基于神经网络的系统辨识
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
输出 状态 输入 系统的控制作用
当输入u一定时,正常的系统分析过程是:已知T(t), 确定y(t)和x(t).
T(t) y(t), x(t)
系统
13.2 基于神经网络的系统辨识
逆系统是:由y(t)和x(t)寻找控制信号T(t).
寻求T(t) T(t) y(t), x(t)已知
系统
y(t), x(t)
Z-1
u(k)
N
+
Z-1 Z-1
- e(k+1) × +
+× +
+ × +
a0
a1
Z-1
图3 并联结构
13.2 基于神经网络的系统辨识
y(k 1) ai y(k i) g (u (k )u (k 1) u (k m))
i 0 n 1
n=2,m=0时的串联结构如图4所示。
J ( ) f [e(k )]
k 1
其中,f () 有各种选择,最多的是平方函数 f [e(k )] e2 (k ) e(k ) 是误差函数,定义区间为[0,M] 其中,
13.2 基于神经网络的系统辨识
4)神经网络辨识原理
由误差准则可知,系统辨识本质上是一个优化问题。 辨识的方法大体上分两种:
x
ANN
u
被控对象
y
+
×
e
-
正模型
13.2 基于神经网络的系统辨识
c) 被控对象--正模型—逆模型建模
ANN
u
被控对象
y
+
×
e
-
正模型
y0
13.3 基于神经网络的系统辨识示例
例1 线性离散系统辨识示例 仿真系统为二阶SISO系统,表示为y(k)-1.5y(k-1)+0.7y(k2)=u(k-1)+0.5u(k-2)。辨识器NNI选择串-并联结构,采用自 适应线性神经元的DTNN网络。 这里的学习算法可采用 一次性LS(离线)和递推LS 及梯度下降法(在线)。 系统输入采用M序列, M序列选用周期Np=15的四 阶M序列。M序列的图形可 见仿真结果。
在前述四种假设限制下,能够写出常用的一些非线性 典型模型,现举例如下:
13.2 基于神经网络的系统辨识
①
y(k 1) ai y(k i) g (u (k )u (k 1) u (k m))
i 0
n 1
n=2,m=0时的并联结构如图3所示。
g
+∑ +
∑+ a0 a1
y(k+1)
13.3 基于神经网络的系统辨识示例
例2 具有输出量测噪声的一阶SISO系统的辨识 仿真系统模型为 y(k)-0.2y(k-1)=0.5u(k-1)。具有输出量 测噪声v(k)(零均值)的系统输出为:z(k)=y(k)+v(k)
u(k) y(k) 仿真系统
×
v(k)
z(k)
该例为有输出噪声的随机 系统的第一类问题。辨识器 ANNI选串—并联结构。仍用 自适应线性神经元(事先要已 知被辨识系统的数学模型的结 构,而且线性自适应神经元主 要适应于线性系统。优点是结 构简单,稳定性、收敛性无问 题。非线性原则上可构造多个 线性自适应神经元)
凡是具备两个条件的智能学科都可以在智能控制上占
一席之地:①能够模拟人脑的智力行为处理复杂性、不确 定性、非线性对象。 ②不需要对象的精确数学模型便能逼近满意控制。 智能控制阶段的研究对象是控制器,而传统控制理论
的研究对象是被控对象,两者都是闭环负反馈形式。
13.2 基于神经网络的系统辨识
