激光焊接机的工艺参数以及方法是什么
1500w手持激光焊接机焊接参数
手持激光焊接机焊接参数详解激光焊接技术作为一种高效、精准的焊接方法,已经被广泛应用于各种领域。
手持激光焊接机作为激光焊接技术的一种重要应用形式,其焊接参数的设置对于焊接质量和效率至关重要。
本文将深入探讨手持激光焊接机的焊接参数设置及调整过程,帮助读者更好地掌握这一技术。
1. 激光功率激光功率是手持激光焊接机最关键的参数之一。
激光功率的高低直接影响焊接的速度和质量。
通常情况下,激光功率越高,焊接速度越快,但是也容易造成焊接区域过热,从而导致焊接质量下降。
因此,在设置激光功率时需要根据具体焊接材料和厚度来进行调整,以达到最佳的焊接效果。
2. 焦距焦距是指激光束聚焦到工件表面的距离。
正确的焦距设置可以确保激光能够准确地聚焦到焊接区域,从而保证焊接质量。
一般来说,焦距设置过近会导致焊缝不充分,焦距设置过远则会导致焊缝焊深不够。
因此,在实际操作中需要通过调整焦距来保证焊接效果。
3. 扫描速度扫描速度是指激光束在工件表面移动的速度。
扫描速度的选择直接影响到焊接的密度和焊缝形状。
一般来说,扫描速度过快会导致焊缝不充分,扫描速度过慢则会导致焊接区域过热。
在设置扫描速度时需要结合焊接材料的导热性和厚度来进行调整,以达到最佳的焊接效果。
4. 激光波长激光波长是激光束的波长大小。
不同波长的激光对材料的穿透性和吸收性有所不同,因此在选择激光波长时需要根据具体焊接材料的性质来进行选择。
一般来说,激光波长越短,激光束的能量越集中,焊接效果也越好。
5. 气体保护在激光焊接过程中,通常会使用惰性气体或者保护气体来保护焊接区域。
气体的选择和流量设置对于焊接质量至关重要。
保护气体可以有效防止氧化和杂质的产生,从而保证焊接质量。
在实际操作中需要根据具体焊接材料的特点来选择合适的气体种类和流量。
结语通过上述对手持激光焊接机的焊接参数进行详细的解析,相信读者已经对这一技术有了更深入的了解。
在实际操作中,合理设置和调整焊接参数可以有效提高焊接效率和质量,帮助工程师们更好地应用这一高精度的焊接技术。
激光焊接工艺参数
激光焊接工艺参数激光焊接是一种高效、高质量、非接触的焊接方法,广泛应用于精密零件的制造、电子产品的组装、汽车工业、航空航天等领域。
激光焊接工艺参数对焊接质量和效率起着重要的影响。
下面将介绍一些常用的激光焊接工艺参数。
1.激光功率:激光焊接的功率决定了熔池的温度和熔化的能量。
功率过高会导致焊缝过深、过宽,功率过低则影响焊接质量。
根据不同材料和焊接要求,选择合适的激光功率,通常在几百瓦到几千瓦之间。
2.焦距:焦距是指激光束通过聚焦镜后在焊接部位形成的焦点与工件表面之间的距离。
焦距的选择与焊接材料的厚度、焊枪的设计、激光束的直径等因素相关。
焦距过大会导致焊接深度不够,焦距过小则容易引起溅射和熔洞。
3.光斑直径:光斑直径影响焊缝的宽度和深度。
通常情况下,焊接深度正比于光斑直径的平方。
选择合适的光斑直径可以控制焊缝的大小和形状。
4.扫描速度:扫描速度是指焊接头在工件上移动的速度。
扫描速度的选择要根据焊接材料的导热性和热膨胀系数来确定。
过高的扫描速度可能导致焊缝无法充分熔化,过低的扫描速度则容易引起过热和熔洞。
5.激光脉冲频率:激光脉冲频率决定了激光束的脉冲数。
较低的脉冲频率可以增加焊缝的深度,较高的脉冲频率则可以增加焊缝的宽度。
根据焊接要求选择合适的脉冲频率。
6.各向异性系数:各向异性系数是指焊接材料在激光束照射下沿不同方向扩散的能力。
不同金属材料的各向异性系数差异较大,选择合适的激光焊接参数可以减小焊缝形状的变化。
7.激光束模式:激光束的光斑形状可以通过调整激光器的谐振腔或使用适当的光学元件来改变。
常见的激光束模式包括高斯模式、倍高斯模式和束团模式等。
不同的光斑形状对焊接质量和效率有影响。
总结起来,激光焊接工艺参数包括激光功率、焦距、光斑直径、扫描速度、激光脉冲频率、各向异性系数和激光束模式等。
通过合理地选择这些参数,可以实现高质量、高效率的激光焊接。
激光焊接工艺规程
激光焊接工艺规程激光焊接工艺规程一、概述激光焊接是一种高能量密度的热源焊接方法,具有焊接速度快、热影响区小、焊缝质量高等优点。
激光焊接工艺规程是为了保证激光焊接质量,规范焊接操作而制定的。
二、设备选择激光焊接设备应选择具有稳定性好、能量密度高、光束质量好、操作简便等特点的设备。
设备的功率和波长应根据焊接材料和厚度进行选择。
三、工艺参数1. 焊接速度:激光焊接速度应根据焊接材料和厚度进行调整,一般应控制在1-10m/min之间。
2. 焊接功率:激光功率应根据焊接材料和厚度进行调整,一般应控制在200-4000W之间。
3. 焊接距离:激光焊接距离应根据焊接材料和焊接角度进行调整,一般应控制在0.5-2mm之间。
4. 焊接气体:激光焊接时应使用保护气体,一般为氩气或氩氦混合气体。
四、焊接操作1. 准备工作:焊接前应对焊接材料进行清洗、除油、除氧等处理,保证焊接表面干净。
