北师大版七年级上册有理数计算培优练习
北京师范大学第二附属中学七年级数学上册第一章《有理数》基础练习(培优专题)
北京师范大学第二附属中学七年级数学上册第一章《有理数》基础练习(培优专题)一、选择题1.(0分)下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( )A .2个B .3个C .4个D .5个A解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a 不一定是负数,若a 为负数,则-a 就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A .【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.2.(0分)丁丁做了4道计算题:① 2018(1)2018-=;② 0(1)1--=-;③ 1111326-+-=;④11()122÷-=-请你帮他检查一下,他一共做对了( )道 A .1道B .2道C .3道D .4道A 解析:A【分析】根据乘方的意义以及有理数的减法、乘法、除法法则,有理数加减混合运算法则即可判断.【详解】①2018(1)1-=,故本小题错误;②0(1)1--=,故本小题错误; ③1113267-+-=-,故本小题错误; ④11()122÷-=-,正确; 所以,他一共做对了1题.故选A .【点睛】本题考查了有理数的乘方、加法以及除法法则,熟练掌握运算法则是解题关键. 3.(0分)下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)- A 解析:A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A 符合题意,|1|1-=,故选项B 不符合题意,(2)75-+=,故选项C 不符合题意,2(1)1-=,故选项D 不符合题意,故选:A .【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 4.(0分)如果|a |=-a ,下列成立的是( )A .-a 一定是非负数B .-a 一定是负数C .|a |一定是正数D .|a |不能是0A解析:A【分析】根据绝对值的性质确定出a 的取值范围,再对四个选项进行逐一分析即可.【详解】∵|a|=-a ,∴a≤0,A 、正确,∵|a|=-a ,∴-a≥0;B 、错误,-a 是非负数;C 、错误,a=0时不成立;D 、错误,a=0时|a|是0.故选A .【点睛】本题考查的是绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.5.(0分)正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )A.点C B.点D C.点A D.点B B解析:B【分析】由题意可知转一周后,A、B、C、D分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A,2所对应的点是B,3对应的点是C,4对应的点是D,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.-一定是负数;②||a一定是正数;③倒数等于它本身的数是6.(0分)下列说法:①a±1;④绝对值等于它本身的数是l;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个A解析:A【分析】根据正数与负数的意义对①进行判断即可;根据绝对值的性质对②与④进行判断即可;根据倒数的意义对③进行判断即可;根据平方的意义对⑤进行判断即可.【详解】-不一定是负数,故该说法错误;①a②||a一定是非负数,故该说法错误;③倒数等于它本身的数是±1,故该说法正确;④绝对值等于它本身的数是非负数,故该说法错误;⑤平方等于它本身的数是0或1,故该说法错误.综上所述,共1个正确,故选:A.【点睛】本题主要考查了有理数的性质,熟练掌握相关概念是解题关键.7.(0分)在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3C.4,2 D.4,3A解析:A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A .点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.8.(0分)计算2136⎛⎫--- ⎪⎝⎭的结果为( ) A .-12 B .12 C .56 D .56A 解析:A【分析】根据有理数加减法法则计算即可得答案.【详解】2136⎛⎫--- ⎪⎝⎭=2136-+ =12-. 故选:A .【点睛】本题考查有理数的加减,有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,一个数同零相加,仍得这个数,有理数减法法则:减去一个数,等于加上这个数的相反数.9.(0分)某市11月4日至7日天气预报的最高气温与最低气温如表:其中温差最大的一天是( )A .11月4日B .11月5日C .11月6日D .11月7日C解析:C【分析】运用减法算出每一天的温差,再进行比较即可.【详解】11月4日的温差为19415-=(℃);11月5日的温差为12(3)15--=(℃);11月6日的温差为20416-=(℃);11月7日的温差为19514-=(℃).所以温差最大的一天是11月6日.故选C.【点睛】考核知识点:有理数减法运用.根据题意列出减法算式是关键.10.(0分)计算(-2)2018+(-2)2019等于( )A.-24037B.-2 C.-22018D.22018C 解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.二、填空题11.(0分)计算(﹣1)÷6×(﹣16)=_____.【分析】根据有理数乘除法法则进行计算【详解】解:(-1)÷6×(-)=-×(−)=故答案为【点睛】此题考查了有理数的乘除法熟练掌握法则是解本题的关键解析:136.【分析】根据有理数乘除法法则进行计算.【详解】解:(-1)÷6×(-16),=-16×(−16),=1 36.故答案为1 36.【点睛】此题考查了有理数的乘除法,熟练掌握法则是解本题的关键.12.(0分)数轴上表示有理数-3.5与4.5两点的距离是___________.8【解析】试题分析:有理数-35与45两点的距离实为两数差的绝对值解:由题意得:有理数−35与45两点的距离为|−35−45|=8故答案为8解析:8【解析】试题分析:有理数-3.5与4.5两点的距离实为两数差的绝对值.解:由题意得:有理数−3.5与4.5两点的距离为|−3.5−4.5|=8.故答案为8.13.(0分)在数轴上,若点A与表示3-的点相距6个单位,则点A表示的数是__________.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.14.(0分)数轴上,如果点 A所表示的数是3-,已知到点A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是_______.-7【分析】根据在数轴上点A所表示的数为3可以得到到点A的距离等于4个单位长度的点所表示的数是什么再根据负数的定义即可求解【详解】解:∵点A所表示的数是-3到点A的距离等于4个单位长度的点所表示的数解析:-7【分析】根据在数轴上,点A所表示的数为3,可以得到到点A的距离等于4个单位长度的点所表示的数是什么,再根据负数的定义即可求解.【详解】解:∵点A所表示的数是-3,到点A的距离等于4个单位长度的点所表示的数为负数,∴这个数是-3-4=-7.故答案为:-7.【点睛】本题考查了数轴,解题的关键是明确数轴的特点,知道到一个点的距离等3个单位长度的点表示的数有两个.15.(0分)在括号中填写题中每步的计算依据,并将空白处补充完整:(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125______=-(4×2.5)×(8×125)______=____×____=____.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×解析:乘法交换律乘法结合律 -10 1000 -10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可.【详解】(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125(乘法交换律)=-(4×2.5)×(8×125)(乘法结合律)=-10×1000=-10000.故答案为:乘法交换律,乘法结合律,-10,1000,-10000.【点睛】本题主要考查了有理数的乘法运算和乘法运算律,正确掌握运算法则和乘法运算律是解题的关键.16.(0分)下列各组式子:①a﹣b与﹣a﹣b,②a+b与﹣a﹣b,③a+1与1﹣a,④﹣a+b 与a﹣b,互为相反数的有__.②④【分析】直接利用互为相反数的定义分析得出答案【详解】解:①a-b与-a-b=-(a+b)不是互为相反数②a+b与-a-b是互为相反数③a+1与1-a不是相反数④-a+b与a-b是互为相反数故答案解析:②④【分析】直接利用互为相反数的定义分析得出答案.【详解】解:①a-b与-a-b=-(a+b),不是互为相反数,②a+b与-a-b,是互为相反数,③a+1与1-a,不是相反数,④-a+b与a-b,是互为相反数.故答案为:②④.【点睛】本题考查了互为相反数,正确把握相反数的定义是解题的关键.17.(0分)截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn为整数位数减1【详解】解:1051万=10510000=1051×107故答案为:1051×107【点睛】本题考查了科学解析:051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.【详解】解:1051万=10510000=1.051×107.故答案为:1.051×107.【点睛】本题考查了科学记数法-表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,18.(0分)点A,B表示数轴上互为相反数的两个数,且点A向左平移8个单位长度到达点B,则这两点所表示的数分别是____________和___________.-4【解析】试题解析:-4【解析】试题两点的距离为8,则点A、B距离原点的距离是4,∵点A,B互为相反数,A在B的右侧,∴A、B表示的数是4,-4.19.(0分)如果数轴上原点右边 8 厘米处的点表示的有理数是 32,那么数轴上原点左边 12 厘米处的点表示的有理数是__________.﹣48【分析】数轴上原点右边8厘米处的点表示的有理数是32即单位长度是cm即1cm表示4个单位长度数轴左边12厘米处的点表示的数一定是负数再根据1cm表示4个单位长度即可求得这个数的绝对值【详解】数解析:﹣48【分析】数轴上原点右边 8厘米处的点表示的有理数是 32,即单位长度是14cm,即 1cm表示 4个单位长度,数轴左边12厘米处的点表示的数一定是负数,再根据 1cm表示 4个单位长度,即可求得这个数的绝对值.【详解】数轴左边 12 厘米处的点表示的有理数是﹣48.故答案为﹣48.【点睛】本题主要考查了在数轴上表示数.借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小既直观又简捷.20.(0分)(1)用四舍五入法,对5.649取近似值,精确到0.1的结果是____;(2)用四舍五入法,把1 999.508取近似值(精确到个位),得到的近似数是____;(3)用四舍五入法,把36.547精确到百分位的近似数是____.(1)56(2)2000(3)3655【分析】(1)精确到哪一位即对下一位的数字进行四舍五入据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可【详解】解解析:(1)5.6 (2)2000 (3)36.55【分析】(1)精确到哪一位,即对下一位的数字进行四舍五入,据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可.【详解】解:(1)5.649≈5.6.(2)1999.58≈2000(3)36.547≈36.55故答案为:5.6;2000;36.55【点睛】本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.三、解答题21.(0分)计算(1)21145()5 -÷⨯-(2)21(2)8(2)()2--÷-⨯-.解析:(1)4125;(2)2.【分析】第(1)和(2)小题都属于有理数的混合运算,根据混合运算的运算顺序:先算乘方,并利用有理数的除法法则将除法转化为乘法,再计算乘法,最后计算加减即可求出结果.【详解】解:(1)21145()5-÷⨯-11116()55=-⨯⨯-16 125 =+ 41 25 =;(2)21(2)8(2)()2--÷-⨯-1148()()22=-⨯-⨯-42=-2=.【点睛】本题考查了有理数的混合运算,解题的关键是确定正确的运算顺序并运用运算法则准确计算.22.(0分)点A、B在数轴上所表示的数如图所示,回答下列问题:(1)将A在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C,求出B、C两点间的距离是多少个单位长度?(2)若点B在数轴上移动了m个单位长度到点D,且A、D两点间的距离是3,求m的值.解析:(1)B、C两点间的距离是3个单位长度;(2)m的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC=|2﹣5|=3;(2)分类考虑当点D在点A的左侧与右侧,利用AD=3,求出点D所表示的数,再利用BD=m求出m的值即可.【详解】解:(1)点C所表示的数为﹣3﹣1+9=5,∴BC=|2﹣5|=3.(2)当点D在点A的右侧时,点D所表示的数为﹣3+3=0,所以点B移动到点D的距离为m=|2﹣0|=2,当点D在点A的左侧时,点D所表示的数为﹣3﹣3=﹣6,所以点B移动到点D的距离为m=|2﹣(﹣6)|=8,答:m的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD的距离分类讨论点D的位置是解题关键.23.(0分)计算:(1)45(30)(13)+---;(2)32128(2)4-÷-⨯-. 解析:(1)28;(2)-2【分析】 (1)有理数的加减混合运算,从左往右依次计算即可;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)45(30)(13)+---=4530+13-=15+13=28(2)32128(2)4-÷-⨯- =18844-÷-⨯ =11--=-2.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 24.(0分)计算:(1)()()34287⨯-+-÷;(2)()223232-+---.解析:(1)16-;(2)6.【分析】(1)先算乘除,后算加法即可;(2)原式先计算乘方运算,再化简绝对值,最后算加减运算即可求出值.【详解】(1)原式12416=--=-(2)原式34926=-+-=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.(0分)计算:(1)14-25+13 (2)42111|23|()823---+-⨯÷ 解析:(1)2;(2)4【分析】(1)根据有理数的加减运算,即可求出答案;(2)先计算乘方、绝对值、然后计算乘除,再计算加减运算,即可得到答案.【详解】解:(1)14251311132-+=-+=;(2)42111|23|()823---+-⨯÷=111834--+⨯⨯ =26-+=4.【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则进行解题.26.(0分)如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数.解析:(1)1- (2)0.5 (3)3-或7-【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D 是线段AC 的中点;(3)在点B 左侧找一点E ,点E 到点A 的距离是到点B 的距离的2倍,依此即可求解.【详解】解:(1)点B 表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D 表示的数为(-1+2)÷2=1÷2=0.5;(3)点E 在点B 的左侧时,根据题意可知点B 是AE 的中点,AB=|-1+4|=3则点E 表示的数是-4-3=-7.点E 在点B 的右侧时,即点E 在AB 上,则点E 表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.27.(0分)计算:()22216232⎫⎛-⨯--⎪⎝⎭解析:2【分析】 原式先计算乘方,再运用乘法分配律计算,最后进行加减运算即可.【详解】解:()22216232⎫⎛-⨯-- ⎪⎝⎭=2136()432⨯-- =213636432⨯-⨯- =24-18-4=2.【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.28.(0分)表格记录的是龙岗区图书馆上周借书情况:(规定:超过200册记为正,少于200册记为负).(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?解析:(1)188册;(2)25册;(3)202册【分析】(1)由题意可知,周五借出的册数少于200册,即可解答.(2)根据正负数的定义分别求出周三、周四的册数,再解答即可.(3)将5天的册数分别求出,再求平均数即可.【详解】解:(1)200-12=188册.(2)(200+8)-(200-17)=208-183=25册.(3)[(200+21)+(200+10)+(200-17)+(200+8)+(200-12)]÷5=202册. 答:上星期五借出188册书,上星期四比上星期三多借出25册,上周平均每天借出202册.【点睛】主要考查正负数在实际生活中的应用,有理数加减乘除混合运算的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.。