1)辨识系统的基本结构 系统辨识的主要任务就是选择辨识模型,确定输入信号 干扰 和误差信号及其差值。 + + e × 被测系统 + 辨识模型 2)辨识模型 静态模型、动态模型、参数模型、非参数模型(阶跃响 应、脉冲响应)、神经网络模型 3)辨识系统中的误差准则 m
13.3 基于神经网络的系统辨识示例
例1 线性离散系统辨识示例
其中function.prbs(n1,n,k1,k2,k3,k4)是产生M序列的函数 n1 –--n1阶M序列→Np=(2p-1) n----M序列的总长度 Ki (i=1,…4)----M序列参数 K3一般取0,K4一般取0, K1 K2选择使Np达到最大值 程序 Bianshi_ADLINE_L.M 采用的是离线辨识方法 Bianshi_ADLINE_Z.M 采用的是在线辨识方法 函数prbs.M是产生M序列的函数
ANN 未知被控对象
e
×
y
u
+ -
13.2 基于神经网络的系统辨识
b)正模型—逆系统建模 其中的正模型是指x→y之间的映射(整个系统是单位反馈 时才可用)。 这种方案的优点是:正模型建立之后就成为已知条件,未 知被控对象的各种运算都能从正模型中计算出来。 不足之处在于逆模型的精度完全取决于正模型的精度。且 这种缺陷是这种辨识结构所设。
②结构同图3、图4,将g换为f. ③ ④
y(k 1来自百度文库 f ( g (k )
g (k n)) g (u(k ) u(k m))
y(k 1) f ( y(k )
g (k n), u(k )
u(k m))
后两种用神经网络实现起来较难。
13.2 基于神经网络的系统辨识
6)非线性系统逆模型的神经网络辨识 ①什么叫系统的逆模型 在正常情况下,对系统进行分析的主要任务就是:系统 在一个控制信号的作用下,将会产生什么样的输出;产生 什么样的运动轨迹。 例如:y = f ( x, u, T)
或者是:由理想的y(t)和x(t),如何寻找理想的T(t).
13.2 基于神经网络的系统辨识
②系统分析逆模型的存在性 在一个控制系统中,如果已知了运动的轨迹y(t)、x(t)要想 求出它的控制信号T(t),首先必然要知道这个控制信号是否存 在?系统是否可逆? 线型系统的可逆性问题实际上是一个能控性问题,即线性 可控系统即是可逆系统。非线性则未必。但有如下定理存在: 定理:如果对于u(k), f [y(k) …y(k-n), u(k) …u(k-m)] 严格 单调,那么系统在点[y(k) …y(k-n), u(k) …u(k-m)] T 处可逆。 只有在所有点处可逆都成立,系统才是可逆的。 ③非线性系统的逆模型 非线性系统的逆模型研究包括逆系统建模和逆模型辨识两 部分内容。逆系统建模是对非线性系统的逆运行过程建立一数 学模型。逆模型辨识是对非线性系统的逆运行进行辨识识别, 看其与哪种已知模型更接近。
13.3 基于神经网络的系统辨识示例
例2 具有输出量测噪声的一阶SISO系统的辨识 训练采用的是δ 规则。 ' ' W (k 1) W (k ) (k )[z(k ) (hsp (k ))T W (k )]hsp (k ) 含输入输出噪声的随机模型的辨识问题的一般化描述为: 设随机系统为: h(k ) h(k ) s(k ) z ( k ) y ( k ) v( k )
PID神经网络的输入/输出为: ˆ (k ) [u(k 1), y(k 1)] / y PID神经网络输出层用线性节点,准则函数取
ˆ (k )]2 / 2 E (k ) [ y (k ) y
设η 1=0.15, η2=0.08.