2. 定位夹紧:焊接前应对工件进行定位和夹紧,保证焊接位置准确。
3. 焊接过程:焊接时应保持稳定的焊接速度和功率,控制好焊接距离和焊接气体流量,保证焊接质量。
4. 焊接后处理:焊接后应对焊缝进行清理和修整,保证焊缝质量。
五、质量控制1. 焊接质量检测:焊接后应进行外观检测、尺寸检测、焊缝性能检测等,保证焊接质量。
2. 焊接记录:应对焊接参数、焊接质量等进行记录,以备后续查询和分析。
六、安全注意事项1. 激光焊接设备应安装在专门的工作间内,保证工作间的安全性。
2. 操作人员应穿戴好防护设备,如防护眼镜、手套等。
3. 激光焊接时应注意防止激光辐射对人体的伤害。
4. 操作人员应定期接受安全培训,提高安全意识。
以上是激光焊接工艺规程的相关内容,希望能对您有所帮助。
激光脉冲焊接的工艺参数
激光脉冲焊接的工艺参数一、激光功率激光功率是指激光器输出的光功率,通常用瓦特(W)表示。
激光功率的选择直接影响焊接速度和焊接深度。
较高的激光功率可以提高焊接速度和焊接深度,但同时也会增加能量输入,增加焊缝热影响区的尺寸,从而影响焊缝的形貌和成形质量。
二、脉冲频率脉冲频率指的是激光每秒发射的脉冲数量,以赫兹(Hz)表示。
脉冲频率的选择对焊接形貌和成形质量影响较大。
高脉冲频率可以提高焊接速度和焊接深度,同时减少热输入和焊缝热影响区的尺寸,从而减少热影响和热变形。
三、脉冲宽度脉冲宽度是指激光的脉冲持续时间,通常用毫秒(ms)或微秒(μs)表示。
脉冲宽度的选择对焊接形貌和成形质量也会产生显著影响。
较短的脉冲宽度可以提高焊缝质量,使焊缝表面光滑,减少焊缝熔渣和气孔等缺陷。
四、光斑直径光斑直径是指激光束在焊接件表面的直径,通常用毫米(mm)表示。
光斑直径的选择影响焊接深度和焊缝宽度。
较小的光斑直径可以提高焊接深度和焊缝质量,但同时也会降低焊接速度。
五、焦点位置焦点位置是指激光焦点与焊接件表面的距离,通常用毫米(mm)表示。
焦点位置的选择影响焊接深度和焊缝宽度。
较近的焦点位置可以提高焊接深度和焊缝质量,但需要注意焊接位置和长焦距情况下的激光能量密度损失。
六、激光扫描速度激光扫描速度是指激光束在焊接件表面的移动速度,通常用毫米/秒(mm/s)表示。
激光扫描速度的选择影响焊接速度和焊接质量。
较快的激光扫描速度可以提高焊接速度,但同时也会增加焊缝宽度并可能影响焊接质量。
七、气体保护气体保护是指在焊接过程中通过喷嘴向焊缝区域提供气体保护,常用的保护气体为惰性气体,如氩气。
气体保护的选择影响激光辐照区域的氧气与金属的反应,防止焊缝内部含气并促进焊接质量的提高。
综上所述,激光脉冲焊接的工艺参数包括激光功率、脉冲频率、脉冲宽度、光斑直径、焦点位置、激光扫描速度和气体保护等。
合理选择这些参数,可以实现高效、高质量的激光脉冲焊接。
激光焊接的工艺参数及特性分析讲解
激光焊接的工艺参数及特性分析讲解激光焊接是一种高能量密度激光束对焊接材料表面的作用,通过将激光束转化为热能,快速熔化并凝固焊缝来实现材料的连接。
激光焊接具有高耦合性、无接触和非传导性等特点,因此在许多领域得到广泛应用。
本文将对激光焊接的工艺参数及特性进行分析和讲解。
激光焊接的工艺参数主要包括激光功率、激光束面积、焦距、焊接速度和焊接气体等。
其中,激光功率是指单位时间内激光束所携带的能量,对焊接效果起到重要作用。
激光功率过低会导致焊缝不完全熔透,功率过高则容易产生毛刺。
激光束面积与焦距的选择会直接影响到焊接区域的集中度,过小会导致焊缝质量不稳定,过大则会降低焊接深度。
焊接速度决定了焊接过程中激光束的作用时间,过慢会导致过量热输入,过快则会影响焊缝的质量。
焊接气体的选择和流量控制对焊接质量也有着重要影响,一方面可以提供保护气氛,防止焊缝氧化或与空气中的杂质反应;另一方面可以有效盖住激光束与材料的相互作用。
激光焊接的特性分析主要包括焊接速度、热输入、焊缝形貌和焊接缺陷等。
焊接速度是决定焊接效果的重要因素之一,其取值应根据材料的熔化温度和焊缝的质量要求进行合理选择。
热输入则是指焊接过程中单位长度内传递给焊接区域的能量,直接影响着焊缝的熔透度和凝固组织。
热输入过小会导致焊缝凝固不完全,热输入过大则易产生裂纹和变形等缺陷。
焊缝形貌与焊接参数密切相关,激光焊接通常能够产生较窄而深的焊缝,焊缝形貌的良好与否直接关系到焊接质量。
焊接缺陷主要包括焊接裂纹、焊接变形和焊接缺陷等,这些缺陷的产生通常与焊接参数的选择不当和焊接材料的特性有关。
总之,激光焊接的工艺参数及特性对焊接质量起着至关重要的影响。
合理选择并控制这些参数可以提高焊接效率和质量,确保焊接结果符合设计要求。
因此,在实际应用中需要综合考虑各个参数之间的关系,通过优化调整,找到最佳的参数组合,从而实现高质量的激光焊接。
激光焊接工艺参数讲解
激光焊接原理与主要工艺参数作者:opticsky 日期:2006-12-01字体大小: 小中大1.激光焊接原理激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。
