北京理工大学数据结构实验报告 简易计算器(二叉树)

合集下载

数据结构实验报告 二叉树

数据结构实验报告 二叉树

数据结构实验报告二叉树数据结构实验报告:二叉树引言:数据结构是计算机科学中的重要基础,它为我们提供了存储和组织数据的方式。

二叉树作为一种常见的数据结构,广泛应用于各个领域。

本次实验旨在通过实践,深入理解二叉树的概念、性质和操作。

一、二叉树的定义与性质1.1 定义二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树可以为空树,也可以是由根节点和左右子树组成的非空树。

1.2 基本性质(1)每个节点最多有两个子节点;(2)左子树和右子树是有顺序的,不能颠倒;(3)二叉树的子树仍然是二叉树。

二、二叉树的遍历2.1 前序遍历前序遍历是指首先访问根节点,然后按照先左后右的顺序遍历左右子树。

在实际应用中,前序遍历常用于复制一颗二叉树或创建二叉树的副本。

2.2 中序遍历中序遍历是指按照先左后根再右的顺序遍历二叉树。

中序遍历的结果是一个有序序列,因此在二叉搜索树中特别有用。

2.3 后序遍历后序遍历是指按照先左后右再根的顺序遍历二叉树。

后序遍历常用于计算二叉树的表达式或释放二叉树的内存。

三、二叉树的实现与应用3.1 二叉树的存储结构二叉树的存储可以使用链式存储或顺序存储。

链式存储使用节点指针连接各个节点,而顺序存储则使用数组来表示二叉树。

3.2 二叉树的应用(1)二叉搜索树:二叉搜索树是一种特殊的二叉树,它的左子树上的节点都小于根节点,右子树上的节点都大于根节点。

二叉搜索树常用于实现查找、插入和删除等操作。

(2)堆:堆是一种特殊的二叉树,它满足堆序性质。

堆常用于实现优先队列,如操作系统中的进程调度。

(3)哈夫曼树:哈夫曼树是一种带权路径最短的二叉树,常用于数据压缩和编码。

四、实验结果与总结通过本次实验,我成功实现了二叉树的基本操作,包括创建二叉树、遍历二叉树和查找节点等。

在实践中,我进一步理解了二叉树的定义、性质和应用。

二叉树作为一种重要的数据结构,在计算机科学中有着广泛的应用,对于提高算法效率和解决实际问题具有重要意义。

数据结构实验报告二二叉树实验

数据结构实验报告二二叉树实验

实验报告课程名称:数据结构
第 1 页共4 页
五、实验总结(包括心得体会、问题回答及实验改进意见,可附页)
这次实验主要是建立二叉树,和二叉树的先序、中序、后续遍历算法。

通过这次实验,我巩固了二叉树这部分知识,从中体会理论知识的重要性。

在做实验之前,要充分的理解本次实验的理论依据,这样才能达到事半功倍的效果。

如果在没有真正理解实验原理之盲目的开始实验,只会浪费时间和精力。

例如进行二叉树的遍历的时候,要先理解各种遍历的特点。

先序遍历是先遍历根节点,再依次先序遍历左右子树。

中序遍历是先中序遍历左子树,再访问根节点,最后中序遍历右子树。

而后序遍历则是先依次后续遍历左右子树,再访问根节点。

掌握了这些,在实验中我们就可以融会贯通,举一反三。

其次要根据不光要懂得代码的原理,还要对题目有深刻的了解,要明白二叉树的画法,在纸上先进行自我演练,对照代码验证自己写的正确性。

第 3 页共4 页
第 4 页共4 页。

实验报告(二叉树)

实验报告(二叉树)

实验报告课程:数据结构(c语言)实验名称:二叉树的构建、基本操作和遍历系别:数字媒体技术实验日期:专业班级:媒体161 组别:无:学号:实验报告容验证性实验一、预习准备:实验目的:1、熟练掌握二叉树的结构特性,熟悉二叉树的各种存储结构的特点及适用围;2、熟练掌握二叉树的遍历方法及遍历算法;3、掌握建立哈夫曼树和哈夫曼编码的方法及带权路径长度的计算。

实验环境:Widows操作系统、VC6.0实验原理:1.定义:树:树(tree)是n(n>0)个结点的有限集T,其中,有且仅有一个特定的结点,称为树的根(root)。

当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1,T2,……Tm,其中每一个集合本身又是一棵树,称为根的子树(subtree)二叉树:二叉树是n(n>=0)个结点的有限集,它或为空树(n=0),或由一个根结点和两棵分别称为左子树和右子树的互不相交的二叉树构成。

哈夫曼树: 最优二叉树——赫夫曼树设有n个权值{w1,w2,……wn},构造一棵有n个叶子结点的二叉树,每个叶子的权值为wi,则wpl最小的二叉树叫Huffman树。

2. 特点:树:树中至少有一个结点——根树中各子树是互不相交的集合二叉树:每个结点至多有二棵子树(即不存在度大于2的结点)二叉树的子树有左、右之分,且其次序不能任意颠倒哈夫曼树:一棵有n个叶子结点的Huffman树有2n-1个结点采用顺序存储结构——动态分配数组存储3. 表示:遍历二叉树:先序遍历:先访问根结点,然后分别先序遍历左子树、右子树中序遍历:先中序遍历左子树,然后访问根结点,最后中序遍历右子树后序遍历:先后序遍历左、右子树,然后访问根结点 按层次遍历:从上到下、从左到右访问各结点 构造Huffman 树的方法——Huffman 算法(1) 根据给定的n 个权值{w1,w2,……wn},构造n 棵只有根 结点的二叉树,令起权值为wj ;(2) 在森林中选取两棵根结点权值最小的树作左右子树,构造一棵新的二叉树,置新二叉树根结点权值为其左右子树根结点权值之和;(3) 在森林中删除这两棵树,同时将新得到的二叉树加入森林中重复上述两步,直到只含一棵树为止,这棵树即哈夫曼树。

[精品]【数据结构】二叉树实验报告

[精品]【数据结构】二叉树实验报告

[精品]【数据结构】二叉树实验报告二叉树实验报告一、实验目的:1.掌握二叉树的基本操作;2.理解二叉树的性质;3.熟悉二叉树的广度优先遍历和深度优先遍历算法。

二、实验原理:1.二叉树是一种树形结构,由n(n>=0)个节点组成;2.每个节点最多有两个子节点,称为左子节点和右子节点;3.二叉树的遍历分为四种方式:前序遍历、中序遍历、后序遍历和层次遍历。

三、实验环境:1.编程语言:C++;2.编译器:Dev-C++。

四、实验内容:1.定义二叉树节点结构体:struct BinaryTreeNode{int data; // 节点数据BinaryTreeNode *leftChild; // 左子节点指针BinaryTreeNode *rightChild; // 右子节点指针};2.初始化二叉树:queue<BinaryTreeNode *> q; // 使用队列存储节点q.push(root);int i = 1; // 创建子节点while (!q.empty() && i < length){BinaryTreeNode *node = q.front();q.pop();if (data[i] != -1) // 创建左子节点 {BinaryTreeNode *leftChild = new BinaryTreeNode;leftChild->data = data[i];leftChild->leftChild = nullptr;leftChild->rightChild = nullptr;node->leftChild = leftChild;q.push(leftChild);}i++;if (data[i] != -1) // 创建右子节点 {BinaryTreeNode *rightChild = new BinaryTreeNode;rightChild->data = data[i];rightChild->leftChild = nullptr;rightChild->rightChild = nullptr;node->rightChild = rightChild;q.push(rightChild);}i++;}return root;}3.前序遍历二叉树:五、实验结果:输入:int data[] = {1, 2, 3, 4, -1, -1, 5, 6, -1, -1, 7, 8};输出:前序遍历结果:1 2 4 5 3 6 7 8中序遍历结果:4 2 5 1 6 3 7 8后序遍历结果:4 5 2 6 8 7 3 1层次遍历结果:1 2 3 4 5 6 7 8通过本次实验,我深入理解了二叉树的性质和遍历方式,并掌握了二叉树的基本操作。

