化工原理-输送设备共44页
化工原理ppt-第二章流体输送机械
H
' S
p a p1
g
2022/8/12
22
二、离心泵安装高度
3.允许气蚀余量
H
' S
p a p1
g
由于HS′使用起来不便,有时引入另一表示气蚀性 能的参数,称为气蚀余量。 以NSPH表示,定义为防止气蚀发生,要求离心泵 入口处静压头与动压头之和必须大于液体在输送温 度下的饱和蒸汽压头的最小允许值。
性能曲线包括H~Q曲线、
N~Q曲线和 ~Q曲线。
2022/8/12
9
二、离心泵的性能参数与特性曲线
2.性能曲线
① H~Q特性曲线 随着流量增加,泵的压头下降,
即流量越大,泵向单位重量流体提 供的机械能越小。
② N~Q特性曲线 轴功率随着流量的增加而上升,
所以大流量输送一定对应着大的配 套电机。离心泵应在关闭出口阀的 情况下启动,这样可以使电机的启 动电流最小。
2022/8/12
24
三、离心泵的选用、安装与操作
1.离心泵类型
(1)清水泵:适用于输送清水或物 性与水相近、无腐蚀性且杂质较少的 液体。结构简单,操作容易。 (2)耐腐蚀泵:用于输送具有腐蚀 性的液体,接触液体的部件用耐腐蚀 的材料制成,要求密封可靠。 (3)油泵:输送石油产品的泵,要 求有良好的密封性。 (4)杂质泵:输送含固体颗粒的液 体、稠厚的浆液,叶轮流道宽,叶片 数少。
2022/8/12
26
三、离心泵的选用、安装与操作
3.安装与操作离心泵
(1)安装 ①安装高度不能太高,应小于允许安装高度。 ②尽量减少吸入管路阻力,以减少发生汽蚀可能性。 主要考虑:吸入管路应短而直;吸入管路直径可稍大; 吸入管路减少不必要管件;调节阀装于出口管路。 (2)操作 ①启动前应灌泵,并排气。②应在出口阀关闭情况下 启动泵。③停泵前先关闭出口阀,以免损坏叶轮。④ 经常检查轴封情况
化工原理 第二章 流体输送设备
第二章流体输送设备(Fluid-moving Machinery)第一节概述如果要将流体从一个地方输送到另一个地方或者将流体从低位能向高位能处输送,就必须采用为流体提供能量的输送设备。
泵——用于液体输送输送设备风机——用于气体输送本章主要介绍常用输送设备的工作原理和特性,以便恰当地选择和使用这些流体输送设备。
第二节液体输送设备—泵(Pumps)泵离心泵——生产中应用最为广泛,着重介绍。
往复泵旋转泵漩涡泵§ 2.1.1 离心泵(Centrifugal Pumps)一.离心泵的工作原理及主要部件1.工作原理如左图所示,离心泵体内的叶轮固定在泵轴上,叶轮上有若干弯曲的叶片,泵轴在外力带动下旋转,叶轮同时旋转,泵壳中央的吸入口与吸入管相连接,侧旁的排出口和排出管路9相连接。
启动前,须灌液,即向壳体内灌满被输送的液体。
启动电机后,泵轴带动叶轮一起旋转,充满叶片之间的液体也随着旋转,在惯性离心力的作用下液体从叶轮中心被抛向外缘的过程中便获得了能量,使叶轮外缘的液体静压强提高,同时也增大了流速,一般可达15~25m/s。
液体离开叶轮进入泵壳后,由于泵壳中流道逐渐加宽,液体的流速逐渐降低,又将一部分动能转变为静压能,使泵出口处液体的压强进一步提高。
液体以较高的压强,从泵的排出口进入排出管路,输送至所需的场所。
当泵内液体从叶轮中心被抛向外缘时,在中心处形成了低压区,由于贮槽内液面上方的压强大于泵吸入口处的压强,在此压差的作用下,液体便经吸入管路连续地被吸入泵内,以补充被排出的液体,只要叶轮不停的转动,液体便不断的被吸入和排出。
由此可见,离心泵之所以能输送液体,主要是依靠高速旋转的叶轮,液体在离心力的作用下获得了能量以提高压强。
气缚现象:不灌液,则泵体内存有空气,由于ρ空气<<ρ液,所以产生的离心力很小,因而叶轮中心处所形成的低压不足以将贮槽内的液体吸入泵内,达不到输液目的。
通常在吸入管路的进口处装有一单向底阀,以截留灌入泵体内的液体。
化工原理 流体输送设备
H 0.5 2.55105 2.67104 2.982 1.912
1000 9.81
2 9.81
29.5m
(2)求N
N= N输入电机传 =6.20.93100%=5.77kW (3)求η
QHg
15103 29.51000 9.81 75.2%