功率密度小于104~105 W/cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105~107 W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。
其中热传导型激光焊接原理为:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。
用于齿轮焊接和冶金薄板焊接用的激光焊接机主要涉及激光深熔焊接。
下面重点介绍激光深熔焊接的原理。
激光深熔焊接一般采用连续激光光束完成材料的连接,其冶金物理过程与电子束焊接极为相似,即能量转换机制是通过“小孔”(Key-hole)结构来完成的。
在足够高的功率密度激光照射下,材料产生蒸发并形成小孔。
这个充满蒸气的小孔犹如一个黑体,几乎吸收全部的入射光束能量,孔腔内平衡温度达2500 0C左右,热量从这个高温孔腔外壁传递出来,使包围着这个孔腔四周的金属熔化。
小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周包围着固体材料(而在大多数常规焊接过程和激光传导焊接中,能量首先沉积于工件表面,然后靠传递输送到内部)。
孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。
光束不断进入小孔,小孔外的材料在连续流动,随着光束移动,小孔始终处于流动的稳定状态。
就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属充填着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。
上述过程的所有这一切发生得如此快,使焊接速度很容易达到每分钟数米。
2. 激光深熔焊接的主要工艺参数1激光功率。
激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高。
手持激光焊工艺焊接参数
手持激光焊工艺焊接参数手持激光焊工艺是一种高效快捷的焊接工艺,其主要应用于微细零件或未联接组件的精确加工。
这种工艺不仅具有无接触、高频率和低损耗等优点,而且特别适用于薄板和复杂构形的结构件。
而对于手持激光焊接工艺的焊接参数调节是影响焊接质量的重要因素。
一、手持激光焊接工艺1. 工艺原理手持激光焊接传统的钳工焊接方式存在无法到达的区域,操作过程繁琐且需要一定的技术要求。
手持激光焊是一种便携式的激光加工方式,通过将激光光束聚焦到较小的点上,从而产生高能量密度的热源,达到局部熔化的目的,完成部件的焊接。
2. 工艺优势与传统的焊接方式相比,手持激光焊可以大大缩短生产周期和减少物料的浪费,同时保持高精度和准确性。
此外,手持激光焊工艺还有如下优势:(1)材料使用效率高手持激光焊接过程中,激光光束能够被集成到经典焊接过程中所不可达到的难以处理的区域。
激光焊接利用高能量密度光束准确地融化焊点,从而可以在节省较大发生缺陷的部位时,使得材料使用效率更高。
(2)焊缝质量高手持激光焊接工艺焊接接头的质量比较高,其气氛是最容易控制的。
因为焊接时产生的热输入较低,从而可以减少焊接区域较大的应力问题,并保证零件焊接质量。
(3)适应性强手持激光焊接对各种材料都有很好的适应性,而且在焊接时不会改变材料的化学性质和物理特性。
二、手持激光焊接参数1. 激光功率激光功率是手持激光焊接工艺的一个重要参数。
当激光功率增加时,焊接速度会更快,但是焊缝的深度和宽度也会更大。
因此,需要根据实际的焊接要求选择适当的激光功率。
2. 焊接速度焊接速度也是手持激光焊接的重要参数之一。
当焊接速度较快时,焊缝是窄而深的。
反之,当焊接速度较慢时,焊缝会更宽而浅。
因此,在选择焊接速度时应根据实际要求进行选择。
3. 焦距焊缝的最终质量和形状与焦距有极大的关系。
当将焦距增加时,焊缝的深度会增加,而焊缝的宽度会减小,相反,当缩短焦距时,焊缝会变得更宽而更浅。
因此,需要根据实际情况进行选择。
激光焊接工艺参数讲解
激光焊接工艺参数讲解激光焊接工艺是一种使用高能量激光束将材料熔化并连接在一起的焊接技术。
它具有高能量密度、狭窄热影响区、快速熔化和凝固速度等优点,已广泛应用于航空航天、汽车制造、电子设备等领域。
在激光焊接过程中,工艺参数的选择对焊缝质量和焊接效率有着重要影响。
下面将详细介绍几个关键的激光焊接工艺参数。
1.激光功率:激光功率是指激光器输出的功率,也是激光焊接中最为关键的参数之一、激光功率的选择应根据材料厚度、焊缝宽度等因素来确定。
功率过大会导致焊缝熔化过度,出现裂纹等缺陷;功率过小则无法达到理想的焊接效果。
2.激光波长:激光波长是指激光器产生的激光光束的波长,常用的波长有CO2激光器的10.6μm和固体激光器的1.06μm。
