《统计学》相关与回归分析
统计学中的回归分析与相关系数
回归分析是统计学中一种重要的分析方法,用于探索变量之间的关系和预测变量的变化。
相关系数是回归分析的一个重要指标,用于衡量变量之间的线性相关程度。
在统计学中,回归分析和相关系数常常一起使用,通过量化两个变量之间的关系,帮助我们更好地理解和解释数据。
回归分析通过建立一个数学模型来描述两个或多个变量之间的关系。
其中一个变量被称为因变量,它的值由其他变量的值决定。
其他变量被称为自变量,它们对因变量的值产生影响。
回归分析的目标是建立一个最佳拟合线,使得预测因变量的值最准确。
回归分析可以帮助我们了解哪些自变量对因变量的影响最大,预测因变量的值,以及控制其他自变量的情况下某个自变量对因变量的影响。
在回归分析中,相关系数是衡量变量之间线性相关程度的一个指标。
常见的相关系数有Pearson相关系数和Spearman等级相关系数。
Pearson相关系数适用于线性关系,其取值范围为-1到1,且0表示无线性关系。
当相关系数接近1时,表示变量之间的正向线性关系越强;当相关系数接近-1时,表示变量之间的反向线性关系越强。
Spearman等级相关系数适用于排名数据,无需考虑数据的分布。
相关系数可以帮助我们判断两个变量之间的关系是正向还是反向,以及关系的强度。
回归分析和相关系数在许多领域中都有广泛的应用。
在经济学领域,回归分析可以用来探索不同因素对经济指标的影响,如GDP和就业率。
在医学领域,相关系数可以帮助医生评估不同因素对疾病的风险或预后的影响。
在社会科学中,回归分析可以用来研究不同因素对人类行为的影响,如教育水平对就业机会的影响。
然而,需要注意的是,回归分析仅能描述变量之间的线性关系,非线性关系需要采用其他方法。
另外,相关系数只能衡量线性相关程度,无法确定因果关系。
因此,在使用回归分析和相关系数进行数据分析时,我们需要谨慎解读结果,并结合实际情况进行分析。
总之,回归分析和相关系数是统计学中重要的分析方法。
通过回归分析,我们可以探索变量之间的关系,预测因变量的变化;而相关系数可以帮助我们量化变量之间的线性相关程度。
统计学中的相关分析与回归分析的关系
统计学中的相关分析与回归分析的关系统计学是一门研究如何收集、整理、描述和解释数据的学科。
在统计学中,相关分析和回归分析是两个重要的方法,用于了解和探究变量之间的关系。
尽管相关分析和回归分析在某些方面有相似之处,但它们在目的、数据类型和结果解释方面存在一些差异。
相关分析是一种用于衡量和描述两个或多个变量之间关联关系的方法。
相关分析可以帮助我们确定变量之间的线性相关程度,即一个变量的变化伴随着另一个变量的变化。
通过计算相关系数,我们可以了解这种关系的强度和方向。
常用的相关系数包括皮尔逊相关系数和斯皮尔曼等级相关系数。
与此不同,回归分析旨在建立一个数学模型,以描述和预测因变量与自变量之间的关系。
回归分析可以通过拟合曲线或平面来表示变量之间的关系,并用方程式来描述这种关系。
回归分析使用的模型可以是线性回归、多项式回归、对数回归等。
通过回归分析,我们可以根据自变量的值来估计因变量的值,并评估自变量对因变量的影响程度。
虽然相关分析和回归分析在某些情况下可互相转化,但它们具有不同的目标和应用范围。
相关分析主要用于探索变量之间的关系,确定它们之间的关联强度和方向,但不提供因果关系。
而回归分析则旨在建立一个模型,通过这个模型可以对未知的因变量进行预测,并且可以评估自变量对因变量的影响。
此外,相关分析和回归分析适用于不同类型的数据。
相关分析通常用于分析连续变量之间的关系,而回归分析可以应用于连续变量、二分类变量和多分类变量之间的关系。
在实际应用中,相关分析和回归分析常常结合使用。
首先,我们可以通过相关分析来初步检验变量之间是否存在关系。
如果相关分析结果显示两个变量之间存在显著相关性,我们可以进一步使用回归分析来建立一个模型,以更好地理解和预测这种关系。
在总结中,统计学中的相关分析和回归分析是两个相互关联的方法。
相关分析用于探究变量之间的关系和相关性,而回归分析则用于建立一个数学模型,描述和预测因变量与自变量之间的关系。
统计学第七章 相关与回归分析
(四)按变量之间的相关程度分为完全相关、不完全相 关和不相关。
二、相关关系的测定
(一)定性分析,相关表,相关图 判断现象间有无相关关系是一个定性认 识问题,单纯依靠数学方法是无法解决的。 因此,进行相关分析必须以定性分析为前 提,这就要求研究人员首先必须根据有关 经济理论,专业知识,实际经验和分析研 究能力等。对被研究现象在性质上作出定 性判断。 相关表是将相关变量的观察资料,按照 其对应关系和一定顺序排列而成的表格。
Se
y
2
a y b xy n2
(7- 12)
这个公式可以直接利用前面计算回归系 数和相关系数的现成资料。以表7-1的资 料计算如下:
Se y 2 a y b xy n2 56615-30.3 731-28.36 1213 10 2 65.02 8 2.85 (万件)
2
或
y- y R= 1- 2 y y
ˆ 式中,y 为y的多元线性趋势值或回归估计值。
若变量间呈曲线(非直线)相关,则应
计算相关指数来测定变量间相关的密切程度。
ˆ y y y y
2 2
Ryx
