光在球面上反射与折射

合集下载

第三章几何光学球面反射折射物像公式

第三章几何光学球面反射折射物像公式

例3.4:
一个折射率为1.6的玻璃哑铃,长20cm,两端的曲率半径为 2cm。若在 离哑铃左端5cm处的轴上有一物点,试求像的位置和性质。
[解]:两次折射成像问题。
n
P
O1
n
P’1 n` O 2
1、P为物, 对球面O1折射成像P1’
已知 : s1 5cm , r1 2cm , n 1, n ' 1.6 n n n n 由折射成像公式 ' r1 s1 s1
沿轴线段
A、凡光线与主轴交点在顶点右方者线段长度数值为正; 凡光线与主 轴交点在顶点左方者线段长度数值为负; B、物点或像点至主轴的距离在主轴上方为正,下方为负。 ② 光线的倾角均从主轴或球面法线算起,并取小于900的角度;由主轴 (或法线)转向有关光线时: A、顺时针转动,角度为正;B、逆时针转动,角度为负。 (注意:角度的正负与构成它的线段的正负无关)
2
r
2
s r
'


2
2 r s ' r cos


光程 PAP ' nl nl ' n
r 2 r s 2 2 r r s cos r

2
n
s r
'


2
2 r s r cos
1、高斯公式:

球面反射 : f ' f 1 1 2 ' s s r
六、理想成象的两个普适公式
n' n n' n 将物像公式 ' 变形为 : s s r n' n r r ' ' ' f f n n n n 1 1 ' ' s s s s

光在单球面上的折射和反射-四川大学

光在单球面上的折射和反射-四川大学
β =−
x′ f′
y′ f =− y x
从 Q 作 O 点的入射线 QO ,其折射线是 OQ′ 。由图可知,得
ny n′y′ =− −s s′
或 讨论:
β=
y′ ns′ = y n′s
(1) β > 0 时, y′ 与 y 同号。物正立时像也是正立的。即物是实物时,像必定是虚像,反之, 当物是虚物时,像必定是实像。 (2) 当 β < 0 时,物和像在主光轴的异侧,而且当物是实物时,生成的像也是实像,当物是虚 物时,生成的像也是虚像。 总之,当 β > 0 时,物和像一定是一实一虚; 当 β < 0 时,物和像的虚实相同。
n n’ P n n’
P’
P’ P
虚物成实像
虚物成虚像
n′ n n′ − n − = s′ s r f′ f + =1 s′ s xx′ = ff ′
1 1 2 + = s′ s r 1 1 1 + = s′ s f xx′ = f 2
φ=
f′=
n′ r n′ − n n f =− r n′ − n
n′ − n r
φ=
f′ n′ =− f n
β=
ns′ n′s
N
P
F
(e) 轴上物点成像作图法
图 作图法的几个例子
四川大学精品课程《光学》
六.球面反射镜 1.方法:将反射看作是折射的特殊情况 2.球面反射的物像距公式:
1 1 2 + = s′ s r
i = −i′ ; n′ = −n
3. 单球面折射饿球面反射镜公式对比
球面折射和球面反射公式对照表 球面折射成像 球面反射成像 公式 公式 物 像 距 焦距和光焦度 横向放 大率

几何光学基本定律球面反射和折射成像

几何光学基本定律球面反射和折射成像

11-1-4 全反射
n1sinin2sinr
当 n1 n2 有 r i
临界角 ic :相应于折射角 为90°的入射角.
r
n2
i
ic ic
n1
全反射:当入射角 i 大于临界角时,将不会出现折射 光,入射光的能量全部反射回原来介质的现象.
sin ic
n2 n1
§11-2 平面反射和平面折射成像
i i v1 n1
n2
r v2
⑵ 入射角 i 的正弦与折射角 r 的正弦之比为一个常数
sin i sin r n 21
n21称为第二种介质对第 一种介质的相对折射率
n21
sin i sinr
v1 v2
绝对折射率:一种介质相对于真空的折射率 n c v 。

c n1 v1
c n2 v2
n 21
虚像
m y 1 y
像正立
例2.点光源P位于一玻璃球心点左侧25 cm处.已知玻璃球半径 是10 cm,折射率为1.5,空气折射率近似为1,求像点的位置.
解: p1 15cm
P2
R10cm
n1 1
P1
n2 1.5
n1 P p1
p 1 p2
n2
C
P2
p 2
n1 n2 n2 n1
p1 p1
R
R
2
C
P
P
R
C P
P
会聚光入射凹镜:虚物成实像
p0
p' 0
R0
f
R 2
0
发散光入射凸镜: 实物成虚像
p 0 p' 0 R0
f R 0 2
R
P
P

