一元二次方程难题解析
数学 一元二次方程的专项 培优 易错 难题练习题含答案解析
设裁掉的正方形的边长为xdm,
由题意可得(10-2x)(6-2x)=12,
即x2-8x+12=0,解得x=2或x=6(舍去),
答:裁掉的正方形的边长为2dm,底面积为12dm2.
9.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.
例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n有多少个点?
3.解方程:(3x+1)2=9x+3.
【答案】x1=﹣ ,x2= .
【解析】
试题分析:利用因式分解法解一元二次方程即可.
试题解析:方程整理得:(3x+1)2﹣3(3x+1)=0,
分解因式得:(3x+1)(3x+1﹣3)=0,
可得3x+1=0或3x﹣2=0,
解得:x1=﹣ ,x2= .
点睛:此题主要考查了一元二次方程的解法,解题关键是认真观察一元二次方程的特点,然后再从一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法中合理选择即可.
一、一元二次方程真题与模拟题分类汇编(难题易错题)
1.某建材销售公司在2019年第一季度销售 两种品牌的建材共126件, 种品牌的建材售价为每件6000元, 种品牌的建材售价为每件9000元.
(1)若该销售公司在第一季度售完两种建材后总销售额不低于96.6万元,求至多销售 种品牌的建材多少件?
(2)该销售公司决定在2019年第二季度调整价格,将 种品牌的建材在上一个季度的基础上下调 , 种品牌的建材在上一个季度的基础上上涨 ;同时,与(1)问中最低销售额的销售量相比, 种品牌的建材的销售量增加了 , 种品牌的建材的销售量减少了 ,结果2019年第二季度的销售额比(1)问中最低销售额增加 ,求 的值.
中考数学培优 易错 难题(含解析)之一元二次方程含详细答案
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得:x+1+(x+1)x =36,解得:x =5或x =﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.2.已知关于x 的一元二次方程()220x m x m -++=(m 为常数) (1)求证:不论m 为何值,方程总有两个不相等的实数根;(2)若方程有一个根是2,求m 的值及方程的另一个根.【答案】(1)见解析;(2) 即m 的值为0,方程的另一个根为0.【解析】【分析】(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m 2+4>0,则方程有两个不相等实数解,于是可判断不论m 为何值,方程总有两个不相等的实数根;(2)设方程的另一个根为t ,利用根与系数的关系得到2+t=21m + ,2t=m,最终解出关于t 和m 的方程组即可.【详解】(1)证明:△=(m+2)2−4×1⋅m=m 2+4,∵无论m 为何值时m 2≥0,∴m 2+4≥4>0,即△>0,所以无论m 为何值,方程总有两个不相等的实数根.(2)设方程的另一个根为t ,()220x m x m -++=根据题意得2+t=21m + ,2t=m , 解得t=0,所以m=0,即m 的值为0,方程的另一个根为0.【点睛】本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t ,用根于系数关系列出方程组,在求解.3.某社区决定把一块长50m ,宽30m 的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x 为何值时,活动区的面积达到21344m ?【答案】当13x m =时,活动区的面积达到21344m【解析】【分析】根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答.【详解】解:设绿化区宽为y ,则由题意得502302x y -=-.即10y x =-列方程: 50304(10)1344x x ⨯--=解得13x =- (舍),213x =.∴当13x m =时,活动区的面积达到21344m【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.4.已知关于x的一元二次方程有两个实数x2+2x+a﹣2=0,有两个实数根x1,x2.(1)求实数a的取值范围;(2)若x12x22+4x1+4x2=1,求a的值.【答案】(1)a≤3;(2)a=﹣1.【解析】试题分析:(1)由根的个数,根据根的判别式可求出a的取值范围;(2)根据一元二次方程根与系数的关系,代换求值即可得到a的值.试题解析:(1)∵方程有两个实数根,∴△≥0,即22﹣4×1×(a﹣2)≥0,解得a≤3;(2)由题意可得x1+x2=﹣2,x1x2=a﹣2,∵x12x22+4x1+4x2=1,∴(a﹣2)2﹣8=1,解得a=5或a=﹣1,∵a≤3,∴a=﹣1.5.校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.(1)能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.(2)若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.【答案】(1)长为18米、宽为7米或长为14米、宽为9米;(2)若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.【解析】【分析】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,再根据矩形面积公式列方程求解即可得到答案.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.【详解】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,根据题意得:x(32﹣2x)=126,解得:x1=7,x2=9,∴32﹣2x=18或32﹣2x=14,∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,根据题意得:y(36﹣2y)=170,整理得:y2﹣18y+85=0.∵△=(﹣18)2﹣4×1×85=﹣16<0,∴该方程无解,∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.6.已知关于x的方程x2﹣(k+3)x+3k=0.(1)若该方程的一个根为1,求k的值;(2)求证:不论k取何实数,该方程总有两个实数根.【答案】(1)k=1;(2)证明见解析.【解析】【分析】(1)把x=1代入方程,即可求得k的值;(2)求出根的判别式是非负数即可.【详解】(1)把x=1代入方程x2﹣(k+3)x+3k=0得1﹣(k﹣3)+3k=0,1﹣k﹣3+3k=0解得k=1;(2)证明:1,(3),3a b k c k==-+=24b ac∆=-∴△=(k+3)2﹣4•3k =(k﹣3)2≥0,所以不论k取何实数,该方程总有两个实数根.【点睛】本题考查了一元二次方程的解以及根的判别式,熟练掌握相关知识点是解题关键.7.今年以来猪肉价格不断走高,引起了民众与区政府的高度关注,当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.据统计:从今年年初至11月 10 日,猪排骨价格不断走高,11 月 10 日比年初价格上涨了 75%.今年 11 月 10 日某市民于 A 超市购买 5 千克猪排骨花费 350 元.(1)A 超市 11 月排骨的进货价为年初排骨售价的32倍,按 11 月 10 日价格出售,平均一天能销售出 100 千克,超市统计发现:若排骨的售价每千克下降 1 元,其日销售量就增加20千克,超市为了实现销售排骨每天有 1000 元的利润,为了尽可能让顾客优惠应该将排骨的售价定位为每千克多少元?(2)11 月 11 日,区政府决定投入储备猪肉并规定排骨在 11 月 10 日售价的基础上下调a%出售,A 超市按规定价出售一批储备排骨,该超市在非储备排骨的价格不变情况下,该天的两种猪排骨总销量比 11 月 10 日增加了a%,且储备排骨的销量占总销量的57,两种排骨销售的总金额比 11 月 10 日提高了128a %,求 a 的值. 【答案】(1)售价为每千克65元;(2)a =35.【解析】【分析】 (1)先根据题意计算出11月10的售价和11月的进货价,设每千克降价x 元,则每千克的利润为10-x 元,日销量为100+20x 千克,根据销量×单利润=总利润列出方程求解,并根据为了尽可能让顾客优惠,对所得的解筛选;(2)根据销售总金额=储备排骨销售单价×储备排骨销售数量+非储备排骨销售单价×非储备排骨销售数量,即可得出关于a 的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)11月10日的售价为350÷5=70元/千克年初的售价为:350÷5÷175%=40元/千克,11月的进货价为: 340602元/千克设每千克降价x 元,则每千克的利润为70-60-x=10-x 元,日销量为100+20x 千克 则(10020)(10)1000x x ,解得10x =,25x =因为为了尽可能让顾客优惠,所以降价5元,则售价为每千克65元. (2)根据题意可得52170(1%)100(1%)70100(1%)701001%7728a a a a ⎛⎫-++⨯+=⨯+ ⎪⎝⎭解得135a =,20a =(舍去)所以a =35.【点睛】 本题考查一元二次方程的应用,(1)中理清销售量随着单价的变化而变化的数量关系是解题关键;(2)中在求解时有些难度,可先设令%a t =,解方程求出t 后再求a 的值.8.利民商店经销甲、乙两种商品.现有如下信息信息1:甲乙两种商品的进货单价和为11;信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:信息3:按零售单价购买甲商品3件和乙商品2件共付37元.()1甲、乙两种商品的进货单价各是多少?()2据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降0.1元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a 元,在不考虑其他因素的条件下,当a 定为多少时,才能使商店每天销售甲种商品获取利润为1500元?【答案】(1)甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件(2)当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元【解析】【分析】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据给定的三个信息,可得出关于x ,y 的二元一次方程组,解之即可得出结论;()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据总利润=单件利润⨯销售数量,即可得出关于a 的一元二次方程,解之即可得出结论.【详解】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据题意得:()()113x 222y 437x y +=⎧++-=⎨⎩, 解得:{56x y ==.答:甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件. ()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据题意得:()()250010001500a a -+=,整理得:22310a a -+=,解得:10.5a =,21a =.答:当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2找准等量关系,正确列出一元二次方程.9. ∵1.7×35=59.5,1.7×80=136<151∴这家酒店四月份用水量不超过m 吨(或水费是按y=1.7x 来计算的),五月份用水量超过m 吨(或水费是按来计算的) 则有151=1.7×80+(80-m )×即m 2-80m+1500=0解得m 1=30,m 2=50.又∵四月份用水量为35吨,m 1=30<35,∴m 1=30舍去.∴m=50【解析】10.我市茶叶专卖店销售某品牌茶叶,其进价为每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后来经过市场调查发现,单价每降低 10 元,则平均每周的销售量可增加 40 千克,若该专卖店销售这种品牌茶叶要想平均每周获利 41600 元,请回答: (1)每千克茶叶应降价多少元?(2)在平均每周获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的 几折出售?【答案】(1)每千克茶叶应降价30元或80元;(2)该店应按原售价的8折出售.【解析】【分析】(1)设每千克茶叶应降价x 元,利用销售量×每件利润=41600元列出方程求解即可; (2)为了让利于顾客因此应下降价80元,求出此时的销售单价即可确定几折.【详解】(1)设每千克茶叶应降价x 元.根据题意,得:(400﹣x ﹣240)(200+10x ×40)=41600. 化简,得:x 2﹣10x +240=0.解得:x 1=30,x 2=80.答:每千克茶叶应降价30元或80元.(2)由(1)可知每千克茶叶可降价30元或80元.因为要尽可能让利于顾客,所以每千克茶叶某应降价80元.此时,售价为:400﹣80=320(元),320100%80%400⨯=. 答:该店应按原售价的8折出售.【点睛】本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.。
一元二次方程难题、易错题
一元二次方程难题、易错题1.一元二次方程已知关于x的方程mx^2-3(m-1)x+2m-3=0,求证:m取任何实数时,方程总有实数根。
解析:根据一元二次方程的判别式,当判别式大于等于0时,方程有实数根。
将方程化简得到 mx^2-(3m-3)x+2m-3=0,判别式为 (3m-3)^2-8m(m-1) = m^2-2m+1 = (m-1)^2 ≥ 0,因此对于任何实数m,方程都有实数根。
已知关于x的一元二次方程ax^2+bx+1=0有两个相等的实数根,求ab^2-22(a-2)+b-4的值。
解析:由于方程有两个相等的实数根,根据一元二次方程的求根公式,可得到 b^2-4ac=0,即 b^2-4a=0.将b^2-4a代入ab^2-22(a-2)+b-4中,得到 ab^2-22(a-2)+b-4 = ab^2-22b+44+b-4 = ab^2-21b+40 = (ab-16)(b-5)。
因此,要求的值为(ab-16)(b-5)。
2.方程的实数根1)已知关于x的方程2x^2+kx-1=0,求证:方程有两个不相等的实数根。
解析:对于一元二次方程ax^2+bx+c=0,当判别式b^2-4ac>0时,方程有两个不相等的实数根。
将2x^2+kx-1=0的判别式代入得到k^2+8 ≥ 0,即对于任何实数k,方程都有两个不相等的实数根。
