高考圆锥曲线如何秒杀
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考圆锥曲线如何秒杀
高中数学难,圆锥曲线又是难中之难。其实解析几何题目自有路径可循,方法可依。只要经过认真的准备和正确的点拨,完全可以让高考数学的圆锥曲线难题变成让同学们都很有信心的中等题目。
高考圆锥曲线如何秒杀
根据题设的已知条件,利用待定系数法列出二元二次方程,求出椭圆的方程,并化为标准方程。
直线设为斜截式y=kx+m,将直线与椭圆联立得到如图一
元二次方程。注意该式子具有普适性,由笔者根据硬解定理简化而来。
通常要验证判别式大于零(因为无论是该经验所给的弦长
公式还是韦达定理都是在判别式大于零的情况下才有意义,若题目给出直线与椭圆相交则略去该步,多写不扣分)。
如图所示,直接写出需要的弦长公式或韦达定理。该图可以省去你至少5分钟,而且不会算错,因为你根本就不用算。
恒成立问题的证明可能会与导数,不等式交汇。恒成立问题的证伪只要找到反例即可。存在性问题通常是存在的,方法是提出无关的未知数。
最后别忘了写综上所述。
高考圆锥曲线如何秒杀
1,适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须
大于1。注上述公式适合一切圆锥曲线。如果焦点内分(指的
是焦点在所截线段上),用该公式;如果外分(焦点在所截线段
延长线上),右边为(x+1)/(x-1),其他不变。
2,函数的周期性问题(记忆三个):1、若f(x)=-f(x+k),则T=2k;
2、若f(x)=m/(x+k)(m不为0),则T=2k;
3、若
f(x)=f(x+k)+f(x-k),则T=6k。注意点:a.周期函数,周期
必无限b.周期函数未必存在最小周期,如:常数函数。c.周
期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相
加不是周期函数。
3,关于对称问题(无数人搞不懂的问题)总结如下:1,若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为
x=(a+b)/2;2、函数y=f(a+x)与y=f(b-x)的图像关于x=(b-
a)/2对称;3、若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)
中心对称
4,函数奇偶性1、对于属于R上的奇函数有f(0)=0;2、
对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项3,奇偶性作用不大,一般用于选择填空
5,数列爆强定律:1,等差数列中:S奇=na中,例如
S13=13a7(13和7为下角标);2等差数列中:S(n)、S(2n)-
S(n)、S(3n)-S(2n)成等差3,等比数列中,上述2中各项在
公比不为负一时成等比,在q=-1时,未必成立4,等比数列
爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q
6,数列的终极利器,特征根方程。(如果看不懂就算了)。首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。二阶有点麻烦,
且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数)
7,函数详解补充:1、复合函数奇偶性:内偶则偶,内奇同外2,复合函数单调性:同增异减3,重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心
横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。
8,常用数列bn=n×(2²n)求和Sn=(n-1)×(2²(n+1))+2
记忆方法:前面减去一个1,后面加一个,再整体加一个2
9,适用于标准方程(焦点在x轴)爆强公式:k椭=-
{(b²)xo}/{(a²)yo}k双={(b²)xo}/{(a²)yo}k抛=p/yo注:(xo,yo)均为直线过圆锥曲线所截段的中点。
10,强烈推荐一个两直线垂直或平行的必杀技:已知直线
L1:a1x+b1y+c1=0直线L2:a2x+b2y+c2=0若它们垂直:(充
要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且
a1c2≠a2c1[这个条件为了防止两直线重合)注:以上两公式避免了斜率是否存在的麻烦,直接必杀!
相关内容:
圆锥曲线高考的命题趋势:
(1)题型稳定:近几年来高考解析几何试题一直稳定在两
个选填题,一个解答题上,分值约为25分左右,占总分值的
近20%。
(2)整体平衡,重点突出:《考试说明》中解析几何部分
19个知识点,一般会考查到其中的半数以上,其中对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既注意全面,更注意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。近几年高考对圆锥曲线内容的考查主要集中在如下几个类型:
曲线方程(类型确定、类型未定);
直线与圆锥曲线的交点问题(含切线问题);
与曲线有关的最(极)值问题;
与曲线有关的几何证明(对称性或求对称曲线、平行、垂直);
探求曲线方程中几何量及参数间的数量特征;
(3)能力立意,渗透数学思想:一些常见的基本题型,如
果借助于数形结合的思想,就能快速准确的得到答案,比死算要节省很多时间。
(4)题型新颖,位置不定:近几年解析几何试题的难度有
所下降,选择题、填空题均属易中等题,且解答题未必会有大难点。所以与相关知识的联系加深加大(如向量、函数、方程、不等式等),将会是今后解析几何的出题重心。
直线与圆的内容主要考查两部分:
(1)以选择题题型考查本章的基本概念和性质,此类题一
般难度不大,但每年必考,考查内容主要有以下几类:
①与本章概念(倾斜角、斜率、夹角、距离、平行与垂直、线性规划等)有关的问题;
②对称问题(包括关于点对称,关于直线对称)要熟记解法;
③与圆的位置有关的问题,其常规方法是研究圆心到直线的距离。
(2)以解答题考查直线与圆锥曲线的位置关系,此类题综
合性比较强,难度也较大。
高考对本章的考查会保持相对稳定,即在题型、题量、难度、重点考查内容等方面不会有太大的变化。
相比较而言,圆锥曲线内容是平面解析几何的核心内容,因而是高考重点考查的内容,在每年的高考试卷中一般有2~3