N
5.77 1000
25
《制作化者:工黄德原春 理》课件——第二章 流体输送设备
转速 2900r/min
效率64% 轴功率2.6kW
重量363N
(1)流量(Q):单位时间由泵排到管路的液体体积, m3/s 。常用单位为L/s或m3/h
Q与泵的结构、尺寸、转速等有关 ,实际流量还与 管路特性有关。
15
《制作化者:工黄德原春 理》课件——第二章 流体输送设备
第一节 离心泵 三、性能参数及特性曲线
N
N HgQ N e
W HQ kW
102
能量损失: ٭容积损失 漏液; ٭机械损失 机械摩擦; ٭水力损失 液体摩擦及局部阻力;
小型泵的效率一般为50-70%,大型泵的效率可达90%左右
18
《制作化者:工黄德原春 理》课件——第二章 流体输送设备
第一节 离心泵 《化工原理》课三件、—性—第能一参章数流及体特流动性曲线
概述
流体输送设备分类:
按流体类型
输送液体—泵(pumps)
输送气体—通风机、鼓风机、压缩机 及真空泵
按工作原理
动力式:借助于高速旋转的叶轮使流体获得 能量。包括离心式、轴流式输送机械
容积式:利用活塞或转子的挤压使流体升压 以获得能量。包括往复式、旋转式输送机械
流体作用式:依靠能量转换原理以实现输送 流体任务。如喷射泵
化工原理——流体输送机械
3)轴封装置:泵轴与泵壳之间的密封称为轴封。 A 轴封的作用
为了防止高压液体从泵壳内沿轴的四周而漏出, 或者外界空气漏入泵壳内。
B 轴封的分类 主要由填料函壳、软填料和填料 填料密封:压盖组成,普通离心泵采用这种
轴封
密封。
装置
机械密封:主要由装在泵轴上随之转动的动环 和固定于泵壳上的静环组成,两个
2)按叶轮上吸入口的数目 单吸泵 叶轮上只有一个吸入口,适用于输送量不 大的情况。
双吸泵 叶轮上有两个吸入口,适用于输送量很大 的情况。
3)按离心泵的不同用途
水泵 输送清水和物性与水相近、无腐蚀性且 杂质很少的液体的泵, (B型)
耐腐蚀泵 接触液体的部件(叶轮、泵体)用耐腐蚀 材料制成。要求:结构简单、零件容易更 换、维修方便、密封可靠、用于耐腐蚀泵 的材料有:铸铁、高硅铁、各种合金钢、 塑料、玻璃等。(F型)
油泵
杂质泵
油泵 输送石油产品的泵 ,要求密封完善。(Y 型)
输送含有固体颗粒的悬浮液、稠厚的浆液等的 杂质泵 泵 ,又细分为污水泵、砂泵、泥浆泵等 。要
求不易堵塞、易拆卸、耐磨、在构造上是叶轮 流道宽、叶片数目少。( P 型 )
叶轮轴向力问题
闭式或半闭式叶轮后盖板 与泵壳之间空腔液体的压 强较吸入口侧高,这使叶 轮遭受指向吸入口方向的 轴向推力,这使叶轮向吸 入口侧位移,引起叶轮与 泵壳接触处的磨损。
往复泵:利用活塞的往复运动,将能量传 给液体,以完成输送任务。
回转泵:靠泵内一个或一个以上的转子旋 转来吸入和排出液体。
旋涡泵:一种特殊类型的离心泵。
掌握要求 基本原理 主要结构 性能参数
本章的目的:
选择泵、计算功率 确定安装位置
结合化工生产的特点,讨论各种流体输送机械的操作
化工原理流体流动与输送机械PPT课件
质点指的是一个含有大量分子的流体微团,其尺寸远小于 设备尺寸、但比分子自由程却大的多。
连续介质假定:假定流体是由无数内部紧密相连、彼此间 没有间隙的流体质点(或微团)所组成的连续介质。
工程意义:利用连续函数的数学工具,从宏观研究流体。
1.1.2.流体的压缩性
不可压缩性流体:流体的体积不随压力变化而变化,如液 体;
M m M 1 y 1 M 2 y 2 M n y n
y1, y2yn——气体混合物中各组分的摩尔(体积)分数。
11
1 流体流动与输送机Байду номын сангаас——1.1 流体基本性质
1.1.5.压力
流体的压力(p)是流体垂直作用于单位面积上的力,严格 地说应该称压强。称作用于整个面上的力为总压力。
压力(小写)
p
P
A
力(大写) 面积
N [p] m2 Pa
记:常见的压力单位及它们之间的换算关系
1atm =101300Pa=101.3kPa=0.1013MPa
=10330kgf/m2=1.033kgf/cm2
=10.33mH2O =760mmHg
12