2)若方程2x^2+3x+1=0的一个根是-1,求另一个根及k 值。
解析:由于方程的一个根是-1,则另一个根为 -1/2.将-1和-1/2代入方程得到两个方程:2-3+k=0和4+3/2+k=0,解得k=-11/2.3.三角形形状已知a、b、c分别是△ABC的三边,其中a=1,c=4,且关于x的方程x^2-4x+b=0有两个相等的实数根,试判断△XXX的形状。
解析:根据三角形两边之和大于第三边的性质,可知bc,b+c>a,a+c>b,因此△ABC是一个等腰三角形。
一元二次方程的解法(公式法3种题型)(解析版)
一元二次方程的解法(公式法3种题型)1.了解求根公式的推导过程.(难点)2.掌握用公式法解一元二次方程.(重点)3.理解并会用判别式求一元二次方程的根.4.会用判别式判断一元二次方程的根的情况一、公式引入一元二次方程20ax bx c ++=(0a ≠),可用配方法进行求解:得:2224()24b b acx a a −+=.对上面这个方程进行讨论:因为0a ≠,所以240a >①当240b ac −≥时,22404b aca−≥利用开平方法,得:x += 即:x = ②当240b ac −<时,22404b ac a −< 这时,在实数范围内,x 取任何值都不能使方程2224()24b b acx a a−+=左右两边的值相等,所以原方程没有实数根.二、求根公式一元二次方程20ax bx c ++=(0a ≠),当240b ac −≥时,有两个实数根:1x =2x =这就是一元二次方程20ax bx c ++=(0a ≠)的求根公式. 三、用公式法解一元二次方程一般步骤①把一元二次方程化成一般形式20ax bx c ++=(0a ≠); ②确定a 、b 、c 的值;③求出24b ac −的值(或代数式);④若240b ac −≥,则把a 、b 、c 及24b ac −的值代入求根公式,求出1x 、2x ;若240b ac −<,则方程无解.四、 根的判别式1.一元二次方程根的判别式:我们把24b ac −叫做一元二次方程20(0)ax bx c a ++=≠的根的判别式,通常用符号“∆”表示,记作2=4b ac ∆−.2.一元二次方程20(0)ax bx c a ++=≠, 当2=40b ac ∆−>时,方程有两个不相等的实数根; 当2=40b ac ∆−=时,方程有两个相等的实数根;当2=40b ac ∆−<时,方程没有实数根.五、根的判别式的应用(1)不解方程判定方程根的情况; (2)根据参数系数的性质确定根的范围; (3)解与根有关的证明题.题型1根的判别式例1.选择:(1) 下列关于x 的一元二次方程中,有两个不.相等的实数根的方程是( )(A )012=+x(B )0122=++x x (C )0322=++x x(D )0322=−+x x(2) 不解方程,判别方程25750x x −+=的根的情况是()(A )有两个相等的实数根 (B )有两个不相等的实数根 (C )只有一个实数根(D )没有实数根(3)方程2510x x −−=的根的情况是()(A )有两个相等实根 (B )有两个不等实根 (C )没有实根(D )无法确定(4) 一元二次方程2310x x +−=的根的情况为()(A )有两个不相等的实数根 (B )有两个相等的实数根 (C )只有一个实数根(D )没有实数根【答案】(1)D ;(2)D ;(3)B ;(4)A .【答案】【答案】【解析】(1)A :1a =,0b =,1c =,2440b ac ∆=−=−<,方程无实根;B :1a =,2b =,1c =,240b ac ∆=−=,方程有两个相等实根; C :1a =,2b =,3c =,2480b ac ∆=−=−<,方程无实根;D :1a =,2b =,3c =−,24160b ac ∆=−=>,方程有两不等实根实根,故选D ;(2)5a =,7b =−,5c =,24510b ac ∆=−=−<,方程无实根,故选D ; (3)1a =,5b =−,1c =−,24290b ac ∆=−=>,方程有两不等实根,故选B ; (4)1a =,3b =,1c =−,24130b ac ∆=−=>,方程有两个相等实根,故选A .【总结】考查一元二次方程根的判别式判定方程根的情况,先列出方程中的a 、b 、c ,再代值计算∆,根据∆与0的大小关系确定方程根的情况,注意a 、c 异号时则必有两不等实根. 例2.不解方程,判别下列方程的根的情况: (1)24530x x −−=; (2)22430x x ++=;(3)223x +=;(4)22340x x +−=.【答案】(1)方程有两不等实根;(2)方程无实数根;(3)方程有两相等实根; (4)方程有两不等实根.【答案】【答案】【解析】(1)4a =,5b =−,3c =−,24730b ac ∆=−=>,方程有两不等实根;2a =,4b =,3c =,2480b ac ∆=−=−<,方程无实数根;2a =,b =−3c =,240b ac ∆=−=,方程有两相等实根;(4)2a =,3b =,4c =−,24410b ac ∆=−=>,方程有两不等实根.【总结】考查一元二次方程根的判别式判定方程根的情况,先将方程整理成一般形式,列出方程中的a 、b 、c ,再代值计算∆,根据∆与0的大小关系确定方程根的情况,注意a 、c 异号时则必有两不等实根.题型2用公式法解一元二次方程例3.(2022秋·江苏苏州·九年级校考期中)用公式法解方程:22720x x −+=.【答案】12x x ==【分析】根据公式法解一元二次方程即可求解.【详解】解:22720x x −+=,∴2,7,2a b c ==−=,244942233b ac ∆=−=−⨯⨯=,∴x ==,解得:12x x ==.【点睛】本题考查了公式法解一元二次方程,掌握一元二次方程的求根公式是解题的关键. 例4.用公式法解下列方程:(1)2320x x +−=;(2)25610x x −++=.【答案】(1)12x x ==;(2)12x x =.【解析】(1)132a b c ===−,,1742=−ac b ,则2173±−=x ,∴12x x ==;(2)561a b c =−==,,,则5642=−ac b ,则101426−±−=x ,∴123355x x −==,.【总结】本题主要考查一元二次方程求根公式x =的运用.例5.用公式法解下列方程:(1)291x +=;(220+−=.【答案】(1)12x x ==;(2)12x x ==【解析】(1)1,66,9=−==c b a ,则18042=−ac b ,则185666±=x ,∴原方程的解为:12x x ==;22,34,2−===c b a ,则6442=−ac b ,则22834±−=x ,∴原方程的解为:12x x ==【总结】本题主要考查一元二次方程求根公式的运用.题型3根的判别式的应用例6.(2022秋·江苏扬州·九年级校联考期中)关于x 的一元二次方程()21360x k x k +++−=.(1)求证:方程总有两个实数根;(2)若方程有一个根不小于7,求k 的取值范围. 【答案】(1)见解析. (2)5k ≤−.【分析】(1)计算根的判别式的值,利用配方法得到()25k ∆=−,根据非负数的性质得到0∆≥,然后根据判别式的意义得到结论; (2)利用求根公式得到13x =−,22kx =−.根据题意得到27k −≥,即可求得k 的取值范围.【详解】(1)解:()()21436k k ∆=+−−2211224k k k =++−+ 21025k k =−+()250k =−≥,∴方程总有实数根; (2)解:∵()250k ∆=−≥,∴()()152k k x −+±−=,解方程得:13x =−,22kx =−,由于方程有一个根不小于7, ∴27k −≥, 解得:5k ≤−.【点睛】本题考查的是根的判别式及一元二次方程的解的定义,在解答(2)时得到方程的两个根是解题的关键.例7.(2023·江苏苏州·统考一模)已知关于x 的一元二次方程22210x mx m −+−=. (1)若该方程有一个根是2x =,求m 的值;(2)求证:无论m 取什么值,该方程总有两个实数根. 【答案】(1)32m =(2)证明见解析【分析】(1)直接把2x =代入到原方程中得到关于m 的方程,解方程即可得到答案; (2)根据一元二次方程根的判别式进行求解即可.【详解】(1)解:∵关于x 的一元二次方程22210x mx m −+−=的一个根为2x =,∴224210m m −+−=,∴32m =;(2)证明:由题意得,()()()222242421484410b ac m m m m m ∆=−=−−−=−+=−≥,∴无论m 取什么值,该方程总有两个实数根.【点睛】本题主要考查了一元二次方程的解和根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根;一元二次方程的解是使方程左右两边相等的未知数的值.例8.(2023秋·江苏扬州·九年级校考期末)关于x 的一元二次方程()23220x k x k −+++=.(1)求证:方程总有两个实数根;(2)若方程有一个根小于2,求k 的取值范围. 【答案】(1)见解析 (2)1k <【分析】(1)计算一元二次方程根的判别式,根据根的判别式进行判断即可得证;(2)根据公式法求得方程的解,得出122,1==+x x k ,根据题意列出不等式,解不等式即可求解. 【详解】(1)证明:关于x 的一元二次方程()23220x k x k −+++=,∴1,(3),22a b k c k ==−+=+ ∵[]224(3)41(22)−=−+−⨯⨯+b ac k k221k k =−+2(1)0k =−≥,∴此方程总有两个实数根; (2)∵()23220x k x k −+++=∵2(1)k ∆=−∴3(1)2+±−==k k x解得:122,1==+x x k ,∵方程有一个根小于2, ∴12k +<, 解得1k <.【点睛】本题考查了一元二次方程根的判别式,解一元二次方程,熟练掌握一元二次方程根的情况与判别式的关系是解题的关键.一、单选题1.(2023·江苏徐州·统考一模)关于一元二次方程2430x x ++=根的情况,下列说法中正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法确定【答案】A【分析】直接利用一元二次方程根的判别式即可得.【详解】解:2430x x ++=其中1a =,4b =,3c =,∴2Δ441340=−⨯⨯=>,∴方程有两个不相等的实数根. 故选:A .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键. 2.(2023·江苏徐州·校考一模)关于x 的一元二次方程240x x k −+=有实数根,则k 的值可以是( ) A .4 B .5 C .6 D .7【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程240x x k −+=有实数根,∴()2440k ∆=−−≥,∴4k ≤,∴四个选项中只有A 选项符合题意, 故选A .【点睛】本题主要考查次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.3.(2023秋·江苏盐城·九年级统考期末)若关于x 的一元二次方程240x x k −−=没有实数根,则k 的值可以是( ) A .5− B .4− C .3− D .2【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程240x x k −−=无实数根,∴()2440k ∆=−+<,∴4k <−,∴四个选项中,只有A 选项符合题意, 故A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.4.(2023春·江苏盐城·九年级统考期末)若关于x 的一元二次方程220x x k −+=没有实数根,则k 的值可以是( ) A .2 B .1 C .0 D .1−【答案】A【分析】根据一元二次方程根的判别式进行求解即可.【详解】解:∵关于x 的一元二次方程220x x k −+=没有实数根,∴()2240k ∆=−−<,∴1k >,∴四个选项中,只有选项A 符合题意, 故选A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.5.(2023秋·江苏·九年级统考期末)若关于x 的一元二次方程2440x x k −−+=没有实数根,则k 的取值范围为( ) A .0k > B .4k > C .0k < D .4k <【答案】C【分析】根据一元二次方程根的判别式进行判断即可求解.【详解】解:∵关于x 的一元二次方程2440x x k −−+=没有实数根,∴()2416440b ac k ∆=−=−−<,解得:0k <故选:C .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根. 二、填空题6.(2023·江苏常州·校考一模)若关于x 的一元二次方程()22210k x x −−−=有实数根,则实数k 的取值范围是______. 【答案】1k ≥且2k ≠【分析】根据一元二次方程的定义和判别式的性质计算,即可得到答案.【详解】∵关于x 的一元二次方程()22210k x x −−−=有实数根, ∴()()()22024210k k −≠⎧⎪⎨−−−⨯−≥⎪⎩ ∴21k k ≠⎧⎨≥⎩,即1k ≥且2k ≠. 故答案为:1k ≥且2k ≠.【点睛】本题考查了一元二次方程的定义和跟的判别式,解题的关键是熟练掌握一元二次方程的定义和判别式的性质,从而完成求解.7.(2023·江苏常州·统考一模)若关于x 的方程20x x m −+=(m 为常数)有两个相等的实数根,则m =______.【答案】14【分析】先根据方程有两个相等的实数根得出△0=,求出m 的值即可.【详解】解:关于x 的方程20(x x m m −+=为常数)有两个相等的实数根,∴△2(1)40m =−−=,解得14m =.故答案为:14.【点睛】本题考查的是根的判别式,孰知当△0=时,一元二次方程2(0)y ax bx c a =++≠有两个相等的实数根是解答此题的关键.8.(2023·江苏盐城·校考二模)已知关于x 的一元二次方程240x ax ++=有一个根为1,则a 的值为________.【答案】5a =−【分析】将1x =代入方程240x ax ++=,解方程即可得到a 的值.【详解】∵关于x 的一元二次方程240x ax ++=有一个根为1,∴将1x =代入方程240x ax ++=,得140a ++=,解得:5a =−, 故答案为:5−【点睛】本题主要考查一元二次方程的解,理解一元二次方程的解是使得方程左右两边相等的未知数的值是解题的关键.9.(2023·江苏宿迁·模拟预测)关于x 的方程()21210m x x −−+=有实数根,则m 的取值范围是______. 【答案】2m ≤/2m ≥【分析】分当10m −=时,当10m −≠,即1m ≠时,两种情况讨论求解即可. 【详解】解:当10m −=时,即1m =时,原方程即为210x −+=,解得12x =,符合题意;当10m −≠,即1m ≠时,∵关于x 的方程()21210m x x −−+= ∴()()22410m ∆=−−−≥,解得2m ≤且1m ≠; 综上所述,2m ≤, 故答案为:2m ≤.【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.10.