数据结构二叉树的实验报告

数据结构二叉树的实验报告

数据结构二叉树的实验报告数据结构二叉树的实验报告一、引言数据结构是计算机科学中非常重要的一个领域,它研究如何组织和存储数据以便高效地访问和操作。

二叉树是数据结构中常见且重要的一种,它具有良好的灵活性和高效性,被广泛应用于各种领域。

本实验旨在通过实际操作和观察,深入了解二叉树的特性和应用。

二、实验目的1. 理解二叉树的基本概念和特性;2. 掌握二叉树的创建、遍历和查找等基本操作;3. 通过实验验证二叉树的性能和效果。

三、实验过程1. 二叉树的创建在实验中,我们首先需要创建一个二叉树。

通过输入一系列数据,我们可以按照特定的规则构建一棵二叉树。

例如,可以按照从小到大或从大到小的顺序将数据插入到二叉树中,以保证树的有序性。

2. 二叉树的遍历二叉树的遍历是指按照一定的次序访问二叉树中的所有节点。

常见的遍历方式有前序遍历、中序遍历和后序遍历。

前序遍历是先访问根节点,然后再依次遍历左子树和右子树;中序遍历是先遍历左子树,然后访问根节点,最后再遍历右子树;后序遍历是先遍历左子树,然后遍历右子树,最后访问根节点。

3. 二叉树的查找二叉树的查找是指在二叉树中寻找指定的节点。

常见的查找方式有深度优先搜索和广度优先搜索。

深度优先搜索是从根节点开始,沿着左子树一直向下搜索,直到找到目标节点或者到达叶子节点;广度优先搜索是从根节点开始,逐层遍历二叉树,直到找到目标节点或者遍历完所有节点。

四、实验结果通过实验,我们可以观察到二叉树的特性和性能。

在创建二叉树时,如果按照有序的方式插入数据,可以得到一棵平衡二叉树,其查找效率较高。

而如果按照无序的方式插入数据,可能得到一棵不平衡的二叉树,其查找效率较低。

在遍历二叉树时,不同的遍历方式会得到不同的结果。

前序遍历可以用于复制一棵二叉树,中序遍历可以用于对二叉树进行排序,后序遍历可以用于释放二叉树的内存。

在查找二叉树时,深度优先搜索和广度优先搜索各有优劣。

深度优先搜索在空间复杂度上较低,但可能会陷入死循环;广度优先搜索在时间复杂度上较低,但需要较大的空间开销。

北京理工大学数据结构实验报告3

北京理工大学数据结构实验报告3

《数据结构与算法统计》实验报告——实验三学院:班级:学号:姓名:一、实验目的1 熟悉VC环境,学会使用C++解决关于二叉树的问题。

2 在上机、调试的过程中,加强对二叉树的理解和运用。

3 锻炼动手编程和独立思考的能力。

二、实验内容遍历二叉树。

请输入一棵二叉树的扩展的前序序列,经过处理后生成一棵二叉树,然后对于该二叉树输出前序、中序和后序遍历序列。

三、程序设计1、概要设计为实现上述程序功能,首先需要二叉树的抽象数据结构。

⑴二叉树的抽象数据类型定义为:ADT BinaryTree {数据对象D:D是具有相同特性的数据元素的集合。

数据关系R:若D=Φ,则R=Φ,称BinaryTree为空二叉树;若D≠Φ,则R={H},H是如下二元关系;(1)在D中存在惟一的称为根的数据元素root,它在关系H下无前驱;(2)若D-{root}≠Φ,则存在D-{root}={D1,Dr},且D1∩Dr =Φ;(3)若D1≠Φ,则D1中存在惟一的元素x1,<root,x1>∈H,且存在D1上的关系H1 ⊆H;若Dr≠Φ,则Dr中存在惟一的元素xr,<root,xr>∈H,且存在上的关系Hr ⊆H;H={<root,x1>,<root,xr>,H1,Hr};(4)(D1,{H1})是一棵符合本定义的二叉树,称为根的左子树;(Dr,{Hr})是一棵符合本定义的二叉树,称为根的右子树。

基本操作:CreatBiTree(BiTree &T)操作结果:按先序次序建立二叉链表表示的二叉树TPreOrderTraverse(BiTree T,int (*visit)(char e))初始条件:二叉树T已经存在,visit是对结点操作的应用函数操作结果:先序遍历二叉树T ,对每个结点调用visit函数仅一次;一旦visit()失败,则操作失败。

InOrderTraverse(BiTree T,int (*visit)(char e))初始条件:二叉树T已经存在,visit是对结点操作的应用函数操作结果:中序遍历二叉树T ,对每个结点调用visit函数仅一次;一旦visit()失败,则操作失败。

数据结构实验报告—二叉树

数据结构实验报告—二叉树

数据结构实验报告—二叉树数据结构实验报告—二叉树引言二叉树是一种常用的数据结构,它由节点和边构成,每个节点最多有两个子节点。

在本次实验中,我们将对二叉树的基本结构和基本操作进行实现和测试,并深入了解它的特性和应用。

实验目的1. 掌握二叉树的基本概念和特性2. 熟练掌握二叉树的基本操作,包括创建、遍历和查找等3. 了解二叉树在实际应用中的使用场景实验内容1. 二叉树的定义和存储结构:我们将首先学习二叉树的定义,并实现二叉树的存储结构,包括节点的定义和节点指针的表示方法。

2. 二叉树的创建和初始化:我们将实现二叉树的创建和初始化操作,以便后续操作和测试使用。

3. 二叉树的遍历:我们将实现二叉树的前序、中序和后序遍历算法,并测试其正确性和效率。

4. 二叉树的查找:我们将实现二叉树的查找操作,包括查找节点和查找最大值、最小值等。

5. 二叉树的应用:我们将探讨二叉树在实际应用中的使用场景,如哈夫曼编码、二叉搜索树等。

二叉树的定义和存储结构二叉树是一种特殊的树形结构,它的每个节点最多有两个子节点。

节点被表示为一个由数据和指向其左右子节点的指针组成的结构。

二叉树可以分为三类:满二叉树、完全二叉树和非完全二叉树。

二叉树可以用链式存储结构或顺序存储结构表示。

- 链式存储结构:采用节点定义和指针表示法,通过将节点起来形成一个树状结构来表示二叉树。

- 顺序存储结构:采用数组存储节点信息,通过计算节点在数组中的位置来进行访问和操作。

二叉树的创建和初始化二叉树的创建和初始化是二叉树操作中的基础部分。

我们可以通过手动输入或读取外部文件中的数据来创建二叉树。

对于链式存储结构,我们需要自定义节点和指针,并通过节点的方式来构建二叉树。

对于顺序存储结构,我们需要定义数组和索引,通过索引计算来定位节点的位置。

一般来说,初始化一个二叉树可以使用以下步骤:1. 创建树根节点,并赋初值。

2. 创建子节点,并到父节点。

3. 重复步骤2,直到创建完整个二叉树。

数据结构二叉树的实验报告

数据结构二叉树的实验报告

数据结构实验报告1. 实验目的和内容:掌握二叉树基本操作的实现方法2. 程序分析2.1存储结构链式存储2.程序流程2.3关键算法分析算法一:Create(BiNode<T>* &R,T data[],int i,int n)【1】算法功能:创建二叉树【2】算法基本思想:利用顺序存储结构为输入,采用先建立根结点,再建立左右孩子的方法来递归建立二叉链表的二叉树【3】算法空间时间复杂度分析:O(n)【4】代码逻辑:如果位置小于数组的长度则{ 创建根结点将数组的值赋给刚才创建的结点的数据域创建左子树,如果当前结点位置为i,则左孩子位置为2i创建右子树,如果当前结点位置为i,则右孩子位置为2i+1}否则R为空算法二:CopyTree(BiNode<T>*sR,BiNode<T>* &dR))【1】算法功能:复制构造函数【2】算法基本思想:按照先创建根结点,再递归创建左右子树的方法来实现。

