单晶光纤既有蓝宝石单晶的优良性能又有光波导 的特点, 测温范围在500~2 000℃
缺点:当温度高于1 700℃时,表面有所变化,应用受到一定的 限制
传输型:光导纤维只起到传输光的作 用,必须在光纤端面加装其它的敏感 元件才能构成新型传感器的传输型传 感器。
三、两种传感器的举例介绍
1
功 能 型
干涉式光纤温度传感器 分布式光纤温度传感器
2 3
4
反射式光纤温度传感器
光纤光栅温度传感器
1.干涉式光纤温度传感器
• 属于相位调制式功能型光纤温度传感器,主要应用于精密测 温领域 • 工作原理:当两根在温度场的光纤在不同的温度场工作时, 其折射率会产生差异,随之光程也会发生差异.若此时进行耦 合,就会产生干涉现象.
光纤温度传感器简介
光纤温度传感器摘要:本文分析了光纤温度传感器在温度探测中的优势,分别介绍了分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器的工作原理,最后综述了光纤温度感器在现代工业及生活的应用。
关键字:光纤传感温度应用1引言在科研和生产中,有很多温度测量问题,传统的温度传感器有热电偶,热电阻温度传感器,热敏电阻温度传感器,半导体温度传感器等等。
光纤温度传感器是20世纪70年代发展起来的一种新型传感器。
与传统的温度传感器相比,它具有灵敏度高,体积小,质量轻,易弯曲,不产生电磁干扰,不受电磁干扰,抗腐蚀性好等等优点,特别适用于易燃,易爆,空间狭窄和具有腐蚀性强的气体,液体以及射线污染等苛刻环境下的温度检测。
2光纤温度传感器分类光纤温度传感器按照调制机理可分为相位调制,振幅调制,偏振态调制;按工作原理分,光纤温度传感器可分为功能性和传输型两种。
功能型温度传感器中光纤作为传感器的同时也是光信号的载体,而传输型温度传感器中光纤则只传输光信号。
传光型与传感型相比,虽然灵敏度稍差,但可靠性高,实用的传感器大多是这种类型。
目前主要的光纤温度传感器包括分布式光纤温度传感器、光纤光栅温度传感器、光纤荧光温度传感器、干涉型光纤温度传感器等。
2.1光纤光栅温度传感器光纤光栅温度传感器是利用光纤材料的光敏性在光纤纤芯形成的空间相位光栅来进行测温的。
光纤光栅以波长为编码,具有传统传感器不可比拟的优势,近年来光纤光栅成为发展最为迅速,最具代表性的光纤无源器件之一,已广泛用于建筑、航天、石油化工、电力行业等。
光纤光栅温度传感器主要有Bragg光纤光栅温度传感器和长周期光纤光栅传感器。
Bragg光纤光栅是指单模掺锗光纤经紫外光照射成栅技术而形成的全新光纤型Bragg光栅,成栅后的光纤纤芯折射率呈现周期性分布条纹并产生Bragg 光栅效应,其基本光学特性就是以共振波长为中心的窄带光学滤波器,满足如下光学方程:=2nA式中:为Bragg波长,A为光栅周期,n为光纤模式的有效折射率。
(完整word版)光纤温度传感器的研究与应用
光纤温度传感器的研究与应用宋晓斌2011094141摘要: 分析了光纤温度传感器在温度探测中的优势,综述了光纤温度传感器的发展现状和应用。
分别介绍了分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器和基于弯曲损耗的光纤温度传感器的工作原理和研究现状,详细介绍了各种传感器的特点及各自的研究方向。
关键词:光纤传感器温度研究现状应用Development and application of optical fiber temperature sensorSongXiao-binAbstract:The specific advantage of optical fiber temperature sensors in detecting temperature is analyzed。