3.5光在球面上的反射和折射符号法则

3.5光在球面上的反射和折射符号法则
Chap.3 Basic Principles of Geometrical Optics
主讲人:尹国盛 教授 河南大学物理与信息光电子学院
1
主要内容
3.1 光线的概念 3.2 费马原理 3.3 单心光束 实像和虚像 3.4 光在平面界面上的反射和折射
光学纤维 3.5 光在球面上的反射和折射 3.6 光连续在几个球面界面上的折射
如果:n1 > n2,那么 y < y ,即像点P 位于 物点 P 的上方,视深度减小。
(渔民叉鱼) 如果:n1 < n2, 那么 y > y ,即像点P 位于
物点 P 的下方,视深度增大。
20
三. 全反射 光学纤维
1.全反射:
对光线只有反射而无折射的现像。
当光从光密介质n1射向光疏介质
n2(<n1)时,i1 i2 i1 =ic
18
∵ 单心光束的波面是球面, ∴ 在平面界面上折射后,波面的形状发生 变化,不再是球面了。这样形成的互相垂直 的两小段像且不那么清晰的现像称为像散。
② 当i1=0,即当P所发出的光束几乎垂直于 界面时,有 x =0 , y = y1 = y2 = y n2 n1 。
19
这表明 y 近似地与入射角 i1 无关,则折 射光束是近似单心的,y 称为像视深度,y 为 物的实际深度。
25
例题3.1 人眼前一小物体,距人眼25cm,今 在人眼和小物体之间放置一块平行平面玻璃 板,玻璃板的折射率为1.5 ,厚度为5mm。 试问此时看小物体相对它原来的位置移动多 远?
解:利用 P162 L 3.1 的结果,
PPˊ= d ( 1-1/n )
可得:
s = 5×(1-1/1.5)= 5/3≈1.67(mm)

1. 4. 光在球面上的反射与折射

1. 4. 光在球面上的反射与折射

§1.4、光在球面上的反射与折射1.4.1、球面镜成像<1)球面镜的焦距球面镜的反射仍遵从反射定律,法线是球面的半径。

一束近主轴的平行光线,经凹镜反射后将会聚于主轴上一点F<图1-4-1),这F 点称为凹镜的焦点。

一束近主轴的平行光线经凸面镜反射后将发散,反向延长可会聚于主轴上一点F<图1-4-2),这F 点称为凸镜的虚焦点。

焦点F 到镜面顶点O 之间的距离叫做球面镜的焦距f 。

可以证明,球面镜焦距f 等于球面半径R 的一半,即b5E2RGbCAP<2)球面镜成像公式 根据反射定律可以推导出球面镜的成像公式。

下面以凹镜为例来推导:<如图1-4-3所示)设在凹镜的主轴上有一个物体S ,由S 发出的射向凹镜的光线镜面A 点反射后与主轴交于点,半径CA为反图1-4-1图1-4-2射的法线,即S的像。

根据反射定律,,则CA为角A的平分线,根据角平分线的性质有p1EanqFDPw①由为SA为近轴光线,所以,,①式可改写为②②式中OS叫物距u,叫像距v,设凹镜焦距为f,则代入①式化简这个公式同样适用于凸镜。

使用球面镜的成像公式时要注意:凹镜焦距f取正,凸镜焦距f取负;实物u取正,虚物u取负;实像v为正,虚像v为负。

DXDiTa9E3d上式是球面镜成像公式。

它适用于凹面镜成像和凸面镜成像,各量符号遵循“实取正,虚取负”的原则。

凸面镜的焦点是虚的,因此焦距为负值。

在成像中,像长和物长h之比为成像放大率,用m表示,RTCrpUDGiT由成像公式和放大率关系式可以讨论球面镜成像情况,对于凹镜,如表Ⅰ所列;对于凸镜,如表Ⅱ所列。

表Ⅰ 凹镜成像情况~2f表Ⅱ 凸镜成像情况~~2f同侧~<3)球面镜多次成像 球面镜多次成像原则:只要多次运用球面镜成像公式即可,但有时前一个球面镜反射的光线尚未成像便又遇上了后一个球面镜,此时就要引进虚像的概念。

5PCzVD7HxA 如图1-4-4所示,半径为R 的凸镜和凹镜主轴相互重合放置,两镜顶点O1 、 O2 相距2.6R ,现于主轴上距凹镜顶点O1为0.6R 处放一点光源S 。