2024北师大版七年级数学上册第二章有理数的概念及加减运算培优专题训练
七年级数学上册第二章有理数一.知识点梳理:(一)有理数的相关概念1.正数和负数可以表示具有的量,既不是正数也不是负数。
2.有理数的分类:(1)有理数可以分为和;(2)有理数可以分为,和 .3.非负数是指;非正数是指 .(二)数轴绝对值相反数1.数轴:规定了的直线叫做数轴。
数轴是研究有理数的工具。
2.任何一个有理数都可以用数轴上的来表示。
3.任何一个数都有两部分组成: .4.相反数:只有的两个数互为相反数,0的相反数是 .一个数a的相反数是 .5. 绝对值:在数轴上,一个数所对应的点与原点之间的距离,叫做这个数的绝对值.一个数a的绝对值可以表示为 .6.绝对值的性质:一个正数的绝对值是;一个负数的绝对值是它的;0的绝对值是。
7.有理数大小的比较:数轴上两个点表示的数,右边的总比左边的;正数都与0;负数都 0;两个负数比较,绝对值大的反而(三)有理数的加减运算1.有理数的加法法则:同号两数相加,取的符号,并把绝对值;绝对值不等的异号两数相加,取的符号,并用较大数的绝对值较小数的绝对值;互为相反数的两数相加得;一个数同0相加得。
2.有理数的减法法则:减去一个数等于这个数的相反数。
3.有理数的运算是先定符号,再定绝对值。
要分清“+”是正号还是加号.4.数轴上点A表示数a,点B表示数b,则点A,B之间的距离是 .5.非负数的性质:若几个非负数的和为0,则每一个非负数的值为 .(四)有理数的乘法运算有理数的乘除运算法则:1.两数相乘,同号得,异号得,并把相乘。
2.任何数与0相乘都得3.几个不等于0的数相乘,积的符号由的个数决定。
当负因数有个数时,积为正;当负因数有个数时,积为负,并把绝对值相乘。
4.几个数相乘,有一个因数为0时,积为5.进行有理数乘法运算时,先确定积的符号,再确定积的绝对值 .6.进行乘除运算时,带分数要化为假分数 .(五)有理数的除法有理数的除法法则:除以一个数(不为0))等于乘以这个数的倒数(六)乘方的意义及性质1.求n个相同因数a的的运算叫做乘方,记作a n,这里a叫,n叫做 .乘方的结果叫 .2.底数是分数或负数时,要用括号把底数括起来。
(北师版)七年级数学上册 有理数及其计算 计算能力提升专项训练
(北师版)七年级数学上册有理数及其计算计算能力提升专项训练一.正数和负数(共2小题)1.小明练习跳绳.以1分钟跳165个为目标,并把20次1分钟跳绳的数量记录如表(超过165个的部分记为“+”,少于165个的部分记为“﹣”)与目标数量的差依(单位:个)﹣11﹣6﹣2+4+10次数45362(1)小明在这20次跳绳练习中,1分钟最多跳多少个?(2)小明在这20次跳绳练习中,1分钟跳绳个数最多的一次比最少的一次多几个?(3)小明在这20次跳绳练习中,累计跳绳多少个?2.某商店以每件40元的价格购进某款建国70周年纪念品300件,并在国庆小长假期间以不同价格把这300件纪念品陆续卖出.若以每件50元的价格为标准,将超出的钱数记为正,不足的钱数记为负,则记录结果如下表:售出的件数706030504050每件的售价与标准的差+7+5+10﹣5﹣10求商店销售完这300件纪念品后赚了多少元?二.数轴(共4小题)3.有理数a、b、c在数轴上的位置如图所示,则下列说法正确的是()A.a+b+c表示的数是正数B.a+b﹣c表示的数是负数C.﹣a+b+c表示的数是负数D.a2+b+c表示的数是负数4.某一出租车一天下午以鼓楼为出发点,在东西方向上营运,向东为正,向西为负,行车路程依先后次序记录如下(单位:km):+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+7.(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼什么方向?(2)将最后一名乘客送到目的地,出租车一共行驶多少千米?(3)若每千米的价格为2.4元,司机一下午的营运额是多少元?5.点A,B在数轴上的位置如图所示,点C是数轴上的一点,且BC=AB,则点C对应的有理数是.6.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;数轴上表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如数轴上数x与5两点之间的距离等于|x﹣5|,(2)如果表示数a和﹣2的两点之间的距离是3,那么a=;若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;(3)当a取何值时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是多少?请说明理由.三.相反数(共2小题)7.﹣2019的相反数等于()A.﹣2019B.C.D.20198.若m﹣1的相反数是3,那么﹣m=.四.绝对值(共1小题)9.已知x,y都是整数,若x,y的积等于8,且x﹣y是负数,则|x+y|的值有()个.A.1B.2C.3D.4五.非负数的性质:绝对值(共2小题)10.若|x﹣6|+|y+5|=0,则x+y=.11.若|a﹣1|与|b+2|互为相反数,则(a+b)100的值为.六.倒数(共1小题)12.一个有理数的倒数与它的绝对值相等,则这个数是.七.有理数大小比较(共1小题)13.在数轴上表示下列各数,并按从小到大的顺序用“<”号把这些数连接起来:﹣2.5,1,0,﹣1,3.5八.有理数的加法(共2小题)14.我县2019年1月的一天早晨的气温是﹣11℃,中午的气温比早晨上升了8℃,中午的气温是℃.15.若x的相反数是﹣3,|y|=5,则x+y的值为()A.﹣8B.2C.﹣8或2D.8或﹣2九.有理数的减法(共3小题)16.若a是相反数等于本身的数,b是最小的正整数,则a﹣b=.17.某天气温最高为+8°C,夜间最低为﹣2°C,则当天的最大温差为°C.18.若|x|=7,|y|=5,且x+y>0,那么x﹣y=.一十.有理数的乘方(共2小题)19.下列各组数中,相等的一组是()A.与3B.(﹣4)3与﹣43C.﹣|﹣5|与﹣(﹣5)D.﹣32与(﹣3)220.一张长方形的纸对折,如图所示可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折2次后,可以得3条折痕,那么对折5次可以得到条折痕.一十一.非负数的性质:偶次方(共3小题)21.若|a+3|+(b﹣4)2=0,则a+b的值是()A.﹣1B.7C.﹣7D.122.若|m+2|+(n﹣1)2=0,则(m+n)2020的值为.23.已知a,b满足|b+1|+(2a﹣4)2=0,则ab=.一十二.有理数的混合运算(共15小题)24.下列四个算式:①﹣2﹣3=﹣5;②2﹣|﹣3|=﹣1;③(﹣2)3=﹣6;④﹣2÷=﹣6,其中正确的算式有()A.0个B.1个C.2个D.3个25.下列运算正确的是()A.﹣8+3=﹣11B.﹣12013×1=﹣1C.(﹣5)2=﹣25D.﹣|﹣2|=226.已知x2=4,|y|=5,xy<0,那么x3﹣y2=.27.(﹣)3﹣1的值为.28.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2019+2020n+c2021的值为.29.计算下列各题(1)(﹣5)+(﹣4)﹣(+6)﹣(﹣7)(2)9÷(﹣)×(﹣)(3)﹣22﹣(1﹣)÷2×[6+(﹣3)3]30.计算:(1)﹣21+17﹣(﹣13)(2)﹣14﹣6÷(﹣2)×(﹣)231.计算(1)(﹣)÷(﹣2)2×|﹣12|(2)(﹣5)3×(﹣)﹣32÷(﹣2)2×(+)32.计算(1)(﹣6)+;(2)(﹣1)+(﹣);(3)﹣14+16+(﹣2)3×|﹣3﹣1|.33.若计算机按如图所示程序工作,若输入的数是1,则输出的数是()A.﹣63B.63C.﹣639D.63934.下列各组数中,相等的是()A.﹣1与(﹣2)+(﹣3)B.|﹣5|与﹣(﹣5)C.与D.(﹣2)2与﹣4 35.定义新运算:a⊕b=ab+b,例如:3⊕2=3×2+2=8,则(﹣3)⊕4=.36.计算:(1)(﹣8)﹣(﹣1)(2)45+(﹣30)(3)(﹣)﹣(﹣)(4)(﹣0.1)÷×(﹣100)(5)23÷[(﹣2)3﹣(﹣4)](6)(﹣)÷(﹣)37.定义一种对正整数n的“F运算”:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为(其中k是使为奇数的最小正整数),并且运算重复进行.例如:取n=26,则运算过程如图:那么当n=9时,第2019次“F运算”的结果是.38.添上适当的运算符号或括号,使算式成立.(1)7 3 3 7=24(2)7 3 (﹣3)7=24(3)7 3 (﹣3)(﹣7)=24(4)12 3 (﹣12)(﹣1)=24一十三.科学记数法—表示较大的数(共1小题)39.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜F AST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则7140m2用科学记数法表示为.一十四.科学记数法与有效数字(共1小题)40.月球的直径约为3476000米,将3476000用科学记数法表示应为,将3476000取近似数并精确到十万位,得到的值应是.参考答案与试题解析(北师版)七年级数学上册有理数及其计算计算能力提升专项训练一.正数和负数(共2小题)1.【解答】解:(1)跳绳最多的一次为:165+10=175(个)答:小明在这20次跳绳练习中,1分钟最多跳175个.(2)(+10)﹣(﹣11)=10+11=21(个)答:小明在这20次跳绳练习中,1分钟跳绳个数最多的一次比最少的一次多21个.(3)165×20﹣11×4﹣6×5﹣2×3+4×6+10×2=3264(个)答:小明在这20次跳绳练习中,累计跳绳3264个.2.【解答】解:70×7+60×5+30×1+40×(﹣5)+50×(﹣10)=120(元),(50﹣40)×300+120=3120(元).故商店销售完这300件纪念品后赚了3120元.二.数轴(共4小题)3.【解答】解:由图可知,a<b<0<c,且|a|>|c|>|b|,∴a+b+c<0,故选项A错误;a+b﹣c表示的数是负数,故选项B正确;﹣a+b+c>0,故选项C错误;a2+b+c>0,故选项D错误.故选:B.4.【解答】解:(1)9﹣3﹣5+4﹣8+6﹣3﹣6﹣4+7=﹣3,答:将最后一名乘客送到目的地,出租车离鼓楼出发点3千米,在鼓楼西方;(2)9+3+5+4+8+6+3+6+4+7=55(千米),答:将最后一名乘客送到目的地,出租车一共行驶55千米;(3)55×2.4=132(元),答:每千米的价格为2.4元,司机一下午的营业额是132元.5.【解答】解:由数轴可得出点A表示的数是﹣2,点B表示的数是4,AB=4﹣(﹣2)=6,分两种情况如下:①点C在线段AB上,因为BC=AB=×6=1.5,所以点C对应的有理数是4﹣1.5=2.5;②点C在线段AB的延长线上,因为BC=AB=×6=1.5,所以点C对应的有理数是4+1.5=5.5.故答案为:2.5或5.5.6.【解答】解:(1)观察数轴可得:数轴上表示4和1的两点之间的距离是3;数轴上表示﹣3和2两点之间的距离是5;故答案为:3;5;(2)如果表示数a和﹣2的两点之间的距离是3,那么|a﹣(﹣2)|=3∴|a+2|=3∴a+2=3或a+2=﹣3∴a=1或a=﹣5;故答案为:1或﹣5;∵|a+4|+|a﹣2|表示数a与﹣4的距离与a和2的距离之和;若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|的值等于2和﹣4之间的距离,等于6∴|a+4|+|a﹣2|的值为6;(3)|a+5|+|a﹣1|+|a﹣4|表示一点到﹣5,1,4三点的距离的和∴当a=1时,该式的值最小,最小值为6+0+3=9.∴当a=1时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是9.三.相反数(共2小题)7.【解答】解:﹣2019的相反数等于2019,故选:D.8.【解答】解:由m﹣1的相反数是3,得m﹣1=﹣3,解得m=﹣2.∴﹣m=2.故答案为:2.四.绝对值(共1小题)9.【解答】解:∵x,y都是整数,x,y的积等于8,且x﹣y是负数,∴x=﹣8,y=﹣1或x=﹣4,y=﹣2或x=1,y=8或x=2,y=4,∴|x+y|=9或6,一共2个.故选:B.五.非负数的性质:绝对值(共2小题)10.【解答】解:∵|x﹣6|+|y+5|=0,∴x﹣6=0,y+5=0,解得,x=6,y=﹣5,则x+y=1,故答案为:1.11.【解答】解:∵|a﹣1|与|b+2|互为相反数,∴|a﹣1|+|b+2|=0,∴a﹣1=0,b+2=0,解得a=1,b=﹣2,所以,(a+b)100=(1﹣2)100=1.故答案为:1.六.倒数(共1小题)12.【解答】解:因为1的倒数是1,1的绝对值是1,所以1的倒数与它的绝对值相等,所以一个有理数的倒数与它的绝对值相等,则这个数是1.故答案为:1.七.有理数大小比较(共1小题)13.【解答】解:以上各数在数轴上表示为:其中点A,B,C,D,E分别表示﹣2.5、﹣1、0、、3.5所以,得出:﹣2.5<﹣1<0<1<3.5.八.有理数的加法(共2小题)14.【解答】解:根据题意,得﹣11+8=﹣3(℃).故中午的气温是﹣3℃.故答案为:﹣3.15.【解答】解:∵x的相反数是﹣3,∴x=3,∵|y|=5,∴y=±5,(1)x=3,y=5时,x+y=3+5=8.(2)x=3,y=﹣5时,x+y=3+(﹣5)=﹣2.故选:D.九.有理数的减法(共3小题)16.【解答】解:根据题意知a=0,b=1,∴a﹣b=0﹣1=﹣1.故答案为:﹣1.17.【解答】解:当天的最大温差为:8﹣(﹣2)=8+2=10(℃),故答案为:1018.【解答】解:∵|x|=7,|y|=5,∴x=±7,y=±5;∵x+y>0,∴x=7,y=±5,(1)x=7,y=5时,x﹣y=7﹣5=2(2)x=7,y=﹣5时,x﹣y=7﹣(﹣5)=12∴x﹣y=2或12.故答案为:2或12.一十.有理数的乘方(共2小题)19.【解答】解:A.=,()3=,不符合题意;B.(﹣4)3=﹣64,﹣43=﹣64,符合题意;C.﹣|﹣5|=﹣5,﹣(﹣5)=5,不符合题意;D﹣32=﹣9,(﹣3)2=9,不符合题意.故选:B.20.【解答】解:由图可知,第1次对折,把纸分成2部分,1条折痕,第2次对折,把纸分成4部分,3条折痕,第3次对折,把纸分成8部分,7条折痕,第4次对折,把纸分成16部分,15条折痕,…,依此类推,第n次对折,把纸分成2n部分,2n﹣1条折痕.