1 流体流动与输送机械——1.1 流体基本性质
压力的大小常以两种不同的基准来表示:一是绝对真空, 所测得的压力称为绝对压力;二是大气压力,所测得的压强称 为表压或真空度。一般的测压表均是以大气压力为测量基准。
第1章 流体流动与输送机械
1.1 流体基本性质 1.2 流体静力学 1.3 流体动力学 1.4 流体流动的内部结构 1.5 流体流动阻力 1.6 1.7 流速与流量的测量 1.8 流体输送机械
1
∮计划学时:12学时
∮基本要求:
大学精品课件:第二章 流体输送设备
制 作
*机械损失
机械摩擦;
制 作
者:
者:
黄 德
*水力损失
液体摩擦及局部阻力;
制作者:黄德春
制 作 者: 黄 德 春
制 作 者: 黄 德 春
制 作 者: 黄 德 春
11
本制作校者:版黄德《春 制药化工原理》课件
制
第一节 液体输送设备
作
《化工原理》课件——第一章 流体流动
者:
——离心泵
黄
德
春
制 作 者: 黄 德 春
制 作 者:
黄 双吸式:a.吸液量大 b.无轴向推力
德 春
制作者:黄德春
制
第一节 液体输送设备
作
《化工原理》课件——第一章 流体流动
者:
——离心泵
黄
德
春
制 作 者: 黄 德 春
制 作 者: 黄 德 春
制作者:黄德春
制 作 者: 黄 德 春
制 作 者: 黄 德 春
制 作 者: 黄 德 春
5
本制作校者:版黄德《春 制药化工原理》课件
制
第一节 液体输送设备
作
《化工原理》课件——第一章 流体流动
作
者: 黄
٭工作原理
德
春 ٭主要部件
٭主要性能参数与特性曲线
制 作
٭性能改变与换算
者:
黄 德
٭气蚀现象与允许安装高度
春
制作者:黄德春
制 作 者: 黄 德 春
制 作 者: 黄 德 春
制 作 者: 黄 德 春
2
本制作校者:版黄德《春 制药化工原理》课件
制 作
内容纲要(二)
者:
化工原理-第二章-流体输送机械PPT课件
Vmh
(4)轴功率N
离心泵的轴功率N可直接用效率来计算:
流体密度,kg/ m3
泵的效率
N HQg /
泵的轴功率,W 泵的压头,m
泵的流量,m3/s
一般小型离心泵的效率50~70%,大型离心泵效率可达90% 。
2、离心泵特性曲线(Characteristic curves)
由于离心泵的各种损失难 以定量计算,使得离心泵的特
性曲线H~Q、N~Q、η~Q
的关系只能靠实验测定,在泵 出厂时列于产品样本中以供参 考。右图所示为4B20型离心泵
在 转 速n= 2900r/min 时 的特
性曲线。若泵的型号或转速不 同,则特性曲线将不同。借助 离心泵的特性曲线可以较完整 地了解一台离心泵的性能,供 合理选用和指导操作。
H/m NkW
u2
D2n
60
根据装置角β2的大小,叶片形状可分为三种:
w2
c2
2
2
u2
w2
c2
2
2
u2
w2 2
c2 2 u2
(a)
(a)β2< 90o为后弯 叶片,cotβ2 >0, HT∞ <u22 /g
(b) (b)β2= 90o为径向 叶片,cotβ2 =0 , HT∞ =u22 /g
(c) (c) β2 > 90o为前 弯叶片,cotβ2 <0,HT∞ > u22 /g
c2r
c2' r
u2
u2'
Q n Qn
H ( n)2 Hn
N H Qg ( n )3 N HQg n
不同转速下的速度三角形
比例定律
(4)叶轮直径D2对特性曲线的影响
化工原理 第二章 流体输送设备
u1 = Q /(d12π /4)= 4Q / πd12 = 4×15×10-3 / π×0.12 = 1.91 m/s u2 = 4×15×10-3 / π×0.082 = 2.98 m/s 两测压口间的管路很短,共间流动阻力可忽略 不计,即Hf,1-2=0。 故泵的压头为:
(2) 泵的轴功率 功率表测得的功率为电动机的输入功率。由于 泵为电动机直接带动,传功效率可视为100%,所 以电动机的输出功率等于泵的轴功率。
为通用机械。 本章将结合化工生产的特点,讨论流体输送机 械的作用原理、基本构造与性能及有关计算,以达 到能正确选择和使用的目的。
第一节
液体输送设备