De-velopment status and application of optical fiber temperature sensors are broadly discussed.The operating principle and Development status of several typical optical fiber temperature sensors based on distributed,Bragg grating,interference,fluorescence and bending loss,respectively,are introduced.The characteristic andthe future of the typical optical fiber temperature sensors are analyzed detailedly.Key words: optical fiber sensor;temperature;development;application1 引言在科研和生产中,有很多温度测量问题。
光纤光栅传感器
光纤光栅传感器[1]光纤光栅传感器可以实现对温度、应变等物理量的直接测量。
由于光纤光栅波长对温度与应变同时敏感,即温度与应变同时引起光纤光栅耦合波长移动,使得通过测量光纤光栅耦合波长移动无法对温度与应变加以区分。
因此,解决交叉敏感问题,实现温度和应力的区分测量是传感器实用化的前提。
通过一定的技术来测定应力和温度变化来实现对温度和应力区分测量。
这些技术的基本原理都是利用两根或者两段具有不同温度和应变响应灵敏度的光纤光栅构成双光栅温度与应变传感器,通过确定2个光纤光栅的温度与应变响应灵敏度系数,利用2个二元一次方程解出温度与应变。
区分测量技术大体可分为两类,即,多光纤光栅测量和单光纤光栅测量。
多光纤光栅测量主要包括混合FBG/长周期光栅(long period grating)法、双周期光纤光栅法、光纤光栅/F-P腔集成复用法、双FBG重叠写入法。
各种方法各有优缺点。
FBG/LPG法解调简单,但很难保证测量的是同一点,精度为9×10-6,1.5℃。
双周期光纤光栅法能保证测量位置,提高了测量精度,但光栅强度低,信号解调困难。
光纤光栅/F-P腔集成复用法传感器温度稳定性好、体积小、测量精度高,精度可达20×10-6,1℃,但F-P的腔长调节困难,信号解调复杂。
双FBG重叠写入法精度较高,但是,光栅写入困难,信号解调也比较复杂。
单光纤光栅测量主要包括用不同聚合物材料封装单光纤光栅法、利用不同的FBG组合和预制应变法等。
用聚合物材料封装单光纤光栅法是利用某些有机物对温度和应力的响应不同增加光纤光栅对温度或应力灵敏度,克服交叉敏感效应。
这种方法的制作简单,但选择聚合物材料困难。
利用不同的FBG组合法是把光栅写于不同折射率和温度敏感性或不同温度响应灵敏度和掺杂材料浓度的2种光纤的连接处,利用不同的折射率和温度灵敏性不同实现区分测量。
这种方法解调简单,且解调为波长编码避免了应力集中,但具有损耗大、熔接处易断裂、测量范围偏小等问题。
光纤光栅传感器
一、传感器背景及应用1.1传感器的背景传感器是高度自动化系统, 亦是现代尖端技术关键的组成部分, 因此, 传感器技术是当代高新技术着重发展的领域, 是各个国家科技进步的核心之一。
传感器是指能感受规定的被测信号(非电量) 并按照一定的规律(多指数学规律) 转换成可用信号(电量) 的器件或装置,通常由敏感元件和转换电路组成。
作为模拟人体感觉的“电五官”, 传感器的出现, 使物体存在了触觉、味觉和嗅觉等感官, 让难以测量的信号变得更易检测。
传感器是借助于敏感元件,将感受的信息按一定的规律转换成另一种信息的装置。
在一般情况下,是将信息转换成电量,以便进一步传输、显示。
研究、开发和制造传感器的技术涉及到许多学科,是一门跨学科的边缘科学技术。