当n=5时,25﹣1=31,故答案为:31.一十一.非负数的性质:偶次方(共3小题)21.【解答】解:根据题意得:a+3=0,b﹣4=0,解得:a=﹣3,b=4,则a+b=﹣3+4=1.故选:D.22.【解答】解:由题意得,m+2=0,n﹣1=0,解得m=﹣2,n=1,所以,(m+n)2020=(﹣2+1)2020=1.故答案为:1.23.【解答】解:由题意得,b+1=0,2a﹣4=0,解得a=2,b=﹣1,所以,ab=2×(﹣1)=﹣2.故答案为:﹣2.一十二.有理数的混合运算(共15小题)24.【解答】解:①﹣2﹣3=﹣5,正确;②2﹣|﹣3|=2﹣3=﹣1,正确;③(﹣2)3=﹣8,原来的计算错误;④﹣2÷=﹣6,正确.故其中正确的算式有3个.故选:D.25.【解答】解:A、﹣8+3=﹣5,故此选项错误;B、﹣12013×1=﹣1×1=﹣1,正确;C、(﹣5)2=25,故此选项错误;D、﹣|﹣2|=﹣2,故此选项错误.故选:B.26.【解答】解:根据题意得:x=±2,y=±5,∵xy<0,∴x=2,y=﹣5;x=﹣2,y=5,则x3﹣y2=﹣17或﹣33.故答案为:﹣17或﹣33.27.【解答】解:(﹣)3﹣1=﹣﹣1=﹣1.故答案为:﹣1.28.【解答】解:∵m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,∴m=﹣1,n=0,c=1,∴m2019+2020n+c2021的=(﹣1)2019+2020×0+12021=﹣1+0+1=0故答案为:0.29.【解答】解:(1)(﹣5)+(﹣4)﹣(+6)﹣(﹣7)=﹣9﹣6+7=﹣8(2)9÷(﹣)×(﹣)=﹣6×(﹣)=4(3)﹣22﹣(1﹣)÷2×[6+(﹣3)3]=﹣4﹣÷2×(﹣21)=﹣4+3=﹣130.【解答】解:(1)﹣21+17﹣(﹣13)=﹣4+13=9(2)﹣14﹣6÷(﹣2)×(﹣)2=﹣1+3×=﹣1+=﹣31.【解答】解:(1)(﹣)÷(﹣2)2×|﹣12|=(﹣)÷4×12=﹣×12=﹣2(2)(﹣5)3×(﹣)﹣32÷(﹣2)2×(+)=(﹣125)×(﹣)﹣32÷4×=75﹣10=6532.【解答】解:(1)(﹣6)+=﹣+=﹣4(2)(﹣1)+(﹣)=﹣1(3)﹣14+16+(﹣2)3×|﹣3﹣1|=﹣1+16﹣8×4=15﹣32=﹣1733.【解答】解:把x=1代入计算程序中得:(1﹣8)×9=﹣63,把x=﹣63代入计算程序中得:(﹣63﹣8)×9=﹣639.则输出的数是﹣639.故选:C.34.【解答】解:A、(﹣2)+(﹣3)=﹣5,﹣1≠﹣5,故本选项错误;B、|﹣5|=5,﹣(﹣5)=5,5=5,故本选项正确;C、=,≠,故本选项错误;D、(﹣2)2与=4,4≠﹣4,故本选项错误.故选:B.35.【解答】解:∵a⊕b=ab+b,∴(﹣3)⊕4=(﹣3)×4+4=﹣12+4=﹣8.故答案为:﹣8.36.【解答】解:(1)原式=﹣8+1=﹣7;(2)原式=45﹣30=15;(3)原式=﹣﹣﹣=(﹣)﹣(+)=﹣=﹣1;(4)原式=0.2×100=20;(5)原式=23÷(﹣8+4)=23÷(﹣4)=﹣;(6)原式=﹣÷(﹣)=×=.37.【解答】解:由题意可知,当n=9时,历次运算的结果是:3×9+5=32,=1(使得为奇数的最小正整数为16),1×3+5=8,=1,…故32→1→8→1→8→…,即从第四次开始1和8出现循环,偶数次为1,奇数次为8,∴当n=9时,第2019次“F运算”的结果是8.故答案为:8.38.【解答】解:(1)7×(3+3÷7)=24(2)7×[3﹣(﹣3)÷7]=24(3)7×[3+(﹣3)÷(﹣7)]=24(4)12×3﹣(﹣12)×(﹣1)=24一十三.科学记数法—表示较大的数(共1小题)39.【解答】解:7140m2=7.14×103m2,故答案为:7.14×103m2.一十四.科学记数法与有效数字(共1小题)40.【解答】解:将数据3476000用科学记数法表示应为3.476×106;将3476000取近似数并精确到十万位,得到的值应是3.5×106.故答案为:3.476×106,3.5×106.。
北师版七年级数学上册第三章培优测试卷含答案
北师版七年级数学上册第三章培优测试卷七年级数学 上(BS 版) 时间:100分钟 满分:120分一、选择题(每题3分,共30分)1.【2021·河池】下列各式中,与2a 2b 为同类项的是( )A .-2a 2bB .-2abC .2ab 2D .2a 22.下列代数式中,符合书写要求的是( )A.a 2b4B .213cbaC .a ×b ÷cD .ayz 33.【教材P 89习题T 1改编】代数式:6x 2y +1x ,5xy +x 2,-15y 2+xy ,2π,-3中,不是..整式的有( ) A .4个B .3个C .2个D .1个4.已知a +b =4,c -d =3,则(b +c )-(d -a )的值等于( )A .1B .-1C .7D .-75.小刚从一列火车的第a 节车厢数起,一直数到第b 节车厢(b >a ),则他数过的车厢节数是( ) A .a +b B .b -a C .b -a -1D .b -a +16.下列叙述中,错误..的是( ) A .代数式x 2+y 2的意义是x ,y 的平方和 B .代数式5(a +b )的意义是5与a +b 的积C .x 的5倍与y 的和的一半,用代数式表示是5x +y2 D .x 的12与y 的13的差,用代数式表示是12x -13y 7.【教材P 91随堂练习T 2变式】下列运算正确的是( )A .-()2x +5=-2x +5B .-12()4x -2=-2x +2C.13()2m -3n =23m +nD .-⎝ ⎛⎭⎪⎫23m -2x =-23m +2x8.【2021·济宁】按规律排列的一组数据:12,35,□,717,926,1137,…,其中□内应填的数是( )A.23 B.511 C.59 D.129.有理数a,b在数轴上对应的点的位置如图所示,则|a+b|-2|a-b|化简后的结果为()A.2a+b B.-a-b C.-3a+b D.-2a-b 10.用棋子摆出下列一组图形(如图):按照这种规律摆下去,第n个图形用的棋子个数为()A.3n B.6n C.3n+6 D.3n+3 二、填空题(每题3分,共30分)11.单项式-x3y3的系数是________,次数是________.12.-xy22+3xy-23是________次________项式,最高次项的系数为________.13.【2021·黔西南州】已知2a-5b=3,则2+4a-10b=________.14.多项式12x|n|-(n+2)x+7是关于x的二次三项式,则n的值是________.15.若7a x b2与-a3b y的和为单项式,则y x=________.16.张老师带了100元钱去给学生买笔记本和笔.已知一本笔记本3元,一支笔2元,张老师买了a本笔记本,b支笔,她还剩__________________元钱(用含a,b的代数式表示).17.多项式____________与m2+m-2的和是m2-2m.18.按照如图所示的计算程序,若x=2,则输出的结果是________.19.当x=1时,代数式ax3-3bx+4的值是7,则当x=-1时,这个代数式的值是________.20.某数学老师在课外活动中做了一个有趣的游戏:首先发给A,B,C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A同学拿出两张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A 同学.请你确定,最终B同学手中剩余的扑克牌的张数为________.三、解答题(21,26题每题12分,22题6分,其余每题10分,共60分) 21.计算:3-8a+2a2;(1)2xy-y-(-y+yx); (2)5a2+2a-1-2()(3)3a2b-2[ab2-2(a2b-2ab2)].22.【教材P102复习题T9变式】已知A=-a2+2a-1,B=3a2-2a+4,求当a =-1时,2A-3B的值.23.便民超市原有(5x2-10x)桶食用油,上午卖出(7x-5)桶,中午休息时又运进同样的食用油(x2-x)桶,下午清仓时发现该食用油只剩下5桶,请问:(1)该便民超市从中午到下午清仓时一共卖出多少桶食用油?(2)当x=5时,该便民超市从中午到下午清仓时一共卖出多少桶食用油?24.“囧”像一个人郁闷时的神情.如图,边长为a的正方形纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分),设剪去的两个小直角三角形的两直角边长分别为x,y,剪去的长方形的长和宽分别为x,y.(1)用含a,x,y的式子表示“囧”(阴影部分)的面积S;(2)当a=20,x=5,y=4时,求S的值.25.仔细观察下列等式:第1个:22-1=1×3;第2个:32-1=2×4;第3个:42-1=3×5;第4个:52-1=4×6;第5个:62-1=5×7;…这些等式反映出自然数间的某种运算规律.按要求解答下列问题:(1)请你写出第6个等式:______________________;(2)设n(n≥1)表示自然数,则第n个等式可表示为______________________;(3)运用上述结论,计算:122-1+142-1+162-1+…+12 0242-1.[提示:11×3=12×⎝⎛⎭⎪⎫1-13,13×5=12×⎝⎛⎭⎪⎫13-15,…]26.下图是由边长为1的正方形按照某种规律排列而组成的.(1)观察图形,填写下表:图形序号①②③正方形的个数8图形的周长18(2)推测第n个图形中,正方形的个数为__________,周长为__________;(用含n的代数式表示)(3)写出任意一个图形的周长y与它所含正方形个数x之间的关系式.答案一、1.A 2.A 3.D 4.C 5.D 6.C7.D8.D9.C10.D 点规律:用整式表示图形的变化规律,一般都用含图形的序列号n的式子表示图形中元素的数量.关键是要利用从特殊到一般的思想分析两者之间的关系.二、11.-13;412.三;三;-1213.814.215.816.(100-3a-2b)17.-3m+218.-2619.120.7三、21.解:(1)原式=2xy-y+y-xy=xy;(2)原式=5a2+2a-1-6+16a-4a2=a2+18a-7;(3)原式=3a2b-2(ab2-2a2b+4ab2)=3a2b-2ab2+4a2b-8ab2=7a2b-10ab2.22.解:2A-3B=2(-a2+2a-1)-3(3a2-2a+4)=-2a2+4a-2-9a2+6a-12=-11a2+10a-14.当a=-1时,2A-3B=-11a2+10a-14=-11×(-1)2+10×(-1)-14=-11-10-14=-35.23.解:(1)(5x2-10x)-(7x-5)+(x2-x)-5=(6x2-18x)(桶).故该便民超市从中午到下午清仓时一共卖出(6x2-18x)桶食用油.(2)当x=5时,6x2-18x=6×52-18×5=60.故当x=5时,该便民超市从中午到下午清仓时一共卖出60桶食用油.24.解:(1)S=a2-12xy×2-xy=a2-2xy.(2)当a=20,x=5,y=4时,S=a2-2xy=202-2×5×4=400-40=360. 25.解:(1)72-1=6×8(2)(n+1)2-1=n(n+2)(3)原式=11×3+13×5+15×7+…+12 023×2 025=12×(1-13+13-15+15-17+…+12 023-12 025)=12×⎝⎛⎭⎪⎫1-12 025=12×2 0242 025=1 0122 025.26.解:(1)从左到右、从上到下依次填:13,18,28,38.(2)5n+3;10n+8(3)所求关系式为y=2x+2.点拨:(1)n=1时,正方形有8个,8=5×1+3,周长是18,18=10×1+8;n=2时,正方形有13个,13=5×2+3,周长是28,28=10×2+8;n=3时,正方形有18个,18=5×3+3,周长是38,38=10×3+8.(2)由(1)可知,第n个图形中正方形有(5n+3)个,周长是10n+8.(3)因为y=10n+8,x=5n+3,所以y=2x+2.。
【精选】北师大版七年级上册数学 有理数单元培优测试卷
一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上有A、B两点(点A在点B的左侧),且两点距离为8个单位长度,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)图中如果点A、B表示的数是互为相反数,那么点A表示的数是________;(2)当t=3秒时,点A与点P之间的距离是________个长度单位;(3)当点A表示的数是-3时,用含t的代数式表示点P表示的数;(4)若点P到点A的距离是点P到点B的距离的2倍,请直接写出t的值.【答案】(1)-4(2)6(3)解:当点A为-3时,点P表示的数是-3+2t;(4)解:当点P在线段AB上时,AP=2PB,即2t=2(8−2t),解得,t=,当点P在线段AB的延长线上时,AP=2PB,即2t=2(2t−8),解得,t=8,∴当t=或8秒时,点P到A的距离是点P到B的距离的2倍.【解析】【解答】解:(1)设点A表示的数是a,点B表示的数是b,则|a|+|b|=8,又|a|=|b|,∴|a|=4,∴a=−4,则点A表示的数是−4;( 2 )∵P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴当t=3秒时,点A与点P之间的距离为6个单位长度;【分析】(1)设点A表示的数是a,点B表示的数是b,两点间的距离是8及互为相反数的两个数分别位于原点的两侧,到原点的距离相等即可判断得出答案;(2)根据路程等于速度乘以时间即可得出答案;(3)由点A表示的数结合AP的长度,即可得出点P表示的数;(4)分当点P在线段AB上时,AP=2t,BP=(8-2t),根据AP=2PB 列出方程,求解即可;当点P在线段AB的延长线上时,AP=2t,BP=(2t-8),根据 AP=2PB 列出方程,求解即可,综上所述即可得出答案.2.如图,已知数轴上点A表示的数为-3,B是数轴上位于点A右侧一点,且AB=12.动点P 从点A出发,以每秒2个单位长度的速度沿数轴向点B方向匀速运动,设运动时间为t秒.(1)数轴上点B表示的数为________;点P表示的数为________(用含t的代数式表示). (2)动点Q从点B出发,以每秒1个单位长度的速度沿数轴向点A方向匀速运动;点P、点Q同时出发,当点P与点Q重合后,点P马上改变方向,与点Q继续向点A方向匀速运动(点P、点Q在运动过程中,速度始终保持不变);当点P到达A点时,P、Q停止运动.设运动时间为t秒.①当点P与点Q重合时,求t的值,并求出此时点P表示的数.②当点P是线段AQ的三等分点时,求t的值.【答案】(1)9;-3+2t(2)解:①根据题意,得:(1+2)t=12,解得:t=4,∴-3+2t=-3+2×4=5,答:当t=4时,点P与点Q重合,此时点P表示的数为5;②P与Q重合前:当2AP=PQ时,有2t+4t+t=12,解得t= ;当AP=2PQ时,有2t+t+t=12,解得t=3;P与Q重合后:当AP=2PQ时,有2(8-t)=2(t-4),解得t=6;当2AP=PQ时,有4(8-t)=t-4,解得t= ;综上所述,当t= 秒或3秒或6秒或秒时,点P是线段AQ的三等分点【解析】【解答】解:(1)由题意知,点B表示的数是-3+12=9,点P表示的数是-3+2t,故答案为:9,-3+2t;【分析】(1)根据数轴上两点间的距离等于两坐标之差的绝对值可求得点B所表示的数;根据路程=速度×时间可得点P运动的距离,再根据平移的点的坐标的性质可得点P表示的数;(2)①由题意可列方程求解;②分两种情况讨论求解:P与Q重合前:当2AP=PQ时,可得关于t的方程求解;当AP=2PQ时,可得关于t的方程求解;P与Q重合后:当AP=2PQ时,可得关于t的方程求解;当2AP=PQ时,可得关于t的方程求解。
有理数及其运算-专题1-数轴与绝对值【课外培优课件】+2024—-2025学年北师大版数学七年级上册
数学 七九年级上册 BS版
0 13
C级课前拓预展习训练
数学 七年级上册 BS版
13. (选做)如图,数轴上点 A 表示的数为1,点 A 做如下移 动:第1次,从点 A 向左移动3个单位长度至点 A1;第2次,从点 A1向右移动6个单位长度至点 A2;第3次,从点 A2向左移动9个单 位长度至点 A3;….按照这种移动方式进行下去,点 A4表示的数 是 7 .若点 An 与原点的距离不小于20,则 n 的最小值 是 13 .