( 7-7)
R
ˆ y y
由表7-4资料计算相关系数如下:
r
n xy x y n x x
2 2
n y y
2 2
2
10 1213-15.1 731
2
10 26.25-15.1 10 56615-731 1091.9 1091.9 38.49 31789 6.2 178.3 1091.9 0.988 1105.5
统计学06第六章相关与回归分析
-5.3339 -21.2729 -20.0669
0.02111209 -58.5559
0.0675121 -201.421
2019/11/7
第六章 相关与回归分析
20
2.2 相关系数的特征及判别标准
解法 1
n x y
Lxx
L yy
Lxy
2
xx
2
y y
xx
3559.59
22
2.2 相关系数的特征及判别标准
解法 2
n x y x2 y2 x y
10 6470 5.813 4814300 3.446609 3559.59
r
10 3559.59 6471 5.813
10 4814300 64702 10 3.446609 5.8132
第六章 相关与回归分析
第二节 简单线性相关分析
2.1 相关系数的计算公式 2.2 相关系数的特征及判别标准 2.3 相关系数的检验
2.1 相关系数的计算公式
相关系r数与计ρ算公式: X 、Y 的协方差
相总关样 系体数本:相关 系V数Caor是 vXX一,Va个 YrY统
计量。可以证明,样本相
y y
10 6470 5.813 628210 0.0675121 -201.421
r
201 .421
628210 0 .0675121
0 .978051034 0.9781
2019/11/7
第六章 相关与回归分析
21
2.2 相关系数的特征及判别标准
x
280 320 390 530 650 670 790 880 910 1050
统计学中的相关性和回归分析
统计学中的相关性和回归分析统计学中,相关性和回归分析是两个重要的概念和方法。
它们旨在揭示变量之间的关系,并可以用来预测和解释观察结果。
本文将介绍相关性和回归分析的基本原理、应用及其在实践中的意义。
一、相关性分析相关性是指一组变量之间的关联程度。
相关性分析可以帮助我们理解变量之间的关系,以及这种关系的强度和方向。
常用的相关性指标有皮尔逊相关系数、斯皮尔曼相关系数和判定系数等。
皮尔逊相关系数是最常见的衡量变量之间线性关系的指标。
它的取值范围在-1到1之间,其中-1表示完全负相关,1表示完全正相关,0表示无相关。
例如,在研究身高和体重之间的关系时,如果相关系数为0.8,则说明身高和体重呈现较强的正相关。
斯皮尔曼相关系数则不要求变量呈现线性关系,而是通过对变量的序列进行排序,从而找到它们之间的关联程度。
它的取值也在-1到1之间,含义与皮尔逊相关系数类似。
判定系数是用于衡量回归模型的拟合程度的指标。
它表示被解释变量的方差中可由回归模型解释的部分所占的比例。
判定系数的取值范围在0到1之间,越接近1表示模型对数据的拟合越好。
二、回归分析回归分析是一种用于建立变量之间关系的统计方法。
它通过建立一个数学模型来解释和预测依赖变量和自变量之间的关系。
回归模型可以是线性的,也可以是非线性的。
线性回归是最常见的回归分析方法之一。
它假设自变量和因变量之间存在着线性关系,并通过最小二乘法来估计模型中的参数。
线性回归模型通常表示为y = β0 + β1x1 + β2x2 + ... + βnxn,其中y为因变量,x1、x2等为自变量,β0、β1等为模型的参数。
非线性回归则适用于自变量和因变量之间存在非线性关系的情况。
非线性回归模型可以是多项式回归、指数回归、对数回归等。
回归分析在实践中有广泛的应用。
例如,在市场营销中,回归分析可以用来预测销售量与广告投入之间的关系;在医学研究中,回归分析可以用来探究疾病发展与遗传因素之间的联系。
统计学相关分析与回归分析
Adjusted R S0q.u9a3r9e2399
标准误差 41.078969
观测值
17
方差分析
回归分析 残差 总计
df
SS
MS
F Significance F
2 420740.67 210370.34 124.66526 1.201E-09
14 23624.744 1687.4817
16 444365.42
36.42
13
629
6.675
36.58
14
602.7
5.543
37.14
15
656.7
6.933
41.3
16
778.5
7.638
45.62
17
877.6
7.752
47.38
第七合章计回归分析
9054 101.268
471.1
例:某地区玻璃销 售量与汽车产量、 建筑业产值资料如 左,试建立回归模
型。
3
337.5
6.666
14.5
4
404.5
5.338
15.75
5
402.1
4.321
16.78
6
452
6.117
17.44
7
431.7
5.559
19.77
8
582.3
7.92
23.76
9
596.6
5.816
31.61
10
620.8
6.113
32.17
11
513.6
4.258
35.09
12
606.9
5.591
第七章 回归分析
统计学 相关与回归分析.