13.3 基于神经网络的系统辨识示例
例5 基于PID网络的非线性动态系统辨识
系统输入信号为:
u(k ) 0.6 sin(2k / 70) 0.4 sin(2k / 40)
辨识器取串-并联结构,其中的NN取二维高斯RBF网络。 其中散布系数SC=1,中心参数是程序内部自设的。
13.3 基于神经网络的系统辨识示例
例4 基于CMAC的非线性动态系统辨识 仿真系统模型为: 5 y (k - 1) 3 y (k ) u (k - 1) 2 2.5 y (k - 1) 系统输入信号为:
第十三章 神经网络建模与控制
主 讲 教 师:付冬梅
北京科技大学信息工程学院自动化系
主要内容
1、 智能控制的产生和基本特征
2、基于神经网络的系统辨识
3、基于神经网络的系统辨识示例
4、基于神经网络的系统控制
5、基于神经网络的系统控制示例
13.1 智能控制的产生和基本特征
寻找不需要建立(精确)数学模型的控制方案,研究 能够按照操作人员的智力、经验及意识发布指令的控制器。 (含辨识器)。
g
+∑ +
∑+ a0 a1
y(k+1)
Z-1
u(k) N
+
Z-1 Z-1
- e(k+1) × +
+× + + × +
a0 a1
Z-1
图4 串--并联结构
13.2 基于神经网络的系统辨识
②
y(k 1) biu (k i) f ( y (k ) y (k 1)
i 1 m
y(k n))
例5 基于PID网络的非线性动态系统辨识 仿真系统模型:
5 y (k - 1) 3 y (k ) u (k - 1) 2 2.5 y (k - 1)
系统输入信号为:
u(k ) 0.6 cos(2k / 60) 0.4 cos(2k / 40)
ˆ (k ) 辨识器的输入/输出为:[u(k ), y(k )] / y
×
-
y
ANN
e
这里的ANN常用BP, RBF, CMAC
13.2 基于神经网络的系统辨识
② 正—逆系统建模 这种方法的要点是在非线性系统的正模型(未知对象的 动力学模型)基础上,获得逆动力学模型,共有三种方案。 a)被控对象—逆模型建模 这种方案的严重缺陷是:要求知道未知对象的模型。但 恰恰在实际系统中,它是未知的,因此基本上是不实用的。
u(k ) 0.6 cos(2k / 60) 0.4 cos(2k / 40)
辨识器由CMAC与一个Z-1组成。但这里选的是并联结构。 全知权值依据δ 学习规则调整。这里设y=1.8(学习 率),C=5(泛化常数)N=5,量化级q=100.系统输入范围 Umin~Umax=-1~1.
13.3 基于神经网络的系统辨识示例
13.2 基于神经网络的系统辨识
通常认为,神经网络辨识是逆模型建立和辨识的有效和 常用方法。下面仅介绍三种常用方法: ① 非线性系统逆模型的直接建立 该方法又称为泛化学习方法。泛化学习的本意是网络训 练所覆盖的范围要比未知的逆系统所可能涉及的范围大一 些。这样有利于获得更佳的逆动力学特性。
u
被控对象 +
13.2 基于神经网络的系统辨识
前两条为保证系统的稳定性和可辨性,第三条为了方 便选择模型,简化处理过程,第四条限制主要是为了易于 达到以下目的:
由于输出y存在并有界,那么串—并联模型中的所有
信号均有界,辨识模型易于稳定。 串—并联模型间无反馈,使从后向前的静态反向传输 算法成为可能。 当误差足够小时,不使用串—并联结构,只用并联结 构也能有好的效果。
①基于算法的辨识方法 要求建立一个模型,该模型依赖于某个参数 ,把 辨识转化成为对模型参数的估计。估计方法有:最小二 乘法(快,线性),梯度下降法,极大似然法。 ②基于神经网络的辨识方法 在遇到不能线性化的非线性系统时,对应的模型难于 转化成关于参数空间的线型模型。基于算法的辨识方法 将束手无策。
求得系统参数 [a1, a2 ,, an , b1, b2 ,, bm ] 的估计值。
1 ˆ (k )) 2 E (W , k ) ( y (k ) y 2
13.3 基于神经网络的系统辨识示例
例3 基于高斯RBF网络的非线性动态系统辨识 仿真模型为:
2 y (k - 1) 3 y (k ) u (k - 1) 2 2.5 y (k - 1)
13.2 基于神经网络的系统辨识
基于神经网络的辨识系统结构图如下图所示。辨识不 在意神经网络以什么形式去逼近实际系统,只关心神经网 e(k ) 可否为零。 络的输出与被辨识系统的输出相差多少,
V(k)
u(k)
被辨识系统
延时
+ +
×
+
y(k)
辨识模型
×
e(k)
13.2 基于神经网络的系统辨识
5)辨识系统中的非线性模型 神经网络作系统辨识,主要用于非线性辨识和自适应。 由于非线性系统在能控性、能观性、负反馈调节、状态观 测器设计等方面还没有成熟的作法。难度是非线性系统的 辨识模型和控制模型不易选取,为此,用神经网络辨识非 线性系统必须作一些假设限制: 被控对象具有能控性、能观性。 对所有可能的输入控制量u,被控对象的输出y存在并 有界。 在辨识模型中的神经网络允许一个或几个不同的神经 网络结构用于被控对象。 辨识模型的基本结构为包含神经网络的串—并联结构。
当输入u一定时,正常的系统分析过程是:已知T(t), 确定y(t)和x(t).