(2023·江苏·模拟预测)请填写一个常数,使得一元二次方程25x x −+____________0=没有实数根.【答案】7(答案不唯一)【分析】设这个常数为a ,根据根的判别式求出a 的取值范围即可得到答案. 【详解】解:设这个常数为a ,∴方程250x x a −+=没有实数根,∴()2540a ∆=−−<,∴254a >,∴7a =满足题意,故答案为:7(答案不唯一).【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.11.(2023秋·江苏无锡·九年级校联考期末)请填写一个常数,使得关于x 的方程24x x −+________=0有两个不相等的实数根. 【答案】1(答案不唯一)【分析】根据方程的系数结合根的判别式2=40b ac ∆−>,即可得出关于c 的不等式,求解即可得出答案.【详解】解:1a =,4b =−,设常数为c ,()22=44410b ac c ∆−=−−⨯⨯>4c ∴<故答案为:1(答案不唯一).【点睛】本题考查了根的判别式,牢记“当0∆>时,方程有两个不相等的实数根”是解题的关键. 三、解答题12.(2022秋·江苏淮安·九年级统考期末)求证:关于x 的方程2()0()x m n x mn m n +++=≠有两个不相等的实数根. 【答案】见解析【分析】根据224()41b ac m n mn ∆=−=+−⨯⨯,再判断出的符号,即可得出结论. 【详解】解∶2222()412()m n mn m n mn m n ∆=+−⨯⨯=+−=−,m n ≠()2m n ∴−>∴方程有两个不相等的实数根.【点睛】本题考查了一元二次方程20(0)ax bx c a ++=≠的根的判别式2Δ4b ac =−:当0∆>,方程有两个不相等的实数根;当Δ0=,方程有两个相等的实数根;当Δ0<,方程没有实数根. 13.(2023·江苏盐城·校考一模)已知关于x 的一元二次方程210x ax a −+−=. (1)求证:方程总有两个实数根;(2)若该方程有一实数根大于4,求a 的取值范围. 【答案】(1)见解析 (2)5a >【分析】(1)根据一元二次方程根的判别式进行求解即可;(2)利用因式分解法解方程求出方程两个根为1211x x a ==−,,再根据该方程有一实数根大于4进行求解即可.【详解】(1)解:∵知关于x 的一元二次方程为210x ax a −+−=,∴()()()222414420a a a a a ∆=−−−=−+=−≥,∴方程总有两个实数根;(2)解:∵210x ax a −+−=,∴()()110x x a −+−=,∴10x −=或10x a +−=, 解得1211x x a ==−,,∵该方程有一实数根大于4, ∴14a −>, ∴5a >.【点睛】本题主要考查了一元二次方程根的判别式,解一元二次方程,灵活运用所学知识是解题的关键. 14.(2023秋·江苏南通·九年级统考期末)关于x 的一元二次方程2(23)10mx m x m ++++=有两个不等的实数根.(1)求m 的取值范围;(2)当m 取最小整数时,求x 的值. 【答案】(1)98m >−且0m ≠(2)10x =,21x =【分析】(1)由0∆>得到关于m 的不等式,解之得到m 的范围,根据一元二次方程的定义求得答案; (2)由(1)知1m =−,还原方程,利用因式分解法求解可得.【详解】(1)解:由题意得:2(23)4(1)0m m m +−+>, 解得:98m >−且0m ≠;(2)由(1)知,m 最小整数为1−,此时方程为:20x x −+=,解得:10x =,21x =.【点睛】本题主要考查一元二次方程的定义及根的判别式,解题的关键是熟练掌握方程的根的情况与判别式的值之间的关系.【答案】(1)28n m =−(2)见解析【分析】(1)根据根的判别式符号进行求解;(2)根据判别式以及一元二次方程的解法即可求出答案. 【详解】(1)由题意得:()242n m ∆=−⋅−28n m ∆=+方程有两个相等的实数根, 0∴∆=280n m ∴+= 28n m ∴=−(2)当2n m =−()228m m ∆=−+2Δ44m m =++()224420m m m ++=+≥∴方程始终有两个实数根【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的判别式.一、单选题1.(2023春·江苏南京·九年级南京市竹山中学校考阶段练习)一元二次方程2440x x +−=的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .没有实数根 D .无法确定【答案】B【分析】利用一元二次方程根的判别式求解即可. 【详解】解:由题意得,()24414320∆=−⨯⨯−=>,∴原方程有两个不相等的实数根, 故选B .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.2.(2022秋·江苏宿迁·九年级校考阶段练习)关于x 的一元二次方程250x ax −−=的根的情况是( ) A .有两个不相等的实数根 B .可能有实数根,也可能没有 C .有两个相等的实数根 D .没有实数根【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程为250x ax −−=,∴()()22451200a a ∆=−−⨯−⨯=+>,∴关于x 的一元二次方程250x ax −−=有两个不相等的实数根,故答案为:A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.3.(2023春·江苏宿迁·九年级统考阶段练习)若关于x 的一元二次方程22(1)0x x k +−−=有实数根,则k 的取值范围是( ) A .0k > B .0k ≥ C .0k < D .0k ≤【答案】B【分析】根据一元二次方程有实数根,可知240b ac −≥,求出解即可.【详解】∵一元二次方程22(1)0x x k +−−=有实数根,∴240b ac −≥,即224[(1)]0k −−−≥, 解得0k ≥. 故选:B .【点睛】本题主要考查了一元二次方程根的判别式,掌握24b ac −与一元二次方程20(0)ax bx c a ++=≠的根的关系是解题的关键.即当240b ac −>时,一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根;当240b ac −=时,一元二次方程20(0)ax bx c a ++=≠有两个相等的实数根;当240b ac −<时,一元二次方程20(0)ax bx c a ++=≠没有实数根.5.(2023春·江苏盐城·九年级校考阶段练习)关于x 的一元二次方程2210kx x −−=有两个不相等的实数根,则k 的取值范围是( ) A .1k >−B .1k <C .1k >−且0k ≠D .1k <且0k ≠【答案】C【分析】根据一元二次方程的定义,以及一元二次方程根的判别式得出不等式组,解不等式组即可求解.【详解】解:∵关于x 的一元二次方程2210kx x −−=有两个不相等的实数根,∴0k ≠且0∆>,即2(2)4(1)0k −−⨯⨯−>, 解得1k >−且0k ≠. 故选:C .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根. 二、填空题5.(2023春·江苏泰州·九年级校联考阶段练习)请填写一个常数,使得关于x 的方程22+−x x __________0=有两个相等的实数根. 【答案】1【分析】设这个常数为a ,利用一元二次方程根的判别式得出a 的方程,解方程即可得到答案. 【详解】解:设这个常数为a , ∵要使原方程有两个相等的实数根, ∴()2=240a ∆−−=,∴1a =,∴满足题意的常数可以为1, 故答案为:1.【点睛】本题考查了根的判别式,一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.6.(2023春·江苏泰州·九年级靖江市靖城中学校考阶段练习)方程220x x m −+=没有实数根,则m 的取值范围是______. 【答案】1m >/1m <【分析】根据一元二次方程无实数根得到Δ0<,代入即可得出答案.【详解】方程220x x m −+=没有实数根,4410m ∴∆=−⨯⨯<, 1m ∴>,故答案为:1m >.【点睛】本题考查一元二次方程有无实数根,熟记判别式24b ac ∆=−是解题的关键.三、解答题7.(2022秋·江苏连云港·九年级校考阶段练习)已知关于x 的一元二次方程210x ax a ++−=. (1)若该方程的一个根为2−,求a 的值及该方程的另一根; (2)求证:无论a 取何实数,该方程都有实数根. 【答案】(1)3a =,该方程的另一根为1− (2)证明见解析【分析】(1)先根据一元二次方程解的定义把2x =−代入到210x ax a ++−=中求出a 的值,再利用因式分解法解方程即可;(2)根据一元二次方程根的判别式进行求解即可.【详解】(1)解:∵关于x 的一元二次方程210x ax a ++−=的一个根为2−,∴4210a a −+−=, ∴3a =,∴原方程即为2320x x ++=,∴()()120x x ++=,解得=1x −或2x =−, ∴方程的另一个根为1−;(2)解:∵关于x 的一元二次方程为210x ax a ++−=,∴()()222414420a a a a a ∆=−−=−+=−≥,∴无论a 取何实数,该方程都有实数根.【点睛】本题主要考查了一元二次方程解的定义,解一元二次方程,一元二次方程判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.8.(2023春·江苏盐城·九年级校考阶段练习)关于x 的一元二次方程2430mx x -+=有实数根. (1)求m 的取值范围;(2)若m 为正整数,求出此时方程的根. 【答案】(1)43m ≤且0m ≠(2)11x =,23x =【分析】(1)由二次项系数非零及根的判别式0∆≥,可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围;(2)由(1)的结论,结合m 为正整数,可得出m 的值,再其代入原方程,解之即可得出结论.【详解】(1)解:∵关于x 的一元二次方程2430mx x -+=有实数根,∴()20Δ4430m m ≠⎧⎪⎨=−−⨯⨯≥⎪⎩, 解得:43m ≤且0m ≠,∴m 的取值范围为43m ≤且0m ≠;(2)∵43m ≤且0m ≠,且m 为正整数, ∴1m =,∴原方程为2430x x −+=,即()()310x x −−=, 解得:11x =,23x =.【点睛】本题考查了一元二次方程根的判别式、一元二次方程的定义以及因式分解法解一元二次方程,解题的关键是:(1)利用二次项系数非零及根的判别式0∆≥,找出关于m 的一元一次不等式组;(2)代入m 的值,求出方程的解.9.(2022秋·江苏南京·九年级校考阶段练习)已知关于x 的方程()242440mx m x m +−+−=(m 为常数,且0m ≠)(1)求证:方程总有实数根; (2)若该方程有两个实数根;①不论m 取何实数,该方程总有一个不变的实数根为______; ②若m 为整数,且方程的两个实数根都是整数,求m 的值. 【答案】(1)证明见解析 (2)①2−;②1m =±或2m =±【分析】(1)利用一元二次方程根的判别式求解即可;(2)①利用公式法求出方程的两个实数根即可得到答案;②根据①所求两实数根,结合m 为整数,且方程的两个实数根都是整数进行求解即可. 【详解】(1)解:由题意得()()22=442444b ac m m m ∆−=−−−2216164161640m m m m =−+−+=>,∴方程总有实数根; (2)解:①∵关于x 的方程()242440mx m x m +−+−=有两个实数根,∴2422m x m −±==, ∴1224222242222m m m x x m m m −+−−−====−,,∴不论m 取何实数,该方程总有一个不变的实数根为2−, 故答案为:2−;②由①得,方程的两个实数根为12222mx x m −==−,,∵m 为整数,且方程的两个实数根都是整数, ∴2222m m m −=−为整数,∴1m =±或2m =±.【点睛】本题主要考查了一元二次方程根的判别式,公式法解一元二次方程,熟知一元二次方程的相关知识是解题的关键.10.(2022秋·江苏南通·九年级校考阶段练习)已知关于x 的方程2(1)(3)20m x m x +−++=. (1)证明:不论m 为何值时,方程总有实数根; (2)m 为何整数时,方程有两个不相等的正整数根. 【答案】(1)证明见解析(2)0m =【分析】(1)求出方程根的判别式,利用配方法进行变形,根据平方的非负性证明即可;(2)利用一元二次方程求根公式求出方程的两个根,根据题意求出m 的值.【详解】(1)(1)证明:①1m =−时,该方程为一元一次方程220x −+=,有实数根1x =;②1m ≠−时,该方程为一元二次方程,2(3)8(1)m m ∆=+−+221m m =−+2(1)m =−,不论m 为何值时,2(1)0m −…, ∴0∆…, ∴方程总有实数根;综上,不论m 为何值时,方程总有实数根.(2)解:解方程得,(3)(1)2(1)m m x m +±−=+, 11x =,221x m =+,方程有两个不相等的正整数根,m 为整数,0m ∴=.【点睛】本题考查的是一元二次方程根的判别式和求根公式的应用,掌握一元二次方程根的情况与判别式△的关系:0∆>⇔方程有两个不相等的实数根;0∆=⇔方程有两个相等的实数根;0∆<⇔方程没有实数根是解题的关键.【答案】22212x x x −−或【分析】根据分式的混合运算法则化简后,再求出x 的值,代入求值即可.【详解】解:221222121x x x x x x x ⎛⎫÷ ⎪⎝⎭−−−−+++()()()()()22112221121x x x x x x x x x x x ⎡⎤=÷⎢⎥⎣⎦+−−−−++++()()()()21211112x x x x x x +=⨯++−−()2211x x x =−− 22221x x x =−−∵210x x −−=,∴21x x −=,∴原式()2221x x x −=−2211x =−⨯12x =−, 对于210x x −−=来说,1,1,1,a b c ==−=−∵()()22414115b ac −=−−⨯⨯−=,∴x =,∴12x x ==,∴当x =时,原式12x =−,当x =时,原式12x =−=.【点睛】此题考查了分式的化简求值,解一元二次方程等知识,熟练掌握运算法则是解题的关键. 12.(2022秋·江苏盐城·九年级校考阶段练习)解下列方程:2231x x +=【答案】x x ==12,【分析】先将原方程化为一元二次方程的一般形式,然后用公式法求解即可;【详解】解:原方程可化为:22310x x +−=a b c ===−231 , ,()b ac −=−⨯⨯−=>2243421170x ∴==x x ==12,【点睛】本题考查了一元二次方程的解法,掌握一元二次方程的基本解法是解题的关键. 13.(2022秋·江苏无锡·九年级校联考阶段练习)已知关于x 的方程220x mx m +−=−.(1)当该方程的一个根为1−时,求m 的值及该方程的另一根;(2)求证:不论m 取何实数,该方程都有两个不相等的实数根.【答案】(1)1=2m ,方程的另一根为32(2)见解析【分析】(1)把1x =−代入原方程求得m 的值,进一步求得方程的另一个根即可;(2)计算出根的判别式,进一步利用配方法和非负数的性质证得结论即可.【详解】(1)解:把1x =−代入方程 220x mx m +−=−得 120m m ++−=∴1=2m ,把1=2m 代入到原方程得 213022x x −−=∴1x =−或3=2x 故答案为:1=2m ,方程的另一根为32;(2)证明:∵方程220x mx m +−=−,∴根的判别式()()()224224m m m ∆=−−−=−+∵()220m −≥∴()2240m ∆=−+> ∴不论m 取何实数,该方程都有两个不相等的实数根.【点睛】本题考查了一元二次方程的根的判别式的性质,对于一元二次方程()200ax bx c a ++=≠的根的判别式24b ac ∆=−:当0∆>,方程有两个不相等的实数根;当0∆=,方程有两个相等的实数根;当0∆<,方程没有实数根;熟练掌握一元二次方程根的判别式的性质是解本题的关键. 14.(2022秋·江苏常州·九年级校考阶段练习)用指定方法解下列一元二次方程:(1)2820x x −−=(配方法)(2)2320x x ++=(公式法)【答案】(1)14x =+24x =−(2)11x =−,22x =−【分析】(1)将常数项移至方程的右边,然后两边都加上一次项系数的一半的平方配方成完全平方后,再开方,即可得出结果;(2)利用公式法计算即可.【详解】(1)解:2820x x −−=移项,得:282x x −=,配方,得:2228424x x −+=+,即()2418x −=,由此可得:4x −=±14x =+24x =−(2)解:2320x x ++=1a =,3b =,2c =,224341210b ac ∆=−=−⨯⨯=>,方程有两个不等的实数根,3131212x −±−±===⨯,即11x =−,22x =−.【点睛】本题考查了解一元二次方程,解本题的关键在熟练掌握用配方法和公式法解一元二次方程.解一元二次方程的基本思路是:将二次方程转化为一次方程,即降次.。