【3】算法空间时间复杂度分析:O(n)【4】代码逻辑:如果源二叉树根结点不为空则{创建根结点调用函数自身,创建左子树调用函数自身,创建右子树}将该函数放在复制构造函数中调用,就可以实现复制构造函数算法三:PreOrder(BiNode<T>*R)【1】算法功能:二叉树的前序遍历【2】算法基本思想:这个代码用的是优化算法,提前让当前结点出栈。

【3】算法空间时间复杂度分析:O(n)【4】代码逻辑(伪代码)如果当前结点为非空,则{访问当前结点当前结点入栈将当前结点的左孩子作为当前结点}如果为空{则栈顶结点出栈则将该结点的右孩子作为当前结点}反复执行这两个过程,直到结点为空并且栈空算法四:InOrder(BiNode<T>*R)【1】算法功能:二叉树的中序遍历【2】算法基本思想:递归【3】算法空间时间复杂度分析:未知【4】代码逻辑:如果R为非空:则调用函数自身遍历左孩子访问该结点再调用自身访问该结点的右孩子算法五:LevelOrder(BiNode<T>*R)【1】算法功能:二叉树的层序遍历【2】算法基本思想:【3】算法空间时间复杂度分析:O(n)【4】代码逻辑(伪代码):如果队列不空{对头元素出队访问该元素若该结点的左孩子为非空,则左孩子入队;若该结点的右孩子为非空,则右孩子入队;}算法六:Count(BiNode<T>*R)【1】算法功能:计算结点的个数【2】算法基本思想:递归【3】算法空间时间复杂度分析:未知【4】代码逻辑:如果R不为空的话{调用函数自身计算左孩子的结点数调用函数自身计算右孩子的结点数}template<class T>int BiTree<T>::Count(BiNode<T>*R){if(R==NULL)return 0;else{int m=Count(R->lchild);int n=Count(R->rchild);return m+n+1;}}算法七:Release(BiNode<T>*R)【1】算法功能:释放动态内存【2】算法基本思想:左右子树全部释放完毕后再释放该结点【3】算法空间时间复杂度分析:未知【4】代码逻辑:调用函数自身,释放左子树调用函数自身,释放右子树释放根结点释放二叉树template<class T>void BiTree<T>::Release(BiNode<T>*R) {if(R!=NULL){Release(R->lchild);Release(R->rchild);delete R;}}template<class T>BiTree<T>::~BiTree(){Release(root);}int main(){BiTree<int> BTree(a,10);BiTree<int>Tree(BTree);BTree.PreOrder(BTree.root);cout<<endl;Tree.PreOrder(Tree.root);cout<<endl;BTree.InOrder(BTree.root);cout<<endl;Tree.InOrder(Tree.root);cout<<endl;BTree.PostOrder(BTree.root);cout<<endl;Tree.PostOrder(Tree.root);cout<<endl;BTree.LevelOrder(BTree.root);cout<<endl;Tree.LevelOrder(Tree.root);cout<<endl;int m=BTree.Count(BTree.root);cout<<m<<endl;return 0;}3.测试数据:int a[10]={1,2,3,4,5};1 2 4 5 31 2 4 5 34 25 1 34 5 2 3 11 2 3 4 554.总结:4.1:这次实验大多用了递归的算法,比较好理解。

数据结构二叉树实验报告

数据结构二叉树实验报告

数据结构二叉树实验报告1. 引言二叉树是一种常见的数据结构,由节点(Node)和链接(Link)构成。

每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树在计算机科学中被广泛应用,例如在搜索算法中,二叉树可以用来快速查找和插入数据。

本实验旨在通过编写二叉树的基本操作来深入理解二叉树的特性和实现方式。

2. 实验内容2.1 二叉树的定义二叉树可以用以下方式定义:class TreeNode:def__init__(self, val):self.val = valself.left =Noneself.right =None每个节点包含一个值和两个指针,分别指向左子节点和右子节点。

根据需求,可以为节点添加其他属性。

2.2 二叉树的基本操作本实验主要涉及以下二叉树的基本操作:•创建二叉树:根据给定的节点值构建二叉树。

•遍历二叉树:将二叉树的节点按照特定顺序访问。

•查找节点:在二叉树中查找特定值的节点。

•插入节点:向二叉树中插入新节点。

•删除节点:从二叉树中删除特定值的节点。

以上操作将在下面章节详细讨论。

3. 实验步骤3.1 创建二叉树二叉树可以通过递归的方式构建。

以创建一个简单的二叉树为例:def create_binary_tree():root = TreeNode(1)root.left = TreeNode(2)root.right = TreeNode(3)root.left.left = TreeNode(4)root.left.right = TreeNode(5)return root以上代码创建了一个二叉树,根节点的值为1,左子节点值为2,右子节点值为3,左子节点的左子节点值为4,左子节点的右子节点值为5。

3.2 遍历二叉树二叉树的遍历方式有多种,包括前序遍历、中序遍历和后序遍历。

以下是三种遍历方式的代码实现:•前序遍历:def preorder_traversal(root):if root:print(root.val)preorder_traversal(root.left)preorder_traversal(root.right)•中序遍历:def inorder_traversal(root):if root:inorder_traversal(root.left)print(root.val)inorder_traversal(root.right)•后序遍历:def postorder_traversal(root):if root:postorder_traversal(root.left)postorder_traversal(root.right)print(root.val)3.3 查找节点在二叉树中查找特定值的节点可以使用递归的方式实现。

数据结构二叉树综合实验报告

数据结构二叉树综合实验报告

数据结构二叉树综合实验报告数据结构二叉树综合实验报告1.引言在计算机科学中,二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树具有广泛的应用场景,如在搜索算法、图形处理和编译器设计中等。

本报告旨在介绍我们进行的二叉树综合实验,包括实验目的、实验过程中的具体步骤和实验结果分析等。

2.实验目的本实验的主要目的是通过设计和实现二叉树的基本操作,加深对二叉树的理解,并掌握二叉树的基本算法和应用。

具体的实验目标包括:- 熟悉二叉树的基本概念和性质;- 掌握二叉树的创建、插入和删除操作;- 实现二叉树的遍历算法,包括前序、中序和后序遍历;- 实现二叉树的搜索功能;- 进行基于二叉树的排序实验。

3.实验步骤3.1 二叉树的创建首先,我们需要创建一个空的二叉树。

通过定义二叉树的节点结构和指针,可以动态地分配内存空间用于创建节点,并建立节点之间的连接关系。

3.2 节点的插入在已有的二叉树中,我们可以向其中插入新的节点。

插入操作通常涉及到比较节点的键值大小,然后根据比较结果决定插入新节点的位置。

3.3 节点的删除除了插入节点,我们也可能需要从二叉树中删除节点。

删除操作通常需要考虑节点的子节点情况,例如,被删除的节点是否有左子节点、右子节点或者同时存在。

3.4 二叉树的遍历二叉树的遍历操作可以按照不同的顺序进行,包括前序(根-左-右)、中序(左-根-右)和后序(左-右-根)遍历。

在实验中,我们需要实现这三种遍历算法,并观察它们的输出结果。

3.5 二叉树的搜索在已有的二叉树中,我们可根据节点的键值进行搜索操作。

通过比较键值,我们可以判断在左子树或右子树中进行进一步的搜索,直至找到目标节点或确定目标节点不存在于二叉树中。

3.6 基于二叉树的排序二叉树可以作为一种排序算法的基础结构。

在实验中,我们可以通过节点的插入操作构建一个包含数据集的二叉树,并通过中序遍历获取有序的数据。

数据结构实验报告-树(二叉树)