光在球面上的反射和折射参考幻灯片

光在球面上的反射和折射参考幻灯片

s'0.10m
顶点O的右边,虚像。
如右图,光线从右向
左传播,此时
A 物空间
巳知:S=0.05m, r=0.20m
Байду номын сангаас
P’
O PC
像空间
由球面镜物像公式,
11 2 s s' r
10/8/2020
1 1 2 0.05 s' 0.20
s'0.1m 0
顶点O的左边,虚像。
3.3.4 球面折射对 光束单心性的破坏
-s
考虑光线P-A-P’的光程 PA' P nln'l
n[ (r)2(rs)22(r)(rs)cos]12
n[ (r)2(s'r)22(r)(s'r)cos]12
当A点在镜面上移动时,是位置的变量。由费马原理
可得
dPA ' P 0 rss'r0
d
l
l'
由此可见,若s已知,则反射线与主轴的交点P’到O 点的距离s’随入射线的倾角u(亦即角)而变。也
由费马原理可得
d PAP' 0
d
n(rs)n'(s'r)0
l
l'
折射线与主轴的交点P’到O点的距离s’随入射线的倾角 u(亦即角)而变。
物点发出的单心光束经球面折射后,单心性也被破坏。
10/8/2020
3.3.5 近轴光线条件下球面折射的物像公式
近轴光线条件下,
角很小,在一级近似下,cos≈1,则有:l≈-s ,l’≈s’
10/8/2020 返回第3 章
3.3.1 符号法则
几何光学中的“符号”是人为规定的具有任意 性,需统一;

3.5 光在球面上的反射和折射 符号法则

3.5  光在球面上的反射和折射 符号法则

2.光焦度公式:
0 会聚 n n = =0 平面折射 r 0 发散
单位:m -1 ,称为屈光度,用 D 表示。 (共轭P176)
23
四. 棱 镜
主截面:垂直于两界面的截面. 偏向角:出射线与入射线间的交角. =(i1-i2 )+(i1 -i2 )= i1 +i 2 -A 最小偏向角:
A A =2i A , i i , i i 2 2
0 1 1 1 2 2
(i i A)
2 2
尹国盛教授河南大学物理与信息光电子学院31光线的概念32费马原理33单心光束实像和虚像34光在平面界面上的反射和折射光学纤维35光在球面上的反射和折射36光连续在几个球面界面上的折射37薄透镜38近轴物点近轴光线成像的条件39理想光具组的基点和基面310理想光具组的放大率基点和基面的性质311一般理想光具组的作图求像法和物像公式波面波面波面波面31光线的概念一光线与波面二几何光学的基本实验定律1光的直线传播定律小孔成像物体的影子2光的反射定律和折射定律3光的独立传播定律和光路可逆原理
11
5.物像之间的等光程性
物点S和像点S之间 各光线的光程都相等 (费马原理)
12
3.4 光在平面界面上的反射和折射 光学纤
三. 全反射 光学纤维
四. 棱镜
13
一. 光的平面反射成像
一个平面镜是最简单的光学系统
平面反射镜是一个最简单的理想光学系 统,它不改变光束的单心性,能成完善的像。 所成的像与原物大小相同,而物和像以平面 镜为对称。
B A
极小值:图(b) 光的直线传播、 光的反射定律、折射定律 极大值:图(c) 恒定值:图(a)
6
3.3 单心光束 实像和虚像

球面反射和球面折射成像

球面反射和球面折射成像
所成的像位于球面顶点右边36cm的位置,且是倒立的实像
球面反射成像
一、凹面镜的反射成像
1
2
3
4
5
f
c
F
成像公式
焦距公式
横向放大率
物点在焦点之内,凹面镜成虚像
y
f
l
l’
y’
c
2
1
F
物点在焦点之外,凹面镜成实像
f
c
l
y
l’
y’
1
1
2
2
F
二、凸面镜的反射成像
f
1
2
3
F
y
1
2
1
2
y’
fቤተ መጻሕፍቲ ባይዱ
l
l’
所以成的是缩小正立的虚像,位于镜前右方10 cm处。
解 按题意,l=-30cm,r =30cm,y=10mm
由成像公式可得 cm
二、球面折射成像公式
物方焦距
-
像方焦距
Q

O
n

r
C


P

y
三、横向放大率
Q

O
n

r
C


P

y
定义
|β|>1 放大 |β|<1 缩小
β > 0 像正立 β < 0 像倒立
F
F'
四、近轴光线的作图法
共轴球面系统成像(逐次成像)
01
共轴球面系统所成的最终像,可由第一球面所成之像作为第二球面之物、第二球面所成之像作为第三球面之物逐次计算而得。 光学系统的横向放大率为每次球面成像的横向放大率的乘积。