中考数学培优 易错 难题(含解析)之一元二次方程含答案
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.某中心城市有一楼盘,开发商准备以每平方米7000元价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价格后,决定以每平方米5670元的价格销售.(1)求平均每次下调的百分率;(2)房产销售经理向开发商建议:先公布下调5%,再下调15%,这样更有吸引力,请问房产销售经理的方案对购房者是否更优惠?为什么?【答案】(1)平均每次下调的百分率为10%.(2)房产销售经理的方案对购房者更优惠.【解析】【分析】(1)根据利用一元二次方程解决增长率问题的要求,设出未知数,然后列方程求解即可; (2)分别求出两种方式的增长率,然后比较即可.【详解】(1)设平均每次下调x%,则7000(1﹣x )2=5670,解得:x 1=10%,x 2=190%(不合题意,舍去);答:平均每次下调的百分率为10%.(2)(1﹣5%)×(1﹣15%)=95%×85%=80.75%,(1﹣x )2=(1﹣10%)2=81%. ∵80.75%<81%,∴房产销售经理的方案对购房者更优惠.2.发现思考:已知等腰三角形ABC 的两边分别是方程x 2﹣7x+10=0的两个根,求等腰三角形ABC 三条边的长各是多少?下边是涵涵同学的作业,老师说他的做法有错误,请你找出错误之处并说明错误原因.涵涵的作业解:x 2﹣7x+10=0a=1 b=﹣7 c=10∵b 2﹣4ac=9>0∴x=b 2a-=732± ∴x 1=5,x 2=2所以,当腰为5,底为2时,等腰三角形的三条边为5,5,2.当腰为2,底为5时,等腰三角形的三条边为2,2,5.探究应用:请解答以下问题:已知等腰三角形ABC 的两边是关于x 的方程x 2﹣mx+m 2﹣14=0的两个实数根. (1)当m=2时,求△ABC 的周长;(2)当△ABC为等边三角形时,求m的值.【答案】错误之处及错误原因见解析;(1)当m=2时,△ABC的周长为72;(2)当△ABC为等边三角形时,m的值为1.【解析】【分析】根据三角形三边关系可以得到等腰三角形的三条边不能为2、2、5.(1)先解方程,再确定边,从而求周长;(2)是等边三角形,则两根相等,即△=(﹣m)2﹣4(m2﹣14)=m2﹣2m+1,可求得m.【详解】解:错误之处:当2为腰,5为底时,等腰三角形的三条边为2、2、5.错误原因:此时不能构成三角形.(1)当m=2时,方程为x2﹣2x+34=0,∴x1=12,x2=32.当12为腰时,12+12<32,∴12、12、32不能构成三角形;当32为腰时,等腰三角形的三边为32、32、12,此时周长为32+32+12=72.答:当m=2时,△ABC的周长为72.(2)若△ABC为等边三角形,则方程有两个相等的实数根,∴△=(﹣m)2﹣4(m2﹣14)=m2﹣2m+1=0,∴m1=m2=1.答:当△ABC为等边三角形时,m的值为1.【点睛】本题考核知识点:二元一次方程的运用.解题关键点:熟练掌握二元一次方程的解法和等腰三角形性质.3.解方程:233230 2121x xx x⎛⎫⎛⎫--=⎪ ⎪--⎝⎭⎝⎭.【答案】x=15或x=1【解析】【分析】设321x y x =-,则原方程变形为y 2-2y-3=0, 解这个一元二次方程求y ,再求x . 【详解】 解:设321x y x =-,则原方程变形为y 2-2y-3=0. 解这个方程,得y 1=-1,y 2=3, ∴3121x x =--或3321x x =-. 解得x=15或x=1. 经检验:x=15或x=1都是原方程的解. ∴原方程的解是x=15或x=1. 【点睛】考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.4.从图象来看,该函数是一个分段函数,当0≤x≤m 时,是正比例函数,当x >m 时是一次函数.【小题1】只需把x 代入函数表达式,计算出y 的值,若与表格中的水费相等,则知收取方案.5.如图,在Rt ABC 中,90B =∠,10AC cm =,6BC cm =,现有两点P 、Q 的分别从点A 和点B 同时出发,沿边AB ,BC 向终点C 移动.已知点P ,Q 的速度分别为2/cm s ,1/cm s ,且当其中一点到达终点时,另一点也随之停止移动,设P ,Q 两点移动时间为xs .问是否存在这样的x ,使得四边形APQC 的面积等于216cm ?若存在,请求出此时x 的值;若不存在,请说明理由.【答案】假设不成立,四边形APQC 面积的面积不能等于216cm ,理由见解析【解析】【分析】根据题意,列出BQ 、PB 的表达式,再列出方程,判断根的情况.【详解】解:∵90B ∠=,10AC =,6BC =,∴8AB =.∴BQ x =,82PB x =-;假设存在x 的值,使得四边形APQC 的面积等于216cm , 则()1168821622x x ⨯⨯--=, 整理得:2480x x -+=,∵1632160=-=-<,∴假设不成立,四边形APQC 面积的面积不能等于216cm .【点睛】本题考查了一元二次方程的应用,熟练掌握方程根的判别方法、理解方程的意义是本题的解题关键.6.已知关于x 的一元二次方程()2211204x m x m +++-=. ()1若此方程有两个实数根,求m 的最小整数值;()2若此方程的两个实数根为1x ,2x ,且满足22212121184x x x x m ++=-,求m 的值. 【答案】(1)m 的最小整数值为4-;(2)3m =【解析】【分析】(1)根据方程有两个实数根得0∆≥,列式即可求解,(2)利用韦达定理即可解题.【详解】(1)解:()22114124m m ⎛⎫∆=+-⨯⨯- ⎪⎝⎭22218m m m =++-+29m =+方程有两个实数根0∴∆≥,即290m +≥92m ∴≥- ∴ m 的最小整数值为4-(2)由根与系数的关系得:()121x x m +=-+,212124x x m =- 由22212121184x x x x m ++=-得:()22211121844m m m ⎛⎫⎡⎤-+--=- ⎪⎣⎦⎝⎭13m ∴=,25m =-92m ≥- 3m ∴=【点睛】本题考查了根的判别式和韦达定理,中等难度,熟悉韦达定理是解题关键.7.已知关于x 的方程(x-3)(x-2)-p 2=0.(1)求证:无论p 取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x 1、x 2,且满足x 12+x 22=3 x 1x 2,求实数p 的值.【答案】(1)详见解析;(2)p=±1.【解析】【分析】(1)先把方程化成一般形式,再计算根的判别式,判定△>0,即可得到总有两个不相等的实数根;(2)根据一元二次方程根与系数的关系可得两根和与两根积,再把2212123x x x x +=变形,化成和与乘积的形式,代入计算,得到一个关于p 的一元二次方程,解方程即可求解.【详解】证明:(1)(x ﹣3)(x ﹣2)﹣p 2=0,x 2﹣5x+6﹣p 2=0,△=(﹣5)2﹣4×1×(6﹣p 2)=25﹣24+4p 2=1+4p 2,∵无论p 取何值时,总有4p 2≥0,∴1+4p 2>0,∴无论p 取何值时,方程总有两个不相等的实数根;(2)x 1+x 2=5,x 1x 2=6﹣p 2,∵2212123x x x x +=, ∴(x 1+x 2)2﹣2x 1x 2=3x 1x 2,∴52=5(6﹣p 2),∴p=±1.考点:根的判别式;根与系数的关系.8.关于x 的一元二次方程(k -2)x 2-4x +2=0有两个不相等的实数根.(1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程x 2-4x +k =0与x 2+mx -1=0有一个相同的根,求此时m 的值.【答案】(1)k <4且k ≠2.(2)m =0或m =83-.【解析】分析:(1)由题意,根据一元二次方程的定义和一元二次方程根的判别式列出关于k 的不等式组,解不等式组即可求得对应的k 的取值范围;(2)由(1)得到符合条件的k 的值,代入原方程,解方程求得x 的值,然后把所得x 的值分别代入方程x 2+mx -1=0即可求得对应的m 的值.详解:(1)∵一元二次方程(k-2)x 2-4x+2=0有两个不相等的实数根,∴△=16-8(k-2)=32-8k >0且k-2≠0.解得:k <4且k≠2.(2)由(1)可知,符合条件的:k=3,将k=3代入原方程得:方程x 2-4x+3=0,解此方程得:x 1=1,x 2=3.把x=1时,代入方程x 2+mx-1=0,有1+m-1=0,解得m=0.把x=3时,代入方程x 2+mx-1=0,有9+3m-1=0,解得m=83-.∴m=0或m=83-.点睛:(1)知道“在一元二次方程20?(0)ax bx c a ++=≠中,当△=240b ac ->时,方程有两个不相等的实数根;当△=240b ac -=时,方程有两个相等的实数根;△=240b ac -<时,方程没有实数根”是正确解答第1小题的关键;(2)解第2小题时,需注意相同的根存在两种情况,解题时不要忽略了其中任何一种情况.9.阅读材料:若22228160m mn n n -+-+=,求m 、n 的值.解: 22228160m mn n n -+-+=,222(2)(816)0m mn n n n ∴-++-+=22()(4)0m n n ∴-+-=,0,40m n n ∴-=-=,4,4n m ∴==.根据你的观察,探究下面的问题:(1)己知2222210x xy y y ++++=,求x y -的值.(2)已知△ABC 的三边长a 、b 、c 都是正整数,且满足2268250a b a b +--+=,求边c 的最大值.(3) 若己知24,6130a b ab c c -=+-+=,求a b c -+的值.【答案】(1)2(2)6(3)7【解析】【分析】(1)将多项式第三项分项后,结合并利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出x 与y 的值,即可求出x ﹣y 的值;(2)将已知等式25分为9+16,重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出a与b的值,根据边长为正整数且三角形三边关系即可求出c的长;(3)由a﹣b=4,得到a=b+4,代入已知的等式中重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出b与c的值,进而求出a的值,即可求出a﹣b+c的值.【详解】(1)∵x2+2xy+2y2+2y+1=0∴(x2+2xy+y2)+(y2+2y+1)=0∴(x+y)2+(y+1)2=0∴x+y=0 y+1=0解得:x=1,y=﹣1∴x﹣y=2;(2)∵a2+b2﹣6a﹣8b+25=0∴(a2﹣6a+9)+(b2﹣8b+16)=0∴(a﹣3)2+(b﹣4)2=0∴a﹣3=0,b﹣4=0解得:a=3,b=4∵三角形两边之和>第三边∴c<a+b,c<3+4,∴c<7.又∵c是正整数,∴△ABC的最大边c的值为4,5,6,∴c 的最大值为6;(3)∵a﹣b=4,即a=b+4,代入得:(b+4)b+c2﹣6c+13=0,整理得:(b2+4b+4)+(c2﹣6c+9)=(b+2)2+(c﹣3)2=0,∴b+2=0,且c﹣3=0,即b=﹣2,c=3,a=2,则a﹣b+c=2﹣(﹣2)+3=7.故答案为7.【点睛】本题考查了因式分解的应用,以及非负数的性质,熟练掌握完全平方公式是解答本题的关键.10.自2018年1月10日零时起,高铁开通,某旅行社为吸引广大市民组团去仙都旅游,推出了如下收费标准:如果人数不超过10人,人均旅游费用为200元,如果人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150元.()1如果某单位组织12人参加仙都旅游,那么需支付旅行社旅游费用________元;()2现某单位组织员工去仙都旅游,共支付给该旅行社旅游费用2625元,那么该单位有多少名员工参加旅游?【答案】(1)2280;(2)15【解析】【分析】对于(1)根据人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150来求解;对于(2)设这次旅游可以安排x 人参加,而由10×200=2000<2625,可以得出人数大于10人,则根据x 列出方程:(10+x )(200-5x )=2625,求出x ,然后根据人均旅游费用降低5元,但人均旅游费用不得低于150来求出x 的范围,最后得出x 的值.【详解】(1)2280()2因为1020020002625⨯=<.因此参加人比10人多,设在10人基础上再增加x 人,由题意得:()()1020052625x x +-=.解得 15x = 225x =,∵2005150x -≥,∴010x <≤,经检验 15x =是方程的解且符合题意,225x =(舍去).1010515x +=+=答:该单位共有15名员工参加旅游.【点睛】本题主要考查一元二次方程的应用和一元一次不等式的应用,根据题意作出判断,列出一元二次方程,求解方程,舍去不符合题意的解,从而得出结果.。
一元二次方程题难题及解法
一、题目:解方程:x² + 3x - 4 = 0。
解方程:2x² - 5x + 2 = 0。
若方程x² - 2x - m = 0 有两个不相等的实数根,求 m 的取值范围。
解方程:(x - 2)(x + 3) = x² - 4。