A. 3
B. -3
C.
1 3
D.
-
1 3
返回目录
数学 七年级上册 BS版
2. 有理数 a , b 在数轴上对应的点的位置如图所示,计算| a - b |的结果为( C )
A. a + b C. b - a
B. a - b D. - a - b
返回目录
数学 七年级上册 BS版
3. 已知有理数 a , b 在数轴上对应的点的位置如图所示,则下 列结论正确的有( A ) ① a > b ;②- a >- b ;③ a <- b ;④- a <- b ;⑤| a | <| b |.
到原点 O 的距离为4,求所有满足条件的点 A 所表示的数,并求
这些点到原点 O 的距离之和.
解:由题意知,点 B 所表示的数是±4.
当点 B 所表示的数是4时,点 A 所表示的数是6或2;
当点 B 所表示的数是-4时,点 A 所表示的数是-2或-6.
综上所述,点 A 所表示的数是-6,-2,2或6.
数学 七年级上册 BS版
7. 按要求完成下列各题: (1)在数轴上表示下列各数,并用“<”连接起来. 3,-4,-(-1.5),-|-2|.
北师大版七年级上册数学《有理数的加法》有理数及其运算教学说课培优课件
2.4 有理数的加法
第1课时
课件
导入新知
1.一位同学在一条东西方向的跑道上,先向东走了20米,记作
+20米,又向西走了30米,记作-30米,他现在的位置与原来出
(+20)+(-30)
发的位置相距多少米?该问题用算式表示为____________.
2.甲、乙两支足球队进行足球比赛,如果甲队在主场输了2个
-1
因此,(-3)+ 2=________.
你能用类似的方法计算3 +(-2), 4+(-4)吗?
探究新知
计算3 +(-2).
在方框中放进3个
和2个
,移走所有的
1
因此,3 +(-2)=________.
.
探究新知
计算4+(-4).
在方框中放进4个
和4个
:
因此,4+(-4)=________.
0
探究新知
91.8, 91.1.这10袋小麦的总重量是多少千克?如果每袋小
麦以90千克为标准,这10袋小麦总计超过多少千克或不
足多少千克?
巩固练习
解:每袋小麦超过90千克的部分记为正数,不足的千克
数记作负数.10袋小麦对应的数分别为+1,+1,+1.5,
-1,+1.2,+1.3,-1.3,-1.2,+1.8,+1.1.列出10
球,记作-2,在客场又输了3个球,记作-3,那么甲队的净胜
(-2)+(-3)
球数用算式表示为____________.
素养目标
3.体验数形结合的数学思想.
2.熟练运用加法法则进行计算.
1.理解并掌握有理数加法法则.
北师大版 七年级上册 数学 有理数的加减、乘除及乘方运算 讲解及练习(无答案)
有理数的加减、乘除及乘方运算有理数的加减混合运算一、基础知识知识点1 有理数加减法统一成加法的意义1. 有理数加减混合运算,可以通过有理数减法法则将减法转化为加法,统一成只有加法运算的和式.如:(-11)-(+7)+(-4)-(-3)=(-11)+(-7)+(-4)+(3)2. 在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式:如:(-11)+(-7)+(-4)+(+3)=-11-7-4+33. 和式的读法:一是按这个式子表示的意义,读作“-11,-7,-4,+3的和”二是按运算意义读作“负11,减7,减4,加3”.例1 把下列各式写成省略加号的和的形式.(1)(-26)-(-7)+(-10)-(-3);(2)(-30)-(-8)+(-12)-(-5).分析:先统一成加法,再省略括号和加号.小结:在把加减混合运算的式子写成省略加号的和的形式时,符号容易变错,做这样的题目时,一定要注意符号的变化.知识点2 有理数的加减混合运算的加法和步骤1.运用减法法则将有理数的混合运算中的加减法变化为加法,写成省略加号,括号的代数和.2.利用加法的交换律、结合律简化运算,这里应注意的是:通常把同号(指同正、同负)的结合,整数与整数结合,同分母分数或容易通分的分数结合,互为相反数的结合,几个加数能凑整的结合在一起相加;对于特殊结构的计算题要灵活运用运算律.例2 计算:(-47111)-(-5)+(-4)-(+3)分析:加减混合运算应注意有条理按步骤进行,把同号的数相结合相加,这样可以使计算简便.二、典型题解析(一)基本概念题例1 把下列各式写成省略加号的和的形式,并说出它们的两种读法.(1)-2-(+3)-(-5)+(-4);(2)(+8)-(-9)+(-12)+(+5).分析:先把加减法统一成加法;再省略括号和加号.小结:(1)和式中第一个加数若是正数,正号也可省略不写;(2)第一种读法中“的和”两字不要漏掉.(二)知识应用题例2 从-50起逐次加2,得到一连串数-48,-46,-41,-44,-40,…,问:(1)第50个整数是什么?(2)你能巧妙地运用规律计算这50个整数的和吗?小结:在求和时,找出互为相反数的数,再计算出其余的数的和,能用简便算法的尽量用简便算法.(三)学科综合题例3 小彬和小丽在一起玩游戏,游戏规则是:(1)每人每次抽取4张卡片,如果抽取到白色卡片,那么加上卡片上的数字;如果抽到红色卡片,那么减去卡片上的数字.(2)比较两人所抽4张卡片的计算结果,结果小的为胜者,小彬抽到了下面的4张卡片:红-13,白7,红-5,白4,小丽抽到了下面的4张卡片:白3.2,白-2.7,红-6,白-2问:获胜的是谁?(四)拓展创新题例4 埃及同中国一样,也是世界上著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为190个埃及分数:你能从中挑出10个,加上正负号,使他们的和等于-1吗?分析:这是一道阅读理解题,要从90个埃及分数中挑出10个,使它们的和等于-1,不能被题目所举的例子束缚了思维,必须要运用有理数的加减混合运算.(三)培优练习1.下列化简正确的是( )A.(-7)-(-3)+(-2)=-7-3-2B.(-7)-(-3)+(-2)=-7+3-2C.(-7)-(-3)+(-2)=-7-3+2D.(-7)-(-3)+(-2)=-7+3+22.下列各式中与a-b-c的值不相等的是( )A.a-(b-c)B.a-(b+c)C.(a-b)+(-c)D.(-b)+(a-c)3.负数a减去它的相反数的差的绝对值是( )A.0B.2aC.-2aD.以上都可能4.使等式|-7+x|=|-7|+|x|成立的有理数x是( )A.任意一个正数B.任意一个非正数C.小于1的有理数D.任意一个有理数5.在数轴上,点x表示到原点的距离小于3的那些点,那么|x-3|+|x+3|等于( )A.6B.-2xC.-6 D2x6.填空题(1)小于5而大于-4的所有偶数之和是________;(2)-14的绝对值的相反数与5的相反数的差是________;(3)若|x-3|+|y-2|=0,则x+y=________,x-y=________.7计算①(-1.5)+1.4-(-3.6)-4.3+(-5.2) ②(-1)-1+(-2)-(-3)-(-1)③-12-[10+(-8)-3] ④(-4)-(-2)-{(-5)-[(-7)+(-3)-(-8)]}⑤|-0.1|-|-0.2|+|-0.4|-|-0.2|-|+0.1|+0.48、在数1,2,3,4,……,2003,2004前添加“+”或“-”,然后求代数和,使求得的结果为最小的非负数;9.定义新运算a*b=a+b-1,如3*(-2)=3+(-2)-1=0.请你计算(-1)*(-3)*2=_________.10.定义一种运算☆,其规则为a ☆b =b a 11+,根据这个规则,计算-2☆3的值 .11.已知有理数x 、y 满足|x -2y|=-2|x -4|,求4x 2-3y 的值.12.已知|a|=6,|b|=3,|c|=5,且c <0,a+c >0,求a+b+c 的值.有理数的乘除及乘方运算一、基础知识点1.有理数的乘法法则:2.有理数的除法法则:3.乘方:4.处理好符号仍然是有理数乘法、除法及乘方运算的关键。
七年级上册数学有理数培优50题含详细答案
(七年级上册数学有理数培优50题一.填空题(共5小题)1.=2.若|a|+|b|=2,则满足条件的整数a、b的值有组.3.已知a,b,c,d分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|取得最大值时,这个四位数的最小值是.4.如图,若数轴上a的绝对值是b的绝对值的3倍,则数轴的原点在点或点.(填“A”、“B”“C”或“D”)5.|x+1|+|x﹣2|+|x﹣3|的值为.二.解答题(共45小题)6.在一个3×3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.(1)在图1中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图2的方格中填写了一些数和字母,当x+y的值为多少时,它能构成一个三阶幻方.7.阅读下面解题过程:计算:解:原式=(第一步)=(﹣15)÷(﹣25)(第二步)=(第三步)回答:1)上面解题过程中有两个错误,第一处是第步,错误的原因是,第二处是第步,错误的原因是;( (2)正确的结果是.8.如图,已知数轴上的点A 表示的数为 6,点 B 表示的数为﹣4,点 C 是 AB 的中点,动点P 从点 B 出发,以每秒 2 个单位长度的速度沿数轴向右匀速运动,设运动时间为 x 秒(x>0).(1)当 x =秒时,点 P 到达点 A .(2)运动过程中点 P 表示的数是(用含 x 的代数式表示);(3)当 P ,C 之间的距离为 2 个单位长度时,求 x 的值.9.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式 a +b =ab ﹣1 成立的一对有理数 a ,b 为“椒江有理数对”,记为(a ,b ),如:数对(3,2),(4, )都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是 ;(2)若(a ,3)是“椒江有理数对”,求 a 的值;(3)若(m ,n )是“椒江有理数对”,则(﹣n ,﹣m )“椒江有理数对” 填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(注意:不能与题目中已有的“椒江有理数对”重复)10.计算:(﹣+1 ﹣ )÷(﹣ )×|﹣110﹣(﹣3)2|11.已知 a 、b 互为相反数,c 、d 互为倒数,并且 x 的绝对值等于 2.试求:x 2﹣(a +b +cd )+2(a +b )的值.12.如图,A 、B 分别为数轴上的两点,A 点对应的数为﹣20,B 点对应的数为 100.(1)请写出与 A 、B 两点距离相等的点 M 所对应的数;(2)现有一只电子蚂蚁 P 从 B 点出发,以 6 个单位/秒的速度向左运动,同时另一只电子蚂蚁 Q 恰好从 A 点出发,以 4 个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,你知道 C 点对应的数是多少吗?(3)若当电子蚂蚁 P 从 B 点出发时,以 6 个单位/秒的速度向左运动,同时另一只电子蚂蚁 Q 恰好从 A 点出发,以 4 个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?13.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.14.若“三角”表示运算:a﹣b+c,若“方框”,表示运算:x﹣y+z+w,求的值,列出算式并计算结果.15.对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.16.乐乐的爸爸投资股票,有一次乐乐发现爸爸持有股票的情况如表格所示:请你帮助分析:乐乐爸爸究竟是赚了还是赔了,赚或赔了多少元?股票名称每股净赚(元)股数天河北斗白马海湖﹣22+1.5﹣4﹣(﹣2)5001000100050017.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(﹣4)❈(﹣3)=+7;(﹣5)❈(+3)=﹣8;(+6)❈(﹣7)=﹣13;(+8)❈0=8;0❈(﹣9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,.(2)计算:[(﹣2)❈(+3)]❈[(﹣12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.举一个例子即可)”18.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:若数轴上数﹣3表示的点与数1表示的点重合.(根据此情境解决下列问题)①则数轴上数3表示的点与数表示的点重合.②若点A到原点的距离是5个单位长度,并且A、B两点经折叠后重合,则B点表示的数是.③若数轴上M、N两点之间的距离为2018,并且M、N两点经折叠后重合,如果M点表示的数比N点表示的数大,则M点表示的数是.则N点表示的数是.19.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,(1)求3※(﹣5)的值;(2)若(﹣3)※b与b互为相反数,求b的值.20.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,表示有理数dB , 的点到原点的距离为 4,求 a ﹣b ﹣c +d 的值.21.阅读下列材料:点 A 、B 在数轴上分别表示两个数 a 、b ,A 、B 两点间的距离记为|AB|,O 表示原点.当A 、B 两点中有一点在原点时,不妨设点 A 为原点,如图 1,则|AB|=|OB|=|b |=|a ﹣b |;当 A 、B 两点都不在原点时,①如图 2,若点 A 、B 都在原点的右边时,|AB|=|OB|﹣|OA|=|b |﹣|a|=b ﹣a =|a ﹣b |;②如图 3,若点 A 、B 都在原点的左边时,|AB|=|OB|﹣|OA|=|b |﹣|a|=﹣b ﹣(﹣a )=|a﹣b |;③如图 4,若点 A 、B 在原点的两边时,|AB|=|OB|+|OA|=|b |+|a|=﹣b +a =|a ﹣b |.回答下列问题:(1)综上所述,数轴上 A 、B 两点间的距离为|AB|=.(2)若数轴上的点 A 表示的数为 3,点 B 表示的数为﹣4,则 A 、 两点间的距离为 ;(3)若数轴上的点 A 表示的数为 x ,点 B 表示的数为﹣2,则|AB|= ,若|AB|=3,则 x 的值为.22.已知数轴上 A ,B 两点对应数分别为﹣2 和 5,P 为数轴上一点,对应数为 x .(1)若 P 为线段 AB 的三等分点(把一条线段平均分成相等的三部分的两个点) 求 P点对应的数.(2)数轴上是否存在点 P ,使 P 点到 A 点,B 点距离和为 10?若存在,求出 x 值;若不存在,请说明理由.(3)若点 A ,点 B 和点 P (P 点在原点)同时向左运动,它们的速度分别为 1,6,3 个长度单位/分,则第几分钟时,A ,B ,P 三点中,其中一点是另外两点连成的线段的中点?23.已知|x|=5,|y|=3.(1)若 x ﹣y >0,求 x +y 的值;(2)若 xy <0,求|x ﹣y|的值;(3)求 x ﹣y 的值.24.解答下列问题::(1)计算:6÷(﹣ + )方方同学的计算过程如下:原式=6÷(﹣ )+6÷ =﹣12+18=6.请你判断方方同学的计算过程是否正确,若不正确,请你写出正确的计算过程.