光在球面上的反射折射

光在球面上的反射折射
13 – 3 光在球面上的反射、折射成像 一 . 球面镜的反射成像 1. 凹面镜的反射成像 近轴光线 : 靠近 球面对称轴( 主光 轴 ),且与对称轴具 有微小夹角的光线 . 焦距
1 2 3 4 5
物理学教程 (第二版)
凹面镜的焦点
F
f r 2
曲率半径
主 光 轴
f
* 第十三章 几何光学
13 – 3 光在球面上的反射、折射成像 利用作图法 确定像的位置和 大小 成像公式 A 2 1 2 1
物理学教程 (第二版)
2 . 凸面镜的反射成像
1
虚焦点
1 2 3 4 5
O
F
h0
1 2 2
O
f
p0
p
h1
f
F
f 0
凸面镜焦距
* 第十三章 几何光学
p0 0, p 0
凸面镜成像
13 – 3 光在球面上的反射、折射成像 二 . 球面上的折射成像 1. 成像公式(近轴光线)
物理学教程 (第二版)
O
物理学教程 (第二版)
h0 F
h1
p
1 1 1 p p f
凹面镜 f 0 (A) p 0, p 0 B
p
f
p
h0
1 F
O
h1
1 2
2
(B)
p 0, p 0
* 第十三章 几何光学
p
f
13 – 3 光在球面上的反射、折射成像 成像公式
物理学教程 (ቤተ መጻሕፍቲ ባይዱ二版)
n n n n p p r
M
f f 1 p p
Q
i
o
i
c

球面镜成像规律

球面镜成像规律

球面镜成像规律
球面镜是一种曲面镜,其中镜面是一个部分或完整的球面。

根据球面镜的几何特性和成像原理,可以得出以下球面镜成像规律:
1. 光线从远离球面镜的物体上射入,会经过球面镜的折射和反射,并在球面上交汇,形成实物像。

这个实物像可以是放大的或缩小的。

2. 光线从球面镜上的物体上射入并经过球面镜的折射和反射,会向投射者方向上方发散。

这个形成的虚物像与实物像相距相同的距离。

3. 光线中的任意一条经过球心的光线,会经过球面镜的折射和反射后改变方向,使得入射角和反射角相等。

4. 当物体离球面镜较远且物体高度较小,球面镜成像近似成为球心在物体上方和虚物像之间的焦距上的放大倒立实物像。

5. 当物体离球面镜较近且物体高度较大,球面镜成像近似成为球心在物体前方和实物像之间的焦距上的减小倒立实物像。

需要注意的是,以上规律是在忽略球面镜的边缘效应和成像畸变的情况下得出的。

实际上,球面镜的成像还受到许多其他因素的影响,例如球面的曲率、物体和球面镜之间的距离等。

因此,精确的球面镜成像分析需要考虑这些因素并使用几何光学原理进行计算。

光在球面上折射

光在球面上折射
7
8
9
二、球面折射公式
如图所示,AOB
是折射率分别为
A
n1和 n2的两种介 n1 S i
r S
n2
质的球面界面,
θ
φ
R为球面的曲率 S1 半径,O为曲率
C
O
R
B
S2
中心,C为球面
l1
l2
顶点,CO的延长线为球面的主轴。通过主轴的平面称为主截
面。主轴对于所有的主截面具有对称性。 设n2 > n1,光线 从点光源S1发出,经球面A点折射后与主轴交于S2 ,令:
得 : l2= 10cm
最后的像是一个虚像,并落在哑铃中间。
26
例1 如图所示,一根折射率为1.50的玻璃棒,其一
端被磨成半径为20.0mm的半球面。若将它先后放在
折射率为1.00的空气中和折射率为1.33的水中,求在
这两种情况下,在棒轴上距离顶点80.0mm处的物点
的像距和像的横向放大率。
n1(空气;水)
ⅶ)还可以用于描述光线在平面上的折射和反射, 因为平面可以认为是曲率半径无限大的球面。
ⅷ)也可以作为研究各种情况下折射和反射成像规 律的基础。
凸面镜成像原理;凹面镜成像原理
19
三、高斯公式
引入焦点焦距的概念后,可得球面折射的另一种形
式,即高斯公式。
如果处于主光轴上的物点离开球面的距离为无限大,
即l1=∞,那么由它发出而投射到球面上的平行光线必
ⅴ)上式对凸状球面和凹状球面都是适用的,只需 按照上面的规定调整球面曲率半径的符号就可以了。
18
ⅵ)上式也可以用于描述光线在各种球面上的反 射,这时除了应调整球面曲率半径的符号外,还需 令n2=﹣n1。物空间与像空间重合,且反射光线与 入射光线的传播方向恰恰相反。这种情况在数学处 理上可以认为像方介质的折射率等于物方介质折射 率的负值。(仅在数学上有意义)