不同材料对激光波长的吸收情况不同,选择适当的波长可以提高焊接效果。
3.激光扫描速度:激光扫描速度是指激光束在焊接过程中的移动速度。
激光扫描速度的选择应根据焊接材料的导热性、热传导率等因素来确定。
过高的扫描速度会导致焊缝填充不充分,焊接质量下降;过低的扫描速度则会增加焊接时间和成本。
4.焦点位置:焦点位置是指激光束在焊接过程中的聚焦位置。
焦点位置的选择应根据焊接材料的厚度和要求等因素来确定。
焦点位置偏离太远会导致焊点变粗,焊缝变宽;焦点位置偏离太近则会导致焊点变细,焊缝变窄。
5.辅助气体:辅助气体是在焊接过程中用于保护焊缝和清洁焊接区域的气体。
常用的辅助气体有氩气、氮气等。
辅助气体的选择应根据材料的特性和焊接要求来确定。
6.脉冲频率:脉冲频率是指激光器输出激光束的频率。
脉冲频率的选择需要根据焊接材料的热导率、导热系数等因素来确定。
脉冲频率过高会导致焊接气孔增多,焊接质量下降;脉冲频率过低则会增加焊接时间。
以上是几个关键的激光焊接工艺参数的讲解。
在实际应用中,需要根据具体的焊接材料和要求来选择合适的工艺参数,以获得理想的焊接效果。
此外,还需要注意检查焊接设备的状态、保持焊接区域的干净和干燥等,以提高焊接质量和效率。
大族激光焊接机参数
大族激光焊接机参数
(最新版)
目录
一、激光焊接机参数概述
二、焊接速度对熔深的影响
三、如何调整大族激光焊接工艺参数
四、质量控制要点
正文
一、激光焊接机参数概述
激光焊接机是一种高能量密度的焊接设备,其焊接效果受到许多参数的影响。
其中主要的参数包括激光功率、焊接速度、激光束直径和焊接距离等。
这些参数的合理调整可以保证焊接质量,提高生产效率。
二、焊接速度对熔深的影响
焊接速度是影响熔深的重要因素,它会影响单位时间内的热输入量。
焊接速度快会使熔深变浅,造成工件焊不透;焊接速度慢则有可能因为过度熔化而焊透、焊穿工件。
通常采用降低速度的方法来改变熔深,焊接薄板或性能较好的材料时,建议最好使用高速焊接。
三、如何调整大族激光焊接工艺参数
1.激光功率:根据工件的材料、厚度和焊接要求来选择合适的激光功率。
一般来说,激光功率越大,熔深和焊接速度也越大。
2.焊接速度:根据实际焊接情况来调整焊接速度,以保证焊接质量。
在焊接薄板或性能较好的材料时,建议使用高速焊接。
3.激光束直径和焊接距离:根据工件的形状和焊接要求来选择合适的激光束直径和焊接距离,以保证焊接效果。
四、质量控制要点
在激光焊接过程中,需要对焊接质量进行严格控制,主要包括以下几个方面:
1.焊接表面:要求焊接表面平整光亮,无焊锡渣、赃污、高点毛刺和助焊剂发白等。
2.焊接效果:不能有虚焊、脱焊、掉线和涂锡带上的高点、毛刺等。
3.焊接错位:要求焊接错位不超过规定范围。
4.电池片外观:不能有隐裂、裂片、破片(崩边缺角)等。
激光焊接机的工艺参数以及方法是什么
激光焊接机的工艺参数以及方法是什么激光技术采用偏光镜反射激光,产生的光束使其集中在聚焦装置中产生巨大能量。
如果焦点靠近工件,工件就会在几毫秒内熔化和蒸发,将这一效应用于焊接工艺,即为激光焊接。
目前应用在汽车上的激光焊接主要分为顶篷激光钎焊和车门激光熔焊两种工艺。
下面一起来了解一下。
1、功率密度。
功率密度是激光加工中最关键的参数之一。
采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。
因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。
对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。
因此,在传导型激光焊接中,功率密度在范围在104~106W/cm2。
2、激光脉冲波形。
激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。
当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。
在一个激光脉冲作用期间内,金属反射率的变化很大。
3、激光脉冲宽度。
脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。
4、离焦量对焊接质量的影响。
激光焊接通常需要一定的离焦,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。
离开激光焦点的各平面上,功率密度分布相对均匀。
离焦方式有两种:正离焦与负离焦。
焦平面位于工件上方为正离焦,反之为负离焦。
按几何光学理论,当正负离做文章一相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池形状不同。
负离焦时,可获得更大的熔深,这与熔池的形成过程有关。
实验表明,激光加热50~200us材料开始熔化,形成液相金属并出现问分汽化,形成市压蒸汽,并以极高的速度喷射,发出耀眼的白光。