数据结构实验报告-树(二叉树)

实验5:树(二叉树)(采用二叉链表存储)一、实验项目名称二叉树及其应用二、实验目的熟悉二叉树的存储结构的特性以及二叉树的基本操作。

三、实验基本原理之前我们都是学习的线性结构,这次我们就开始学习非线性结构——树。

线性结构中结点间具有唯一前驱、唯一后继关系,而非线性结构中结点的前驱、后继的关系并不具有唯一性。

在树结构中,节点间关系是前驱唯一而后继不唯一,即结点之间是一对多的关系。

直观地看,树结构是具有分支关系的结构(其分叉、分层的特征类似于自然界中的树)。

四、主要仪器设备及耗材Window 11、Dev-C++5.11五、实验步骤1.导入库和预定义2.创建二叉树3.前序遍历4.中序遍历5.后序遍历6.总结点数7.叶子节点数8.树的深度9.树根到叶子的最长路径10.交换所有节点的左右子女11.顺序存储12.显示顺序存储13.测试函数和主函数对二叉树的每一个操作写测试函数,然后在主函数用while+switch-case的方式实现一个带菜单的简易测试程序,代码见“实验完整代码”。

实验完整代码:#include <bits/stdc++.h>using namespace std;#define MAX_TREE_SIZE 100typedef char ElemType;ElemType SqBiTree[MAX_TREE_SIZE];struct BiTNode{ElemType data;BiTNode *l,*r;}*T;void createBiTree(BiTNode *&T){ElemType e;e = getchar();if(e == '\n')return;else if(e == ' ')T = NULL;else{if(!(T = (BiTNode *)malloc(sizeof (BiTNode)))){cout << "内存分配错误!" << endl;exit(0);}T->data = e;createBiTree(T->l);createBiTree(T->r);}}void createBiTree2(BiTNode *T,int u) {if(T){SqBiTree[u] = T->data;createBiTree2(T->l,2 * u + 1);createBiTree2(T->r,2 * u + 2); }}void outputBiTree2(int n){int cnt = 0;for(int i = 0;cnt <= n;i++){cout << SqBiTree[i];if(SqBiTree[i] != ' ')cnt ++;}cout << endl;}void preOrderTraverse(BiTNode *T) {if(T){cout << T->data;preOrderTraverse(T->l);preOrderTraverse(T->r);}}void inOrderTraverse(BiTNode *T) {if(T){inOrderTraverse(T->l);cout << T->data;inOrderTraverse(T->r);}}void beOrderTraverse(BiTNode *T){if(T){beOrderTraverse(T->l);beOrderTraverse(T->r);cout << T->data;}}int sumOfVer(BiTNode *T){if(!T)return 0;return sumOfVer(T->l) + sumOfVer(T->r) + 1;}int sumOfLeaf(BiTNode *T){if(!T)return 0;if(T->l == NULL && T->r == NULL)return 1;return sumOfLeaf(T->l) + sumOfLeaf(T->r);}int depth(BiTNode *T){if(!T)return 0;return max(depth(T->l),depth(T->r)) + 1;}bool LongestPath(int dist,int dist2,vector<ElemType> &ne,BiTNode *T) {if(!T)return false;if(dist2 == dist)return true;if(LongestPath(dist,dist2 + 1,ne,T->l)){ne.push_back(T->l->data);return true;}else if(LongestPath(dist,dist2 + 1,ne,T->r)){ne.push_back(T->r->data);return true;}return false;}void swapVer(BiTNode *&T){if(T){swapVer(T->l);swapVer(T->r);BiTNode *tmp = T->l;T->l = T->r;T->r = tmp;}}//以下是测试程序void test1(){getchar();cout << "请以先序次序输入二叉树结点的值,空结点用空格表示:" << endl; createBiTree(T);cout << "二叉树创建成功!" << endl;}void test2(){cout << "二叉树的前序遍历为:" << endl;preOrderTraverse(T);cout << endl;}void test3(){cout << "二叉树的中序遍历为:" << endl;inOrderTraverse(T);cout << endl;}void test4(){cout << "二叉树的后序遍历为:" << endl;beOrderTraverse(T);cout << endl;}void test5(){cout << "二叉树的总结点数为:" << sumOfVer(T) << endl;}void test6(){cout << "二叉树的叶子结点数为:" << sumOfLeaf(T) << endl; }void test7(){cout << "二叉树的深度为:" << depth(T) << endl;}void test8(){int dist = depth(T);vector<ElemType> ne;cout << "树根到叶子的最长路径:" << endl;LongestPath(dist,1,ne,T);ne.push_back(T->data);reverse(ne.begin(),ne.end());cout << ne[0];for(int i = 1;i < ne.size();i++)cout << "->" << ne[i];cout << endl;}void test9(){swapVer(T);cout << "操作成功!" << endl;}void test10(){memset(SqBiTree,' ',sizeof SqBiTree);createBiTree2(T,0);cout << "操作成功!" << endl;}void test11(){int n = sumOfVer(T);outputBiTree2(n);}int main(){int op = 0;while(op != 12){cout << "-----------------menu--------------------" << endl;cout << "--------------1:创建二叉树--------------" << endl;cout << "--------------2:前序遍历----------------" << endl;cout << "--------------3:中序遍历----------------" << endl;cout << "--------------4:后序遍历----------------" << endl;cout << "--------------5:总结点数----------------" << endl;cout << "--------------6:叶子节点数--------------" << endl;cout << "--------------7:树的深度----------------" << endl;cout << "--------------8:树根到叶子的最长路径----" << endl;cout << "--------------9:交换所有节点左右子女----" << endl;cout << "--------------10:顺序存储---------------" << endl;cout << "--------------11:显示顺序存储-----------" << endl;cout << "--------------12:退出测试程序-----------" << endl;cout << "请输入指令编号:" << endl;if(!(cin >> op)){cin.clear();cin.ignore(INT_MAX,'\n');cout << "请输入整数!" << endl;continue;}switch(op){case 1:test1();break;case 2:test2();break;case 3:test3();break;case 4:test4();break;case 5:test5();break;case 6:test6();break;case 7:test7();break;case 8:test8();break;case 9:test9();break;case 10:test10();break;case 11:test11();break;case 12:cout << "测试结束!" << endl;break;default:cout << "请输入正确的指令编号!" << endl;}}return 0;}六、实验数据及处理结果测试用例:1.创建二叉树(二叉链表形式)2.前序遍历3.中序遍历4.后序遍历5.总结点数6.叶子结点数7.树的深度8.树根到叶子的最长路径9.交换所有左右子女10.顺序存储七、思考讨论题或体会或对改进实验的建议通过这次实验,我掌握了二叉树的顺序存储和链式存储,体会了二叉树的存储结构的特性,掌握了二叉树的树上相关操作。

数据结构实验报告(二叉树的基本操作)

数据结构实验报告(二叉树的基本操作)
else if((root->LChild==NULL)&&(root->RChild==NULL)) LeafNum=1;
else LeafNum=LeafCount(root->LChild)+LeafCount(root->RChild);
//叶子数为左右子树数目之和
return LeafNum;
printf("\n菜单选择\n\n");
printf(" 1.树状输出二叉树2.先序遍历二叉树\n");
printf(" 3.中序遍历二叉树4.后序遍历二叉树\n");
printf(" 5.输出叶子结点6.输出叶子结点的个数\n");
printf(" 7.输出二叉树的深度8.退出\n");
printf("\n----------------------------------------------------------------------\n");
{
printf("\n\n");
j=j+1; k=0;
while(k<nlocate)
{
printf(" ");
k++;
}
}
while(k<(nlocate-1))
{
printf(" ");
k++;
}
printf("%c",bt->data );
q.front=q.front+1;
if(bt->LChild !=NULL)//存在左子树,将左子树根节点入队列