2019年4月30日/上午2时57分
《统计学教程》
第9章 相关与回归分析
9.2 一元线性回归
《统计学教程》
第9章 相关与回归分析
9.2 一元线性回归
9.2.1一元线性回归模型
1.理论模型
从回归模型的一般形式,式(9.2)出发,一元线性回归模型可以表
述为
9.2.3 一元线性回归方程的拟合优度
9.2.4 一元线性回归方程的显著性检验
9.2.5 运用一元线性回归方程进行估计
9.3 多元线性回归
9.3.1 多元线性回归模型
9.3.2 多元线性回归方程的最小二乘估计
9.3.3 多元线性回归方程的拟合优度
2019年4月30日/上午2时57分
《统计学教程》
第9章 相关与回归分析
借助散点图还可以概略地区分和识别变量之间的非线性相关的具体类 型,为回归分析确定回归方程的具体形式提供依据,这也是散点图的重 要功能。例如,通过散点图展示的图形特征,初步地分辨出相关关系是 直线,还是二次曲线、三次曲线、指数曲线、对数曲线、S曲线等。所 以,散点图不仅是相关分析,也是回归分析中经常使用的最简便的基本 分析工具。
相关系数的正负取值取决于Lxy的正负。
并且,当相关系数的绝对值越是趋近于1,表明变量和变量的相关程 度越高,称之为强相关;反之,当相关系数的绝对值越是趋近于0,表 明变量和变量的相关程度越低,称之为弱相关。
2019年4月30日/上午2时57分
《统计学教程》
第9章 相关与回归分析
9.1 相关关系
例9.2 根据例9.1的表9.1中的数据。 表9.1某证券市场价格指数与A证券价格
1800
统计学中直线相关与回归的区别与联系
统计学中直线相关与回归的区别与联系在统计学中,直线相关和回归是两个相关的概念,但又有一些区别和联系。
区别:
1. 定义:直线相关是指两个变量之间的线性关系,即随着一个变量的增加,另一个变量也以一定的比例增加或减少。
回归分析是一种统计方法,用于建立一个或多个自变量与因变量之间的关系模型。
2. 目的:直线相关主要关注变量之间的关系和相关程度,通过相关系数来衡量。
而回归分析旨在通过建立数学模型来预测或解释因变量的变化,以及评估自变量对因变量的影响。
3. 变量角色:在直线相关中,两个变量没有明确的自变量和因变量的区分,它们之间的关系是对称的。
而在回归分析中,通常有一个或多个自变量作为预测因变量的因素。
联系:
1. 线性关系:直线相关和回归分析都假设变量之间存在线性关系,即可以用直线或线性模型来描述它们之间的关系。
2. 相关系数:直线相关中使用相关系数来度量变量之间的相关程度。
回归分析中也使用相关系数,但更多地关注回归模型的参数估计和显著性检验。
3. 数据分析:直线相关和回归分析都是常用的数据分析方法,在实际应用中经常同时使用。
直线相关可以帮助我们了解变量之间的关系和趋势,而回归分析可以进一步建立模型和进行预测。
总之,直线相关和回归分析是统计学中两个相关但又有区别的概念。
直线相关关注变量之间的线性关系和相关程度,而回归分析则更关注建立模型和预测变量之间的关系。
在实际应用中,它们常常相互补充使用,以帮助我们理解和解释数据。
统计学 第 七 章 相关与回归分析
(一)回归分析与相关分析的关系
回归分析与相关分析是研究现象 之间相互关系的两种基本方法。
区别:
1、相关分析研究两个变量之间相关的 方向和相关的密切程度。但是相关分析不 能指出两变量相互关系的具体形式,也无 法从一个变量的变化来推测另一个变量的 变化关系。
2、按研究变量多少分为单相关和 复相关
单相关即一元相关,亦称简单相 关,是指一个因变量与一个自变量 之间的依存关系。复相关又称多元 相关,是指一个因变量与两个或两 个以上自变量之间的复杂依存关系。
3、按相关形式分为线性相关和非 线性相关
从相关图上观察:观察的样本点的 分布近似表现为直线形式,即观察点近 似地分布于一直线的两边,则称此种相 关为直线相关或线性相关。如果这些样 本点近似地表现为一条曲线,则称这种 相关为曲线相关或非线性相关(curved relationship).
