人体下肢外骨骼机器人的步态研究现状
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人体下肢外骨骼机器人的步态研究现状
王楠,王建华,周民伟
外骨骼(exoskeleton )一词来源于生物学,是指为生物提供保护和支持的坚硬的外部结构[1],如甲壳类和昆虫等节肢动物的外骨骼系统。人体外
骨骼机器人是将人的智慧与机器的机械动力装置结合为一体的机器人[2]。美国于2000年开展了“增强人体机能的外骨骼”(Exoskeletons for Human Performance Augmentation ,EHPA )研究项目[3-4],自此,外骨骼机器人的开发与应用逐渐进入
人们的视线,成为关注的焦点。由于外骨骼机器人不仅为操作者提供了诸如保护、身体支撑等功能,还能在操作者的控制下完成一定的功能和任务,因此在下肢功能障碍患者的步行功能锻炼过程中的应用逐渐增多[5-7];此外,其在单兵作战装备
【摘要】外骨骼机器人是将人的智慧与机器的机械动力装置相结合的一种机器人,不仅可以为操作者提供保护、身体支撑等功能,还可以在操作者的控制下完成一定的功能和任务,应用前景巨大。文中阐述人体下肢外骨骼机器人下肢外骨骼实现行走应具备的关节及其活动度,介绍下肢外骨骼机器人步态控制的基础——正常步态分析,详细论述了目前控制下肢外骨骼机器人行走及步态稳定性的主要方法。
【关键词】下肢;机器人;外骨骼;步态
中图分类号:R-05,R336文献标识码:A 文章编号:1674-666X(2012)01-0062-06
Current researches of gait analysis on human lower extremity exoskeleton robotic device
WANG Nan,WANG Jianhua,ZHOU Minwei.Department of Overseas Chinese,Guangzhou General Hospital of Guangzhou Military Command,Guangdong 510010,China
【Abstract 】Exoskeleton robotic device is a kind of robot that combines the intelligence of human with the mechanical power of machine,which can not only provide protection and support for operators but also accomplish certain functions and missions under the control of operators.In this paper,relative key factors of lower extremity exoskeleton robotic device techniques are introduced briefly such as the joints and the range of motion (ROM)which the lower extremity exoskeleton should be equipped,the normal gait analysis which is the basis of gait control of the exoskeleton robot,and then the major walking control methods and gait stability control methods for lower extremity exoskeleton robotic device which are discussed in detail.
【Key words 】Extremities;Robotics;Exoskeleton;Gait
DOI :10.3969/j.issn.1674-666X.2012.01.010
基金项目:广东省科技计划项目(2010B010800006),广州市科技计划项目(2010J-E311)
作者单位:510010广州军区广州总医院华侨科(王楠);脊柱外科(王建华);医务部(周民伟)E-mail :115989930@
综述
研发等军事领域也获得了广泛应用[8-9]。
对正常人体行走时的步态分析是人类下肢外骨骼设计的一个重要研究方面[10-11]。由于人体下肢外骨骼需要辅助人体的承载并跟随人体一同活动,故对外骨骼的设计必须考虑外骨骼与操作者之间动作的协调性和一致性,且应与人体下肢具有相同的关节活动度。因此,分析正常人体下肢活动特点及行走时的步态是设计下肢外骨骼并实现行走的基础。在此基础上设计下肢外骨骼应具备的关节及关节活动度,然后通过人机互动操作外骨骼,并对外骨骼机器人步态的稳定性进行控制,从而完成外骨骼机器人系统的仿生设计。
1关节及其活动度
正常人体下肢的主要大关节包括髋关节、膝关节和踝关节,其余和行走相关的关节包括膝部的髌股关节、足部的跖趾关节和趾骨间关节等。关节的运动主要是沿着3个相互垂直的轴所进行的运动,包括沿冠状轴的前屈和后伸运动、沿矢状轴的内收-外展运动以及沿垂直轴的内旋-外旋运动等,而关节活动度就是指关节运动时所通过的运动弧。正常的关节活动范围是正常运动必不可少的前提条件之一。髋关节正常活动度为:屈曲130°~140°,后伸10°~30°,内收20°~30°,外展45°~60°,内旋30°~45°,外旋40°~50°[12]。膝关节正常活动度为屈曲120°~150°,一般伸直0°,有时过伸状态约为5°~10°,当膝关节屈曲时,股骨两侧髁后部进入关节窝,嵌锁因素解除,侧副韧带松弛,膝关节可绕垂直轴作轻度的旋转运动,内旋外旋各10°左右[13]。踝关节正常活动度为背伸约35°,趾屈约45°,在跖屈时,足可做一定范围的侧方运动,约30°[14]。
为了简化研究过程,降低分析难度,根据正常人体行走时下肢运动的习惯,设计的下肢外骨骼机器人至少应包括髋、膝、踝关节[15]。从生理角度分析,髋、膝、踝关节对于稳定有效的行走来说是必不可少的,髋关节主要用于摆动双腿,实现迈步并使上肢躯体前倾或者后仰,以便在步行过程中起到辅助平衡的作用;膝关节主要用来调整重心的高度以及摆动腿的着地高度,使之与地面的状态相适应;而踝关节则用来与髋关节相配合以实现支撑腿和上躯体的移动,并调整脚掌与地面的接触状态,从而完成步行过程[16]。
下肢外骨骼机器人应具备的自由度和活动度需要根据正常人体下肢关节的功能来设计[17-18]。髋关节主要实现大腿的大角度运动、腰部的转动及躯干的弯曲,需根据髋关节活动度设置屈伸、收展、旋转3个自由度;膝关节实现小腿的大角度摆动,需根据膝关节活动度设置屈伸1个自由度,膝关节旋转可忽略;踝关节实现足部围绕踝关节的上下大角度屈伸及左右小角度旋转,需要设置2个自由度。但出于安全因素方面的考虑,外骨骼机器人的关节活动度应略小于正常人体的关节活动度。
2正常步态分析
正常步态即正常人体采用最自然、最舒适的姿态行进时的步态。它应具有3个特点:身体平稳、步长适当、耗能最少[19]。Grabiner等[20]认为,正常的步态必须具备以下条件:支撑期稳定性好,摆动期足部放松,有足够的步长,膝关节在支撑期吸收震荡且积蓄能量,在摆动期能够带动小腿和足部运动。
步态分析是外骨骼机器人设计中不可或缺的技术环节[21-22],它通过生物力学和运动学手段,揭示正常步态的关键环节和影响因素,从而有助于外骨骼机器人的步态机理研究、步态控制及行走稳定性控制方法的研究等。
在人体正常行走过程中,1个步态周期是指从一侧脚跟着地开始到该脚跟再次着地。通过对正常人体行走步态的研究,1个步态周期可抽象出3个典型步态时相:单支撑相、双支撑相及摆动相。Chu等[23]通过正常步态分析得出不同步态时相时髋、膝、踝关节角度及扭矩的动态变化,为该研究小组设计外骨骼机器人提供参考。赵凌燕等[24]以健康男性青年为对象,对人在行走过程中髋关节