数据结构之二叉树编程实验报告

数据结构之二叉树编程实验报告

实验报告:二叉树题目:建立一棵二叉树,数据以字符串形式从键盘输入,在此二叉树上完成:(1)前序、中序、后序遍历(2)求出叶子数(3)求树高(4)左右子树交换,输出交换后的前序、中序遍历序列分析:建树:输入的字符串序列为带有空节点的前序遍历序列(空节点用*表示)。

①:前序,中序,后序遍历:递归遍历②:求叶子数:当一个节点的左右孩子都是NULL时,此节点即为叶子节点。

③:求树高当前节点的树高等于其左右孩子树高大的加1。

④:左右子树交换:对于每个节点,将其左右孩子交换,再递归对其左右子树交换。

测试结果:附:源码#include <iostream>#include <stdlib.h>using namespace std;struct Bintree{char data;Bintree* lchild;Bintree* rchild;};Bintree *head;int sp;/* 已知一棵二叉树的前序序列,建立这棵树*/ void CreateTree(Bintree *&p,char a[]){Bintree *temp;if(a[sp]!=0){if(a[sp]=='*'){p=NULL;sp++;return ;}p=new Bintree;p->data=a[sp++];CreateTree(p->lchild,a);CreateTree(p->rchild,a);}else p=NULL;}/* 求一棵树的高度*/int Depth(Bintree *&t){int lh , rh ;if( t == NULL ){return 0 ;}else{lh = Depth( t->lchild ) ;rh = Depth( t->rchild ) ;return ( lh > rh ? lh : rh ) + 1 ;}}/* 将二叉树的左右子树互换*/ void Exchange1(Bintree *&t){Bintree *temp;if(t){Exchange1(t->lchild);Exchange1(t->rchild);temp=t->lchild;t->lchild=t->rchild;t->rchild=temp;}}/* 按照前序递归遍历二叉树*/ void Preorder1(Bintree *&t){if(t!=NULL){printf("%c",t->data);Preorder1(t->lchild);Preorder1(t->rchild);}}/* 按照中序递归遍历二叉树*/ void Inorder1(Bintree *&t){if(t!=NULL){Inorder1(t->lchild);printf("%c",t->data);Inorder1(t->rchild);}}/* 按照后序递归遍历二叉树*/void Posorder1(Bintree *&t){if(t!=NULL){Posorder1(t->lchild);Posorder1(t->rchild);printf("%c",t->data);}}/* 递归法求叶子结点个数*/int Leaves_Num1(Bintree *&t){if(t){if(t->lchild==NULL&&t->rchild==NULL){return 1;}return Leaves_Num1(t->lchild)+Leaves_Num1(t->rchild);}return 0;}/*******************************************/int main (){char a[100];memset(a,0,sizeof(a));cout<<"输入带有空节点的前序遍历序列(空节点用*表示)"<<endl;cin>>a;sp=0;CreateTree(head,a);cout<<"前序遍历:"<<endl;Preorder1(head);cout<<endl;cout<<"中序遍历:"<<endl;Inorder1(head);cout<<endl;cout<<"后序遍历:"<<endl;Posorder1(head);cout<<endl;cout<<"叶子数:"<<Leaves_Num1(head)<<endl;cout<<"树高:"<<Depth(head)<<endl;cout<<"左右子树交换后"<<endl;Exchange1(head);cout<<"前序遍历:"<<endl;Preorder1(head);cout<<endl;cout<<"中序遍历:"<<endl;Inorder1(head);cout<<endl;cout<<"后序遍历:"<<endl;Posorder1(head);cout<<endl;return 0;}。

数据结构实习报告---二叉树

数据结构实习报告---二叉树

数据结构实习报告---二叉树二叉树一、需求分析1、设计任务建立一棵二叉树,数据以字符串形式从键盘输入。

在此二叉树上完成:(1)前序、中序、后序遍历(2)求出叶子数(3)求树高(4)左右子树交换,输出交换后的前序、中序遍历序列选做:(1)给出非递归的后序遍历(2)扩充为中序线索树,写出非递归的中序遍历(3)在两个数组中分别有前序和中序遍历序列,试建立该二叉树2、输入的形式和输出值的范围二叉树的建立:本程序的二叉树的建立函数时根据二叉树的前序排列生成的,但是其中子树为空地方用特殊符号“*”代替。

二叉树的输出值的范围:二叉树的输出是把二叉树各节点的值按遍历顺序输出的,本程序各节点的数据类型为字符型(可以在编译预处理修改)。

3、输出的形式二叉树的输出是根据二叉树的遍历顺序输出的(包括前序、中序和后序三种)把各节点地值输出。

4、程序所能达到的功能本程序能够实现对二叉树的一些简单操作,例如二叉树的各种遍历(包括二叉树的前序、中序和后序的递归遍历以及非递归遍历)、求二叉树的叶子数和高以及二叉树的左右子树交换。

5、测试数据(1)当为二叉树一时:(2)当为二叉树二时:二、概要设计1、树结点结构体typedef char DataType; struct TreeNode{DataType data;TreeNode *lchild,*rchild;};2、棧结点结构体struct StackNode{TreeNode* T_N;int Flag;};3、主程序流程主程序开始;调用CreateBiTree(TreeNode *&Tree)函数建立二叉树;依次调用前序、中序和后序递归及非递归遍历二叉树;计算二叉树的树叶和树高;交换二叉树的左右子树;依次用前序、中序和后序的递归和非递归方法遍历二叉树;主程序结束;三、详细设计(1)递归遍历的实现(以前序为例);算法为:先访问根结点,然后递归的访问左子树和右子树。

数据结构实验报告二叉树

数据结构实验报告二叉树

数据结构实验报告二叉树二叉树是一种重要的数据结构,广泛应用于计算机科学和算法设计中。

在本次实验中,我们通过实际编程实践,深入理解了二叉树的基本概念、性质和操作。

一、二叉树的定义和基本性质二叉树是一种特殊的树结构,每个节点最多有两个子节点。

它具有以下基本性质:1. 根节点:二叉树的顶部节点称为根节点,它没有父节点。

2. 子节点:每个节点最多有两个子节点,分别称为左子节点和右子节点。

3. 叶节点:没有子节点的节点称为叶节点。

4. 深度:从根节点到某个节点的路径长度称为该节点的深度。

5. 高度:从某个节点到其叶节点的最长路径长度称为该节点的高度。

6. 层次遍历:按照从上到下、从左到右的顺序遍历二叉树的节点。

二、二叉树的实现在本次实验中,我们使用C++语言实现了二叉树的基本操作,包括创建二叉树、插入节点、删除节点、查找节点等。

通过这些操作,我们可以方便地对二叉树进行增删改查。

三、二叉树的遍历二叉树的遍历是指按照某种顺序访问二叉树的所有节点。

常用的遍历方式有三种:前序遍历、中序遍历和后序遍历。

1. 前序遍历:先访问根节点,然后依次递归遍历左子树和右子树。

2. 中序遍历:先递归遍历左子树,然后访问根节点,最后递归遍历右子树。

3. 后序遍历:先递归遍历左子树,然后递归遍历右子树,最后访问根节点。

四、二叉树的应用二叉树在计算机科学和算法设计中有广泛的应用。

以下是一些常见的应用场景:1. 二叉搜索树:二叉搜索树是一种特殊的二叉树,它的左子树的值都小于根节点的值,右子树的值都大于根节点的值。

它可以高效地支持插入、删除和查找操作,常用于有序数据的存储和检索。

2. 堆:堆是一种特殊的二叉树,它的每个节点的值都大于(或小于)其子节点的值。

堆常用于实现优先队列等数据结构。

3. 表达式树:表达式树是一种用二叉树表示数学表达式的方法。

通过对表达式树的遍历,可以实现对数学表达式的计算。

4. 平衡树:平衡树是一种特殊的二叉树,它的左右子树的高度差不超过1。

北京理工大学 数据结构 实验报告 实验二 简易计算器

北京理工大学 数据结构 实验报告 实验二  简易计算器

实验二简易计算器姓名:任子龙学号:1120140167 班级:05111451一.需求分析1.程序要求可对一实数算术表达式进行简单的数学运算,可以识别带+、-、*、/、%、^(乘方)等等运算符及括号的中缀表达式,从键盘上输入一算术表达式(一般为中缀表达式),计算出表达式的值。