二、解法:对于第一个方程x² + 3x - 4 = 0,可以采用因式分解法。
将方程化为 (x + 4)(x - 1) = 0,得到 x₁ = -4,x₂ = 1。
对于第二个方程2x² - 5x + 2 = 0,可以采用公式法。
先计算判别式Δ = b² - 4ac = (-5)² - 4×2×2 = 9。
因为Δ > 0,所以方程有两个不相等的实数根。
根据公式 x = ( -b ± √Δ ) / (2a),得到 x₁ = (5 + √9) / (2×2) = 2,x₂ = (5 - √9) / (2×2) = 1/2。
对于第三个问题,要求 m 的取值范围使得方程x² - 2x - m = 0 有两个不相等的实数根。
这需要使用判别式的知识。
判别式Δ = b² - 4ac = (-2)² - 4×1×(-m) = 4 + 4m。
要使Δ > 0,得到 m > -1。
对于第四个方程 (x - 2)(x + 3) = x² - 4,可以使用因式分解法和直接开平法结合来解。
将方程化为 (x - 2)(x + 3) - (x + 2)(x - 2) = 0,进一步化简为 (x - 2)(x + 1) = 0,得到 x₁ = 2,x₂ = -1。
备战中考数学一元二次方程(大题培优 易错 难题)及答案解析
一、一元二次方程 真题与模拟题分类汇编(难题易错题) 1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2. (1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k = 【解析】试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值.试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2, ∴k 1=1,k 2=-3. ∵k ≤12,∴k =-3.2.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点. 己知函数222(3)y x mx m =--+(m m 为常数).(1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点; (3)设函数的两个零点分别为1x 和2x ,且121114x x +=-,此时函数图象与x 轴的交点分 别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式.【答案】(1)当m =0和 (2)见解析,(3)AM 的解析式为112y x =--. 【解析】 【分析】(1)根据题中给出的函数的零点的定义,将m=0代入y=x 2-2mx-2(m+3),然后令y=0即可解得函数的零点;(2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB 最小时,直线AM 的函数解析【详解】(1)当m =0时,该函数的零点为6和6-.(2)令y=0,得△=∴无论m 取何值,方程总有两个不相等的实数根.即无论m 取何值,该函数总有两个零点. (3)依题意有,由解得.∴函数的解析式为.令y=0,解得∴A(),B(4,0)作点B 关于直线10y x =-的对称点B’,连结AB’, 则AB’与直线10y x =-的交点就是满足条件的M 点.易求得直线10y x =-与x 轴、y 轴的交点分别为C (10,0),D (0,10). 连结CB’,则∠BCD=45° ∴BC=CB’=6,∠B’CD=∠BCD=45° ∴∠BCB’=90° 即B’(106-,)设直线AB’的解析式为y kx b =+,则20{106k b k b -+=+=-,解得112k b =-=-, ∴直线AB’的解析式为112y x =--, 即AM 的解析式为112y x =--.3.如图,在△ABC 中,AB =6cm ,BC =7cm ,∠ABC =30°,点P 从A 点出发,以1cm/s 的速度向B 点移动,点Q 从B 点出发,以2cm/s 的速度向C 点移动.如果P 、Q 两点同时出发,经过几秒后△PBQ 的面积等于4cm 2?【答案】经过2秒后△PBQ的面积等于4cm2.【解析】【分析】作出辅助线,过点Q作QE⊥PB于E,即可得出S△PQB=12×PB×QE,有P、Q点的移动速度,设时间为t秒时,可以得出PB、QE关于t的表达式,代入面积公式,即可得出答案.【详解】解:如图,过点Q作QE⊥PB于E,则∠QEB=90°.∵∠ABC=30°,∴2QE=QB.∴S△PQB=12•PB•QE.设经过t秒后△PBQ的面积等于4cm2,则PB=6﹣t,QB=2t,QE=t.根据题意,12•(6﹣t)•t=4.t2﹣6t+8=0.t2=2,t2=4.当t=4时,2t=8,8>7,不合题意舍去,取t=2.答:经过2秒后△PBQ的面积等于4cm2.【点睛】本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.4.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC和△DEF,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.将△DEF 的斜边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)请回答李晨的问题:若CD=10,则AD= ;(2)如图2,李晨同学连接FC,编制了如下问题,请你回答:①∠FCD的最大度数为;②当FC∥AB时,AD= ;③当以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边时,AD= ;④△FCD的面积s的取值范围是 .【答案】(1)2;(2)① 60°;②;③;④.【解析】试题分析:(1)根据等腰直角三角形的性质,求出AC的长,即可得到AD的长.(2)①当点E与点C重合时,∠FCD的角度最大,据此求解即可.②过点F作FH⊥AC于点H,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.③过点F作FH⊥AC于点H,AD=x,应用含30度角直角三角形的性质把FC用x来表示,根据勾股定理列式求解.④设AD=x,把△FCD的面积s表示为x的函数,根据x的取值范围来确定s的取值范围.试题解析:(1)∵∠B=90°,∠A=45°,BC=,∴AC=12.∵CD=10,∴AD=2.(2)①∵∠F=90°,∠EDF=30°,∴∠DEF=60°.∵当点E与点C重合时,∠FCD的角度最大,∴∠FCD的最大度数=∠DEF="60°."② 如图,过点F作FH⊥AC于点H,∵∠EDF=30°, EF=2,∴DF=. ∴DH=3,FH=.∵FC∥AB,∠A=45°,∴∠FCH="45°." ∴HC=. ∴DC=DH+HC=.∵AC=12,∴AD=.③如图,过点F作FH⊥AC于点H,设AD=x,由②知DH=3,FH=,则HC=.在Rt△CFH中,根据勾股定理,得.∵以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边,∴,即,解得.④设AD=x,易知,即.而,当时,;当时,.∴△FCD的面积s的取值范围是.考点:1.面动平移问题;2.等腰直角三角形的判定和性质;3.平行的性质;4.含30度角直角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.5.沙坪坝区各街道居民积极响应“创文明城区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A,B两个社区,B社区居民人口数量不超过A社区居民人口数量的2倍.(1)求A社区居民人口至少有多少万人?(2)街道工作人员调查A,B两个社区居民对“社会主义核心价值观”知晓情况发现:A社区有1.2万人知晓,B社区有1.5万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A社区的知晓人数平均月增长率为m%,B社区的知晓人数第一个月增长了45m%,第二月在第一个月的基础上又增长了2m%,两个月后,街道居民的知晓率达到92%,求m的值.【答案】(1)A社区居民人口至少有2.5万人;(2)m的值为50.【解析】【分析】(1)设A社区居民人口有x万人,根据“B社区居民人口数量不超过A社区居民人口数量的2倍”列出不等式求解即可;(2)A社区的知晓人数+B社区的知晓人数=7.5×92%,据此列出关于m的方程并解答.【详解】解:(1)设A社区居民人口有x万人,则B社区有(7.5-x)万人,依题意得:7.5-x≤2x,解得x≥2.5.即A社区居民人口至少有2.5万人;(2)依题意得:1.2(1+m%)2+1.5×(1+45m%)+1.5×(1+45m%)(1+2m%)=7.5×92%,解得m=50答:m的值为50.【点睛】本题考查了一元二次方程和一元一次不等式的应用,解题的关键是读懂题意,找到题中相关数据的数量关系,列出不等式或方程.6.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解析】【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.7.关于x的一元二次方程(k-2)x2-4x+2=0有两个不相等的实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.【答案】(1)k<4且k≠2.(2)m=0或m=8 3 .【解析】分析:(1)由题意,根据一元二次方程的定义和一元二次方程根的判别式列出关于k的不等式组,解不等式组即可求得对应的k的取值范围;(2)由(1)得到符合条件的k 的值,代入原方程,解方程求得x 的值,然后把所得x 的值分别代入方程x 2+mx -1=0即可求得对应的m 的值. 详解:(1)∵一元二次方程(k-2)x 2-4x+2=0有两个不相等的实数根, ∴△=16-8(k-2)=32-8k >0且k-2≠0. 解得:k <4且k≠2.(2)由(1)可知,符合条件的:k=3, 将k=3代入原方程得:方程x 2-4x+3=0, 解此方程得:x 1=1,x 2=3.把x=1时,代入方程x 2+mx-1=0,有1+m-1=0,解得m=0. 把x=3时,代入方程x 2+mx-1=0,有9+3m-1=0,解得m=83-. ∴m=0或m=83-.点睛:(1)知道“在一元二次方程20?(0)ax bx c a ++=≠中,当△=240b ac ->时,方程有两个不相等的实数根;当△=240b ac -=时,方程有两个相等的实数根;△=240b ac -<时,方程没有实数根”是正确解答第1小题的关键;(2)解第2小题时,需注意相同的根存在两种情况,解题时不要忽略了其中任何一种情况.8. ∵1.7×35=59.5,1.7×80=136<151∴这家酒店四月份用水量不超过m 吨(或水费是按y=1.7x 来计算的), 五月份用水量超过m 吨(或水费是按来计算的)则有151=1.7×80+(80-m )×即m 2-80m+1500=0 解得m 1=30,m 2=50.又∵四月份用水量为35吨,m 1=30<35,∴m 1=30舍去. ∴m=50 【解析】9.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元. (1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x 元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7. 【解析】 【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解. 【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克, b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩ 解之得:108a b =⎧⎨=⎩答:甲、乙两种苹果的进价分别为10元/千克,8元/千克 (2)由题意得:()()()()410010214010960x x x x +-++-= 解之得:12x =,27x =经检验,12x =,27x =均符合题意 答:x 的值为2或7. 【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.10.解方程:(x +1)(x -1)=x.【答案】x 1,x 2 【解析】试题分析:根据方程的特点,根据平方差公式化为一般式,然后可根据公式法求解即可.试题解析:(x +1)(x -1)=x 2-2x-1=0 ∵a=1,b=-c=-1 ∴△=b 2-4ac=8+4=12>0∴x=2b a-±∴x1x 2.。
一元二次方程高中经典难题压轴题
一元二次方程高中经典难题压轴题摘要:一、一元二次方程的概述二、一元二次方程的求解方法三、一元二次方程的压轴题解题技巧四、举例说明一元二次方程的压轴题解法正文:【一、一元二次方程的概述】一元二次方程是指形如ax+bx+c=0 的方程,其中a、b、c 是已知数,且a≠0。
一元二次方程是高中数学中的经典题型,对于学生掌握一元二次方程的解法具有重要意义。
在高考数学中,一元二次方程常常作为压轴题出现,考查学生的解题能力和思维能力。
【二、一元二次方程的求解方法】求解一元二次方程的通用方法有以下三种:1.公式法:根据一元二次方程的系数结合求根公式,可以求得方程的两个解。
求根公式为:x,x=[-b±√(b-4ac)]/2a。
2.因式分解法:通过将一元二次方程左边的多项式进行因式分解,化为两个一元一次方程,从而求得方程的解。
3.完全平方公式法:当一元二次方程的二次项系数a 为1 时,可以尝试使用完全平方公式将方程化为一个一元一次方程的平方,从而求得方程的解。
【三、一元二次方程的压轴题解题技巧】1.观察法:在解题过程中,要仔细观察题目的特点,如对称性、已知条件等,以便快速找到解题思路。
2.尝试法:在解题过程中,可以先尝试使用一种方法,如公式法,如果遇到困难,再尝试其他方法,如因式分解法或完全平方公式法。
3.代入法:在解题过程中,可以将方程的解代入原方程进行验证,以确保所求解的正确性。
4.化简法:在解题过程中,要尽量化简方程,使方程的形式更简单,以便于求解。
【四、举例说明一元二次方程的压轴题解法】例题:解方程x - 3x - 4 = 0。
解:首先,我们可以尝试使用公式法求解该方程。
将系数代入求根公式,得到x,x=[3±√(9+16)]/2=4 或-1。
因此,方程的解为x=4、x=-1。
接下来,我们可以验证一下求得的解是否正确。
将x=4 代入原方程,得到4-3×4-4=0,等式成立。
将x=-1 代入原方程,得到(-1)-3×(-1)-4=0,等式也成立。
专题02 一元二次方程的4种解法(解析版)
专题02 一元二次方程的4种解法考点1:直接开方法;考点2:配方法;考点3:公式法;考点4:因式分解法。