T(t) y(t), x(t)
系统
13.2 基于神经网络的系统辨识
逆系统是:由y(t)和x(t)寻找控制信号T(t).
寻求T(t) T(t) y(t), x(t)已知
系统
y(t), x(t)
Z-1
u(k)
N
+
Z-1 Z-1
- e(k+1) × +
+× +
+ × +
a0
a1
Z-1
图3 并联结构
13.2 基于神经网络的系统辨识
y(k 1) ai y(k i) g (u (k )u (k 1) u (k m))
i 0 n 1
n=2,m=0时的串联结构如图4所示。
J ( ) f [e(k )]
k 1
其中,f () 有各种选择,最多的是平方函数 f [e(k )] e2 (k ) e(k ) 是误差函数,定义区间为[0,M] 其中,
13.2 基于神经网络的系统辨识
4)神经网络辨识原理
由误差准则可知,系统辨识本质上是一个优化问题。 辨识的方法大体上分两种:
x
ANN
u
被控对象
y
+
×
e
-
正模型
13.2 基于神经网络的系统辨识
c) 被控对象--正模型—逆模型建模
ANN
u
被控对象
y
+
×
e
-
正模型
y0
13.3 基于神经网络的系统辨识示例
例1 线性离散系统辨识示例 仿真系统为二阶SISO系统,表示为y(k)-1.5y(k-1)+0.7y(k2)=u(k-1)+0.5u(k-2)。辨识器NNI选择串-并联结构,采用自 适应线性神经元的DTNN网络。 这里的学习算法可采用 一次性LS(离线)和递推LS 及梯度下降法(在线)。 系统输入采用M序列, M序列选用周期Np=15的四 阶M序列。M序列的图形可 见仿真结果。
在前述四种假设限制下,能够写出常用的一些非线性 典型模型,现举例如下:
13.2 基于神经网络的系统辨识
①
y(k 1) ai y(k i) g (u (k )u (k 1) u (k m))
i 0
n 1
n=2,m=0时的并联结构如图3所示。
g
+∑ +
∑+ a0 a1
y(k+1)
13.3 基于神经网络的系统辨识示例
例2 具有输出量测噪声的一阶SISO系统的辨识 仿真系统模型为 y(k)-0.2y(k-1)=0.5u(k-1)。具有输出量 测噪声v(k)(零均值)的系统输出为:z(k)=y(k)+v(k)
u(k) y(k) 仿真系统
×
v(k)
z(k)
该例为有输出噪声的随机 系统的第一类问题。辨识器 ANNI选串—并联结构。仍用 自适应线性神经元(事先要已 知被辨识系统的数学模型的结 构,而且线性自适应神经元主 要适应于线性系统。优点是结 构简单,稳定性、收敛性无问 题。非线性原则上可构造多个 线性自适应神经元)
凡是具备两个条件的智能学科都可以在智能控制上占
一席之地:①能够模拟人脑的智力行为处理复杂性、不确 定性、非线性对象。 ②不需要对象的精确数学模型便能逼近满意控制。 智能控制阶段的研究对象是控制器,而传统控制理论
的研究对象是被控对象,两者都是闭环负反馈形式。
13.2 基于神经网络的系统辨识
1)辨识系统的基本结构 系统辨识的主要任务就是选择辨识模型,确定输入信号 干扰 和误差信号及其差值。 + + e × 被测系统 + 辨识模型 2)辨识模型 静态模型、动态模型、参数模型、非参数模型(阶跃响 应、脉冲响应)、神经网络模型 3)辨识系统中的误差准则 m
13.3 基于神经网络的系统辨识示例
例1 线性离散系统辨识示例
其中function.prbs(n1,n,k1,k2,k3,k4)是产生M序列的函数 n1 –--n1阶M序列→Np=(2p-1) n----M序列的总长度 Ki (i=1,…4)----M序列参数 K3一般取0,K4一般取0, K1 K2选择使Np达到最大值 程序 Bianshi_ADLINE_L.M 采用的是离线辨识方法 Bianshi_ADLINE_Z.M 采用的是在线辨识方法 函数prbs.M是产生M序列的函数
ANN 未知被控对象
e
×
y
u
+ -
13.2 基于神经网络的系统辨识
b)正模型—逆系统建模 其中的正模型是指x→y之间的映射(整个系统是单位反馈 时才可用)。 这种方案的优点是:正模型建立之后就成为已知条件,未 知被控对象的各种运算都能从正模型中计算出来。 不足之处在于逆模型的精度完全取决于正模型的精度。且 这种缺陷是这种辨识结构所设。
②结构同图3、图4,将g换为f. ③ ④
y(k 1来自百度文库 f ( g (k )
g (k n)) g (u(k ) u(k m))
y(k 1) f ( y(k )
g (k n), u(k )
u(k m))
后两种用神经网络实现起来较难。
13.2 基于神经网络的系统辨识
6)非线性系统逆模型的神经网络辨识 ①什么叫系统的逆模型 在正常情况下,对系统进行分析的主要任务就是:系统 在一个控制信号的作用下,将会产生什么样的输出;产生 什么样的运动轨迹。 例如:y = f ( x, u, T)
或者是:由理想的y(t)和x(t),如何寻找理想的T(t).