(2)请你参考黑板中老师的讲解,用运算律简便计算(请写出具体的解题过程)①999×(﹣15);②999×118 +333×(﹣ )﹣999×18 .25.阅读材料,解答下列问题:例:当 a =5,则|a|=|5|=5,故此时 a 的绝对值是它本身;当 a =0 时,|a|=0,故此时 a的绝对值是 0;当 a <0 时,如 a =﹣5,则|a|=|5|=﹣(5)=5,故此时 a 的绝对值是它的相反数.综上所述,一个数的绝对值要分三种情况,即|a|=这种分析方法涌透了数学中的分类讨论思想.请仿照图例中的分类讨论,解决下面的问题:(1)|﹣4+5|=;|﹣ ﹣3|= ;(2)如果|x+1|=2,求 x 的值;(3)若数轴上表示数 a 的点位于﹣3 与 5 之间,求|a +3|+|a ﹣5|的值;(4)当 a =时,|a ﹣1|+|a +5|+|a ﹣4|的值最小,最小值是 .26.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米),﹣3,﹣4,+7,﹣5,+8,+3,﹣8.(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为 0.3 升/千米,这天下午汽车共耗油多少升?27.定义一种新运算:a ⊕b =a ﹣b +ab .(1)求(﹣2)⊕(﹣3)的值;(2)求 5⊕[1⊕(﹣2)]的值.28.在学习绝对值后,我们知道,a|表示数a在数轴上的对应点与原点的距离.如:|5|表示|5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B 在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)数轴上表示2和3的两点之间的距离是;数轴上P、Q两点的距离为3,点P表示的数是2,则点Q表示的数是.(2)点A、B、C在数轴上分别表示有理数x、﹣3、1,那么A到B的距离与A到C的距离之和可表示为(用含绝对值的式子表示);满足|x﹣3|+|x+2|=7的x的值为.(3)试求|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣100|的最小值.29.夫子庙派出所巡警骑摩托车在东西大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向东方向为正,当天行驶记录如下(单位:千米)+11,﹣9,7,﹣14,+8,﹣13,+4.①该巡警巡逻时离岗亭最远是千米.②在岗亭东面6千米处有个加油站,该巡警巡逻时经过加油站次.③A在岗亭何方?距岗亭多远?④若摩托车每行1千米耗油0.06升,那么该摩托车这天巡逻共耗油多少升?30.邮递员骑车从邮局出发,先向南骑行3km到达A村,继续向南骑行2km到达B村,然后向北骑行8km到达C村,最后回到邮局,以邮局为原点,以向南方向为正方向,用1cm 表示1km,画出数轴如图.(1)在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有km;(3)邮递员一共骑行了km;(4)如果邮递员骑行的速度为10千米/小时,在每个村庄停留10分钟,那么邮递员从出发到回到邮局一共用了多少小时?31.已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,沿(AC 方向,以每秒 1 个单位的速度向终点 C 运动,设点 P 运动时间为 t 秒.(1)用含 t 的代数式表示点 P 到点 A 、C 的距离,PA =;PC = .(2)当点 P 运动到点 B 时,点 Q 从 C 点出发,沿 CA 方向,以每秒 3 个单位的速度向 A点运动,当其中一点到达目的地时,另一点也停止运动.①当 t =,点 P 、Q 相遇,此时点 Q 运动了 秒.②请用含 t 的代数式表示出在 P 、Q 同时运动的过程中 PQ 的长.32.如图 A 在数轴上所对应的数为﹣2.(1)点 B 在点 A 右边距 A 点 4 个单位长度,求点 B 所对应的数;(2)在(1)的条件下,点 A 以每秒 2 个单位长度沿数轴向左运动,点 B 以每秒 2 个单位长度沿数轴向右运动,当点 A 运动到﹣6 所在的点处时,求 A ,B 两点间距离.(3)在(2)的条件下,现 A 点静止不动,B 点沿数轴向左运动时,经过多长时间 A ,B两点相距 4 个单位长度.33.随着手机的普及,微信(一种聊天软件)的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上,他原计划每天卖 100 斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期与计划量一+4二﹣3 三﹣5 四+14五﹣8 六+21鈤﹣6的差值(1)根据记录的数据可知前三天共卖出斤;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 斤;(3)本周实际销售总量达到了计划数量没有?(4)若冬季每斤按 8 元出售,每斤冬枣的运费平均 3 元,那么小明本周一共收入多少元?34.如图,半径为 1 个单位的圆片上有一点 A 与数轴上的原点重合,AB 是圆片的直径. 注:结果保留 π )(1)把圆片沿数轴向右滚动半周,点 B 到达数轴上点 C 的位置,点 C 表示的数是数(填“无理”或“有理”),这个数是;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3.①第次滚动后,A点距离原点最近,第次滚动后,A点距离原点最远.②当圆片结束运动时,A点运动的路程共有,此时点A所表示的数是.35.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(,),B→C(,),C→(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N →A应记为什么?36.某公路检修组乘汽车沿公路检修,约定前进为正,后退为负,某天自A地出发到收工时所走的路程(单位:千米)为+10,﹣3,+4,﹣2,﹣8,+13,﹣2,﹣11,+7,+5.(1)问收工时相对A地是前进了还是后退了?距A地多远?(2)若检修组最后回到了A地且每千米耗油0.2升,问共耗油多少升?37.我们定义一种新运算:△a b=a﹣b+ab.3 2)(1)求 △2 (﹣)的值;(2)求(﹣△5) △[1 (﹣ ]的值.38.学校图书馆平均每天借出图书 50 册,如果某天借出 53 册,就记作+3;如果某天借出40 册,就记作﹣10.上星期图书馆借出图书记录如表:星期一0 星期二+8 星期三+6星期四﹣2 星期五﹣7(1)上期五借出图书多少册?(2)上星期二比上星期五多借出图书多少册?(3)上星期平均每天借出图书多少册?39.已知,如图 A 、B 分别为数轴上的两点,A 点对应的数为﹣10,B 点对应的数为 70(1)请写出 AB 的中点 M 对应的数(2)现在有一只电子蚂蚁 P 从 A 点出发,以 3 个单位/秒的速度向右运动,同时另一只电子蚂蚁 Q 恰好从 B 点出发,以 2 个单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的 C 点相遇,请你求出 C 点对应的数(3)若当电子蚂蚁 P 从 A 点出发,以 3 个单位/秒的速度向右运动,同时另一只电子蚂蚁 Q 恰好从 B 点出发,以 2 单位/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相距 35 个单位长度,并写出此时 P 点对应的数.40.一辆交通巡逻车在南北公路上巡视,某天早上从 A 地出发,中午到达 B 地,行驶记录如下(规定向北为正方向,单位:千米):+15,﹣8,+6,+12,﹣8,+5,﹣10.回答下列问题:(1)B 地在 A 地的什么方向?与 A 地相距多远?(2)巡逻车在巡逻中,离开 A 地最远多少千米?(3)巡逻车行驶每千米耗油 a 升,这半天共耗油多少升?41.【概念学习】规定:求若干个相同的有理数(均不等于 0)的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把 2÷2÷2 记作 2③,读作“2 的圈 3 次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3 的圈 4 次方”,一般地,把 (a ≠0)记作 a ,读作“a 的圈 n 次方”.+,【初步探究】(1)直接写出计算结果:2③=,(﹣ )⑤= ;(2)关于除方,下列说法错误的是A .任何非零数的圈 2 次方都等于 1;B .对于任何正整数 n ,1 =1;C .3④=4③;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=;5⑥= ;(﹣ )⑩= .(2)想一想:将一个非零有理数 a 的圈 n 次方写成幂的形式等于;(3)算一算:122÷(﹣ )④×(﹣2)⑤﹣(﹣ )⑥÷33.42.若|a|=5,|b |=2,且 a <b ,求 a ﹣b 的值.43.观察下列等式: =1﹣ , = ﹣ , = ﹣ ,把以上三个等式两边分别相加得: + + =1﹣ + ﹣ + ﹣(1)猜想并写出:=.(2)规律应用:计算: + +++ +(3)拓展提高:计算:+ +…+.44.操作探究:已知在纸面上有一数轴(如图所示)操作一:(1)折叠纸面,使表示的1 点与﹣1 表示的点重合,则﹣3 表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1 表示的点与 3 表示的点重合,回答以下问题:①5 表示的点与数表示的点重合;b :② 若数轴上 A 、B 两点之间距离为 11,(A 在 B 的左侧),且 A 、B 两点经折叠后重合,求 A 、B 两点表示的数是多少.45.阅读下面材料:点 A 、B 在数轴上分别表示实数 a 、 ,A 、B 两点之间的距离表示为|AB|.当 A 、B 两点中有一点在原点时,不妨设点 A 在原点,如图 1,|AB|=|OB|=|b |=|a ﹣b |;当 A 、B 两点都不在原点时,如图 2,点 A 、B 都在原点的右边|AB|=|OB|﹣|OA|=|b |﹣|a|=b ﹣a =|a ﹣b |;如图 3,点 A 、B 都在原点的左边,|AB|=|OB|﹣|OA|=|b |﹣|a|=﹣b ﹣(﹣a )=|a ﹣b |;如图 4,点 A 、B 在原点的两边,|AB|=|OB|+|OA|=|a|+|b |=a +(﹣b )=|a ﹣b |;回答下列问题:(1)数轴上表示 2 和 5 的两点之间的距离是,数轴上表示﹣2 和﹣5 的两点之间的距离是,数轴上表示 1 和﹣3 的两点之间的距离是.(2)数轴上表示 x 和﹣1 的两点 A 和 B 之间的距离是 ,如果|AB|=2,那么 x为;(3)当代数式|x +1|+|x ﹣2|取最小值时,相应的 x 的取值范围是.46.某淘宝商家计划平均每天销售某品牌儿童滑板车 100 辆,但由于种种原因,实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超额记为正、不足记为负)星期与计划量的差值一+4二﹣3 三﹣5 四+14五﹣8 六+21 日﹣6(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车辆;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售辆;( (3)本周实际销售总量达到了计划数量没有?(4)该店实行每日计件工资制,每销售一辆车可得 40 元,若超额完成任务,则超过部分每辆另奖 15 元;少销售一辆扣 20 元,那么该店铺的销售人员这一周的工资总额是多少元?47.求若干个相同的不为零的有理数的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把 2÷2÷2 记作 2③,读作“2 的圈 3次方”, ﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3 的圈 4 次方”.一般地,把(a ≠0)记作 ,读作“a 的圈 n 次方”.(1)直接写出计算结果:2③=,(﹣3)④=,(﹣ )⑤=;(2)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,请尝试把有理数的除方运算转化为乘方运算,归纳如下:一个非零有理数的圈 n 次方等于;(3)计算 24÷23+(﹣8)×2③.48.已知 a ,b 互为相反数,c ,d 互为倒数,且 a ≠0,那么 3a +3b + ﹣cd 的值是多少?49.已知(|x +1|+|x ﹣2|)(|y ﹣2)|+|y+1|)(|z ﹣3|+|z+1|)=36,求 2016x+2017y+2018z 的最大值和最小值50.已知 a 2=9,|b |=5,且 a <b ,求 a ﹣b 的值.(七年级上册数学有理数培优 50 题参考答案与试题解析一.填空题(共 5 小题)1.【解答】解:====,故答案为:=.2.若|a|+|b |=2,则满足条件的整数 a 、b 的值有8 组.【解答】解:∵|a|+|b |=2,∴|a|=0,|b |=2 或|a|=1|b |=1,或|a|=2,|b |=0,∴a =0,b =2;a =0,b =﹣2;a =1,b =1;a =1,b =﹣1;a =﹣1,b =1;a =﹣1,b=﹣1;a =﹣2,b =0;a =2,b =0,故答案为:8.3.已知 a ,b ,c ,d 分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a ﹣b |+|b ﹣c|+|c ﹣d |+|d ﹣a|取得最大值时,这个四位数的最小值是 1119 .【解答】解:若使|a ﹣b |+|b ﹣c|+|c ﹣d |+|d ﹣a|的值最大,则最低位数字最大 d =9,最高位数字最小 a =1 即可,同时为使|c ﹣d |最大,则 c 应最小,且使低位上的数字不小于高位上的数字,故 c 为 1,此时 b 只能为 1.所以此数为 1119.故答案为 1119.4.如图,若数轴上 a 的绝对值是 b 的绝对值的 3 倍,则数轴的原点在点C 或点D .填“A ”、“B ”“C ”或“D ”)|【解答】解:由图示知,b ﹣a =4,①当 a >0,b >0 时,由题意可得|a|=3|b |,即 a =3b ,解得 a =﹣6,b =﹣2,舍去;②当 a <0,b <0 时,由题意可得|a|=3|b |,即 a =3b ,解得 a =﹣6,b =﹣2,故数轴的原点在 D 点;③当 a <0,b >0 时,由题意可得 a |=3|b |,即﹣a =3b ,解得 a =﹣3,b =1,故数轴的原点在 C 点;综上可得,数轴的原点在 C 点或 D 点.故填 C 、D .5.|x +1|+|x ﹣2|+|x ﹣3|的值为.【解答】解:当 x ≤﹣1 时,|x +1|+|x ﹣2|+|x ﹣3|=﹣x ﹣1﹣x +2﹣x +3=﹣3x +4;当﹣1<x ≤2 时,|x +1|+|x ﹣2|+|x ﹣3|=x +1﹣x +2﹣x +3=﹣x +6;当 2<x ≤3 时,|x +1|+|x ﹣2|+|x ﹣3|=x +1+x ﹣2﹣x +3=x +2;当 x >3 时,|x +1|+|x ﹣2|+|x ﹣3|=x +1+x ﹣2+x ﹣3=3x ﹣4.综上所述,|x +1|+|x ﹣2|+|x ﹣3|的值为.故答案为: .二.解答题(共 45 小题)6.