1.方程(x +6)2﹣9=0的两个根是( )A .x 1=3,x 2=9B .x 1=﹣3,x 2=9C .x 1=3,x 2=﹣9D .x 1=﹣3,x 2=﹣9解:∵(x +6)2﹣9=0,∴(x +6)2=9,则x +6=±3,∴x 1=﹣3,x 2=﹣9,答案:D .2.x 1、x 2是一元二次方程3(x ﹣1)2=15的两个解,且x 1<x 2,下列说法正确的是( )A .x 1小于﹣1,x 2大于3B .x 1小于﹣2,x 2大于3C .x 1,x 2在﹣1和3之间D .x 1,x 2都小于3解:∵x 1、x 2是一元二次方程3(x ﹣1)2=15的两个解,且x 1<x 2,∴(x ﹣1)2=5,∴x ﹣1∴x 2=13,x 1=1−1,答案:A .3.(易错题)若一元二次方程ax 2=b (ab >0)的两根分别是m ﹣1和2m +3,则ba 的值为( )A .16B .259C .25D .259或25解:∵一元二次方程ax 2=b 的两个根分别是m +1与2m ﹣13,且x =±∴m ﹣1+2m +3=0,解得:m =−23,题型01 直接开方法即方程的根是:x 1=−53,x 2=53,∴b a =(±2=259,答案:B .4.关于x 的一元二次方程x 2=a 的两个根分别是2m ﹣1与m ﹣5,则m = 2 .解:根据题意得2m ﹣1+m ﹣5=0,解得m =2,答案:2.5.关于x 的方程(2x +5)2=m +1无实数解,则m 的取值范围 m <﹣1 .解:∵关于x 的方程(2x +5)2=m +1无实数解,∴m +1<0,解得m <﹣1.答案:m <﹣1.6.对于解一元二次方程(x +3)2=4,通过降次转化为两个一元一次方程,其中一个一元一次方程是x +3=2,则另一个一元一次方程是 x +3=﹣2 .解:(x +3)2=4,∴x +3=±2,∴x +3=2或x +3=﹣2,答案:x +3=﹣2.7.解方程:(1)x 2﹣81=0;(2)4(x ﹣1)2=9.解:(1)x 2﹣81=0,x 2=81,∴x =±9,∴x 1=9,x 2=﹣9;(2)4(x ﹣1)2=9,(x ﹣1)2=94,∴x ﹣1=±32,∴x 1=52,x 2=−12.8.一元二次方程y 2﹣y −34=0配方后可化为( )A .(y +12)2=1B .(y −12)2=1C .(y +12)2=34D .(y −12)2=34解:y 2﹣y −34=0y 2﹣y =34y 2﹣y +14=1(y −12)2=1答案:B .9.将代数式x 2﹣10x +5配方后,发现它的最小值为( )A .﹣30B .﹣20C .﹣5D .0解:x 2﹣10x +5=x 2﹣10x +25﹣20=(x ﹣5)2﹣20,当x =5时,代数式的最小值为﹣20,答案:B .10.(易错题)设a 、b 是两个整数,若定义一种运算“△”,a △b =a 2+b 2+ab ,则方程(x +2)△x =1的实数根是( )A .x 1=x 2=1B .x 1=0,x 2=1C .x 1=x 2=﹣1D .x 1=1,x 2=﹣2解:∵a △b =a 2+b 2+ab ,∴(x +2)△x =(x +2)2+x 2+x (x +2)=1,整理得:x 2+2x +1=0,即(x +1)2=0,解得:x 1=x 2=﹣1.答案:C .11.把方程x 2﹣2=4x 用配方法化为(x +m )2=n 的形式,则mn 的值是 ﹣12 .题型02 配方法解:∵x2﹣2=4x,∴x2﹣4x=2,∴x2﹣4x+4=2+4,∴(x﹣2)2=6,∴m=﹣2,n=6,∴mn=﹣12,答案:﹣1212.方程x2﹣2x﹣1=0的解是 x1=1+解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴x2﹣2x+1=2,∴(x﹣1)2=2,∴x=1∴原方程的解为:x1=1+x2=1答案:x1=1+x2=113.小明设计了一个魔术盒,当任意实数对(a,b)进入其中,会得到一个新的实数a2﹣2b+3.若将实数(x,﹣2x)放入其中,得到﹣1,则x= ﹣2 .解:根据题意得x2﹣2•(﹣2x)+3=﹣1,整理得x2+4x+4=0,(x+2)2=0,所以x1=x2=﹣2.答案:﹣2.14.(易错题)嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:由于a≠0,方程ax2+bx+c=0变形为:x2+bax=−ca,…第一步x2+bax+(b2a)2=−ca+(b2a)2,…第二步(x +b 2a )2=b 2−4ac 4a 2,…第三步x +b 2a =b 2﹣4ac >0),…第四步x =2a ,…第五步嘉淇的解法从第 四 步开始出现错误;事实上,当b 2﹣4ac >0时,方程ax 2+bx +c =0(a ≠O )的求根公式是 x =−b 2a .用配方法解方程:x 2﹣2x ﹣24=0.解:在第四步中,开方应该是x +b 2a =x =答案:四;x用配方法解方程:x 2﹣2x ﹣24=0解:移项,得x 2﹣2x =24,配方,得x 2﹣2x +1=24+1,即(x ﹣1)2=25,开方得x ﹣1=±5,∴x 1=6,x 2=﹣4.15.一元二次方程x 2+4x ﹣8=0的解是( )A .x 1=x 2=2﹣B .x 1=x 2=2﹣C .x 1=﹣x 2=﹣2﹣D .x 1=﹣x 2=﹣2﹣解:∵a =1,b =4,c =﹣8,∴Δ=42﹣4×1×(﹣8)=48>0,则x −2±∴x 1=﹣x 2=﹣2﹣题型03 公式法答案:D .16.已知a 是一元二次方程x 2﹣x ﹣1=0较大的根,则下面对a 的估计正确的是( )A .0<a <1B .1<a <1.5C .1.5<a <2D .2<a <3解:解方程x 2﹣x ﹣1=0得:x =∵a 是方程x 2﹣x ﹣1=0较大的根,∴a∵23,∴3<1+4,∴32<2,答案:C .17.若实数a ,b 满足a 2+ab ﹣b 2=0,则a b = .解:a 2+ab ﹣b 2=0△=b 2+4b 2=5b 2.a =−b 2=∴a b =18.(易错题)对任意的两实数a ,b ,用min (a ,b )表示其中较小的数,如min (2,﹣4)=﹣4,则方程x •min(2,2x ﹣1)=x +1的解是 x =或x = .解:①若2<2x ﹣1,即x >1.5时,x +1=2x ,解得x =1(舍);②若2x ﹣1≤2,即x ≤1.5时,x (2x ﹣1)=x +1,解得x x答案:x=x=19.关于x的一元二次方程为(m﹣1)x2﹣2mx+m+1=0.(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?解:(1)根据题意,得m≠1.∵a=m﹣1,b=﹣2m,c=m+1,∴Δ=b2﹣4ac=(﹣2m)2﹣4(m﹣1)(m+1)=4,则x1=2m22(m−1)=m1m−1,x2=1;(2)由(1)知,x1=m1m−1=1+2m−1,∵方程的两个根都为正整数,∴2m−1是正整数,∴m﹣1=1或m﹣1=2,解得m=2或3.即m为2或3时,此方程的两个根都为正整数.20.方程x2﹣x=56的根是( )A.x1=7,x2=8B.x1=7,x2=﹣8 C.x1=﹣7,x2=8D.x1=﹣7,x2=﹣8解:∵x2﹣x=56,∴x2﹣x﹣56=0,则(x﹣8)(x+7)=0,∴x﹣8=0或x+7=0,解得x1=﹣7,x2=8,答案:C.21.一元二次方程x(x﹣2)=x﹣2的解是( )题型04 因式分解法A.x1=x2=0B.x1=x2=1C.x1=0,x2=2D.x1=1,x2=2解:x(x﹣2)=x﹣2,移项,得x(x﹣2)﹣(x﹣2)=0,提公因式,得(x﹣2)(x﹣1)=0,∴x﹣2=0或x﹣1=0,解得x1=2,x2=1.答案:D.22.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是( )A.12B.9C.13D.12或9解:x2﹣7x+10=0,(x﹣2)(x﹣5)=0,x﹣2=0,x﹣5=0,x1=2,x2=5,①等腰三角形的三边是2,2,5∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;即等腰三角形的周长是12.答案:A.23.方程2x2+1=3x的解为 x1=1,x2=12 .解:2x2+1=3x,2x2﹣3x+1=0,(x﹣1)(2x﹣1)=0,解得:x1=1,x2=1 2.答案:x1=1,x2=1 2.24.(易错题)菱形的一条对角线长为8,其边长是方程x2﹣9x+20=0的一个根,则该菱形的周长为 20 .解:如图所示:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵x2﹣9x+20=0,因式分解得:(x﹣4)(x﹣5)=0,解得:x=4或x=5,分两种情况:①当AB=AD=4时,4+4=8,不能构成三角形;②当AB=AD=5时,5+5>8,∴菱形ABCD的周长=4AB=20.答案:20.25.(易错题)对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2﹣(a﹣b)2.若(m+2)◎(m﹣3)=24,则m= ﹣3或4 .解:根据题意得[(m+2)+(m﹣3)]2﹣[(m+2)﹣(m﹣3)]2=24,(2m﹣1)2﹣49=0,(2m﹣1+7)(2m﹣1﹣7)=0,2m﹣1+7=0或2m﹣1﹣7=0,所以m1=﹣3,m2=4.答案:﹣3或4.26.解方程(1)2x2﹣3x﹣2=0;(2)x(2x+3)﹣2x﹣3=0.解:(1)(2x+1)(x﹣2)=0,2x+1=0或x﹣2=0,所以x1=−12,x2=2;(2)x(2x+3)﹣(2x+3)=0,(2x+3)(x﹣1)=0,2x+3=0或x﹣1=0,所以x1=−32,x2=1.。
一元二次方程50题 参考答案与试题解析
一元二次方程参考答案与试题解析一.解答题(共50小题)1.【分析】方程变形后,开方即可求出解.【解答】解:(2x﹣1)2﹣121=0,(2x﹣1)2=121,2x﹣1=±11,2x=±11+1.∴x1=6,x2=﹣5.【点评】此题考查了解一元二次方程﹣直接开平方法,熟练掌握平方根定义是解本题的关键.2.【分析】根据直接开平方法可以解答此方程.【解答】解:∵(x﹣2)2﹣9=0,∴(x﹣2)2=9,∴x﹣2=±3,∴x﹣2=3或x﹣2=﹣3,解得,x1=5,x2=﹣1.【点评】本题考查解一元二次方程﹣直接开平方法,解答本题的关键是明确解一元二次方程的方法.3.【分析】(1)利用直接开平方法求解可得;(2)先整理为一般式,再利用因式分解法求解可得.【解答】解:(1)∵4(x﹣5)2=16,∴(x﹣5)2=4,∴x﹣5=2或x﹣5=﹣2,解得x1=7,x2=3;(2)将方程整理为一般式,得:x2+2x﹣8=0,∴(x+4)(x﹣2)=0,则x+4=0或x﹣2=0,解得x1=﹣4,x2=2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.4.【分析】利用直接开平方法求解可得.【解答】解:∵(x﹣1)2=3,∴x﹣1=±,解得:,.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.5.【分析】首先两边直接开平方可得2x﹣3=±5,再解一元一次方程即可.【解答】解:两边直接开平方得:2x﹣3=±5,则2x﹣3=5,2x﹣3=﹣5,故x=4,x=﹣1.【点评】此题主要考查了直接开平方法解一元一次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.6.【分析】先两边开方得到2x﹣1=±(3﹣x),然后解两个一次方程即可.【解答】解:2x﹣1=±(3﹣x),2x﹣1=3﹣x或2x﹣1=﹣3+x,所以x1=,x2=﹣2.【点评】本题考查了解一元二次方程﹣直接开平方的方法:形如x2=p或(nx+m)2=p (p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.7.【分析】(1)利用直接开平方法求解可得;(2)先将方程整理为一般式,再利用因式分解法求解可得.【解答】解:(1)∵121x2﹣25=0,∴121x2=25,则x2=,∴x1=,x2=﹣;(2)将方程整理为一般式得x2+2x﹣3=0,∴(x﹣1)(x+3)=0,则x﹣1=0或x+3=0,解得x1=1,x2=﹣3.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.8.【分析】先把给出的方程进行整理,再利用直接开方法求出解即可.【解答】解:(y+2)2﹣6=0,(y+2)2=12,y+2=±2,y1=2﹣2,y2=﹣2﹣2.【点评】此题考查了解一元二次方程﹣直接开平方法,熟练掌握各种解法是解本题的关键.9.【分析】移项后利用直接开平方法求解可得.【解答】解:∵y2﹣4=0,∴y2=4,则y1=2,y2=﹣2.【点评】本题主要考查解一元二次方程﹣直接开平方法,形如x2=p或(nx+m)2=p(p ≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.10.【分析】(1)两边开方,即可得出两个一元一次方程,求出方程的解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)(x+1)2=5,x+1=±,解得:x1=﹣1+,x2=﹣1﹣;(2)去分母得:3﹣(x+2)(1﹣x)=x2﹣4,整理得:3+x2+x﹣2=x2﹣4,即x=﹣5,经检验:x=﹣5是原方程的根.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.11.【分析】(1)利用直接开平方法解方程;(2)先去分母,把分式方程化为3+x﹣5(x﹣1)=﹣2x,然后解整式方程后进行检验确定原方程的解.【解答】解:(1)x+1=±2,所以x1=1,x2=﹣3;(2)解方程两边同乘(x﹣1)得3+x﹣5(x﹣1)=﹣2x,解这个方程得x=4.检验:当x=4时,x﹣1≠0,所以x=4是原方程的解.【点评】本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.也考查了解分式方程.12.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)方程利用完全平方公式变形,开方即可求出解.【解答】解:(1)两边都乘以(x+3)(x﹣1),得:(x﹣1)2﹣2(x+3)=(x﹣1)(x+3),整理得:x2﹣2x+1﹣2x﹣6=x2+2x﹣3解得,x=﹣,检验:当x=﹣时,(x+3)(x﹣1)≠0,所以,原分式方程的解为x=﹣;(2)方程两边同除以2,变形得x2﹣2x=,配方,得x2﹣2x+1=+1,即(x﹣1)2=,开方得:x﹣1=±,解得:x1=1+,x2=1﹣.【点评】此题考查了解分式方程,以及解一元二次方程,熟练掌握运算方法是解本题的关键.13.【分析】(1)先把各二次根式化为最简二次根式,然后进行二次根式的乘法运算即可;(2)利用配方法得到(x﹣2)2=3,然后利用直接开平方法解方程.【解答】解:(1)原式=4﹣2+×3=2+;(2)x2﹣4x=﹣1,x2﹣4x+4=3,(x﹣2)2=3,x﹣2=±,所以x1=2+,x2=2﹣.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了二次根式的混合运算.14.【分析】(1)方程利用配方法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)方程整理得:x2+4x=1,配方得:x2+4x+4=5,即(x+2)2=5,开方得:x+2=±,解得:x1=﹣2+,x2=﹣2﹣;(2)去分母得:2x2﹣x+5=2x2﹣10x,解得:x=﹣,经检验x=﹣是分式方程的解.