液体输送设备的种类很多,按照工作原理的不 ,分为离心泵、往复泵、旋转泵与旋涡泵等几种。 其中,以离心泵在生产上应用最为广泛。
2—1—1
离心泵
一、离心泵的工作原理和主要部件 1、离心泵的工作原理
板,制造简单,效率较低。它适用于输送含杂质的 悬浮液。 半闭式叶轮如图2—2(b)所示,叶轮吸入口一侧 没有前盖板,而另一侧有后盖板。它也适用于输送 悬浮液。 闭式叶轮如图2—2(a)所示,叶片两侧都有盖板 ,这种叶轮效率较高,应用最广,但只适用于输送 清洁液体。 按吸液方式的不同,叶轮还有单吸和双吸两种。 单吸式叶轮的结构简单,如下图2—3(a)所示, 液体只能从叶轮一侧被吸入。
2
2
8m
1
1
式中: Z1=0m, Z2=8m, u1=u2, λ = 0.03, p1=p2, d =0.05m, l+∑le =10+50=60m, u = V/A, A=0.785×0.052=1.9625×10-3m2 Hf = ∑hf /g = λ(l+∑le)/d×(u2/2g) = 0.03×60/0.05×(V/1.9625×10-3)2/(2×9.81) = 4.764×105V2
化工原理上第2章输送1
p2 p1 u22 u12 H ( z2 z1 ) g 2g
② 测定数据
2 3 1
1 2
图2-13 离心泵 性曲线的测定装 1—流量计 2—压强表 3—真空表
数据: 不同流量下的压力差
操作: 调节泵的出口阀 计算 H、η :
z
Pe / P HqV g
P
③ 绘制特性曲线
灌泵(单向阀) → 叶轮旋转(离心力,液体获得能量)→
流体高速流入涡壳(动能→静压能) →流向输出管路 b) 吸入阶段
液体排出,使叶轮中心形成低压,液面与泵入口形
成压差,将液体吸入泵内。 气缚:泵内未充满液体,气体产生离心力小,难以 形成负压,不能吸上液体。 结论:离心泵无自吸能力,必须灌泵。
电机提供原动力→叶轮旋转产生离心力 → 液体获得能量(静压能为主) 在泵入口形成真空,吸入液体
•厂家提供 测定条件:常压、20℃清水为工质; •曲线与叶轮转数有关(图中应标明转数);
H-qV 曲线 选泵时常用,qV↑,H↓; P- qV 曲线
qV 0时,P Pmin 封闭启动(关出口阀启动) 目的:防止电机过载。
η -qV 曲线
设计点:最高效率点
高效区范围
92%max
(2)离心泵性能曲线实验测定 ① 测定原理
① 压头(扬程)--- H We g (m液柱)
② 流量 ---qV m3 / s, m3 / h
③ 功率---
J / s、W、kW
有效功率Pe
P e We qs Hq V g
轴功率P
④ 效率
Pe HqV g 100 % 100 % P P
小型泵效率,50~70%;大型泵效率,90%。
化工原理PPT课件 第三章 流体输送与流体输送机械
第三章流体输送与流体输送机械概述化学工业是流程工业,从原料输入到成品输出的每一道工序都在一定的流动状态下进行,整个工厂的生产设备是由流体输送管道构成体系。
装臵中的传热、传质和化学反应情况与流体流动状态密切相关,流动参数的任何改变将迅速波及整个系统,直接影响所有设备的操作状态。
因此,往往选择流体的流量、压强和温度等参数作为化工生产系统的主要控制参数。
流体流动与输送有其共同的规律。
各种流体输送机械也有共通的原理,所以有通用机械之称。
化工生产系统中流体输送的主要任务是满足对工艺流体的流量和压强的要求。
流体输送系统包括:流体输送管路、流体输送机械、流动参数测控装臵。
流体输送计算以描述流体流动基本规律的传递理论为基础。
根据流体流动的质量守恒、动量守恒与能量守恒原理,不可压缩流体在管路中稳定流动时应服从常数=uA ρh z g p u h z g p fe +++=+++22222111122ραραdV A V u 24π==∑+++=+++f e h gz p u h gz p u 2222112122ρρ连续性方程柏努利方程体积平均流速由于流体输送系统的流速一般不会很低(湍流),因此动能校正系数α往往接近于1.0。
对于流速较低的层流流动,α值与1.0 相差较大,但由于动能项在总能量中所占比例很小,也可不加校正。
输送单位质量流体所需加入的外功,是决定流体输送机械的重要数据。