2.按照四则运算规则,求表达式的值。

一般规则如下:1)先括号内,再括号外。

2)先乘方,再乘除,后加减。

b.同级运算从左到右顺序执行。

3.有良好的提示信息,引导用户在键盘上输入规定的运算指令;如表达式有误,也应给出相应的提示信息。

4.建立两个工作栈,分别保存运算符,操作数或运算结果。

二.概要设计1.抽象数据类型的定义为实现上述功能,建立两个工作栈;算符为字符型变量,算数为单精度浮点型变量,则需要定义两种数据类型分别存储。

typedef struct StackChar{char c;struct StackChar*next;}SC;typedef struct StackFloat{float f;}SF;2.本程序包含两个模块(1)主程序模块主函数只包含了输入输出部分。

流程为:首先输入算式,然后调用算符优先算法函数EvaluateExpression(s)进行计算,结果输出;然后循环下去,直到输入OUT指令,退出程序;(2)链栈单元模块——实现栈的链式存储的抽象数据类型。

各函数之间的调用关系:三.详细设计1.结点类型typedef struct StackChar{char c;struct StackChar*next;}SC;float f;struct StackFloat*next;}SF;2.子函数(1)算符优先算法的主干函数float EvaluateExpression(char*e)实现算符优先算法主干的函数。

首先判断是算符还是算数,如果是算符,与算符栈栈顶元素进行优先级比较,如果该算符优先级比原栈顶元素优先级高,则进栈,否则进行运算;如果是算数,则入算数栈。

数据结构实验报告—二叉树

数据结构实验报告—二叉树

《算法与数据结构》课程实验报告一、实验目的1、实现二叉树的存储结构2、熟悉二叉树基本术语的含义3、掌握二叉树相关操作的具体实现方法二、实验内容及要求1. 建立二叉树2. 计算结点所在的层次3. 统计结点数量和叶结点数量4. 计算二叉树的高度5. 计算结点的度6. 找结点的双亲和子女7. 二叉树前序、中序、后序遍历的递归实现和非递归实现及层次遍历8. 二叉树的复制9. 二叉树的输出等三、系统分析(1)数据方面:该二叉树数据元素采用字符char型,并且约定“#”作为二叉树输入结束标识符。

并在此基础上进行二叉树相关操作。

(2)功能方面:能够实现二叉树的一些基本操作,主要包括:1.采用广义表建立二叉树。

2.计算二叉树高度、统计结点数量、叶节点数量、计算每个结点的度、结点所在层次。

3.判断结点是否存在二叉树中。

4.寻找结点父结点、子女结点。

5.递归、非递归两种方式输出二叉树前序、中序、后序遍历。

6.进行二叉树的复制。

四、系统设计(1)设计的主要思路二叉树是的结点是一个有限集合,该集合或者为空,或者是由一个根节点加上两棵分别称为左子树和右子树、互不相交的二叉树组成。

根据实验要求,以及课上老师对于二叉树存储结构、基本应用的讲解,同时课后研究书中涉及二叉树代码完成二叉树模板类,并将所需实现各个功能代码编写完成,在建立菜单对功能进行调试。

(2)数据结构的设计二叉树的存储结构有数组方式和链表方式。

但用数组来存储二叉树有可能会消耗大量的存储空间,故在此选用链表存储,提高存储空间的利用率。

根据二叉树的定义,二叉树的每一个结点可以有两个分支,分别指向结点的左、右子树。

因此,二叉树的结点至少应包括三个域,分别存放结点的数据,左子女结点指针,右子女结点指针。

这将有利于查找到某个结点的左子女与右子女,但要找到它的父结点较为困难。

该实验采取二叉链表存储二叉树中元素,具体二叉树链表表示如下图所示。

图1二叉树的链表表示(3)基本操作的设计二叉树关键主要算法:利用广义表进行二叉树的建立。

北京理工大学数据结构实验三报告

北京理工大学数据结构实验三报告

} top++; stack[top]=ch; } else if(ch=='^'||ch=='%') { while(stack[top]=='^'||stack[top]=='%') { exp[t]=stack[top]; top--; t++; } top++; stack[top]=ch; } else if(ch=='*'||ch=='/') { while(stack[top]=='*'||stack[top]=='/') { exp[t]=stack[top]; top--; t++; } top++; stack[top]=ch; } else { // printf("第%d 个数开始出错!\n",i+1); judge=1; flag=0; break; } i++; ch=str[i]; } if(k!=l) { printf("括号不匹配!\n"); judge=1; flag=0; } else if (str[zs-1]=='+'||str[zs-1]=='-'||str[zs-1]=='*'||str[zs-1]== '/')
二叉树中不存在度大于 2 的结点) ,并且,二叉树的子树有左右之分, 其次序不能任意颠倒。 4. 二叉树的性质 (1)在二叉树的第 i 层上至多有 个结点(i≥1) 。
(2)深度为 k 的二ቤተ መጻሕፍቲ ባይዱ树至多有
个结点(k≥1) 。

数据结构实验三二叉树实验报告

数据结构实验三二叉树实验报告

数据结构实验报告实验名称:实验三——二叉树学生姓名: XX班级:班内序号:学号:日期:1.实验要求1.1实验目的通过选择下面两个题目之一进行实现,掌握如下内容:掌握二叉树基本操作的实现方法了解赫夫曼树的思想和相关概念学习使用二叉树解决实际问题的能力1.2实验内容根据二叉树的抽象数据类型的定义,使用二叉链表实现一个二叉树。

二叉树的基本功能:1、二叉树的建立2、前序遍历二叉树3、中序遍历二叉树4、后序遍历二叉树5、按层序遍历二叉树6、求二叉树的深度7、求指定结点到根的路径8、二叉树的销毁9、其他:自定义操作编写测试main()函数测试线性表的正确性2. 程序分析2.1 存储结构二叉树的结点结构二叉树的二叉链表存储示意图2.2 关键算法分析(1)创建一个二叉树伪代码实现:1.定义根指针,输入节点储存的data,若输入“#”,则该节点为空;2.申请一个新节点,判断它的父结点是否不为空,如果不为空在判断其为左或者右孩子,并把地址付给父结点,把data写入。