与此同时,高浓度汽体使液相金属运动至熔池边缘,在熔池中心形成凹陷。
当负离焦时,材料内部功率密度比表面还高,易形成更强的熔化、汽化,使光能向材料更深处传递。
激光的焊接原理与主要实用工艺全参数
激光的焊接原理与主要实用工艺全参数激光焊接是一种利用激光束对材料进行加热并熔化,从而实现焊接的工艺。
它通过聚光器聚焦激光束,使其能量密度高度集中,可以快速加热和熔化焊接接头,达到焊接的目的。
激光焊接具有高能量密度、热影响区小、焊缝形状好、焊接速度快等优点,被广泛应用于航空航天、汽车制造、电子设备、医疗器械等领域。
激光焊接的主要实用工艺参数包括激光功率、激光束模式、焦距、扫描速度、频率等。
激光功率是指激光器输出的功率大小,它直接影响焊接效果。
功率过低会导致焊缝不完全熔化,焊接强度低;功率过高会造成过度熔化和材料脱焊。
因此,选择合适的功率对于激光焊接至关重要。
激光束模式是指激光束的激光光斑形状,常见的有高斯模式和顶帽模式。
高斯模式的激光光斑能量密度分布均匀,焊接效果较好;顶帽模式能量密度中心较高,适用于一些需要高能量密度局部熔化的焊接。
焦距是指聚焦系统中的聚焦镜离焊接接头的距离。
焦距的选择会直接影响激光束的聚焦效果,焦距过大会造成能量集中不够,焊接效果不好;焦距过小会造成聚焦区域过小,焊接速度降低。
扫描速度是指焊接头在焊接过程中的移动速度。
一般来说,激光焊接的扫描速度应适中,过快会导致材料没有充分熔化,焊接质量下降;过慢则可能造成熔池过大、焊缝变宽等问题。
频率是指激光脉冲的频率。
调整频率可以改变激光束的热输入和热传导,从而影响焊缝的形状和质量。
较高的频率能够得到较小的焊缝尺寸,但焊接速度会降低。
此外,还有一些重要的工艺参数需要注意,如气体保护、焊接速度控制、预热等。
气体保护可以保护焊接接头,防止氧气和水蒸气引起的气孔和氧化,常用的气体有氩气和氮气。
焊接速度控制可以控制焊接头的移动速度,保证焊接质量的一致性。
预热可以提高焊接接头的温度,减少热应力和变形,提高焊接质量。
总之,激光焊接作为一种高效、高精度的焊接工艺,具有很大的应用潜力。
在实际应用中,根据具体材料和焊接要求选择合适的激光功率、激光束模式、焦距、扫描速度、频率等参数,能够实现高质量的焊接。
不锈钢激光焊接工艺参数
不锈钢激光焊接工艺参数一、引言随着现代制造业的发展,不锈钢激光焊接技术得到了广泛的应用。
作为一种高效、环保的焊接方法,激光焊接技术具有很多优点,如焊接速度快、熔接区域小、焊缝质量高、不易变形等。
本文将对不锈钢激光焊接工艺参数进行详细探讨,以期为相关领域提供参考。
二、不锈钢激光焊接工艺概述1.激光焊接原理激光焊接是利用高能密度的激光束加热工件,使其熔化并结合在一起的一种焊接方法。
在不锈钢激光焊接过程中,激光束聚焦在工件表面,产生局部高温,使不锈钢熔化并与之相结合。
2.不锈钢激光焊接特点不锈钢激光焊接具有以下特点:(1)焊接速度快,生产效率高;(2)焊缝质量高,成型美观;(3)熔接区域小,焊疤少,有利于后续加工;(4)不易变形,适用于精密零件的焊接。
三、不锈钢激光焊接工艺参数1.激光功率激光功率是影响焊接质量的关键因素。
一般来说,激光功率越大,熔池体积越大,焊接速度也要相应提高。
否则,容易产生焊缝过宽、焊疤等问题。
2.焊接速度焊接速度是指焊接过程中激光束移动的速度。
焊接速度过快,可能导致熔池冷却过快,焊缝质量下降;焊接速度过慢,则会导致熔池过大,焊疤增多。
因此,合理调整焊接速度是获得优质焊缝的关键。
3.激光束直径激光束直径影响焊接过程中的能量密度分布。
激光束直径越小,能量密度越高,焊接速度相应提高。
反之,激光束直径越大,能量密度降低,焊接速度降低。
4.焊接角度焊接角度是指激光束与工件表面的夹角。
适当调整焊接角度,可以改善焊接过程中的能量分布,提高焊缝质量。
5.保护气保护气在焊接过程中起到保护熔池、防止氧化和焊缝成型作用。
常用的保护气有氩气、氦气、二氧化碳等。
合理选择保护气种类和流量,有利于获得优质焊缝。
四、不锈钢激光焊接工艺参数优化方法1.实验设计通过正交试验设计方法,选取影响焊接质量的关键因素进行多因素实验。
根据实验结果,分析各因素对焊接质量的影响程度,为优化参数提供依据。
2.响应面法响应面法是一种基于实验数据的统计分析方法。
激光焊接原理与主要工艺参数
1.激光焊接原理激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。
功率密度小于104~105 W/cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105~107 W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。
其中热传导型激光焊接原理为:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。
用于齿轮焊接和冶金薄板焊接用的激光焊接机主要涉及激光深熔焊接。