光学——球面反射和折射

光学——球面反射和折射

-u
u`
P
O
r
C
P`
-s
s`
P C s r r sP C s rA C r
nsin i1n sin i2
15
P C s i n u P C s i n u n r s s i n u s r s i n u n
已知:s1 5cm,r1 2cm,
n` P n1,n' 1.6
’ 1
O2
O1
P2’
n=1,n’=1.6 由折射成像公式:
n n n n s1 s1 r1
-s1
s1’
代入数据,可求得s1’.
-s2 -s2’
2、P1’为物对球面O2折射成像
s 2 2 0 1 6 4 c m , r 2 2 c m , n 1 . 6 , n ' 1
s — 物距 s’— 象距 r — 球面曲率半径
令 s=-∞ ,则 s’= r/2 = f’ , f’ — 象方焦距 令 s’=-∞,则 s = r/2 = f , f — 物方焦距 反射球面特点: f ’ = f , 物方焦点F 和象方焦点F’重合.
10
焦点:沿主轴方向的平行光束经球面反射后会聚
§1.4 球面反射和折射
• 符号法则 • 球面反射 • 球面折射 • 理想成象的两个普适公式
1
E
(1)线段 y
A
C
Or
-y’
-s
s’
以单球面折射系统为例, 从顶点算起: 沿轴线段
A、光线与主轴交于顶点右方者,线段长度为正; 光线与主轴交于顶点左方者,线段长度为负;
B、物点或像点至主轴的距离在主轴上方为正,

光在球面上的反射和折射

光在球面上的反射和折射

§3-5 光在球面上的反射和折射单独一个球面不仅是一个简单的光学系统,而且是组成光学仪器的基本元件,研究光经由球面的反射和折射,是一般光学系统成象的基础。

一、符号法则为了研究光线经由球面反射和折射后的光路,必须先说明一些概念以及规定一些适当的符号法则,以便使所得的结果能普遍适用。

(图3-12)图3-12中的AOB 所示球面的一部分,这部分球面的中心点O 称为顶点,球面的球心C 称为曲率中心,球面的半径称为曲率半径,连接顶点的曲率中心的直线CO 称为主轴,通过主轴的平面称为主截面,主轴对于所有的主截面具有对称性,因而我们只须讨论一个主截面内光线的反射。

图3-12表示球面的一个主截面。

在计算任一条光线的线段长度和角度时,我们对符号作如下规定。

(1)光线和主轴交点的位置都从顶点算起,凡在顶点右方者,其间距离的数值为正;凡在顶点左方者,其间距离的数值为负,物点或象点至主轴的距离,在主轴上方为正,在下方为负。

(2)光线方向的倾斜角度都从主轴(或球面法线)算起,并取小于2π的角度,由主轴(或球面法线)转向有关光线时,若沿顺时针方向转,则该角度的数值为正;若沿逆时针方向转动的,则该角度的数值为负(在考虑角度的符号时,不必考虑组成该角度两边的线段的符号)。

(3)在图中出现的长度和角度(几何量)只用正值,例如s 表示的某线段值是负的,则应用()s -来表示该线值的几何长度。

以下讨论的都是假定光线自左向右进行。

二、球面反射对光束单心性的破坏在图3-12中,一个从点光源P 发出的光波从左向右入射到曲率中心为C ,顶点为O ,曲率半径为γ的一个凹球面镜上,光线PA 经球面镜AOB 反射后,在'P 点与主轴相交,令 '',,'',ττ==-=-=AP PA s O P s PO半径AC 与主轴的夹角为ϕ,则光线'PAP 的光程为 (')'P A P n n ττ=+ 在PAC ∆和'ACP ∆中应用余弦定理,并注意c o s c o s ()()()'()(')',P C sr r s C P r s s r ϕπϕ=--=---=-=---=- 从而可得()()()()[]2122cos 2ϕs r r s r r l --+-+-=(3-10)以及()()()()[]2122'cos '2'ϕr s r r s r l ----+-= (3-11)因此,光线'PAP 的光程可写成12221222(')()()2()()cos ()(')2()(')cos PAP n r r s r r s n r s r r s r ϕϕ⎡⎤=-+-+--⎣⎦⎡⎤+-+----⎣⎦(3-12)由于当A 点在镜面上移动时,半径r 是常数,而ϕ才是位置的变量,根据费马原理,物象间的光程应取稳定值,为此,把(3-12)式对ϕ求导,并令其等于零,即()()[]()[]0sin '21sin 21''=-+--=ϕϕϕr s r ln s r r l n d PAP d 由此可得 0''=---l rs l s r 或者⎪⎭⎫⎝⎛+=+l s l s r l l ''111'(3-13) 如果发光点P 至O 点的距离s 为已知,从此式即可算出任一反射线和主轴的交点'P 到 O 点的距离's 的值,显然's 的值将随着所取入射线的倾斜角u ,亦即角ϕ的变化而变化,这就是说,从物点发散的单心光束经球面反射后,将不再保持单心(即使平等光束入射时也不例外),关于这一点可说明如下:PC A 1A 2OP 2P'P 3 (图3-13)图3-13中,相应于1PA 及2PA 两入射光线的反射线分别交主轴于1P 和2P 两点,且相交于'P 点,把该图绕主轴PO 转过一个小角度,使三角形12PA A 展成一单心的空间光束,此时'P 点描出一条很短的弧线,它垂直于图面即反射光束的子午象线,而图面中的12PP 则为弧矢象线。