不确定性的统计关系 —相关关系
Y= f(X)+ε (ε为随机变量)
在这种关系中,变量之间的关系值 是随机的,当一个(或几个)变量的值 确定以后,另一变量的值虽然与它(们) 有关,但却不能完全确定。然而,它们
之间又遵循一定的统计规律。
相关关系的例子
▪ 商品的消费量(y)与居民收入(x)
之间的关系
▪ 商品销售额(y)与广告费支出(x)
▲相关系数只反映变量间的线性相关程度,不 能说明非线性相关关系。
▲相关系数不能确定变量的因果关系,也不能 说明相关关系具体接近于哪条直线。
例题1: 经验表明:商场利润额与 其销售额之间存在相关关系。下表为 某市12家百货公司的销售额与利润额 统计表,试计算其相关系数。
统计学中的相关系数与回归分析
统计学中的相关系数与回归分析统计学是一门研究数据收集、分析和解释的学科,其中包括相关系数和回归分析这两个重要的概念。
相关系数和回归分析都是用于了解变量之间的关系以及预测未来趋势的工具。
本文将介绍相关系数和回归分析的基本概念、计算方法和应用场景。
一、相关系数相关系数衡量了两个变量之间的相关程度。
它反映了两个变量的线性关系强度和方向。
常见的相关系数有皮尔逊相关系数(Pearson correlation coefficient)、斯皮尔曼等级相关系数(Spearman's rank correlation coefficient)和切比雪夫距离(Chebyshev distance)等。
皮尔逊相关系数是最常用的相关系数之一。
它通过计算两个变量之间的协方差除以它们各自的标准差的乘积来衡量它们的线性关系。
皮尔逊相关系数的取值范围在-1到1之间,其中1表示完全正相关,-1表示完全负相关,0表示没有线性关系。
通过计算相关系数,我们可以判断变量之间的关系以及预测一个变量的变化情况受到其他变量的程度。
斯皮尔曼等级相关系数是一种非参数相关系数,它不要求变量服从特定的分布。
它通过将原始数据转化为等级来计算变量之间的关系。
斯皮尔曼等级相关系数的取值范围也在-1到1之间,其含义与皮尔逊相关系数类似。
切比雪夫距离是一种度量两个变量之间差异的方法,它不仅考虑了线性关系,还考虑了其他类型的关系,如非线性关系。
切比雪夫距离通常用于分类问题和模式识别领域。
二、回归分析回归分析是一种用于建立因变量和自变量之间关系的统计方法。
它通过寻找最合适的拟合曲线来描述变量之间的函数关系,并用此拟合曲线来预测未来的结果。
简单线性回归是回归分析的一种基本形式,它适用于只有一个自变量和一个因变量的情况。
简单线性回归可以用一条直线来描述变量之间的关系,其中直线的斜率表示了自变量对因变量的影响程度。
多元线性回归是回归分析的一种扩展形式。
它适用于多个自变量和一个因变量的情况。
统计学中的相关分析与回归分析
统计学中的相关分析与回归分析统计学中的相关分析与回归分析是两种重要的数据分析方法。
它们帮助研究人员理解和解释变量之间的关系,并预测未来的趋势。
在本文中,我们将深入探讨相关分析和回归分析的定义、应用和原理。
第一部分:相关分析相关分析是用来衡量和评估两个或更多变量之间相互关系的统计方法。
通过相关系数来量化这种关系的强度和方向。
相关系数的取值范围在-1到+1之间,其中-1表示完全负相关,+1表示完全正相关,0表示没有相关性。
相关分析通常用于发现变量之间的线性关系。
例如,研究人员想要了解身高和体重之间的关系。
通过相关分析,他们可以确定是否存在正相关关系,即身高越高,体重越重。
相关分析还可以帮助确定不同变量对某一结果变量的影响程度。
第二部分:回归分析回归分析是一种通过建立数学模型来预测和解释变量之间关系的方法。
它可以用来预测因变量的值,并了解自变量对因变量的影响程度。
回归分析可分为简单回归和多元回归两种类型。
简单回归分析适用于只有一个自变量和一个因变量的情况。
例如,研究人员想要预测一个人的体重,他们可以使用身高作为自变量。
通过建立线性回归模型,他们可以得到身高对体重的影响,从而预测一个人的体重。
多元回归分析适用于有多个自变量和一个因变量的情况。