下面重点介绍激光深熔焊接的原理。
激光深熔焊接一般采用连续激光光束完成材料的连接,其冶金物理过程与电子束焊接极为相似,即能量转换机制是通过“小孔”(Key-hole)结构来完成的。
在足够高的功率密度激光照射下,材料产生蒸发并形成小孔。
这个充满蒸气的小孔犹如一个黑体,几乎吸收全部的入射光束能量,孔腔内平衡温度达2500 0C左右,热量从这个高温孔腔外壁传递出来,使包围着这个孔腔四周的金属熔化。
小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周包围着固体材料(而在大多数常规焊接过程和激光传导焊接中,能量首先沉积于工件表面,然后靠传递输送到内部)。
孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。
光束不断进入小孔,小孔外的材料在连续流动,随着光束移动,小孔始终处于流动的稳定状态。
就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属充填着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。
上述过程的所有这一切发生得如此快,使焊接速度很容易达到每分钟数米。
2. 激光深熔焊接的主要工艺参数1)激光功率。
激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高。
只有当工件上的激光功率密度超过阈值(与材料有关),等离子体才会产生,这标志着稳定深熔焊的进行。
激光焊接的工艺参数
激光焊接的工艺参数激光焊接是一种高能聚焦激光束将材料加热到熔化或半熔化状态并进行焊接的工艺。
激光焊接工艺参数的选择对焊接质量和效率起着至关重要的作用。
下面将从激光功率、激光束聚焦方式、焊接速度、焊缝形状和焊接气体等方面介绍激光焊接的工艺参数。
激光功率是激光焊接中最重要的工艺参数之一、激光功率的选择应根据焊接材料的种类和厚度进行确定。
一般来说,对于较薄的材料,使用较低的激光功率可以防止热输入过大引起的变形和气孔等缺陷。
而对于较厚的材料,需要使用较高的激光功率来提供足够的热能来熔化材料。
激光功率的选择也会影响焊接速度和焊缝形状,通常应进行综合考虑。
激光束聚焦方式也是激光焊接中的重要参数之一、常见的激光束聚焦方式有点焦聚焦和线焦聚焦两种。
点焦聚焦具有激光功率密度高、焊缝熔深大的优点,适用于焊接较薄的材料。
线焦聚焦具有焊缝宽度大、焊接速度快的优点,适用于焊接较厚的材料。
选择合适的激光束聚焦方式可以提高焊接质量和效率。
焊接速度是指激光焊接过程中激光束移动的速度。
焊接速度的选择应根据焊接材料的种类和厚度、激光功率和焊缝形状等因素进行确定。
焊接速度过快会导致熔池不稳定,容易形成缺陷,而焊接速度过慢会造成过多的热输入,引起变形和气孔等问题。
因此,选择合适的焊接速度可以有效控制焊接质量和生产效率。
焊缝形状是指激光焊接中焊接部分的形状。
激光焊接可以实现多种焊缝形状,如直焊缝、曲线焊缝、V型焊缝等。
选择合适的焊缝形状可以根据焊接材料的种类和要求进行选择。
例如,对于较厚的材料,可以选择V型焊缝来提高焊接质量。
而对于较薄的材料,可以选择直焊缝来提高焊接效率。
焊接气体是指在激光焊接过程中用于保护熔池和焊缝的辅助气体。
常用的焊接气体有惰性气体如氩气和氮气等。
焊接气体的选择应根据焊接材料和焊接要求进行确定。
惰性气体可以有效防止焊接过程中熔池氧化和气孔的产生,保证焊缝质量。
选择合适的焊接气体可以提高焊接质量和稳定性。
综上所述,激光焊接的工艺参数包括激光功率、激光束聚焦方式、焊接速度、焊缝形状和焊接气体等。
激光焊接的工作原理及其主要工艺参数
激光焊接的工作原理及其主要工艺参数激光焊接是一种利用高能量激光束将焊接材料加热至熔化或半熔化状态并加压,使两个或多个焊接材料相互融合的焊接方法。
其工作原理基于激光的高能量和高密度,能够集中加热焊接材料的表面或内部,使其达到熔化或半熔化的状态,然后通过热量传导和传导在激光束的作用下产生的流动力将焊接件进行连接。
激光焊接具有高精度、高效率、灵活性以及不受材料类型限制等优点,被广泛应用于各种工业领域。
首先是激光功率。
激光功率是指激光束每秒钟传输到焊接材料上的能量。
激光功率的选择需要考虑焊接材料的厚度和类型,以及所需的焊接速度和焊缝的质量。
过高的激光功率可能导致焊接材料过热、气体喷溅和焊缝变形,而过低的激光功率则可能导致焊接缺陷。
其次是光束模式。
光束模式决定了激光束的焦点形状和能量分布。
常见的光束模式有高斯模式、TEM模式和多模式等。
选择适当的光束模式可以使焊接过程更稳定和准确。
焊接速度也是重要的参数,它决定了激光束在焊接材料上的停留时间。
过高的焊接速度可能导致焊接质量下降,而过低的焊接速度则可能造成焊接材料过热和焊缝变形。
焦距是指激光束与焊接材料之间的距离。