§3.3 光在球面上的反射和折射

§3.3 光在球面上的反射和折射

r s s r 0 l l
或:
1 1 1 s s l l r l l
(2)
2、球面反射对光的单心的破坏
由式(2)可以看出,s 的值随 u亦即角 的变化而变化
如图3.3 3、近轴光线条件下球面反射的物象公式 (1)球面反射的物象公式。
2 2 2 2 1/2
l r (s r ) 2r (s r )cos
根据费马原理
1/2
d ( PAP) n n 2r (r s)sin 2r ( s r )sin d l l n(r s) n( s r ) 2r sin 0 l l
图3.6
f f f x ff xx f x 1 fx x f x f x f x f
xx ff
这种物像公式的形式称为牛顿公式。
(12)
nr nr n n n n 1 f f 1 s s s s
Ⅱ、牛顿公式: 物距和象距也可以分 别从物方和象方焦点 算起。并遵守同样的 符号法则,如图3.6从 上图得
(11)
s x ( f ), s f x
xs f x s f
§3.3 光在球面上的反射和折射
一、符号法则(新笛卡儿符号法则) 1、基本概念 顶点O 曲率半径 曲率中心C 主轴 CO
主平面:过主轴的平面 2、符号法则
光线的线段长度和角度的符号规定:
图3.1
(1)线段:光线和主轴交点的位置都从顶点算起, “上正下负,右正左负 ” (2)角度:取小于 / 2 的锐角,主轴(或球面法线)转向有关 光线时,“顺正逆负”
f n c、 f f 的关系: f n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.4、光在球面上的反射与折射1.4.1、球面镜成像(1)球面镜的焦距球面镜的反射仍遵从反射定律,法线是球面的半径。

一束近主轴的平行光线,经凹镜反射后将会聚于主轴上一点F (图1-4-1),这F 点称为凹镜的焦点。

一束近主轴的平行光线经凸面镜反射后将发散,反向延长可会聚于主轴上一点F (图1-4-2),这F 点称为凸镜的虚焦点。

焦点F 到镜面顶点O 之间的距离叫做球面镜的焦距f 。

可以证明,球面镜焦距f 等于球面半径R 的一半,即2Rf =(2)球面镜成像公式 根据反射定律可以推导出球面镜的成像公式。

下面以凹镜为例来推导:(如图1-4-3所示)设在凹镜的主轴上有一个物体S ,由S 发出的射向凹镜的光线镜面A 点反射后与主轴交于S '点,半径CA 为反射的法线,S '即S 的像。

根据反射定律,AC S SAC '∠=∠,则CA 为S SA '角A 的平分线,根据角平分线的性质有S C CSS A AS '=' ①由为SA 为近轴光线,所以O S S A '=',SO AS=,①式可改写为S C CSS O OS '=' ②②式中OS 叫物距u ,S O '叫像距v ,设凹镜焦距为f ,则图1-4-1图1-4-2f u OC OS CS 2-=-=υ-='-='f S O OC S C 2代入①式υυ--=f fu u22化简f u 111=+υ 这个公式同样适用于凸镜。

使用球面镜的成像公式时要注意:凹镜焦距f 取正,凸镜焦距f 取负;实物u 取正,虚物u 取负;实像v 为正,虚像v 为负。

f u 111=+υ上式是球面镜成像公式。

它适用于凹面镜成像和凸面镜成像,各量符号遵循“实取正,虚取负”的原则。

凸面镜的焦点是虚的,因此焦距为负值。

在成像中,像长 和物长h 之比为成像放大率,用m 表示,u h h m υ='=由成像公式和放大率关系式可以讨论球面镜成像情况,对于凹镜,如表Ⅰ所列;对于凸镜,如表Ⅱ所列。