例如,研究人员想要了解影响一个城市房价的因素,他们可以考虑多个自变量,如房屋面积、地理位置、房龄等。
通过建立多元回归模型,他们可以确定每个因素对房价的影响程度,并进行预测。
第三部分:相关分析与回归分析的应用相关分析和回归分析在各个领域都有广泛的应用。
在医学研究中,相关分析可以帮助确定两个疾病之间的关联性,并为疾病的预防和治疗提供依据。
回归分析可以用来预测患者的生存率或疾病的发展趋势。
在经济学中,相关分析可以用来研究经济变量之间的关系,如GDP 与通货膨胀率之间的关系。
回归分析可以用来预测经济增长率,并评估政治和经济因素对经济发展的影响。
在市场营销中,相关分析可以帮助企业了解产品销售和广告投放之间的关系,并制定有效的市场推广策略。
统计学第九章 相关与回归分析
第九章相关与回归分析Ⅰ. 学习目的和要求本章所要学习的相关与回归分析是经济统计分析中最常重要的统计方法之一。
具体要求:1.掌握有关相关与回归分析的基本概念;2.掌握单相关系数的计算与检验的方法,理解标准的一元线性回归模型,能够对模型进行估计和检验并利用模型进行预测;3.理解标准的多元线性回归模型,掌握估计、检验的基本方法和预测的基本公式,理解复相关系数和偏相关系数及其与单相关系数的区别;4.了解常用的非线性函数的特点,掌握常用的非线性函数线性变换与估计方法,理解相关指数的意义;5.能够应用Excel软件进行相关与回归分析。
Ⅱ. 课程内容要点第一节相关与回归分析的基本概念一、函数关系与相关关系当一个或几个变量取一定的值时,另一个变量有确定值与之相对应,这种关系称为确定性的函数关系。
当一个或几个相互联系的变量取一定数值时,与之相对应的另一变量的值虽然不确定,但仍按某种规律在一定的范围内变化。
这种关系,称为具有不确定性的相关关系。
变量之间的函数关系和相关关系,在一定条件下是可以互相转化的。
116117二、相关关系的种类按相关的程度可分为完全相关、不完全相关和不相关。
按相关的方向可分为正相关和负相关。
按相关的形式可分为线性相关和非线性相关。
按所研究的变量多少可分为单相关、复相关和偏相关。
三、相关分析与回归分析相关分析是用一个指标来表明现象间相互依存关系的密切程度。
回归分析是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。
通过相关与回归分析虽然可以从数量上反映现象之间的联系形式及其密切程度,但是无法准确地判断现象内在联系的有无,也无法单独以此来确定何种现象为因,何种现象为果。
只有以实质性科学理论为指导,并结合实际经验进行分析研究,才能正确判断事物的内在联系和因果关系。
四、相关图相关图又称散点图。
它是以直角坐标系的横轴代表变量X ,纵轴代表变量Y,将两个变量间相对应的变量值用坐标点的形式描绘出来,用来反映两变量之间相关关系的图形。
《统计学原理与应用》课件第07章 相关与回归分析
74.4 172.0 248.0 418.0 575.0 805.2 972.0 1,280.0
104,214
4,544.6
统计学基础
第七章 相关与回归分析
根据计算结果可知:Βιβλιοθήκη x 36.4y 880
n8
x2 207.54
y2 104,214
xy 4,544.6
Fundamentals of Statistics
n x2 ( x)2 n y2 ( y)2
公式7—3
公式7—3是实际工作中使用较多的计算公式
Fundamentals of Statistics
统计学基础
第七章 相关与回归分析
(四)相关系数的运用
(1)相关系数有正负号,分别表示正相关和负相关。
(2)相关系数的取值范围在绝对值的0 之1 间。其值大小 反映两变量之间相关的密切程度。
统计学基础
第七章 相关与回归分析
二、相关关系的种类
3.相关关系按照相关的方向分为正相关和负相 关 正相关:是指一个变量的数量变动和另一个变 量的数量变动方向一致.
负相关:当一个变量的数量变动与另一个变量 的数量变动方向相反时,称为负相关.