【点评】此题考查了解一元二次方程﹣配方法,以及解分式方程,熟练掌握各自的解法是解本题的关键.15.【分析】(1)方程利用直接开平方法求出解即可;(2)方程利用配方法求出解即可.【解答】解:(1)方程整理得:x2=9,开方得:x=±3,解得:x1=3,x2=﹣3;(2)方程整理得:x2﹣4x=1,配方得:x2﹣4x+4=5,即(x﹣2)2=5,开方得:x﹣2=±,解得:x1=2+,x2=2﹣.【点评】此题考查了解一元二次方程﹣配方法,以及直接开平方法,熟练掌握各种解法是解本题的关键.16.【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,则x2﹣2x+1=1+1,即(x﹣1)2=2,∴x﹣1=,∴x=1,即x1=1+,x2=1﹣.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.17.【分析】首先展开化为x2﹣6x+9=0,再配方后开方计算即可求解.【解答】解:(x﹣4)(x﹣2)+1=0,方程化为x2﹣6x+9=0,(x﹣3)2=0,解得x1=x2=3.【点评】本题考查了解一元二次方程﹣﹣配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.18.【分析】(1)方程利用配方法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)方程整理得:x2﹣6x=﹣4,配方得:x2﹣6x+9=5,即(x﹣3)2=5,开方得:x﹣3=±,解得:x1=3+,x2=3﹣;(2)去分母得:5x+10=6x﹣3,解得:x=13,经检验x=13是分式方程的解.【点评】此题考查了解一元二次方程﹣配方法,以及解分式方程,熟练掌握完全平方公式是解本题的关键.19.【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得.【解答】解:∵x2﹣8x+11=0,∴x2﹣8x=﹣11,则x2﹣8x+16=﹣11+16,即(x﹣4)2=5,∴x﹣4=±,∴x=4±.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.【分析】(1)利用配方法求解可得;(2)根据解分式方程的步骤依次计算可得.【解答】解:(1)∵x2﹣8x=﹣1,∴x2﹣8x+16=﹣1+16,即(x﹣4)2=15,则x﹣4=±,∴x=4;(2)两边都乘以x﹣2,得:3+1﹣x=x﹣2,解得x=3,经检验x=3是原分式方程的解.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21.【分析】(1)利用解一元二次方程的方法﹣直接开平方法解方程即可;(1)先移项得x2﹣4x=3,再把方程两边加上4得到x2﹣4x+4=3+4,即(x﹣2)2=7,然后利用直接开平方法求解;【解答】解:(1)(2x+3)2=9,∴2x+3=±3,∴2x+3=3或2x+3=﹣3,∴x1=0,x2=﹣3;(2)x2﹣4x﹣3=0,移项得,x2﹣4x=3,方程两边加上4得,x2﹣4x+4=7,配方得,(x﹣2)2=7,∴x﹣2=±,∴x1=2+,x2=2﹣.【点评】本题考查的是一元二次方程的解法,掌握配方法、因式分解法、公式法解一元二次方程的一般步骤是解题的关键.22.【分析】(1)利用配方法求解可得;(2)整理为一般式,再利用因式分解法求解可得.【解答】解:(1)∵x2﹣2x=1,∴x2﹣2x+1=1+1,即(x﹣1)2=2,则x﹣1=±,∴x=1;(2)方程整理为一般式,得:x2﹣4x﹣12=0,∵(x+2)(x﹣6)=0,∴x+2=0或x﹣6=0,解得x=﹣2或x=6.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.23.【分析】利用配方法求解可得.【解答】解:∵2x2﹣4x=8,∴x2﹣2x=4,则x2﹣2x+1=4+1,即(x﹣1)2=5,∴x﹣1=,则x1=+1,x2=+1.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.24.【分析】方程变形后,利用配方法求出解即可.【解答】解:方程变形得:x2﹣4x=5,即x2﹣4x+4=9,变形得:(x﹣2)2=9,开方得:x﹣2=3或x﹣2=﹣3,解得:x1=5,x2=﹣1.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.25.【分析】方程利用配方法求出解即可.【解答】解:方程变形得:x2+2x=1,配方得:x2+2x+1=2,即(x+1)2=2,开方得:x+1=±,解得:x1=﹣1+,x2=﹣1﹣.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.26.【分析】方程移项后,二次项系数化为1,两个加上一次项系数一半的平方,利用完全平方公式变形后,开方即可求出解.【解答】解:方程移项得:3x2﹣6x=﹣1,即x2﹣2x=﹣,配方得:(x﹣1)2=,开方得:x﹣1=±,解得:x1=1+,x2=1﹣.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.27.【分析】把常数项2移项后,应该在左右两边同时加上一次项系数﹣5的一半的平方.【解答】解:把方程x2﹣5x+2=0的常数项移到等号的右边,得x2﹣5x=﹣2,方程两边同时加上一次项系数一半的平方,得x2﹣5x+(﹣)2=﹣2+(﹣)2,配方,得(x﹣)2=.开方,得x﹣=±,解得x1=,x2=.【点评】本题考查了配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.28.【分析】先进行移项,然后系数化1,再进行配方,即可求出答案.【解答】解:移项,得2x2﹣3x=﹣1,二次项系数化为1,得x2﹣x=﹣,配方x2﹣x+()2=﹣+()2,(x﹣)2=,由此可得x ﹣=,x 1=1,x 2=.【点评】本题考查了解一元二次方程﹣配方法,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.29.【分析】配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:配方得x 2﹣4x +4=1+4,即(x ﹣2)2=5,开方得x ﹣2=±,∴x 1=2+,x 2=2﹣.【点评】此题考查了配方法解一元二次方程,用配方法解一元二次方程的步骤:(1)形如x 2+px +q =0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax 2+bx +c =0型,方程两边同时除以二次项系数,即化成x 2+px +q =0,然后配方.30.【分析】配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:移项得x 2﹣4x =3,配方得x 2﹣4x +4=3+4,即(x ﹣2)2=,开方得x ﹣2=±,∴x 1=2+,x 2=2﹣.【点评】此题考查了配方法解一元二次方程,用配方法解一元二次方程的步骤:(1)形如x 2+px +q =0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax 2+bx +c =0型,方程两边同时除以二次项系数,即化成x 2+px +q =0,然后配方.31.【分析】先利用配方法将原式化为完全平方的形式,再用直接开平方法解答.【解答】解:原式可化为x2+4x+4﹣7=0即(x+2)2=7,开方得,x+2=±,x1=﹣2+;x2=﹣2﹣.【点评】本题考查了解一元二次方程﹣﹣配方法,熟悉完全平方公式是解题的关键.32.【分析】在本题中,把常数项﹣4移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【解答】解:由原方程移项,得x2﹣2x=4,等式两边同时加上一次项系数一半的平方,得x2﹣2x+1=5,配方,得(x﹣1)2=5,∴x=1±,∴x1=1+,x2=1﹣.【点评】本题考查了一元二次方程的解法﹣﹣配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.33.【分析】解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.然后利用直接开平方法即可求解.【解答】解:2x2﹣4x﹣1=0x2﹣2x﹣=0x2﹣2x+1=+1(x﹣1)2=∴x1=1+,x2=1﹣.【点评】用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.34.【分析】先将已知方程转化为一般式,然后根据求根公式解答.【解答】解:由原方程,得x2+2x+2=0.这里a=1,b=2,c=2.∵△=b2﹣4ac=(2)2﹣4×1×2=0.∴x==﹣.即x1=x2=﹣.【点评】本题主要考查了解一元二次方程﹣公式法.注意:用公式法解一元二次方程的前提条件有两个:①a≠0;②b2﹣4ac≥0.35.【分析】整理后求出b2﹣4ac的值,再代入公式求出即可,也可以用因式分解法求解.【解答】解:方法一、整理得:x2+3x+2=0,b2﹣4ac=32﹣4×1×2=1,x=,x1=﹣1,x2=﹣2;方法二、整理得:x2+3x+2=0,(x+1)(x+2)=0,x+1=0,x+2=0,x1=﹣1,x2=﹣2.【点评】本题考查了解一元二次方程,能熟记公式是解此题的关键.36.【分析】(1)利用配方法求解可得;(2)利用公式法求解可得.【解答】解:(1)∵x2+2x=29,∴x2+2x+1=29+1,即(x+1)2=30,则x+1=±,∴x1=﹣1+,x2=﹣1﹣;(2)∵a=2,b=﹣,c=﹣1,∴△=(﹣)2﹣4×2×(﹣1)=10>0,则x=,即x1=,x2=.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.37.【分析】首先找出a、b、c的值,计算根的判别式,进一步利用求根公式求得答案即可.【解答】解:x2+4x﹣5=0,∵a=1,b=4,c=﹣5,∴△=b2﹣4ac=42﹣4×1×(﹣5)=36,则x==,解得x1=﹣5,x2=1.【点评】此题考查用公式法解一元二次方程,掌握用公式法解方程的步骤与方法是解决问题的关键.38.【分析】(1)直接开平方法求解可得;(2)根据公式法求解可得.【解答】解:(1)(x﹣1)2=4,x﹣1=±2,解得x1=﹣1,x2=3;(2)x2﹣x﹣1=0,∵a=1,b=﹣,c=﹣1,∴△=3﹣4×1×(﹣1)=7>0,x=,解得x1=,x2=.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.39.【分析】先进行整理,再根据公式法求解可得.【解答】解:x2﹣4=6(x+2).整理得x2﹣6x﹣16=0,∵a=1,b=﹣6,c=﹣16,∴△=36﹣4×1×(﹣16)=100>0,x==3±5,解得x1=﹣2,x2=8.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.40.【分析】(1)利用直接开平方法求解可得;(2)利用配方法求解可得.【解答】解:(1)方程两边除以2,得:(x﹣1)2=9,则x﹣1=3或x﹣1=﹣3,则x1=4,x2=﹣2;(2)原方程可整理为:x2﹣4x﹣1=0,∵a=1,b=﹣4,c=﹣1,∴△=(﹣4)2﹣4×1×(﹣1)=20>0,则x==2,解得:x1=2+,x2=2﹣.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.41.【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵a=1,b=﹣4,c=﹣7,∴△=(﹣4)2﹣4×1×(﹣7)=44>0,则x==2,即x1=2+,x2=2﹣;(2)∵3x(2x+1)=2(2x+1),∴3x(2x+1)﹣2(2x+1)=0,则(2x+1)(3x﹣2)=0,∴2x+1=0或3x﹣2=0,解得x1=﹣,x2=.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.42.【分析】(1)利用直接开平方法求解可得;(2)整理为一般式,再利用公式法求解可得.【解答】解:(1)∵(x﹣3)2﹣4=0,∴(x﹣3)2=4,则x﹣3=2或x﹣3=﹣2,解得x1=5,x2=1;(2)将方程整理为一般式,得:x2﹣3x﹣1=0,∵a=1,b=﹣3,c=﹣1,∴△=(﹣3)2﹣4×1×(﹣1)=13>0,则x=,即x1=,x2=.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.43.【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵a=1,b=﹣8,c=3,∴△=(﹣8)2﹣4×1×3=52>0,∴x==4,即x1=4+,x2=4﹣;(2)方程整理为一般式,得:2x2﹣7x=0,则x(2x﹣7)=0,∴x=0或2x﹣7=0,解得x1=0,x2=3.5.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.44.【分析】(1)利用配方法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2﹣2x﹣1=0,∴x2﹣2x=1,则x2﹣2x+1=1+1,即(x﹣1)2=2,∴x﹣1=,∴x=1;(2)∵3x(2x+3)=2(2x+3),∴3x(2x+3)﹣2(2x+3)=0,∴(2x+3)(3x﹣2)=0,则2x+3=0或3x﹣2=0,解得x=﹣或x=.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.45.【分析】(1)直接利用配方法解方程得出答案;(2)直接利用提取公因式法解方程进而得出答案.【解答】解:(1)x2﹣6x=﹣7,则x2﹣6x+9=﹣7+9,故(x﹣3)2=2x﹣3=±,解得:x1=3+,x2=3﹣;(2)x(x﹣2)=6﹣3xx(x﹣2)﹣3(2﹣x)=0,(x﹣2)(x+3)=0,则x﹣2=0或x+3=0,解得:x1=2,x2=﹣3.【点评】此题主要考查了配方法以及因式分解法解方程,正确掌握解题方法是解题关键.46.【分析】(1)利用直接开平方法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2﹣9=0,∴x2=9,则x1=3,x2=﹣3;(2)∵x2﹣2x﹣3=0,∴(x+1)(x﹣3)=0,则x+1=0或x﹣3=0,解得x1=﹣1,x2=3.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.47.【分析】(1)先整理为一般式,再利用因式分解法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)将方程整理为一般式为5x2﹣4x﹣1=0,则(x﹣1)(5x+1)=0,∴x﹣1=0或5x+1=0,解得x1=1,x2=﹣0.2;(2)∵x(x﹣2)=3x﹣6,∴x(x﹣2)﹣3(x﹣2)=0,则(x﹣2)(x﹣3)=0,∴x﹣2=0或x﹣3=0,解得x1=2,x2=3.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.48.【分析】利用因式分解法或直接开平方法求解可得.【解答】解:方法一:∵(2x+3)2=(x﹣1)2,∴2x+3=x﹣1或2x+3=1﹣x,解得x1=﹣4,x2=﹣.方法二:∵(2x+3)2=(x﹣1)2,∴(2x+3)2﹣(x﹣1)2=0,则(2x+3+x﹣1)(2x+3﹣x+1)=0,∴3x+2=0或x+4=0,解得:x1=﹣4,x2=﹣.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.49.【分析】(1)利用配方法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2+4x﹣8=0,∴x2+4x=8,则x2+4x+4=8+4,即(x+2)2=12,∴x+2=±2,∴x1=﹣2+2,x2=﹣2﹣2;(2)∵(x﹣3)2=5(x﹣3),∴(x﹣3)2﹣5(x﹣3)=0,则(x﹣3)(x﹣3﹣5)=0,∴x﹣3=0或x﹣8=0,解得x1=3,x2=8.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.50.【分析】(1)先把方程化为整式方程3(x+3)=5(x+1),再解整式方程,然后进行检验确定原方程的解;(2)先把方程化为整式方程5﹣2(x+1)=2x,再解整式方程,然后进行检验确定原方程的解.(3)先利用配方法得到(x﹣2)2=5,然后利用直接开平方法解方程;(4)先把方程化为一般式,然后利用因式分解法解方程.【解答】解:(1)去分母得3(x+3)=5(x+1),解得x=2,经检验,原方程的解为x=2;(2)去分母得5﹣2(x+1)=2x,解得x=,经检验,原方程的解为x=;(3)x2﹣4x+4=5,(x﹣2)2=5,x﹣2=±,所以x1=2+,x2=2﹣;(4)x2+x﹣6=0,(x+3)(x﹣2)=0,x+3=0或x﹣2=0,所以x1=﹣3,x2=2.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了公式法解一元二次方程和解分式方程.。