代码实现void BiTree::create(BiNode* &R,int data[],int i,int n)//创建二叉树{if(i<=n){R=new BiNode;R->data=data[i-1];create(R->lch,data,2*i,n);create(R->rch,data,2*i+1,n);}else R=NULL;}(2)前序遍历伪代码实现:1.设置递归边界条件:if root==null则停止递归2.打印起始节点的值,并先后在左子数右子数上递归调用打印函数代码实现void BiTree::preorder(BiNode* R)//前序遍历{if(R!=NULL){cout<<R->data;preorder(R->lch);preorder(R->rch);}}时间复杂度:O(n)(3)中序遍历伪代码实现:1.设置递归边界条件:if root==null则停止递归2.递归遍历左子树3.打印根节点数据域内容4.递归遍历右子树代码实现void BiTree::inorder(BiNode* R)//中序遍历{if(R!=NULL){inorder(R->lch);cout<<R->data;inorder(R->rch);}}时间复杂度:O(n)(4)后序遍历伪代码实现:1.设置递归边界条件:if root==null则停止递归2.递归遍历左子树3.递归遍历右子树4.访问根结点数据域代码实现void BiTree::postorder(BiNode* R)//后序遍历{if(R!=NULL){postorder(R->lch);postorder(R->rch);cout<<R->data;}}时间复杂度:O(n)(5)层序遍历伪代码实现1.队列Q及所需指针的定义和初始化2.如果二叉树非空,将根指针入队3.循环直到队列Q为空3.1 q=队列Q的队头元素出队3.2 访问节点q的数据域 cout<<q->data<<" ";3.3 若节点q存在左孩子,则将左孩子指针入队3.4若节点q存在右孩子,则将右孩子指针入队代码实现void BiTree::levelordre(BiNode* R)//层序遍历{BiNode*queue[maxsize];int f=0,r=0;if(R!=NULL)queue[++r]=R;while(f!=r){BiNode*p=queue[++f];cout<<p->data;if(p->lch!=NULL)queue[++r]=p->lch;if(p->rch!=NULL)queue[++r]=p->rch;}}时间复杂度:O(n)(6)计算二叉树深度伪代码实现:1. 定义和初始化计数深度的参数2.如果根节点为空,return03.如果根节点为非空,递归调用自身的到叶子节点到根的路径长度,输出其中较大的作为树的深度代码实现int BiTree::depth(BiNode* root)//求二叉树深度{int ld,rd;if (root!=NULL){ld = 1+depth(root->lch);rd = 1+depth(root->rch);return ld>rd?ld:rd;}else return 0;}时间复杂度:O(n)(7)输出指定结点到根结点的路径伪代码实现:1.建立一个存储路径结点结构,定义和初始化结构体的数组2.当root不为空或top为0时,进入循环3.当此时root所指的节点的数据不为指定数据时,将root指向它的左孩子4.当此时root所指的节点的数据为指定数据时,访问其数据域并输出代码实现bool BiTree::printPath(BiNode* root, int data)//打印指定结点到根节点的路径{if (root == NULL)return false;if (root->data == data || printPath(root->lch,data) ||printPath(root->rch,data)){cout<<root->data;return true;}return false;}3. 程序运行结果3.1测试主函数流程图:3.2测试条件对如下二叉树: 补全后的二叉树:按层序遍历的输入方法为:ABC#EFGH###I###J###@ 3.3程序运行结果为:4. 总结出现的问题及改进:刚开始编译正确但是输出结果异常,纪念馆仔细检查发现二叉树创建有问题,经过仔细修改,发现形参表示错误,*&,指针的引用,作为输入时,既把指针的值传入函数内部,又可以将指针的关系传递到函数内部;作为输出,由于算法中修改了指针的值,可以将新值传入到函数内部。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据结构实验报告三——简易计算器(二叉树)姓名:任子龙学号:1120140167 班级:05111451一、需求分析(1)问题描述由键盘输入一算术表达式,以中缀形式输入,试编写程序将中缀表达式转换成一棵二叉表达式树,通过对该二叉树的后序遍历求出计算表达式的值。

(2)基本要求a.要求对输入的表达式能判断出是否合法,不合法要有错误提示信息。

b.将中缀表达式转换成二叉表达式树。

c.后序遍历求出表达式的值。

(3)数据结构与算法分析一棵表达式树,它的树叶是操作数,如常量或变量名字,而其他的结点为操作符。

a.建立表达式树。

二叉树的存储可以用顺序存储也可用链式存储。

当要创建二叉树时,先从表达式尾部向前搜索,找到第一个优先级最低的运算符,建立以这个运算符为数据元素的根结点。

注意到表达式中此运算符的左边部分对应的二叉绔为根结点的左子树,右边部分对应的是二叉绔为根结点的右子树,根据地这一点,可用递归调用自己来完成对左右子树的构造。

b.求表达式的值。

求值时同样可以采用递归的思想,对表达式进行后序遍历。

先递归调用自己计算左子树所代表的表达式的值,再递归调用自己计算右子树代表的表达式的值,最后读取根结点中的运算符,以刚才得到的左右子树的结果作为操作数加以计算,得到最终结果。

(4)测试a.加减运算输入:6+9-5 输出:10b.乘除运算输入:5.6*2.7/2 输出:7.56c.四则混合运算输入:(2+3)*8-3/2 输出:23.5d.非法输入输入:(5+6(*5 输出:括号不匹配!1.2问题分析与之前利用栈实现计算器功能不同,本实验采取的方法是:将中缀表达式转换成一棵二叉表达式树,通过对该树的后序遍历求出计算表达式的值。

所以,实验的重点是如何“将中缀表达式转换成一棵二叉表达式树”;如上图所示,该二叉表达式树表示的是计算式(5+2)*3。

可以看出,操作数均为叶子结点,其它结点为操作符;构建二叉树的整体思路是:(1)将中缀表达式转化为后缀表达式;(2)利用(1)中的后缀表达式,在此基础上构建二叉表达式树。

最后的求值,可以通过递归调用函数,后序遍历二叉树来完成。

二、概要设计2.1抽象数据类型定义本程序主要用到的数据结构是二叉链表,所以先行定义链表结点,其中每一个节点包含两个数据域和两个指针域,数据域分别存放char 型变量和float型变量,相对应是运算符和操作数;指针域分别指向两个左右孩子。

struct node{char data;float number;struct node *left;struct node *right;};另外,考虑到程序还需转换后缀表达式,所以又建立了另一种结点类型变量,并定义其类型的数组array[20]:struct oprtnumber{char sign; //存放符号型变量float number; //存放浮点数}array[20];2.2主程序流程主函数流程如下:int main(){char *b,a[100],*t;b=convert(); //中缀表达式转为反序后缀表达式do{ 完成反序后缀式的逆向;}T=create(T,a); //create()函数创建二叉链表postordertraverse(T);//后序遍历进行计算输出结果;} //main2.3程序模块调用关系具体关系如下图所示:三、详细设计3.1主函数的具体过程int main(){ struct node *T;flag=0;T=(struct node *)malloc(sizeof(struct node));char *b,a[100],*t;int i; b=convert(); //中缀表达式转为反序后缀表达式for(t=b;*t!='\0';t++);i=0;do{ t--;a[i]=*t; i++;}while(t!=b);a[i]='\0';//完成反序后缀式的逆向T=create(T,a); //create()函数创建二叉链表postordertraverse(T);//后序遍历进行计算printf("%g",result); //输出结果return 0;} //main3.2其它函数的具体实现char *convert();//将运算式转换成逆后缀序列,并将该序列作为返回值;首先输入运算式,判断是否为数字,将数字存入数组的数值域,并用符号代替数值,产生新的用符号表示的运算式。