选择合适的焦距可以使激光束能够集中加热焊接材料并达到最佳焊接效果。
最后是气氛环境。
气氛环境通常包括惰性气体和活性气体等。
惰性气体如氩气可以防止焊接材料与空气发生氧化反应,保护焊接质量。
活性气体如氢气可以清除焊缝中的杂质和气泡,提高焊接质量。
除了以上主要的工艺参数外,还有一些辅助参数也需要考虑,如焊缝宽度、焊缝深度、焊接坡口形状等。
这些参数的选择需要根据具体的应用需求和焊接材料的特性来确定。
总之,激光焊接的工作原理是通过高能量激光束将焊接材料加热至熔化或半熔化状态,并在加压的作用下将焊接件连接起来。
主要的工艺参数包括激光功率、光束模式、焊接速度、焦距和气氛环境等,通过合理选择和调整这些参数,可以实现高质量、高效率的焊接过程。
【纯干货】激光焊接的工作原理及其主要工艺参数
【纯干货】激光焊接的工作原理及其主要工艺参数阅读引语焊接技术主要应用在金属母材热加工上,常用的有电弧焊,电阻焊,钎焊,电子束焊,激光焊等多种,本文详细介绍了激光焊接的工作原理与工艺参数,还讨论了激光焊接技术在现代工业中的应用,并与其他焊接方法进行对比。
研究表明激光焊接技术将逐步得到广泛应用。
1. 引言目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。
电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。
但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。
并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。
激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。
激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。
激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。
激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。
由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。
虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。
2. 激光焊接原理2.1激光产生的基本原理和方法光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。
微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。
激光焊接的工艺参数
激光焊接的工艺参数
激光焊接是一种高精度的焊接技术,工艺参数的设置对焊接质量和效率有着重要影响。
以下是一些常见的激光焊接工艺参数:
激光功率:激光功率是指激光束所携带的能量,通常以瓦特(W)为单位。
激光功率的选择取决于焊接材料的类型和厚度,以及所需的焊接速度和深度。
激光束直径:激光束直径是指焦点处激光束的直径,通常以毫米((mm)为单位。
较小直径的激光束可以提高焊接的精度和焊缝质量。
脉冲频率:脉冲频率是指激光发射的脉冲数目,通常以赫兹((Hz)为单位。
控制脉冲频率可以影响焊接速度和焊缝的熔深。
激光束扫描速度:激光束扫描速度是指激光束在工件表面移动的速度,通常以毫米/秒(mm/s)为单位。
较高的扫描速度可以提高焊接效率,但可能会影响焊缝质量。
焊缝形状和尺寸:焊接过程中焊缝的形状和尺寸需要根据具体的焊接要求进行设计和控制,包括焊缝的宽度、深度和形状等参数。
激光束聚焦方式:激光束聚焦方式包括准直焦点和聚焦焦点两种,选择适当的焦点可以控制焊接深度和焊缝质量。
这些工艺参数的设置需要根据具体的焊接材料、要求和设备性能进行优化调整,以实现理想的焊接效果。
CO2激光焊焊接工艺要求及工艺参数
C02激光焊焊接工艺要求及工艺参数1.接头形式及装配要求激光焊应用较多是对接接头和搭接接头,激光焊对焊件装配质量要求较高,对接焊时,如果接头错边太大,会使人射激光在板角处反射,焊接过程不稳定,所以对接接头错边一般小于0.25板厚。
薄板焊时,间隙太大,焊后焊缝表面成形不饱满,严重时形成穿孔,所以对接接头装配间隙一般小于0.10板厚。
搭接焊时,板间间隙过大,易造成上下板间熔合不良,所以搭接接头装配间隙一般小于0.25板厚。
但实际应用中允许根据实际情况适当增加装配公差,改善激光焊接头准备的不理想状态,但经验表明,当装配间隙超过板厚的3%,自熔焊缝容易产生不饱满。
同时注意,激光焊过程中,焊件应夹紧,以防止焊接变形。
光斑在垂直于焊接运动方向对焊缝中心的偏离量应小于光斑半径。
对于钢铁材料,焊前焊件表面需进行除锈、脱脂处理,必要时,焊前需要酸洗,然后用乙醛、丙酮或四氯化碳清洗。