Fundamentals of Statistics
统计学基础
统计学基础
第七章 相关与回归分析
二、相关关系的测定 (一)相关系数的含义:
相关系数是在直线相关的条件下,用来说明两个 变量之间相关关系密切程度的统计分析指标。
Fundamentals of Statistics
统计学基础
第七章 相关与回归分析
(二)相关系数的作用
1.说明直线相关条件下,两变量的相关关系的密切程 度的高低. (见教材第159页说明)
第九章 相关与回归分析 《统计学原理》PPT课件
[公式9—4]
r xy n • xy
x y
[公式9—5]
返回到内容提要
第三节 回归分析的一般问题
一、回归分析的概念与特点
(一)回归分析的概念
现象之间的相关关系,虽然不是严格 的函数关系,但现象之间的一般关系值, 可以通过函数关系的近似表达式来反映, 这种表达式根据相关现象的实际对应资料, 运用数学的方法来建立,这类数学方法称 回归分析。
单相关是指两个变量间的相关关系,如 自变量x和因变量y的关系。
复相关是指多个自变量与因变量间的相关 关系。
(二)相关关系从表现形态上划分,可分为 直线相关和曲线相关
直线相关是指两个变量的对应取值在坐标 图中大致呈一条直线。
曲线相关是指两个变量的对应取值在坐 标图中大致呈一条曲线,如抛物线、指数曲线、 双曲线等。
0.578
a y b x 80 0.578 185 3.844
n
n7
7
yˆ 3.844 0.578x
二、估计标准误差 (一)估计标准误差的概念与计算 估计标准误差是用来说明回归直线方程 代表性大小的统计分析指标。其计算公式为:
Syx
y yˆ 2
n
[公式9—8]
实践中,在已知直线回归方程的情况下, 通常用下面的简便公式计算估计标准误差:
[例9—2] 根据相关系数的简捷公式计算有:
r
n xy x y
n x2 x2 n y2 y2
7 218018580
0.978
7 5003 1852 7 954 802
再求回归直线方程:
yˆ a bx
b
n xy x y
n x2 x2
7 2180 18580 7 50031852
统计学原理第八章相关分析与回归分析
21
例1:P354页,第1题
企业 产量 X 单位成 XY
X2
Y2
序号 (4件) 本(元)Y
1
2
52
104
4
2704
2
3
54
162
9
2916
3
4
52
208
16
2704
4
4
48
192
16
2304
5
5
48
240
25
2304
6
6
∑
24
46
276
36
2116
300
1182
106 15048
即:∑X=24,∑Y=300, ∑XY=1182,
• 2) X倚Y的直线方程的确定
• 根据最小平方法的原理:(x xc )2 最小值
• 将xc = c + dy代入上述公式中,分别对c和d 求一阶偏导数,并令偏导数等于0,就可以
得出两个正规方程:
x nc dy yx cy dy2
d
nyx y n y2 (
x
y )2
c x dy
举例:P355,第4题。
• 偏相关:在复相关中,当假定其他变量不 变时,其中两个变量间的相关关系称为偏 相关。例如,在假定人们收入水平不变的 条件下,某种商品的需求与其价格水平的 关系就是一种偏相关。
9
三、相关分析与回归分析
• (一)相关分析 • 是用一个指标(相关系数)来表明现象
之间相互依存的密切程度。 • (二)回归分析 • 是根据相关关系的具体形态,选择一个
• 曲线相关:如果现象之间的相关关系近似 地表现为某种曲线形式时,就称这种相关 关系为曲线相关。
统计学第7章相关与回归分析PPT课件
利用回归分析,基于历史GDP数据和其他经济指标,预测未来GDP 的增长趋势。
预测通货膨胀率
通过分析通货膨胀率与货币供应量、利率等经济指标的关系,利用回 归分析预测未来通货膨胀率的变化。
市场研究
消费者行为研究
通过回归分析研究消费者购买决策的影响因素, 如价格、品牌、广告等。
市场细分
利用回归分析对市场进行细分,识别不同消费者 群体的特征和需求。
线性回归模型假设因变量和自变量之间 存在一种线性关系,即当一个自变量增 加时,因变量也以一种可预测的方式增
加或减少。
参数估计
参数估计是用样本数据来估计线性回 归模型的参数β0, β1, ..., βp。
最小二乘法的结果是通过解线性方程 组得到的,该方程组包含n个方程(n 是样本数量)和p+1个未知数(p是 自变量的数量,加上截距项)。
回归模型的评估
残差分析
分析残差与自变量之间的关系, 判断模型的拟合程度和是否存在
异常值。
R方值
用于衡量模型解释因变量变异的 比例,值越接近于1表示模型拟
合越好。
F检验和t检验
用于检验回归系数是否显著,判 断自变量对因变量的影响是否显
著。
05 回归分析的应用
经济预测
预测股票市场走势
通过分析历史股票数据,利用回归分析建立模型,预测未来股票价 格的走势。
回归模型的评估是通过各种统计 量来检验模型的拟合优度和预测 能力。
诊断检验(如Durbin Watson检 验)可用于检查残差是否存在自 相关或其他异常值。
03 非线性回归分析
非线性回归模型
线性回归模型的局限性