随着现代测量、控制和自动化技术的发展,传感器技术己越来越为人们所重视,它是人类社会跨入信息时代的物质基础。
信息的采集和处理是信息社会的支柱之一,信息的处理依赖于计算机技术,而信息的采集则依赖于传感器。
在国外,随着生产自动化和实时控制的发展,为了更好地发挥计算机的效能,各国都已开始重视传感器技术的研究和开发。
前一时期,传感器技术没有跟上计算机技术的发展,信息的获得远远落后于信启、的处理,反过来又阻碍了计算机的应用和电子工业的发展。
因此近年来各国已把传感器技术摆到了重要的地位。
如美国空军200。
年报告中将传感器列为提高二十一世纪空军能力的十五项关键技术之一;在日本更认为“唯有模仿人脑的计算机与传感器的协调发展,才能决定技术的将来。
当务之急,是全力发展传感电子设备。
”总之,传感器技术在国民经济各部门、科学研究、国防建设、日常生活等各方面的应用十分广泛,从而形成了一个大的新型科学技术领域,随着科学技术的进一步发展,传感器技术的研究、开发还将日益扩大和深入,因此被视为80年代的关键技术而受到国内外的广泛瞩目是理所当然的。
1.2传感器在海洋中的应用海洋蕴藏着丰富的资源,影响着全球气候变化,海洋科学在海洋环境保护、能源开发、灾害预防、权益维护等多方面有着举足轻重的作用,同时也能为国家制定海洋政策提供科学依据。
光纤温度传感器ppt
二:几种光纤温度传感器
热辐射型光纤高温传感器
半导体吸收式温度传感器
光纤荧光温度传感器 光纤光栅温度传感器
热辐射性光纤温度传感器
热辐射光纤高温传感器的原理是黑体辐射定律,物质 受热时会发出一定的热辐射,辐射量的大小取决于该 物质的温度和材料的辐射系数.当温度为230℃时,理 想黑体开始出现暗红色辐射,亮度随着温度的增加而 增强。由于物体的热辐射随温度的升高呈近指数型 增长,辐射性光纤温度传感器在高温下具有很高的 灵敏度。
光纤光栅传感器因其抗电磁干扰耐高温长期稳定并且抗高辐射非常适合用于井下传感挪威的optoplan正在开发用于永久井下测量的光纤光栅温度和压力传感器光纤光栅传感器因其抗电磁干扰耐高温长期稳定并且抗高辐射非常适合用于井下传感挪威的optoplan正在开发用于永久井下测量的光纤光栅温度和压力传感器
一 光纤温度传感器的光学原理及其 分类
半导体吸收式温度传感器
这种传感器的基本原理是利用有些半导体物质如GaAs具有极陡 的吸收光谱,波长与吸收端长的光可透过半导体,短的则被吸收. 当温度升高时,本征吸收波长变大,透射率曲线向长波长方向移 动,但形状不变;反之,当温度降低时,本征吸收波长变小,透射率曲 线保持形状不变而向短波长方向移动.当光源的光谱辐射强度不 变时,GaAs总透射率就随其温度发生变化,温度越高,总透射率越 低.通过测量透过GaAs总透射率就随其温度发生变化,温度越高, 总透射率越低.通过测量透过GaAs的光的强弱即可达到测温的 目的.通过研磨抛光将GaAs加工成很薄的薄片,其入射光和出射 光用光纤耦合,这就是半导体吸收式光纤温度传感器的基本原理. 这种传感器的测量距离远,而且探头的体积小,灵敏度高,工作可 靠.测量范围在0-300℃内保证较高的测量精度.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用前景
光纤光栅具有耐腐蚀、防水、抗电磁干扰、集传感与传输 于一体、易 于埋到材料内部;
具有波长分离能力强、长期稳定性好、传感准确度和灵敏度极高;
可实现远距离和分布式传感,易于集成分布传感网络系统;
可广泛应用于航空航天、土木工程、复合材料、石油化工等领域;
对工程结构的应力、应变、温度,以及结构蠕变、裂缝、整体性等结构 参数的实时在线监测,实现对结构内多目标信息的监控和提取;
依据安装环境定制各种不同用途的传感器,实现多参量多、远距离、同
一仪器监测的“物联网”技术。