在一个 3×3 的方格中填写了 9 个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的 3×3 的方格称为一个三阶幻方.(1)在图 1 中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图 2 的方格中填写了一些数和字母,当 x +y 的值为多少时,它能构成一个三阶幻方.【解答】解:(1)2+3+4=9,9﹣6﹣4=﹣1,9﹣6﹣2=1,9﹣2﹣7=0,9﹣4﹣0=5,如图所示:(2)﹣3+1﹣4=﹣6,﹣6+1﹣(﹣3)=﹣2,﹣2+1+4=3,如图所示:x=3﹣4﹣(﹣6)=5,y=3﹣1﹣(﹣6)=8,x+y=5+8=13.7.阅读下面解题过程:计算:解:原式=(第一步)=(﹣15)÷(﹣25)(第二步)=(第三步)回答:(1)上面解题过程中有两个错误,第一处是第一步,错误的原因是在同级运算中,没有按从左到右的顺序进行,第二处是第三步,错误的原因是同号两数相除,结果为正(事实上结果应为正数);(2)正确的结果是.【解答】解:正确做法:原式=(第一步)=15××6(第二步)=(第三步).故答案为:(1)一,在同级运算中,没有按从左到右的顺序进行,二,同号两数相除,结果为正(事实上结果应为正数);(2).8.如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C是AB的中点,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x秒(x >0).(1)当x=5秒时,点P到达点A.(2)运动过程中点P表示的数是2x﹣4(用含x的代数式表示);(3)当P,C之间的距离为2个单位长度时,求x的值.【解答】解:(1)∵数轴上的点A表示的数为6,点B表示的数为﹣4,∴AB=10,∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴运动时间为10÷2=5(秒),故答案为:5;(2)∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴运动过程中点P表示的数是:2x﹣4;故答案为:2x﹣4;(3)点C表示的数为:[6+(﹣4)]÷2=1,当点P运动到点C左侧2个单位长度时,2x﹣4=1﹣2解得:x=1.5,当点P运动到点C右侧2个单位长度时,2x﹣4=1+2解得:x=3.5综上所述,x=1.5或3.5.9.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式a+b=ab﹣1成立的一对有理数a,b为“椒江有理数对”,记为(a,b),如:数对(3,2),(4,)都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是(5,);(2)若(a,3)是“椒江有理数对”,求a的值;(3)若(m,n)是“椒江有理数对”,则(﹣n,﹣m)不是“椒江有理数对”(填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(6,1.4)(注意:不能与题目中已有的“椒江有理数对”重复)【解答】解:(1)﹣2+1=﹣1,﹣2×1﹣1=﹣3,∴﹣2+1≠﹣2×1﹣1,∴(﹣2,1)不是“共生有理数对”,∵5+=,5×﹣1=,∴5+=5×﹣1,∴(5,)中是“椒江有理数对”;(2)由题意得:a+3=3a﹣1,解得a=2.(3)不是.理由:﹣n+(﹣m)=﹣n﹣m,﹣n•(﹣m)﹣1=mn﹣1∵(m,n)是“椒江有理数对”∴m+n=mn﹣1∴﹣n﹣m=﹣(mn﹣1)=﹣(﹣n)×(﹣m)+1=﹣[(﹣n)×(﹣m)﹣1],∴(﹣n,﹣m)不是“椒江有理数对”,(4)(6,1.4)等.故答案为:(5,);不是;(6,1.4).10.计算:(﹣+1﹣)÷(﹣)×|﹣110﹣(﹣3)2|【解答】解:原式=(﹣+﹣)×(﹣42)+×|﹣1﹣9|=27﹣54+10+×10=﹣17+15=﹣2.11.已知a、b互为相反数,c、d互为倒数,并且x的绝对值等于2.试求:x2﹣(a+b+cd)+2(a+b)的值.【解答】解:∵a、b互为相反数,c、d互为倒数,x的绝对值等于2,∴a+b=0,cd=1,x=±2,∴原式=4﹣(0+1)+2×0=4﹣1+0=3.12.如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?【解答】解:(1)M点对应的数是(﹣20+100)÷2=40;(2)它们的相遇时间是120÷(6+4)=12(秒),即相同时间Q点运动路程为:12×4=48(个单位),即从数﹣20向右运动48个单位到数28;(3)相遇前:(100+20﹣20)÷(6﹣4)=50(秒),相遇后:(100+20+20)÷(6﹣4)=70(秒).故当它们运动50秒或70秒时间时,两只蚂蚁间的距离为20个单位长度.13.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是﹣4;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是0;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.【解答】解:(1)点B表示的数是﹣4;(2)2秒后点B表示的数是﹣4+2×2=0;(3)①当点O是线段AB的中点时,OB=OA,4﹣3t=2+t,解得t=0.5;②当点B是线段OA的中点时,OA=2OB,2+t=2(3t﹣4),解得t=2;③当点A是线段OB的中点时,OB=2OA,3t﹣4=2(2+t),解得t=8.综上所述,符合条件的t的值是0.5,2或8.故答案为:﹣4;0.14.若“三角”表示运算:a﹣b+c,若“方框”,表示运算:x﹣y+z+w,求的值,列出算式并计算结果.【解答】解:根据题意得:原式=(﹣+)×(﹣2﹣1.5+1.5﹣6)=(﹣(﹣8)=.15.对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.)×【解答】解:(1)2⊙(﹣4)=|2﹣4|+|2+4|=2+6=8;(2)由数轴知a<0<b,且|a|>|b|,则a+b<0、a﹣b<0,所以原式=﹣(a+b)﹣(a﹣b)=﹣a﹣b﹣a+b=﹣2a.16.乐乐的爸爸投资股票,有一次乐乐发现爸爸持有股票的情况如表格所示:请你帮助分析:乐乐爸爸究竟是赚了还是赔了,赚或赔了多少元?股票名称每股净赚(元)股数天河北斗白马海湖﹣22+1.5﹣4﹣(﹣2)50010001000500【解答】解:﹣22×500+1.5×1000﹣4×1000﹣(﹣2)×500=﹣2000+1500﹣4000+1000=﹣3500,答:乐乐的爸爸赔了,赔了3500元.17.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(﹣4)❈(﹣3)=+7;(﹣5)❈(+3)=﹣8;(+6)❈(﹣7)=﹣13;(+8)❈0=8;0❈(﹣9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值.(2)计算:[(﹣2)❈(+3)]❈[(﹣12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.举一个例子即可)”【解答】解:(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值,故答案为:同号得正、异号得负,并把绝对值相加;都得这个数的绝对值.(2)原式=(﹣5)❈12=﹣17;(3)加法的交换律仍然适用,例如:(﹣3)❈(﹣5)=8,(﹣5)❈(﹣3)=8,所以(﹣3)❈(﹣5)=(﹣5)❈(﹣3),。
新北师大版七年级上有理数的加减含培优
有理数加法法则同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
一个数同0相加,仍得这个数。
我们可以把有理数加法法则进一步总结如下:有理数加法法则“三步曲”(一定类型,二定符号,三定绝对值):第一步:确定有理数加法的类型(同号两数相加、异号两数相加); 第二步:确定计算结果的符号; 第三步:确定计算结果的绝对值。
(1)5188-+(-) (2)(-0.19)+(-3.12) (3)11232+(-3)(4)7387(-)+(5)339999(-2)+2 (6) =+-38)29( 1.用“>”或“<”号填空:(1)如果a >0,b >0,那么a+b ______0; (2)如果a <0,b <0,那么a+b ______0;(3)如果a >0,b <0,|a|>|b|,那么a+b ______0; (4)如果a <0,b >0,|a|>|b|,那么a+b ______0.有理数减法法则减去一个数,等于加上这个数的相反数,即a-b=a+(-b ),这里a 、b 表示任意有理数。
步骤:(1)变减为加,把减数的相反数变成加数;(2)按照加法运算的步骤去做。
1、计算下面各题:=---)7()3( =--3)10(=--)29(30=-120=---)5.11(5.1=---)434(5.3 =--)211(32 =--08362.用“>”或“<”号填空:(1)如果a >0,b <0,那么a-b______0; (2)如果a <0,b >0,那么a-b______0;(3)如果a <0,b <0,|a|>|b|,那么a-b______0; (4)如果a <0,b <0,那么a-(-b)______0;(5)如果a >0,b >0,|a|<|b|那么a-b______0.2.填空题:(1)一个数的绝对值等于它本身,这个数一定是______;一个数的倒数等于它本身,这个数一定是______;一个数的相反数等于它本身,这个数是______;(2)若0<a ,那么a 和它的相反数的差的绝对值是______; (3)若b a b a +=+,那么a ,b 的关系是______; (4)若b a b a -=+,那么a ,b 的关系是______; (5)_____)]3([=---,_____)]3([=+--; 能力提升1.推理①若a =b ,则|a|=|b|;②若|a|=|b|,则a =b ;③若a ≠b ,则|a|≠|b|;④若|a|≠|b|,则a ≠b ,其中正确的个数为( )A . 4个B . 3个C . 2个D . 1个2.a 、b 、c 三个数在数轴上的位置如图,则|a|a +|b|b +|c|c = .3、已知|a -4|+|b -8|=0,则a+bab的值.4、已知|a|=1,|b|=2,|c|=3,且a >b >c ,求a +b +C .5、若|m -3|+|n +2|=0,则m +2n 的值为( ) A . -4 B . -1 C . 0 D . 46、已知|a|=8,|b|=2,且|a -b|=b -a ,求a 和b 的值7、若-a 不是负数,则a( )A . 是正数B . 不是负数C . 是负数D . 不是正数8.有理数a 、b 在数轴上的对应点的位置如图所示,则a 、b ,-a ,|b|的大小关系正确 的是( )A . |b|>a >-a >bB . |b| >b >a >-aC . a >|b|>b >-aD . a >|b|>-a >b9.一个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,则这个数是____.10.已知|a|=4,|b|=5,|c|=6,且a >b >c ,求a +b -C .11.如果|a |﹣5=1,则a 的值为 .12.如图所示,直径为单位1的圆从数轴上表示1的点沿着数轴无滑动地逆时针滚动一周到达A 点,则A 点表示的数是 .13.一个两位数,若交换其个位数与十位数的位置,则所得的新两位数比原两位数大27,这样的两位数共有 个.14、已知2009x +2010y ﹣2010cd =0,若x 、y 互为相反数,c 、d 互为倒数,则x = ,y = . 15、已知a ,b 两数在数轴上的位置如图所示,化简|1-a |+|a -b |-|b +2|=______.16、如图,数轴上的三点A 、B 、C 分别表示有理数a ,b ,c ,化简|a ﹣b |﹣|a +c |+|b ﹣c |= .17、有理数a ,b 、c 在数轴上的位置如图所示,化简|a +b |+|a -c |-|b -1|=______. (2)已知有理数a ,b ,c 在数轴上对应位置如图所示,化简:|a +b |﹣|b +c |+|a +c |.18、a ,b ,c 在数轴上表示的点如图所示,则化简|b |+|a +b |﹣|a ﹣c |= .19、已知整数a 1,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,…依此类推,则a 2017的值为 .20.已知整数a 1,a 2,a 3,a 4,…满足下列条件a 1=0,a 2=|a 1﹣1|,a 3=|a 2﹣2|,a 4=|a 3﹣3|,……以此类推,则a 2018的值为 .21、对于正整数a ,我们规定:若a 为奇数,则13)(+=a a f ,若a 为偶数,则2)(a a f =.例如5210)10(,461153)15(===+×=f f 。