13.2 基于神经网络的系统辨识
②系统分析逆模型的存在性 在一个控制系统中,如果已知了运动的轨迹y(t)、x(t)要想 求出它的控制信号T(t),首先必然要知道这个控制信号是否存 在?系统是否可逆? 线型系统的可逆性问题实际上是一个能控性问题,即线性 可控系统即是可逆系统。非线性则未必。但有如下定理存在: 定理:如果对于u(k), f [y(k) …y(k-n), u(k) …u(k-m)] 严格 单调,那么系统在点[y(k) …y(k-n), u(k) …u(k-m)] T 处可逆。 只有在所有点处可逆都成立,系统才是可逆的。 ③非线性系统的逆模型 非线性系统的逆模型研究包括逆系统建模和逆模型辨识两 部分内容。逆系统建模是对非线性系统的逆运行过程建立一数 学模型。逆模型辨识是对非线性系统的逆运行进行辨识识别, 看其与哪种已知模型更接近。
13.3 基于神经网络的系统辨识示例
例2 具有输出量测噪声的一阶SISO系统的辨识 训练采用的是δ 规则。 ' ' W (k 1) W (k ) (k )[z(k ) (hsp (k ))T W (k )]hsp (k ) 含输入输出噪声的随机模型的辨识问题的一般化描述为: 设随机系统为: h(k ) h(k ) s(k ) z ( k ) y ( k ) v( k )
PID神经网络的输入/输出为: ˆ (k ) [u(k 1), y(k 1)] / y PID神经网络输出层用线性节点,准则函数取
ˆ (k )]2 / 2 E (k ) [ y (k ) y
设η 1=0.15, η2=0.08.
13.3 基于神经网络的系统辨识示例
例5 基于PID网络的非线性动态系统辨识
系统输入信号为:
u(k ) 0.6 sin(2k / 70) 0.4 sin(2k / 40)
辨识器取串-并联结构,其中的NN取二维高斯RBF网络。 其中散布系数SC=1,中心参数是程序内部自设的。
13.3 基于神经网络的系统辨识示例
例4 基于CMAC的非线性动态系统辨识 仿真系统模型为: 5 y (k - 1) 3 y (k ) u (k - 1) 2 2.5 y (k - 1) 系统输入信号为:
第十三章 神经网络建模与控制
主 讲 教 师:付冬梅
北京科技大学信息工程学院自动化系
主要内容
1、 智能控制的产生和基本特征
2、基于神经网络的系统辨识
3、基于神经网络的系统辨识示例
4、基于神经网络的系统控制
5、基于神经网络的系统控制示例
13.1 智能控制的产生和基本特征
寻找不需要建立(精确)数学模型的控制方案,研究 能够按照操作人员的智力、经验及意识发布指令的控制器。 (含辨识器)。
g
+∑ +
∑+ a0 a1
y(k+1)
Z-1
u(k) N
+
Z-1 Z-1
- e(k+1) × +
+× + + × +
a0 a1
Z-1
图4 串--并联结构
13.2 基于神经网络的系统辨识
②
y(k 1) biu (k i) f ( y (k ) y (k 1)
i 1 m
y(k n))
例5 基于PID网络的非线性动态系统辨识 仿真系统模型:
5 y (k - 1) 3 y (k ) u (k - 1) 2 2.5 y (k - 1)
系统输入信号为:
u(k ) 0.6 cos(2k / 60) 0.4 cos(2k / 40)