传感器出厂时对应唯T0 一的温度系数 T ;传感器安装后记录环境初始温度
和传感T0 器初始波长值 ,并将T0该温度值及初始波长值记录于解调仪作为起 始值。今后传感器每一个波长值对应环境一个温度值。
温度传感器技术数据
温度监测:
光纤光栅温度传感器置于被测环境中,监测环境 温度的变化,并对预设温度极限进行报警。
❖ 电力方面 电力电缆的表面温度检测监控、事故点定位 电缆隧道、夹层的火情监测 发电厂和变电站的温度监测、故障点的检测和火灾报警 (原理:高压线等腐蚀点、接触不良故障点由于电阻偏大,温度异常)
❖ 水利土木方面 大坝、河堤的渗漏(渗漏点温度异常) 大坝、河堤、桥梁的混凝土凝固与养护温度
工程案例
❖ 国家游泳中心—水立方 ❖ 胜利油田CB32A海洋平台 ❖ 秦皇岛热电厂开关柜温度监测 ❖ 安钢动力厂电缆温度监测系统 ❖ 中石油新疆独山子/塔里木石化油罐群感温火灾
温度/℃
温度曲线
100
y = 26.847x - 41204
R²= 0.9997
80
60
40
20
0 1533 -20
1534
1535
1536
1537
1538
温度曲线 线性 (温度曲线)
-40 波长/nm
温度传感器技术数据
光纤光栅温度传感器的型号
型号 Anko-FBG-T01 Anko-FBG-T02 Anko-FBG-T~150
0.035
-30~110
0.03
-30~140
0.035
外形尺寸 Ф10×105mm Ф10×105mm Ф10×105mm
尾纤 铠装光缆1m 铠装光缆1m 铠装光缆1m
其它
316不锈钢,抗腐蚀 性能极佳
灵敏度高
Anko-FBG-T04
<400
高温陶瓷类,进行中
应用: 森林火灾报警、高压线&变
温度传感器应用领域
❖ 原油储罐温度监测
将光纤光栅温度传感器布置在所有原油储罐关键位置;
将各传感器支列连接到通往监控中心的光缆;
将光缆与监控中心的光纤光栅解调仪连接;
报
警
设置解调仪参数,预制高温报警。
温度传感器应用领域
❖ 隧道、地铁、森林方面 隧道、地铁、森林的火灾监测和报警
❖ 油气方面 石油、天然气输送管线或储罐泄漏监测(输送介质温度与环境差异情况) 油库、油管、油罐的温度监测及故障点的监测
温度传感器技术原理
❖ 温度测量方案
巧妙设计传感器结构及安装方式,使传感器敏感单元不受外界应力应 变影响,从而仅感受环境温度。
T1 T *(T1 T 0 ) T0
T1 为所测温度值(℃), T0 为初始温度值(℃), T 为温度传感器温度系数 (℃/nm),T0 为 T0 温度时的传感器波长值(nm), 为 T1 T1 温度时的传感器波 长值(nm)。
压器温度监测、储油罐温度监测 等。
温度传感器应用领域 ❖ 森林火灾报警
监控面积大,所需传感器较多 时可以设置现场监控站;对于 所需传感器数量少的项目,可 以直接设置一个监控中心。
温度传感器应用领域
森林火灾报警
❖ 将光纤光栅温度传感器布置在森林典型位置; ❖ 将各传感器支列连接到通往现场监控站的光缆; ❖ 将光缆与监控中心的光纤光栅解调仪连接; ❖ 设置解调仪参数,预制高温报警。 ❖ 现场监测站信号传输到监控中心; ❖ 实时在线监测监测点温度变化,对异常变化报警。
传感器简介 技术原理 技术数据 应用领域 工程案例
光纤光栅温度传感器
传感器简介
❖ Anko-FBG-T型光纤光栅温度传感器是土木、水利、桥梁等 工程中温度监测系统及其它监测系统温补的重要组成部分, 由光纤光栅元件将被测温度信号转换成光信号输出,信号 传输到光纤光栅分析仪显示温度值,光纤光栅温度传感器 与传统温度传感器相比,有其独特的优点:利用光纤光栅 波长变化量测量温度值,灵敏度高,不受电磁干扰,电气 绝缘好,耐腐蚀,无电火花,可以在易燃易爆的环境中测 量温度。 光纤光栅技术的发展和成熟,使得光纤光栅传 感器得到全方位应用。