表Ⅰ 凹镜成像情况表Ⅱ 凸镜成像情况(3)球面镜多次成像 球面镜多次成像原则:只要多次运用球面镜成像公式即可,但有时前一个球面镜反射的光线尚未成像便又遇上了后一个球面镜,此时就要引进虚像的概念。

如图1-4-4所示,半径为R 的凸镜和凹镜主轴相互重合放置,两镜顶点O 1 、 O 2 相距2.6R ,现于主轴上距凹镜顶点O 1为0.6R 处放一点光源S 。

设点光源的像只能直接射到凹镜上,问S 经凹镜和凸镜各反射一次后所成的像在何处?S 在凹镜中成像,Ru 6.01=,R f 211=111111f u =+υR R 216.011=+υO 图1-4-4可解得 R 31=υ R O O 6.221=,根据题意:所以凹镜反射的光线尚未成像便已又被凸镜反射,此时可将凹镜原来要成像1S 作为凸镜的虚物来处理,R R R u 4.0)36.2(2-=-=,22R f -= 222111f u =+υR R 214.012-=+-υ可解得 R 22=υ说明凸镜所成的像2S 和S 在同一位置上。

1.4.2、球面折射成像 (1)球面折射成像公式 (a )单介质球面折射成像 如图1-4-5所示,如果球面左、右方的折射率分别为1和n ,S '为S 的像。

因为i 、r 均很小,行以n rir i ==sin sin①因为 αθ+=i ,βθ-=r 代入①式可有)(βθαθ-=+n r ②对近轴光线来说,α、θ、β同样很小,所以有u x =α,R x =θ,υβx =图1-4-5代入②式可得R n n u 11-=+υ 当∞→u 时的v 是焦距f ,所以n n R f ⋅-=1(b )双介质球面折射成像如图1-4-6所示,球形折射面两侧的介质折射率分别n 1和n 2,C 是球心,O 是顶点,球面曲率半径为R ,S 是物点,S '是像点,对于近轴光线2211i n i n =βα+=1i , θβ-=2i ,u A 0=α,R A 0=β,v A 0=θ 联立上式解得n n vn u n 1221-=+这是球面折射的成像公式,式中u 、υ的符号同样遵循“实正虚负”的法则,对于R ;则当球心C 在出射光的一个侧,(凸面朝向入射光)时为正,当球心C 在入射光的一侧(凹面朝向入射光)时为负。

若引入焦点和焦距概念,则当入射光为平行于主轴的平行光(u=∝)时,出射光(或其反向延长线)的交点即为第二焦点,(也称像方焦点),此时像距即是第二焦距2f ,有1222n n Rn f -=。

当出射光为平行光时,入射光(或其延长线)的交点即第一焦点(即物方焦点),这时物距即为第一焦距1f ,有1211nn Rn f -=,将1f 、2f 代入成像公式改写成图1-4-6121=+u fu f反射定律可以看成折射定律在12n n -=时的物倒,因此,球面镜的反射成像公式可以从球面镜折射成像公式中得到,由于反射光的行进方向逆转,像距υ和球面半径R 的正负规定应与折射时相反,在上述公式中令12n n -=,υυ-→,R R -→,即可得到球面镜反射成像公式R u 211=+υ,对于凹面镜0>R ,221R f f ==,对于凸面镜0<R ,221R f f ==,厚透镜成像。

(C )厚透镜折射成像设构成厚透镜材料的折射率为n ,物方介质的折射率为1n ,像方介质的折射率为2n ,前后两边球面的曲率半径依次为1r 和2r ,透镜的厚度为t o o =',当物点在主轴上的P 点时,物距OP u =,现在来计算像点P '的像距。

P O S '=',首先考虑第一个球面AOB 对入射光的折射,这时假定第二个球面AOB 不存在,并认为球AOB 右边,都为折射率等于n 的介质充满,在这种情况下,P 点的像将成在P ''处,其像距P O ''='υ,然后再考虑光线在第二个球面的折射,对于这个球面来说,P ''便是虚物。

因此对于球面AOB ,物像公式为1112r n n u n vn -=+ 对于球面AOB ,物像公式为222r n n t u n v n -=-+图1-4-7A这样就可以用二个球面的成像法来求得透镜成像的像距u 。

(2)光焦度折射成像右端仅与介质的折射率及球面的曲率半径有关,因而对于一定的介质及一定形状的表面来说是一个不变量,我们定义此量为光焦度,用φ表示:rnn -'=Φ它表征单折射球面对入射平行光束的屈折本领。