北师大版数学七年级上册 有理数(培优篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.如图,在数轴上每相邻两点间的距离为一个单位长度,点、、、对应的数分别是,且 .(1)那么 ________, ________:(2)点以个单位/秒的速度沿着数轴的正方向运动,秒后点以个单位/秒的速度也沿着数轴的正方向运动,当点到达点处立刻返回,与点在数轴的某点处相遇,求这个点对应的数;(3)如果、两点以(2)中的速度同时向数轴的负方向运动,点从图上的位置出发也向数轴的负方向运动,且始终保持,当点运动到时,点对应的数是多少?【答案】(1)-6;-8(2)解:由(1)可知:,,,,点运动到点所花的时间为,设运动的时间为秒,则对应的数为,对应的数为: .当、两点相遇时,,,∴ .答:这个点对应的数为;(3)解:设运动的时间为对应的数为:对应的数为:∴∵∴∵对应的数为∴①当,;②当,,不符合实际情况,∴∴答:点对应的数为【解析】【解答】解:(1)由图可知:,∵,∴,解得,则;【分析】(1)由a、d在数轴上的位置可得d=a+8,代入已知的等式可求得a的值,再根据数轴可确定原点的位置;(2)根据相遇问题可求得相遇时间,然后结合题意可求解;(3)根据AB=AC列方程,解含绝对值的方程可求解.2.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________;表示-3和2两点之间的距离是________;一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.(2)如果|x+1|=3,那么x=________;(3)若|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B 两点间的最大距离是________.(4)若数轴上表示a的点位于-4与2之间,则|a+4|+|a-2=________.【答案】(1)3;5(2)2或-4(3)8(4)6【解析】【解答】解:数轴上表示4和1的两点之间的距离是:;表示和两点之间的距离是:故答案为:或或故答案为:或(3)或或当时,则两点间的最大距离是,当a=5,b=-1时,A、B两点间的距离是6,当a=1,b=-3时,A、B两点间的距离是4,当时,则两点间的最小距离是,则两点间的最大距离是,最小距离是故答案为:(4)数轴上表示a的点位于-4与2之间,则故答案为:【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的绝对值即可算出答案;(2)根据绝对值的意义去绝对值的符号,再解方程即可;(3)根据绝对值的意义去绝对值的符号,再解方程求出a,b的值,然后分四种情况求出ab 之间的距离,再比大小即可;(4)根据数轴上的点所表示的数的特点可知-4<a<2,所以a+4>0,a-2<0,再根据绝对值的意义去绝对值符号并合并同类项即可.3.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=________.(2)在数轴上表示数a的点与﹣2的距离是3,那么a=________.(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=________.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.【答案】(1)1(2)1或-5(3)6(4)解:∵|a-3|+|a﹣6|表示a到3与a到6的距离的和,∴当3≤a≤6时,|a-3|+|a-6|= =3,当a>6或a<3时,|a-3|+|a﹣6|>3,∴|a-3|+|a﹣6|有最小值,最小值为3.【解析】【解答】(1)AB= =1,故答案为:1( 2 )∵数轴上表示数a的点与﹣2的距离是3,∴ =3,∴-2-a=3或-2-a=-3,解得:a=1或a=-5,故答案为:1或-5( 3 )数a位于﹣4与2之间,|a+4|+|a﹣2|表示a到-4与a到2的距离的和,∴|a+4|+|a﹣2|= =6,故答案为:6【分析】(1)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值即可算出答案;(2)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值列出方程,求解即可;(3)根据题意可知:此题其实质就是求数轴上表示数a的点到表示数字-4的点的距离与数轴上表示数a的点到表示数字2的点的距离的和,又数轴上表示数a的点位于-4与2之间,故该距离等于数轴上表示数字-4与表示数字2的点之间的距离,从而即可得出答案;(4)此题其实质就是求数轴上表示数a的点到表示数字3的点的距离与数轴上表示数a 的点到表示数字6的点的距离的和,从而分当3≤a≤6时,当a>6或a<3时三种情况考虑即可得出答案.4.快递员小王下午骑摩托车从总部出发,在一条东西走向的街道上来回收送包裹.他行驶的情况记录如下(向东记为“ ”,向西记为“ ”,单位:千米):,,,,,,(1)小王最后是否回到了总部?(2)小王离总部最远是多少米?在总部的什么方向?(3)如果小王每走米耗油毫升,那么小王下午骑摩托车一共耗油多少毫升?【答案】(1)解:+2-3.5+3-4-2+2.5+2=0,∴小王最后回到了总部(2)解:第一次离总部2=2千米;第二次:2-3.5=-1.5千米;第三次:-1.5+3=1.5千米;第四次:1.5-4=-2.5千米;第五次:-2.5-2=-4.5千米;第六次:-4.5+2.5=-2千米;第七次:-2+2=0千米.所以离总部最远是4.5千米,在总部的西方向(3)解:|+2|+|-3.5|+|+3|+|-4|+|-2|+|+2.5|+|+2|=2+3.5+3+4+2+2.5+2=19千米又∵摩托车每行驶1千米耗油30毫升,∴19×30=570(毫升)∴这一天下午共耗油570毫升.【解析】【分析】(1)根据有理数的加减法,再根据正负数即可;(2)根据有理数的加减法,再根据正负数即可;(3)根据绝对值的性质,再根据正负数即可;5.已知:b是最小的正整数,且a、b满足+=0,请回答问题:(1)请直接写出a、b、c的值;(2)数轴上a、b、c所对应的点分别为A、B、C,点M是A、B之间的一个动点,其对应的数为m,请化简(请写出化简过程);(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动.若点A以每秒1个单位长度的速度向左运动.同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【答案】(1)解:∵b是最小的正整数∴b=1∵+=0∴a = -1,c=5故答案为:-1;1;5;(2)解:由(1)知,a = -1,b=1,a、b在数轴上所对应的点分别为A、B,①当m<0时,|2m|=-2m;②当m≥0时,|2m|=2m;(3)解:BC-AB的值不随着时间t的变化而变化,其值是2,理由如下:∵点A以每秒一个单位的速度向左移动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右移动,∴BC=3t+4,AB=3t+2∴BC-AB=3t+4-(3t+2)=2【解析】【分析】(1)先根据b是最小的正整数,求出b,再根据+=0,即可求出a、c的值;(2)先得出点A、C之间(不包括A点)的数是负数或0,得出m≤0,在化简|2m|即可;(3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.6.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数轴,根据数形结合思想,回答下列问题:(1)已知|x|=3,则x的值是________.(2)数轴上表示2和6两点之间的距离是________,数轴上表示1和﹣2的两点之间的距离为________;(3)数轴上表示x和1两点之间的距离为________,数轴上表示x和﹣3两点之间的距离为________(4)若x表示一个实数,且﹣5<x<3,化简|x﹣3|+|x+5|=________;(5)|x+3|+|x﹣4|的最小值为________,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值为________.(6)|x+1|﹣|x﹣3|的最大值为________.【答案】(1)(2)4;3(3)|x﹣1|;|x+3|(4)8(5)7;6(6)4【解析】【解答】解:(1)∵,则;故答案为:;(2),,故答案为:4,3;(3)根据两点间距离公式可知:数轴上表示x和1两点之间的距离为:;数轴上表示x和-3两点之间的距离为:;故答案为:,;(4)x对应点在点-5和3之间时的任意一点时|x-3|+|x+5|的值都是8;故答案为:8;(5)x对应点在点-4和3之间时的任意一点,|x-3|+|x+4|的值最小是7;当x对应点是3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的最小值为6;故答案为:7,6;(6)当x对应点不在-1和3对应点所在的线段上,即x<-1或x>3时,|x+1|-|x-3|的最大值为4;故答案为:4.【分析】(1)根据绝对值的意义,即可得到答案;(2)(3)直接代入公式即可;(4)实质是在表示3和-5的点之间取一点,计算该点到点3和-5的距离和;(5)可知x对应点在对应-3和4的点之间时|x+3|+|x-4|的值最小;x对应点在3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|值最小;(6)可知x对应点在表示-1和3的点所形成的线段外时,|x+1|-|x-3|的值最大.7.点P,Q在数轴上分别表示的数分别为p,q,我们把p,q之差的绝对值叫做点P,Q之间的距离,即.如图,在数轴上,点A,B,O,C,D的位置如图所示,则;;.请探索下列问题:(1)计算 ________,它表示哪两个点之间的距离? ________(2)点M为数轴上一点,它所表示的数为x,用含x的式子表示PB=________;当PB=2时,x=________;当x=________时,|x+4|+|x-1|+|x-3|的值最小.(3)|x-1|+|x-2|+|x-3|+…+|x-2018|+|x-2019|的最小值为________.【答案】(1)5;A与C(2)x+2;-4或0;1(3)1019090【解析】【解答】解:(1)|1−(−4)|=|1+4|=|5|=5,|1−(−4)|表示点A与C之间的距离,故答案为:5,点A与C;(2)∵点P为数轴上一点,它所表示的数为x,点B表示的数为−2,∴PB=|x−(−2)|=|x+2|,当PB=2时,|x+2|=2,得x=0或x=−4,当x≤−4时,|x+4|+|x−1|+|x−3|=−x−4+1−x+3−x=−x≥4;当−4<x<1时,|x+4|+|x−1|+|x−3|=x+4+1−x+3−x=8−x,当1≤x≤3时,|x+4|+|x−1|+|x−3|=x+4+x−1+3−x=6+x,当x>3时,|x+4|+|x−1|+|x−3|=x+4+x−1+x−3=3x>9,∴当x=1时,|x+4|+|x−1|+|x−3|有最小值;故答案为:|x+2|;−4或0;1(3)|x−1|+|x−2019|≥|1−2019|=2018,当且仅当1≤x≤2019时,|x−1|+|x−2019|=2018,当且仅当2≤x≤2018时,|x−2|+|x−2018|≥|2−2018|=2016,…同理,当且仅当1009≤x≤1011时,|x−1009|+|x−1011|≥|1009−1011|=2,|x−1010|≥0,当x=1010时,|x−1010|=0,∴|x−1|+|x−2|+|x−3|+…+|x−2018|+|x−2019|≥0+2+4+…+2018=1019090,∴|x−1|+|x−2|+|x−3|+…+|x−2018|+|x−2019|的最小值为1019090;故答案为1019090.【分析】(1)由所给信息,结合绝对值的性质可求;(2)由绝对值的性质,分段去掉绝对值符号,在不同的x范围内确定|x+4|+|x−1|+|x−3|的最小值;(3)由所给式子的对称性,结合绝对值的性质,将所求绝对值式子转化为求0+2+4+…+2018的和.8.平移和翻折是初中数学两种重要的图形变化.(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动个单位长度,再向正方向移动个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是(________)A. B.C. D.②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,……,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是________.(2)翻折变换①若折叠纸条,表示-1的点与表示3的点重合,则表示2019的点与表示________的点重合;②若数轴上A、B两点之间的距离为2019(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示________B点表示________.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为________.(用含有a,b的式子表示)【答案】(1)D;-1010(2)-2017;-1008.5;1010.5;【解析】【解答】解:①∵笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,∴(-3)+(+2)=-1故答案为:D.②∵一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位…∴-1+2-3+4-…+2018-2019=(-1+2)+(-3+4)+…+(-2017+2018)-2019=1+1+…-2019=1009-2019=-1010故答案为:D,-1010.(2)①∵折叠纸条,表示-1的点与表示3的点重合∴对称中心为:,∴2019-1=2018,∴与表示2019的点重合的点在1的左边,∴1-2018=-2017.②∵数轴上A、B两点之间的距离为2019,折痕与①折痕相同∴点B和1,点A和1之间的距离相等,∴点A和1之间的距离为2019÷2=1009.5∵A在B的左侧,∴点A表示的数为1-1009.5=-1008.5点B表示的数为:1009.5+1=1010.5;③根据以上规律可知数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为.故答案为:-2017、-1008.5、1010.5、.【分析】(1)点在数轴上平移的规律为:左减右加,列式计算。
(完整)北师大版七年级上册数学培优训练第1讲—数轴(无答案)
第一讲数轴—数与形的第一次碰撞一、阅读与思考数学是研究数和形的学科, 在数学里数和形是有密切联系的。
我们常用代数的方法来处理几何问题;反过来, 也借助于几何图形来处理代数问题, 寻找解题思路, 这种数与形之间的相互作用叫数形结合, 是一种重要的数学思想。
运用数形结合思想解题的关键是建立数与形之间的联系, 现阶段数轴是数形结合的有力工具, 主要体现在以下几个方面:1.利用数轴能直观地解释相反数;2.利用数轴比较有理数的大小;3.利用数轴解决与绝对值相关的问题。
4.利用数轴能形象地表示有理数;二、知识点反馈1.利用数轴能直观地解释相反数;例:如果数轴上点A到原点的距离为3, 点B到原点的距离为5, 那么A.B两点的距离为。
拓广训练:1.在数轴上表示数的点到原点的距离为3, 则2、已知数轴上有A、B两点, A、B之间的距离为1, 点A与原点O的距离为3, 那么所有满足条件的点B所表示的数是。
2.利用数轴比较有理数的大小;例:已知且, 那么有理数的大小关系是。
(用“”号连接)拓广训练:若且, 比较的大小, 并用“”号连接。
3.利用数轴解决与绝对值相关的问题。
例:有理数在数轴上的位置如图所示, 式子化简结果为()A. B. C. D.拓广训练:1、已知, 在数轴上给出关于的四种情况如图所示, 则成立的是。
①②③④2.已知有理数在数轴上的对应的位置如下图: 则化简后的结果是()(湖北省初中数学竞赛选拨赛试题)A. B. C. D.3、有理数 在数轴上的位置如图所示, 化简 。
4.利用数轴能形象地表示有理数;例: 已知有理数 在数轴上原点的右方, 有理数 在原点的左方, 那么( ) A. B. C. D. 拓广训练:1、如图 为数轴上的两点表示的有理数, 在 中, 负数的个数有( ) (“祖冲之杯”邀请赛试题)A. 1B. 2C. 3D. 4三、培优训练1.已知是有理数, 且 , 那以 的值是( ) A. B. C. 或 D. 或2.如图, 数轴上一动点 向左移动2个单位长度到达点 , 再向右移动5个单位长度到达点 .若点 表示的数为1, 则点 表示的数为( ) A. B. C. D.3.如图, 数轴上标出若干个点, 每相邻两点相距1个单位, 点A.B.C.D 对应的数分别是整数 且 , 那么数轴的原点应是( )A. A 点B. B 点C. C 点D. D 点4、数 所对应的点A, B, C, D 在数轴上的位置如图所示, 那么 与 的大小关系是( )A. B. C. D. 不确定的5.不相等的有理数 在数轴上对应点分别为A, B, C, 若 , 那么点B ( ) A. 在A 、C 点右边 B. 在A 、C 点左边 C. 在A 、C 点之间 D. 以上均有可能6.有理数a 、b 、c 在数轴上的位置如图, 化简│a+b │-│c-b │的结果为( )DCBAA.a+cB.-a-2b+cC.a+2b-cD.-a-c7、在数轴上, 点A, B 分别表示 和 , 则线段AB 的中点所表示的数是 。