然后用字符优先算法将算式转换为逆后缀式,将数组首地址传回给主函数。

并且在输入不合法时给予错误提示。

struct node *create(struct node *T,char d[]);//建立二叉链表,并返回根结点void postordertraverse(struct node *e);//进行后序遍历,运用了递归的思想,实际上调用operation函数进行计算float operation(float a,float b,char c);//四则运算函数,主要实现运算功能int in(char c);//判断是否为运算符,是运算符返回1部分函数的代码如下:(1)create函数struct node *create(struct node *T,char d[]){ //建立二叉链表,并返回根结点int i;if(d[w]>='A'&&d[w]<='Z'){T->data=d[w];for(i=0;array[i].sign!='\0';i++){if(array[i].sign==d[w]){ T->number=array[i].number;break;} }T->left=NULL; T->right=NULL; w++;}else{if(flag==0)flag=1;elseT=(struct node *)malloc(sizeof(struct node ));(T)->data=d[w];w++;T->left=(struct node *)malloc(sizeof(struct node ));T->right=(struct node *)malloc(sizeof(struct node ));T->right=create((T)->right,d);T->left=create((T)->left,d);}return T;} //create(2)operation函数float operation(float a,float b,char c){ //四则运算函数,主要实现运算功能switch(c) {case '+':return a+b;case '-':return a-b;case '*':return a*b;case '/':return a/b;default :printf("运算符错误!\n"); exit(0);} }//operation(3)in函数int in(char c){ //判断是否为运算符,是运算符返回1;否则返回0 if(c=='+'||c=='-'||c=='*'||c=='/'||c=='('||c==')')return 1;else return 0;}//in四、调试分析4.1难点以及困难1.由于本次试验做过堆栈式计算器,思维存在惯性,打不开新思路;2.建立二叉链表是最重要的环节,而在这之前,必须先得到后缀表达式,由于之前没有接触过后缀表达式,从而给变成造成了困难。

即涉及char型和float型变量统一化,又有算符优先级的判别。

3.二叉链表的建立,要利用好优先级,以及注意操作数为叶子节点这一特点。

4.2经验与体会1.算式计算的问题是一个非常经典的题目。

之前用栈来实现的。

但是用栈来实现是一个非常麻烦的过程,第一要解决算式判断,是否为符合规则的算式,第二要由中缀表达式转化为后缀表达式。

这两个部分是栈实现计算算式表达式的比较复杂的地方。

不仅如此,栈实现里面的各种运算符的优先级,各种条件判断,可以说是麻烦的要命。

相比之下,用二叉树免除了算式表达式的检查过程。

并不是不需要检查,而是检查的过程就包含在创建二叉树的过程。

认真分析,我们会发现,所有的叶子结点必须是操作数结点,而所有的非叶子结点必须是运算符结点,否则表达式的结构一点不正确,创建二叉树的过程就可以对表达式经行检查。

2.总结一句就是:好的数据结构能事半功倍,要培养善于发现的思维,当有某个思路然后去实现它,另外要积累经验。

好好理解数据结构!五、测试结果1.加减运算输入:6+9-5 输出:102.乘除运算输入:5.6*2.7/2 输出:7.563.四则混合运算输入:(2+3)*8-3/2 输出:23.54.非法输入输入:(5+6(*5 输出:括号不匹配!六、附录#include<stdio.h>#include<string.h>#include<stdlib.h>#include<math.h>struct node{char data;float number;struct node *left;struct node *right;};struct oprtnumber{char sign;float number;}array[20];/*函数声明*/char *convert();//将运算式转换成逆后缀序列struct node *create(struct node *T,char d[]);//建立二叉链表void postordertraverse(struct node *e);//进行后序遍历float operation(float a,float b,char c); //四则运算函数int in(char c);//判断是否为运算符,是运算符返回1/*定义全局变量*/int w,flag;float result=0;float operation(float a,float b,char c){ switch(c) {case '+':return a+b;case '-':return a-b;case '*':return a*b;case '/':return a/b;default :printf("运算符错误!"); exit(0);} }struct node *create(struct node *T,char d[]){ int i;if(d[w]>='A'&&d[w]<='Z'){T->data=d[w];for(i=0;array[i].sign!='\0';i++){if(array[i].sign==d[w]){ T->number=array[i].number;break;} }T->left=NULL; T->right=NULL; w++;}else{if(flag==0)flag=1;elseT=(struct node *)malloc(sizeof(struct node ));(T)->data=d[w];w++;T->left=(struct node *)malloc(sizeof(struct node ));T->right=(struct node *)malloc(sizeof(struct node ));T->right=create((T)->right,d);T->left=create((T)->left,d);}return T;}char *convert(){ w=0; char *a,*b;bool jud(char stack[], int n);char str[100],str1[100];char exp[100];char stack[100];char ch;int flag=1;unsigned int zs;int i=0,j=0,t=0,top=0,k=0,l=0;printf(" ****************************************************** \n");printf(" * * \n");printf(" * 简易计算器(二叉树版)*\n");printf(" * * \n");printf(" ****************************************************** \n");printf(" *使用说明* \n");printf(" I.输入法为英文输入法\n");printf(" II.支持小数运算,但不支持负数运算\n");printf(" \n请输入表达式:");scanf("%s",str1);for(i=0;str1[i]!='\0';i++){b=&str1[i];if(in(str1[i])!=1&&(i==0&&(in(str1[0])==0))||(i!=0&&in(str1[i-1])==1&&in(str1[i])==0)) {array[k].number=atof(b);array[k].sign=k+65;str[l]=array[k].sign;k++;l++; }else if(in(str1[i])==1){ str[l]=str1[i];l++;} }array[k].sign='\0';str[l]='\0';i=0;k=0;l=0;zs=strlen(str);str[zs]='#';ch=str[i];while(ch!='#'){if(ch>='A'&&ch<='Z'){ exp[t]=ch; t++; }else if(ch=='('){ top++;stack[top]=ch;k++; }else if(ch=='^'){ exp[t]=ch; t++; }else if(ch==')') {if(top!=0) {if(jud(stack,top)){while(stack[top]!='('){exp[t]=stack[top];top--; t++; }top--;l++; }else {printf("括号不匹配!\n");flag=0;break;}}else{ printf("括号不匹配!\n");flag=0;break;} }else if(ch=='+'||ch=='-'){while(top!=0&&stack[top]!='('){ exp[t]=stack[top];top--;t++; }top++;stack[top]=ch; }else if(ch=='*'||ch=='/'){ while(stack[top]=='*'||stack[top]=='/'){ exp[t]=stack[top];top--;t++;}top++;stack[top]=ch; }else{ printf("第%d个数开始出错!\n",i+1);flag=0;break; }i++;ch=str[i]; }if(k!=l) {printf("括号不匹配!\n");flag=0; }else if(str[zs-1]=='+'||str[zs-1]=='-'||str[zs-1]=='*'||str[zs-1]=='/'){ printf("该式不是中缀表达式!\n");flag=0; }if(flag!=0){ while(top!=0){ exp[t]=stack[top];t++;top--;}}exp[t]='\0';a=&exp[0];return a; }bool jud(char stack[] ,int n){ int i;for( i = 0;i<n;i++){ if(stack[i]=='('){ return true; break; }} }void postordertraverse(struct node *e){ if(e->left!=NULL&&e->right!=NULL)if((e->left->data=='+'||e->left->data=='-'||e->left->data=='*'||e->left->data=='/'||e->right->data=='+'||e->right->data=='-'||e->right->data=='*'||e->right->data=='/')||(e->left->data>='A'&&e->left->data<='Z'&&e->right->data>='A'&&e->right->data<='Z')){ postordertraverse(e->left);postordertraverse(e->right);e->number=operation(e->left->number,e->right->number,e->data);e->data='a';result=e->number;}}int main(){ struct node *T;flag=0;T=(struct node *)malloc(sizeof(struct node));char *b,a[100],*t;int i; b=convert();for(t=b;*t!='\0';t++);i=0;do{ t--;a[i]=*t; i++;}while(t!=b);a[i]='\0';//完成反序后缀式的逆向T=create(T,a); //create()函数创建二叉链表printf("\n");postordertraverse(T);//后序遍历进行计算printf("%g",result); //输出结果return 0;}。

相关文档
最新文档