φ的数值越大,平行光束折得越厉害;φ>0时,屈折是会聚性的;φ<0时,屈折是发散性的。

φ=0时,对应于∞=r,即为平面折射。

这时,沿轴平行光束经折射后仍是沿轴平行光束,不出现屈折现象。

光焦度的单位是[米-1],或称[屈光度],将其数值乘以100,就是通常所说的眼镜片的“度数”。

(3)镀银透镜与面镜的等效 有一薄平凸透镜,凸面曲率半径R =30cm ,已知在近轴光线时:若将此透镜的平面镀银,其作用等于一个焦距是30cm 的凹面镜;若将此透镜的凸面镀银,其作用也等同于一个凹面镜,其其等效焦距。

当透镜的平面镀银时,其作用等同于焦距是30cm 的凹面镜,即这时透镜等效面曲率半径为60cm 的球面反射镜。

由凹面镜的成像性质,当物点置于等效曲率中心 时任一近轴光线经凸面折射,再经平面反射后将沿原路返回,再经凸面折射后,光线过 点,物像重合。

如图1-4-8所示。

i n i '=,i u i '+=,i u n '+=1。

依题意,60h u =,30h i =,故5.1=n 。

图1-4-8图1-4-9凸面镀银,光路如图1-4-9所示。

关键寻找等效曲率中心,通过凸面上任一点A 作一垂直于球面指向曲率中心C 的光线。

此光线经平面折射后交至光轴于B C ,令r OC B =则i n i'=,Rh i =,r h i '=',得cm n R r 20==。

由光的可逆性原理知,B C 是等效凹面镜的曲率中心,f =10cm 。

例1、如图1-4-10所示,一个双凸薄透镜的两个球面的曲率半径均为r ,透镜的折射率为n ,考察由透镜后表面反射所形成的实像。

试问物放于何处,可使反射像与物位于同一竖直平面内(不考虑多重反射)。

解: 从物点发出的光经透镜前表面(即左表面)反射后形成虚像,不合题意,无须考虑。

从物点发出的光经透镜前表面折射后,再经透镜后表面反射折回,又经前表面折射共三次成像,最后是实像,符合题意。

利用球面折射成像公式和球面反射成像公式,结合物与像共面的要求。

就可求解。

球面反射的成像公式为:f v u 111=+,其中反射面的焦距为2Rf =(R 为球面半径),对凹面镜,f 取正值,对凸面镜,f 取负值。

球面折射的成像公式为:R n n v n u n 1)(2121-=+。

当入射光从顶点射向球心时,R 取正值,当入射光从球心射向顶点时,R 取负值。

如图1-4-11甲所示,当物点Q 发出的光经透镜前表面折射后成像于Q ',设物距为u ,像距为v ,根据球面折射成像公式:图1-4-10图1-4-11甲R n n v n un 1)(2121-=+ 这里空气的折射率11=n ,透镜介质的折射率n n =2,入射光从顶点射向球心,R=r 取正值,所以有r n v n u 11-=+ (1)这是第一次成像。

对凸透镜的后表面来说,物点Q 经透镜前表面折射所成的风点Q '是它的物点,其物距v u -=1(是虚物),经透镜后表面反射后成像于1Q ',像距为1v -(如图1-4-11乙所示),由球面反射成像公式r f v u 2111211==+ 将前面数据代入得r v v 2111=+-(2)这是第二次成像。

由透镜后表面反射成的像点1Q '又作为透镜前 表面折射成像的物点2Q ,其物距12v u -=(是虚物),再经过透镜前表面折射成像于2Q ',像距为2v ,图1-4-11乙图1-4-11丙(见图1-4-11丙所示),再由球面折射成像公式Rn n v n u n 1)(2121-=+ 这时人射光一侧折射率,折射光一侧折射率(是空气),入射光由球心射向顶点,故R 值取负值。

所以可写出rn v u n --=+1)1(122 代入前面得到的关系可得rn v u n 1121-=+-(3) 这是第三次成像,由(1)、(2)两式可解得rn v n u 1311-=+ (4) 再把(4)式和(3)式相加,可得rn v u )12(2112-=+ (5) 为使物点Q 与像点2Q '在同一竖直平面内,这就要求 12v u -=代入(5)是可解得物距为12-=n ru说明 由本题可见,观察反射像,调整物距,使反射像与物同在同一竖直平面内,测出物距P ,根据上式就可利用已知的透镜折射率n 求出透镜球面的半径r ,或反过来由已咋的球面半径r 求出透镜的折射率n 。

相关文档
最新文档