北师大版七年级数学上册第2章 有理数 2.12 用计算器进行运算 培优训练(包含答案)
北师版七年级上册第二章有理数2.12 用计算器进行运算培优训练一.选择题(共10小题,3*10=30)1.使用计算器时,下列各按键顺序正确的是( ) A .4×(-8) 4×(-)8= B .8×(-7) 8×-7=C .(3.0-4.5)×32-25 3-4.5×3x 2-ab/c 25=D .135-25 13y x 5-2= 2.用计算器计算-83的按键顺序是( ) A.8x 3(-)= B.(-)x 38= C.(-)8y x = D.(-)8x 3= 3.用计算器求-28的按键顺序正确的是( ) A.+/-2y x 8= B.2y x 8+/-= C.2+/-y x 8= D.2y x 8=+/-=4.小华利用计算器计算0.000 000 129 5×0.000 000 129 5时,发现计算器的显示屏上显示的结果是1.677 025×10-14,对这个结果表示正确的解答应该是( )A .1.677 025×10×(-14)B .(1.677 025×10)-14C .1.677 025×10-14D .(1.677 025×10)145.按7x 2÷(-)5×3·2=能计算的算式是( ) A .72÷(-5)×3.2 B .72÷5×3.2C.-72÷5×(-3.2) D.72÷(-5)×(-3.2)6.在计算器上依次按键70÷7-15×4=后,显示器显示的结果为( ) A.-80 B.-50C.150 D.07.按键顺序4-7∧2÷3×8=对应下面算式( )A.(4-7)2÷3×8 B.4-72÷3×8C.4-72÷3×8D.(4-7)2÷3×88.利用计算器,按照下列步骤按键为((-)3)∧5=,显示结果为( ) A.-8 B.-32C.-243 D.-79.用计算器时,下列按键顺序错误的是( )A.(-5)×8(-)5×8=B.3+4÷73+4÷7=C.6×(-0.3)6×+/-.3=D.0.5×(-4).5×+/-=10.利用计算器可计算出42=16,342=1 156,3342=111 556,3 3342=11 115 556,则猜测33 3342等于( )A.111 155 556 B.1 111 155 556C.111 115 556 D.11 111 555 556二.填空题(共8小题,3*8=24)11. 计算器上用于局部清除的键是,用完计算器后,应该按键.12.计算器上的S⇔D键的功能是_____________________.13. 用计算器求下列各式的值.(1)12.236÷(-3.2)=;(2)125=;(3)-1233=;14.用科学计算器计算,若按键次序是7,y x ,5,=,则其结果为 . 15.王刚用学生计算器进行这样的操作:1.3×3x 2-2ab/c 5=,请你写出结果____________.16. 已知圆环的大圆半径R =9.12 cm ,小圆半径r =4.94 cm ,试用计算器求圆环的面积是__________cm 2.(结果保留一位小数,π取3.142)17.某学生按计算器:25×2ab/c 3ab/c 5=,算式是 ,结果是____. 18.在计算器上按照下面的程序进行操作: 输入x――→按键×3=显示y (计算结果)下表中的x 与y 分别是输入的6个数及相应的计算结果,请分析方框中应该填入的符号和数字 . 三.解答题(共7小题,46分) 19. (6分) 利用计算器计算: (1)-213.5×420; (2)3024÷(-36)-6037; (3)(-5)4-2×(-3)2+35; (4)[12×(-4)-125÷(-5)]×(-2)4.20. (6分) 已知一个圆柱的底面半径为2.32 cm ,它的高为7.06 cm ,用计算器计算这个圆柱的体积.(π取3.14,结果精确到0.01 cm 3)21. (6分)某种细菌在培养过程中,细菌每半小时分裂一次(由一个分裂为两个),经过九个小时,这种细菌由1个可分裂繁殖成多少个?列式并用计算器计算出结果.22. (6分)用计算器计算下列各式,将结果填写在横线上.99 999×11=__________;99 999×12=_________;99 999×13=__________;99 999×14=__________.(1)你发现了什么规律?(2)不用计算器,你能直接写出99 999×19的结果吗?23. (6分)用计算器计算:152=____;252=____;352=____;452=____.(1)你发现了什么规律?(2)不用计算器你能直接算出852,952的结果吗?24. (8分)股民小万上周五以每股13元的价格买进某种股票10000股,该股票这周内与前一天相比的涨跌情况如下表(单位:元):(1)本周内哪一天把股票抛出比较合算?为什么?(2)已知小万买进股票时付了3‰的手续费,卖出时需付成交额3‰的手续费和2‰的交易税,如果小万在星期五收盘前将全部股票卖出,他的收益情况如何?(用计算器计算)25. (8分)利用计算器探究:(1)计算0.22,22,202,2002,….观察计算结果,底数的小数点向左(右)移动一位时,平方数的小数点有什么移动规律?________________;(直接写出结论)(2)计算0.23,23,203,2003,….观察计算结果,底数的小数点向左(右)移动一位时,立方数的小数点有什么移动规律?________________;(直接写出结论)(3)计算0.24,24,204,2004,….观察计算结果,底数的小数点向左(右)移动一位时,四次方数的小数点有什么移动规律?(写出探索过程)(4)由此,根据0.2n,2n,20n,200n,…的计算结果,猜想底数的小数点与n次方数的小数点有怎样的移动规律?__参考答案1-5 ADACA 6-10BBCCB 11. DEL ,OFF 12. 切换为小数格式13. 3.82375,248832,-1860867 14. 16807 15. 11.3 16. 184.7 17. 25×235,6518. +,1 19. 解:(1)-89670 (2)-6121 (3)850 (4)-36820. 解:V =π×(2.32)2×7.06≈119.32 cm 321. 解:由已知条件知:细菌每半小时分裂一次,则经过九个小时就会分裂18次.又因为细菌每半小时分裂一次(由一个分裂为两个),所以分裂18次这种细菌由1个可分裂繁殖成218个.所以218=262144(个)22. 解:(1)观察计算结果发现:①结果中除十万位上的数字和个位上的数字有变化外,其余数位上的数字均不变;②结果中十万位上的数字比两位因数中个位上的数字小1,且与结果中个位的数字的和为9 (2)能.结果为1 899 981 23. 解:225,625,1225,2025(1)乘方后所得结果中十位与个位数字分别是2和5, 最高数位上的数等于底数的十位数字乘以比它大1的数的积 (2)852=7225 952=902524. 解;(1)因为星期一的股票价格为13+(+0.6)=13.6元,星期二的股票价格为13.6+(-0.4)=13.2元,星期三的股票价格为13.2+(-0.2)=13元,星期四的股票价格为13+(+0.5)=13.5元,星期一的股票价格为13.5+(+0.3)=13.8元,所以本周内星期五股票价格最高,这天把股票抛出比较合算;(2)小万在星期五收盘前将全部股票卖出,他的收入=13.8×10000-13×10000-13×10000×3‰-13.8×10000×(3‰+2‰)=6920(元).25. 解:(1)向左(右)移动两位(2)向左(右)移动三位(3)因为0.24=0.0016,24=16,204=160000…所以四次方数的小数点的移动规律是:向左(右)移动四位(4)底数的小数点向左(右)移动一位时,n次方数的小数点向左(右)移动n位。
最新北师大版七年级上册数学 有理数(培优篇)(Word版 含解析)
最新北师大版七年级上册数学有理数(培优篇)(Word版含解析)一、初一数学有理数解答题压轴题精选(难)1.阅读下面的材料:在数轴上,点A表示的数为a,点B表示的数为b,则点A到点B的距离记为AB,线段AB的长度可以用右边的数减去左边的数表示,即AB=b-a。
请根据这些知识回答以下问题:如图2,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B点,然后向右移动7cm到达C点,用1个单位长度表示1cm。
1)请在数轴上标出A、B、C三点的位置。
2)点C到点A的距离CA=________cm;如果数轴上有一点D,且AD=4,则点D表示的数为________;3)如果将点A向右移动xcm,则移动后的点表示的数为________;(请用代数式表示)4)如果点B以每秒2cm的速度向左移动,同时A、C点分别以每秒1cm、4cm的速度向右移动。
设移动时间为t秒,试探索:CA-AB的值是否会随着t的变化而改变?请说明理由。
答案】1)解:如图所示:2)5;-5或33)-1+x4)解:CA-AB的值不会随着t的变化而变化,理由如下:根据题意得:CA=(4+4t)-(-1+t)=5+3t,AB=(-1+t)-(-3-2t)=2+3t。
CA-AB=(5+3t)-(2+3t)=3。
CA-AB的值不会随着t的变化而变化。
解析】【解答】2)CA=4-(-1)=4+1=5(cm);设D表示的数为a。
AD=4。
1)-a|=4。
解得:a=-5或3。
___表示的数为-5或3;故答案为5,-5或3;3)将点A向右移动xcm,则移动后的点表示的数为-1+x;故答案为-1+x;分析】1)根据题意容易画出图形;2)由题意容易得出CA的长度;设D表示的数为a,由绝对值的意义容易得出结果;3)将点A向右移动xcm,则移动后的点表示的数为-1+x;4)表示出CA和AB,再相减即可得出结论。
2.【新知理解】如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段。
北师大版七年级数学上册提优小卷(5)有理数的混合运算课件
78的6□中2 ,填入下列哪个运算符号,可使计算出来的值最小?(
A.+
B.-
C.×
D.÷
5-
7 8
6
2
=5-
41 8
2
1
=5-
681 64
1
=-
361 64
,
5-
7 8
6
2
=5-
55 8
2
=5-
3
025 64
=-
2
705 64
,
5-
7 8
6
2
=5-
21 4
2
=5-
441 16
=-
三、解答题
11. 易错题 (★★☆)计算:
(1)12-6÷(-2)×
13;
(2)(-3)2×
2 3
5 9
;
(3)10+8×
1 2
2
-2÷
;1
5
(4)-72+2×(-2)2-(-6)÷
1 2
;3
(5)(-3)4÷[2-(-7)]+4×
1 2
1.
(1)12-6÷(-2)×
1 3
=12-(-3)×
则输出的结果是 ( B )
A.8
B.10
C.16
D.25
根据题意,得
3
1 2
×22=
52×4=10,故选B.
4.(2024湖北荆州监利中学期中,7,★★☆)在数学课上,老师让甲、乙、丙、丁四位同学分别做了
一道有理数计算题,你认为做对的同学是 ( B )
甲:12-2×32=12-2×6=0;
乙:(36-12)÷4 =36× -312× =318;
最新北师大版数学七年级上册 有理数单元培优测试卷
一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上点A表示的数为-3,B是数轴上位于点A右侧一点,且AB=12.动点P从点A出发,以每秒2个单位长度的速度沿数轴向点B方向匀速运动,设运动时间为t秒.(1)数轴上点B表示的数为________;点P表示的数为________(用含t的代数式表示). (2)动点Q从点B出发,以每秒1个单位长度的速度沿数轴向点A方向匀速运动;点P、点Q同时出发,当点P与点Q重合后,点P马上改变方向,与点Q继续向点A方向匀速运动(点P、点Q在运动过程中,速度始终保持不变);当点P到达A点时,P、Q停止运动.设运动时间为t秒.①当点P与点Q重合时,求t的值,并求出此时点P表示的数.②当点P是线段AQ的三等分点时,求t的值.【答案】(1)9;-3+2t(2)解:①根据题意,得:(1+2)t=12,解得:t=4,∴-3+2t=-3+2×4=5,答:当t=4时,点P与点Q重合,此时点P表示的数为5;②P与Q重合前:当2AP=PQ时,有2t+4t+t=12,解得t= ;当AP=2PQ时,有2t+t+t=12,解得t=3;P与Q重合后:当AP=2PQ时,有2(8-t)=2(t-4),解得t=6;当2AP=PQ时,有4(8-t)=t-4,解得t= ;综上所述,当t= 秒或3秒或6秒或秒时,点P是线段AQ的三等分点【解析】【解答】解:(1)由题意知,点B表示的数是-3+12=9,点P表示的数是-3+2t,故答案为:9,-3+2t;【分析】(1)根据数轴上两点间的距离等于两坐标之差的绝对值可求得点B所表示的数;根据路程=速度×时间可得点P运动的距离,再根据平移的点的坐标的性质可得点P表示的数;(2)①由题意可列方程求解;②分两种情况讨论求解:P与Q重合前:当2AP=PQ时,可得关于t的方程求解;当AP=2PQ时,可得关于t的方程求解;P与Q重合后:当AP=2PQ时,可得关于t的方程求解;当2AP=PQ时,可得关于t的方程求解。
2024年七年级数学上册《有理数及其运算》单元测试及答案解析
第2章 有理数及其运算(单元培优卷 北师大版)考试时间:120分钟,满分:120分一、选择题:共10题,每题3分,共30分。
1.有理数2−的相反数是( ) A .2B .12C .2−D .12−2.13与14的和的倒数是( )A .7B .517C .17D .1433.32−的绝对值是( )A .23−B .32−C .23D .324.下列说法正确的个数为( ) ①有理数与无理数的差都是有理数; ②无限小数都是无理数; ③无理数都是无限小数;④两个无理数的和不一定是无理数; ⑤无理数分为正无理数、零、负无理数. A .2个B .3个C .4个D .5个5.亚洲、欧洲、非洲和南美洲的最低海拔如下表:大洲 亚洲欧洲 非洲南美洲最低海拔/m415− 28−156− 40−其中最低海拔最小的大洲是( ) A .亚洲B .欧洲C .非洲D .南美洲6.数轴上的点M 和点N 分别表示3−与4,如果把点N 向左移动6个单位长度,那么点N 现在表示的数比点M 表示的数( ) A .大2B .大1C .小2D .小17.如果把一个人先向东走5m 记作5m +,那么接下来这个人又走了6m −,此时他距离出发点有多远?下面选项中正确的是( ) A .6m −B .1m −C .1mD .6m8.在0.65,58,35,916这四个数中,最大的是()A .0.65B .58C .35D .9169.物理是上帝的游戏,而数学是上帝的游戏规则.不管多大或多小的数,都得靠数学来表示呢!来自2024年综合运输春运工作专班的数据显示,2月10日~17日(农历正月初一至初八),全社会跨区域人员流动量累计22.93亿人次.客流量大已成为2024年春运的最显著特征,铁路、公路、民航等客运频频刷新纪录.用科学记数法表示22.93亿,正确的是( ). A .822.9310×B .922.9310×C .82.29310×D .92.29310×10.一个天平配有重量分别为1,5,25,125,625克的砝码各5个,则为了准确称出重量为2024克的某物品(砝码只能放一侧),所需砝码数量的值为( )A .11B .12C .13D .14二、填空题:共6题,每题3分,共18分。