ˆ (k ) 辨识器的输入/输出为:[u(k ), y(k )] / y
×
-
y
ANN
e
这里的ANN常用BP, RBF, CMAC
13.2 基于神经网络的系统辨识
② 正—逆系统建模 这种方法的要点是在非线性系统的正模型(未知对象的 动力学模型)基础上,获得逆动力学模型,共有三种方案。 a)被控对象—逆模型建模 这种方案的严重缺陷是:要求知道未知对象的模型。但 恰恰在实际系统中,它是未知的,因此基本上是不实用的。
u(k ) 0.6 cos(2k / 60) 0.4 cos(2k / 40)
辨识器由CMAC与一个Z-1组成。但这里选的是并联结构。 全知权值依据δ 学习规则调整。这里设y=1.8(学习 率),C=5(泛化常数)N=5,量化级q=100.系统输入范围 Umin~Umax=-1~1.
13.3 基于神经网络的系统辨识示例
13.2 基于神经网络的系统辨识
通常认为,神经网络辨识是逆模型建立和辨识的有效和 常用方法。下面仅介绍三种常用方法: ① 非线性系统逆模型的直接建立 该方法又称为泛化学习方法。泛化学习的本意是网络训 练所覆盖的范围要比未知的逆系统所可能涉及的范围大一 些。这样有利于获得更佳的逆动力学特性。
u
被控对象 +
13.2 基于神经网络的系统辨识
前两条为保证系统的稳定性和可辨性,第三条为了方 便选择模型,简化处理过程,第四条限制主要是为了易于 达到以下目的:
由于输出y存在并有界,那么串—并联模型中的所有
信号均有界,辨识模型易于稳定。 串—并联模型间无反馈,使从后向前的静态反向传输 算法成为可能。 当误差足够小时,不使用串—并联结构,只用并联结 构也能有好的效果。
①基于算法的辨识方法 要求建立一个模型,该模型依赖于某个参数 ,把 辨识转化成为对模型参数的估计。估计方法有:最小二 乘法(快,线性),梯度下降法,极大似然法。 ②基于神经网络的辨识方法 在遇到不能线性化的非线性系统时,对应的模型难于 转化成关于参数空间的线型模型。基于算法的辨识方法 将束手无策。
求得系统参数 [a1, a2 ,, an , b1, b2 ,, bm ] 的估计值。
1 ˆ (k )) 2 E (W , k ) ( y (k ) y 2
13.3 基于神经网络的系统辨识示例
例3 基于高斯RBF网络的非线性动态系统辨识 仿真模型为:
2 y (k - 1) 3 y (k ) u (k - 1) 2 2.5 y (k - 1)
13.2 基于神经网络的系统辨识
基于神经网络的辨识系统结构图如下图所示。辨识不 在意神经网络以什么形式去逼近实际系统,只关心神经网 e(k ) 可否为零。 络的输出与被辨识系统的输出相差多少,
V(k)
u(k)
被辨识系统
延时
+ +
×
+
y(k)
辨识模型
×
e(k)
13.2 基于神经网络的系统辨识
5)辨识系统中的非线性模型 神经网络作系统辨识,主要用于非线性辨识和自适应。 由于非线性系统在能控性、能观性、负反馈调节、状态观 测器设计等方面还没有成熟的作法。难度是非线性系统的 辨识模型和控制模型不易选取,为此,用神经网络辨识非 线性系统必须作一些假设限制: 被控对象具有能控性、能观性。 对所有可能的输入控制量u,被控对象的输出y存在并 有界。 在辨识模型中的神经网络允许一个或几个不同的神经 网络结构用于被控对象。 辨识模型的基本结构为包含神经网络的串—并联结构。