线性回归模型假设因变量和自变量之间的关系是线性的,但在实 际应用中,这种关系可能并非总是成立。
统计学中的回归分析与相关性
统计学中的回归分析与相关性回归分析与相关性是统计学中重要的概念和方法,用于研究变量之间的关系和预测。
本文将介绍回归分析和相关性分析的基本原理、应用领域以及实际案例。
一、回归分析回归分析是研究两个或多个变量之间关系的一种统计方法。
它的基本思想是通过对一个或多个自变量与一个因变量之间的关系进行建模,来预测因变量的取值。
1.1 简单线性回归简单线性回归是回归分析中最基本的形式,用于研究一个自变量和一个因变量之间的关系。
其数学模型可以表示为:Y = β0 + β1X + ε,其中Y是因变量,X是自变量,β0和β1是回归系数,ε是误差项。
1.2 多元回归多元回归是回归分析的扩展形式,用于研究多个自变量对一个因变量的影响。
其数学模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε。
1.3 回归诊断回归分析需要对建立的模型进行诊断,以确保模型的有效性和合理性。
常见的回归诊断方法包括检验残差的正态性、检验变量之间的线性关系、检验残差的独立性和方差齐性等。
二、相关性分析相关性分析是统计学中用来研究两个变量之间线性关系强弱的方法。
通过计算两个变量的相关系数,可以判断它们之间的相关性。
2.1 皮尔逊相关系数皮尔逊相关系数是最常用的衡量两个连续变量之间线性相关强度的指标,取值范围在-1到1之间。
当相关系数接近1时,表示两个变量呈正相关;当相关系数接近-1时,表示两个变量呈负相关;当相关系数接近0时,表示两个变量之间没有线性关系。
2.2 斯皮尔曼相关系数斯皮尔曼相关系数是一种非参数统计量,用于衡量两个变量之间的等级相关性。
与皮尔逊相关系数不同,斯皮尔曼相关系数不要求变量呈线性关系。
三、回归分析与相关性的应用回归分析和相关性分析在各个领域都有广泛的应用。
下面以两个实际案例来说明其应用:3.1 股票市场分析在股票市场分析中,可以使用回归分析来研究某只股票的收益率与市场整体指数之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 相关与回归分析
1.从某一行业中随机抽取12家企业,所得产量与其单位成本数据如下:
(1)绘制产量与单位成本的散点图,判断二者之间的关系形态。
关系形态:线性负相关
(2)计算产量与单位成本之间的线性相关系数,并对相关系数的显著性进行检验(05.0=α),说明二者之间的关系强度。
设产量为x 台,单位成本y 台/元,由Excel 的回归分析工具计算得
线性相关系数R=0.987244 检验统计量t=19.608669 t α/2(n-2)= 2.228138852 t> t α/2(n-2),说明相关系数是显著的。
关系强度为高度线性相关。
(3)以产量为自变量,单位成本为因变量,拟合直线回归方程,并对方程和系数进行显著性检验。
由Excel 的回归分析工具计算得
y = -0.5524x + 202.35 R² = 0.9747 检验统计量t=19.608669 t α/2(n-2)= 2.228138852 t> t α/2(n-2),说明回归方程和相关系数是显著的。
2.下面是某年7
(1)画出相关图,并判断人均GDP 与人均消费水平之间对相关方向;
线性正相关
(2)计算相关系数,指出人均GDP 与人均消费水平之间的相关方向和相关程度;
由Excel 计算得相关系数为0.998127959183571 相关方向:正相关 相关程度:高度线性相关
(3)以人均GDP 为自变量,人均消费水平作因变量,拟合直线回归方程;
由Excel 计算得回归方程为y = 0.3087x + 734.69
(4)计算估计标准误差
;
由Excel 计算得标准误差
= 247.3035
(5)对回归系数进行检验(显著性水平取0.05); 由Excel 计算得
R² = 0.9963 , t 检验统计量= 36.49236 , t α/2(n-2)= 2.570582
t> t α/2(n-2),所以回归系数是具有显著性的。
(6)在95%的概率保证下,求当人均GDP 为5000元时,人均消费水平的置信区间。
由Excel 回归分析工具得到下表:
yx
S yx
S
Intercept 375.9930526 1093.392592
人均GDP(元)
0.286938627 0.330426871
X
当人均GDP为5000元时,
置信区间下限=375.9930526+0.286938627*5000=1810.686189
置信区间上限=1093.392592+0.330426871*5000=2745.526948
所以人均消费水平的置信区间为(1810.686189,2745.526948)。
3.经过研究,发现家庭书刊消费水平受家庭收入及户主受教育年数的影响。
现对某地区的家庭进行抽样调查,得到样本数据如下表所示,其中y表示家庭书刊消费水平(元/年),x表示家庭收入(元/月),T表示户主受教育年数。
(1)以y为因变量,x与T为自变量建立多元线性回归方程。