激光深熔焊可以进行全位置焊,在起焊和收尾逐渐过渡时,可通过调节激光功率的递增和衰减过程以及改变焊接速度来实现,在焊接环缝时可实现首尾平滑过渡。
利用内反射来增强激光吸收的焊缝常常能提高焊接过程的效率和熔深。
填充金属激光焊适合于自熔焊,一般不需要要填充金属,但有时仍需要填充金属。
填充金属的优点是能改变焊缝化学成分,从而达到控制焊缝组织、改善接头力学性能的目的。
在有些情况下,还能提高焊缝抗结晶裂纹敏感性。
填充金属主要是以焊丝的形式加入,可以是冷态,也可以是热态。
深熔焊时,填充金属量不能过大,以免破坏小孔效应。
3.工艺参数连续激光焊的工艺参数同激光焊一样,主要包括激光功率、焊接速度、光斑直径、焦点离和保护气体种类及流量。
1)激光功率P激光功率是指激光器的输出功率,激光焊熔深与输出功率密切相关,对一定的光斑直径,焊接熔深随有微功率的增加增加。
2)焊接速度V在一定的激光功率下,提高焊接速度,热输入下降,焊缝熔深减小。
适当降低焊接速度可加大熔深,但若焊接速度过低,熔深却不会再增加,反而使熔宽增大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光技术采用偏光镜反射激光,产生的光束使其集中在聚焦装置中产生巨大能量。
如果焦点靠近工件,工件就会在几毫秒内熔化和蒸发,将这一效应用于焊接工艺,即为激光焊接。
目前应用在汽车上的激光焊接主要分为顶篷激光钎焊和车门激光熔焊两种工艺。
下面一起来了解一下。
1、功率密度。
功率密度是激光加工中最关键的参数之一。
采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。
因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。
对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。
因此,在传导型激光焊接中,功率密度在范围在104~106W/cm2。
2、激光脉冲波形。
激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。
当高强度激光束射至材料表面,金属表面将会有60~98%
的激光能量反射而损失掉,且反射率随表面温度变化。
在一个激光脉冲作用期间内,金属反射率的变化很大。
3、激光脉冲宽度。
脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。
4、离焦量对焊接质量的影响。
激光焊接通常需要一定的离焦,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。
离开激光焦点的各平面上,功率密度分布相对均匀。
离焦方式有两种:正离焦与负离焦。
焦平面位于工件上方为正离焦,反之为负离焦。
按几何光学理论,当正负离做文章一相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池形状不同。
负离焦时,可获得更大的熔深,这与熔池的形成过程有关。
实验表明,激光加热50~200us材料开始熔化,形成液相金属并出现问分汽化,形成市压蒸汽,并以极高的速度喷射,发出耀眼的白光。
与此同时,高浓度汽体使液相金属运动至熔池边缘,在熔池中心形成凹陷。
当负离焦时,材料内部功率密度比表面还高,易形成更强的熔化、汽化,使光能向材料更深处传递。
所以在实际应用中,当要求熔深较大时,采用负离焦;焊接薄材料时,宜用正离焦。
二、激光焊接工艺方法:
1、片与片间的焊接。
包括对焊、端焊、中心穿透熔化焊、中心穿孔熔化焊等4种工艺方法。
2、丝与丝的焊接。
包括丝与丝对焊、交叉焊、平行搭接焊、T型焊等4种工艺方法。
3、金属丝与块状元件的焊接。
采用激光焊接可以成功的实现金属丝与块状元件的连接,块状元件的尺寸可以任意。
在焊接中应注意丝状元件的几何尺寸。
4、不同金属的焊接。
焊接不同类型的金属要解决可焊性与可焊参数范围。
不同材料之间的激光焊接只有某些特定的材料组合才有可能。
激光钎焊有些元件的连接不宜采用激光熔焊,但可利用激光作为热源,施行软钎焊与硬钎焊,同样具有激光熔焊的优点。
采用钎焊的方式有多种,其中,激光软钎焊主要用于印刷电路板的焊接,尤其实用于片状元件组装技术。
如果您还想了解更多相关信息,可以拨打海维光电官方电话、登陆官网在线留言或者留下您的联系方式,小编看到信息会第一时间给您回复。
深圳市海维光电科技有限公司,专注于工业精密激光焊接、激光打标、激光切割,集研发、生产、销售、服务为一体的国家级高新技术企业。
17年专业的激光焊接系统研发和行业应用经验,提供专业的自动化激光焊接解决方案。
目前公司研发,生产,销售的能量反馈光纤传输激光焊接机、大功率连续光纤激光焊接机等一系列智能化的激光设备,其性能指标达国内领先。
广泛应用于3C 数码产品、电池、五金塑胶、厨卫、汽车、机械|模具制造、军工航空、精密电子元器件、珠宝首饰等行业。