单位为J/s (或W )对可压缩流体,若在所取系统两截面之间流体的绝对压强变化小于10%,仍可按不可压缩流体计算,而流体密度以两截面之间的流体的平均密度ρm 代替。
wh N e e ⋅=ηηwh N N e e⋅==∑fh包括所选截面间全部管路阻力损失h e若管路输送的流体的质量流量为w (kg/s ),则输送流体所需供给的功率(即流体输送机械的有效功率)为:如果流体输送机械的效率为η,则实际消耗的功率即流体输送机械的轴功率为:注意单位!给定流体输送任务(质量流量w 或体积流量V 、输送距离l 、输送目标点的静压强p 2和垂直高差z 2)和流体的初始状态(静压强p 1、垂直高差z 1)设计型:吸收塔11222z 1z 1p 2p 依据连续性方程和柏努利方程对流体输送系统进行设计或者优化操作计算,结合管路的实际条件,合理地确定流速u 和管径d 。
化工原理流体输送机械
b)多级泵:用于压头较高而流量不大旳场合。一般2级至9级,最多可达12级
系列代号D,亦称D型泵.全系列扬程范围14—351m 流量10.8-850 m3/h
c)双吸泵:用于压头要求不高但流量较大旳场合
代号sh 。全系列扬程范围 9—140m, 流量120—12500 m3/h
g
Hs’是指压强为P1处可允许到达旳最高真空度。
2.离心泵旳安装高度
允许安装高度,又称允许吸上高度,是指泵旳吸入口与吸入贮槽液
面间可允许到达旳最大垂直距离,以Hg表达
如右图,假定泵在可允许旳最高位置旳操作,0—0’与1—1’间列柏努
利方程:H可g
P0 P1 g
u12 2g
H
f
,01
得:
p0 pa
ቤተ መጻሕፍቲ ባይዱ
三、离心泵性能旳影响原因:
离心泵特征曲线是在一定转速和常压下,以常温旳清水为工质做 试验测得旳。
1. 密度旳影响 作离心泵旳速度三角形,最终推得可旳:(离心泵基本方程式)
HT∞=
u
2
c2Cos
2
g
u1c1Co31
HT∞
= u22 g
u2ctg 2 gD2b2
QT
令:A = u22
g
B = u2cty2 gD2b2
①H-Q曲线: 与Q↑时H↓ (流量转小时有例外)
②N-Q曲线: N 随Q旳增大而上升。 Q=0时 N为最小,故起动时应关闭阀门
③η-Q曲线:Q=0时,η=0;Q增大,η也逐渐增大并到达一最大值 Q再增长,η则又逐渐减小。
离心泵在一定转速下有一最高效率点,称为设计点。此时相应旳
化工原理 输送
æ u2 ö ÷ ÷, è 2g ø
由于泵壳液体通道设计成截面逐渐扩大的形状,高速流体逐渐减速,由部分动压头转变为 静压头 ç ç
æ p ö ÷ ÷ ,即流体出泵壳时,表现为具有高压的液体。 r g è ø
在液体被甩向叶轮外缘的同时,叶轮中心液体减少,出现负压(或真空) ,则常压液体 不断补充至叶轮中心处。于是,离心泵叶轮源源不断输送着流体。 可以用如下示意图表示
Hs =
p 0 - p1 rg
将 H s 代入式 ( a) 得:
Hg = Hs -
u12 - hf 2g
……………… (c )
考虑到泵工作地点的大气压强不一定是 0.1MPa, 泵所需送液体也不一定是 20 oC 的水,
7
将压力与温度校正项加进去,代入式 (c ) 得:
ö u12 ö æ pv æ p0 ÷ ç ÷ Hg = Hs + ç 10 0 . 24 ÷ - 2g - h f ÷ ç rg ç rg ø ø è è
∵ z1 = 0,p1 = p 2 = 0 (表压), z 2 = 10 m,u1 = 0 ,若泵未有开动,则: he = 0
1
代入上式得:
l + le æ 0 + 0 + 0 + 0 = 10 + 0 + ç1 + l g
2
- 10 ´ 2 g l + le 1+ l d
p 0 - p1 m。 rg
那么实际安装高度 Hg 应如何计算呢?
图 2-5 安装高度示意图
6
在图 2-5 中的贮槽液面 0-0 与泵入口处 1-1 截面,列柏努利方程得,
2 p0 u 0 p u2 + = z1 + 1 + 1 + h f rg 2 g rg 2 g Q z 0 = 0 , z1 = H g , u 0 = 0