由Excel回归分析工具得到多元线性回归方程为:
y=-50.01638193 + 0.086449946x + 52.37031141T
(2)对回归模型显著性检验。
由Excel回归分析工具得到
F检验统计量=312.101095
Fα(1,n-2)= 0.004057389
F> Fα(1,n-2),说明回归方程是显著的。
(3)对回归系数进行显著性检验。
由Excel 计算得标准误差S yx =58.89135601 对于x 的系数:S x =
S ()2
=0.020439 对于T 的系数:S T =
S (̅)2= 3.621085
t α/2(n-2)=0.960741
S x < t α/2(n-2),x 的回归系数不具有显著性
S T > t α/2(n-2),T 的回归系数具有显著性。
4.ex9_4中存放着在20家药品生产企业年销售收入与广告费用支出的数据。
(1) 计算销售收入和广告费用间的Pearson 相关系数r 为( B )
A. 0.8661
B. 0.9306
C. 0.8587
D. -0.9306
(2) 由第(1)题计算的Pearson 相关系数判断两者间的相关程度和相关方向为( C )
A. 高度负相关
B. 中度负相关
C. 高度正相关
D. 中度正相关
(3) 假如要建立销售收入(因变量)对广告费用(自变量)的线性回归模型,求得其经验回归直线为(
D )
A. x y 13.555.274ˆ-=
B. x y 13.555.274ˆ+-=
C. x y 13.555.274ˆ--=
D. x y 13.555.274ˆ+=
(4) 检验回归系数是否为0即
:10=βH , 则(
B ) (显著性水平05.0=α)
A. 7887.01=t , 回归系数01=β
B. 7887.10=t , 回归系数01≠β
C. 91074.2-⨯=t , 回归系数01=β
D. 9
1074.2-⨯=t , 回归系数01≠β
(5)该线性回归模型的可决系数为(
B )
A. 0.9306
B. 0.8661
C. 0.8586
D. 0.4150
5.ex9_5保存了某地区16个林业局的年木材采伐量和相应伐木剩余物数据。
(1)假如要建立伐木剩余物(因变量)对年木材采伐量(自变量)的线性回归模型,求得其经验回归直线为(
C )
A. x y 4043.07629.0ˆ--=
B. x y 4043.07629.0ˆ+=
C. x y 4043.07629.0ˆ+-=
D. x y 4043.07629.0ˆ-=
(2)该线性回归方程的估计标准误差是(
C )
A .2.0363 B. 1.2210 C 0.0333 D.58.0523
(3)伐木剩余物变差中有(
A )是由于年木材采伐量变动引起的。
A. 58.0523
B. 608.3742
C. 666.4265
D.146.7166
(4)该线性回归方程的判定系数是( D ) A .-0.6249 B.12.1127 C. 146.7166 D.0.9128
(5)检验回归方程的显著性。
( C )
A. 1127.12=t , 回归方程显著;
B. 1127.12=t , 回归方程不显著; C .7166.146=F ,回归方程显著; D. 7166.146=F ,回归方程不显著
6.ex9_6中保存了美国机动车汽油消费量(QMG )及相关指标数据:汽车保有量(MOB )、机动车汽油零售价格(PMG )、国民生产总值(GNP )。
(1)以美国机动车汽油消费量为因变量,其余变量为自变量,建立回归模型为:( C )
A .GNP PMG MO
B QMG 66.3010657.2723548636.142.17025279-++= B .GNP PMG MOB QMG 66.3010657.2723548636.142.17025279+++=
C .GNP PMG MOB QMG 66.3010657.2723548636.142.17025279--+=
D .GNP PMG MOB QMG 66.3010657.2723548636.142.17025279--+-=
(2)在评价上述模型的拟合优度时,通常采用的统计量及值为( D )
A .判定系数,0.9669 B. 判定系数,0.9639
C. 修正的判定系数,0.9669
D. 修正的判定系数,0.9639
(3)该回归方程的估计标准误差是(
A )
A .4362677.69 B.2361434.87 C.0.19 D.9321.72
(4)对整个回归模型的显著性进行检验(显著性水平05.0=α),则( B )
A. 根据F 统计量判断,结论是拒绝原假设,回归方程不显著
B. 根据F 统计量判断,结论是拒绝原假设,回归方程显著 C .根据t 统计量判断,结论是拒绝原假设,回归方程不显著 D. 根据t 统计量判断,结论是拒绝原假设,回归方程显著
(5)对自变量MOB 的回归系数进行检验(显著性水平05.0=α),则( D )。
A .F=330.6453,回归系数显著 B. 9669.02
=R ,回归系数显著 C .36.1=β,回归系数显著 D. t=7.03, 回归系数显著。