中考《一元二次方程》经典例题及解析
一元二次方程一、一元二次方程的概念1.一元二次方程:只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.2.一般形式:20ax bx c ++=(其中,,a b c 为常数,0a ≠),其中2,,ax bx c 分别叫做二次项、一次项和常数项,,a b 分别称为二次项系数和一次项系数.注意:(1)在一元二次方程的一般形式中要注意0a ≠,因为当0a =时,不含有二次项,即不是一元二次方程;(2)一元二次方程必须具备三个条件:①必须是整式方程;②必须只含有一个未知数;③所含未知数的最高次数是2.二、一元二次方程的解法1.直接开平方法:适合于2()()0x a b b ±=≥或22()()ax b cx d ±=±形式的方程.2.配方法:(1)化二次项系数为1;(2)移项,使方程左边只含有二次项和一次项,右边为常数项; (3)方程两边同时加上一次项系数一半的平方;(4)把方程整理成2()()0x a b b ±=≥的形式; (5)运用直接开平方法解方程.3.公式法:(1)把方程化为一般形式,即20ax bx c ++=;(2)确定,,a b c 的值;(3)求出24b ac -的值;(4)将,,a b c 的值代入x =即可. 4.因式分解法:基本思想是把方程化成()()0ax b cx d ++=的形式,可得0ax b +=或0cx d +=. 三、一元二次方程根的判别式及根与系数关系1.根的判别式:一元二次方程2(0)0ax bx c a ++=≠是否有实数根,由24b ac -的符号来确定,我们把24b ac -叫做一元二次方程根的判别式.2.一元二次方程根的情况与判别式的关系(1)当240b ac ->时,方程2(0)0ax bx c a ++=≠有两个不相等的实数根; (2)当240b ac -=时,方程2(0)0ax bx c a ++=≠有1个(两个相等的)实数根; (3)当240b ac -<时,方程2(0)0ax bx c a ++=≠没有实数根.3.根与系数关系:对于一元二次方程20ax bx c ++=(其中,,a b c 为常数,0a ≠),设其两根分别为1x ,2x ,则12b x x a +=-,12c x x a=. 四、利用一元二次方程解决实际问题列一元二次方程解应用题步骤和列一元一次方程(组)解应用题步骤一样,即审、设、列、解、验、答六步.列一元二次方程解应用题,经济类和面积类问题是常考内容.1.增长率等量关系(1)增长率=增长量÷基础量.(2)设为原当m 为平均下降率时,则有(1n a m -2.利润等量关系:(1)利润=售价-成本3.面积问题(1)类型1:如图1所示的矩形ABCD ()(22)a x b x --.(2)类型2:如图2所示的矩形ABCD (3)类型3:如图3所示的矩形ABCD 为()()a x b x --.图1 4. 碰面问题(循环问题)(1)重叠类型(双循环):n 支球队互相之∵1支球队要和剩下的(n -1)支球队比赛∵存在n 支这样的球队,∴比赛场次为:∵A 与B 比赛和B 与A 比赛是同一场比赛∴m =( −1)(2)不重叠类型(单循环):n 支球队,∵1支球队要和剩下的(n -1)支球队比赛∵存在n 支这样的球队,∴比赛场次为:∵A 与B 比赛在A 的主场,B 与A ∴m = ( −1)经典1.若关于x 的方程220x ax +-=有一个【答案】1【分析】根据一元二次方程的解的定义,【解析】解:把x=1代入方程2x ax +=a 为原来量,m 为平均增长率,n 为增长次数,b 为增长)b =.成本.(2)利润率=利润成本×100%. BCD 长为a ,宽为b ,空白“回形”道路的宽为x ,CD 长为a ,宽为b ,阴影道路的宽为x ,则空白部分的BCD 长为a ,宽为b ,阴影道路的宽为x ,则4块空 图2 图互相之间都要打一场比赛,总共比赛场次为m 。
初三数学一元二次方程组的专项培优易错难题练习题附答案解析
初三数学一元二次方程组的专项培优易错难题练习题附答案解析一、一元二次方程1,已知关于x的方程x2- (2k+1) x+k2+i = 0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L的长.【答案】(1)k> 3 ;(2) A.【解析】【分析】(1)根据关于x的方程x2—(2k+1)x+k2 + 1=0有两个不相等的实数根,得出 ^〉。
,再解不等式即可;(2)当k=2时,原方程x2-5x+5=0,设方程的两根是m、n,则矩形两邻边的长是m、n, 利用根与系数的关系得出m+n=5, mn=5,则矩形的对角线长为J m2n2,利用完全平方公式进行变形即可求得答案 . 【详解】(1) •••方程x2—(2k+1)x+ k2+1 = 0有两个不相等的实数根,A= [-(2k+1)]2-4X 1 x(史1)=4k-3>0, ,3. . k > 一,4(2)当k=2时,原方程为x2- 5x+ 5 = 0, 设方程的两个根为m, n,• - m + n= 5, mn= 5,矩形的对角线长为:Vm2~n2 jm n 2mn J15 .【点睛】本题考查了根的判别式、根与系数的关系、矩形的性质等,一元二次方程根的情况与判别式△的关系:(1) ^〉。
时,方程有两个不相等的实数根;( 2) 4=0时,方程有两个相等的实数根;(3) 4〈0时,方程没有实数根.2.父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)(2)后来学生会了解到通过大众点评”或美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程5中,大众点评网上的购买价格比原有价格上涨一m%,购买数量和原计划一样:美团”网29上的购头价格比原有价格下降了一m元,购买数量在原计划基础上增加15m%,最终,在20【答案】(1) 120; (2) 20. 【解析】试题分析:(1)本题介绍两种解法:解法一:设标价为 x 元,列不等式为 0.8x?80W7680解出即可;解法二:根据单价=总价一数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花 店的最高标价;(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a 个礼盒,表示在 大众点评120a (1-25%) (1+3m%),在 美团”网上的购买实际消费总额:a[120 (1 - 25%) - -9-m] (1+15m%);根据 在两个网站的实际消费总额比原计划20的预算总额增加了 一 m%'列方程解出即可.2试题解析:(1)解:解法一:设标价为 x 元,列不等式为 0.8x?80W7680 x<120解法二:7680+ 80+0.8=96 + 0.8=12兆), 答:每个礼盒在花店的最高标价是120元;(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a 个礼盒,由题意得:120X0由(1 — 25%) (1 + 5m%) +a[120 X 0.81 — 25%) - -m] (1+15m%) =120 x 0282 20(1 — 25%) X2 (1+ — m%)),即 72a (1+ — m%) +a (72 — — m) ( 1+15m%) =144a 2 220(1+ 15m%),整理得:0, 0675m 2-1.35m=0, m 2- 20m=0,解得:m 1=0 (舍)2m 2=20.答:m 的值是20.点睛:本题是一元二次方程的应用,第二问有难度,正确表示出 大众点评”或 美团”实际消费总额是解题关键.3.按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、 五两月的水费分别是按哪种方案计算的?并求出 而的值.两个网站的实际消费总额比原计划的预算总额增加了一 m%,求出m 的值.2网上的购买实际消费总额:【答案】4. .. 1.7 X 35=59.5 1.7 X 80=136 151,这家酒店四月份用水量不超过m吨(或水费是按y=1.7x来计算的),五月份用水量超过m吨(或水费是按F =1一■工-丽来计算的)w则有151=1.7X80+(80—m) X--100即m2-80m+1500=0解得m〔二30, m2=50.又..•四月份用水量为35吨,m1=30<35,「51=30舍去.m=50【解析】5.观察下列一组方程:①x2 x 0;②x2 3x 2 0;③x2 5x 6 0;④x2 7x 12 0;它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为连根一元二次方程1若x2kx 56 0也是连根一元二次方程”,写出k的值,并解这个一元二次方程;2请写出第n个方程和它的根.【答案】(1) x1 = 7, x2= 8. (2) x1=n—1, x2= n.【解析】【分析】(1)根据十字相乘的方法和连根一元二次方程”的定义,找到56是7与8的乘积,确定k值即可解题,(2)找到规律,十字相乘的方法即可求解.【详解】解:(1)由题意可得k=— 15,则原方程为x2—15x+56=0,则(x—7)(x—8)=0,解得x1=7, x2=8.(2)第n 个方程为x2-(2n- 1)x+ n(n -1)=0, (x- n)(x— n + 1)=0,解得x1 = n_1, x2= n. 【点睛】本题考查了用因式分解法求解一元二次方程,与十字相乘联系密切,连根一元二次方程是特殊的十字相乘,中等难度,会用十字相乘解题是解题关键.2 _ k6.关于x的万程kx k 2 x — 0有两个不相等的实数根.41求实数k的取值范围;2是否存在实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出k的值;若不存在,说明理由.【答案】(1) k 1且k 0; (2)不存在符合条件的实数k,使方程的两个实数根之和等于两实数根之积的算术平方根.【解析】【分析】1由于方程有两个不相等的实数根,所以它的判别式V 0,由此可以得到关于k的不等式,解不等式即可求出k的取值范围.2首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于k的等式,解出k值,然后判断k值是否在1中的取值范围内.【详解】解:1依题意得V (k 2)2 4k k 0,k 1 ,又Q k 0,k的取值范围是k 1且k 0;2解:不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根,2 k理由是:设万程kx k 2 x - 0的两根分别为x1,X2,4k 2x1 x2由根与系数的关系有:k ,1x1 x24又因为方程的两个实数根之和等于两实数根之积的算术平方根,由1知,k 1,且k 0,4 “人什一k —不符合题意,3因此不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.【点睛】本题重点考查了一元二次方程的根的判别式和根与系数的关系。
初中数学方程与不等式之一元二次方程难题汇编附解析
初中数学方程与不等式之一元二次方程难题汇编附解析一、选择题1.徐工集团某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两次降低成本,两次降低后的成本是81元.则平均每次降低成本的百分率是 ( )A .8.5%B .9%C .9.5%D .10%【答案】D【解析】【分析】设平均每次降低成本的百分率为x 的话,经过第一次下降,成本变为100(1-x )元,再经过一次下降后成本变为100(1-x )(1-x )元,根据两次降低后的成本是81元列方程求解即可.【详解】解:设平均每次降低成本的百分率为x ,根据题意得100(1-x )(1-x )=81,解得x=0.1或1.9(不合题意,舍去)即x=10%故选D .2.上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元,下面所列方程中正确的是( )A .168(1+a %)2=128B .168(1-a %)2=128C .168(1-2a %)=128D .168(1-a 2%)=128【答案】B【解析】【分析】【详解】解:第一次降价a%后的售价是168(1-a%)元,第二次降价a%后的售价是168(1-a%)(1-a%)=168(1-a%)2;故选B.3.某型号手机原来销售单价是4000元,经过两次降价促销,现在的销售单价是2560元,若两次降价的百分率相同,则平均每次降价( )A .10%B .15%C .20%D .25%【答案】C【解析】【分析】根据原来售价是4000元,经过两次降价且降价百分率相同后销售单价为2560元,设两次降价的百分率为x ,一次降价为()40001x -,两次降价为()240001x -得出()240001x -=2560,算出x .【详解】解:设两次降价的百分率为x ,由题意得:4000(1﹣x )2=2560∴(1﹣x )2=256400∴1﹣x =±0.8∴x 1=1.8(舍),x 2=0.2=20%故选:C .【点睛】熟悉一元二次方程的增长率和下降率的相关题型,注意分析是一次增长(下降),还是二次增长(下降)问题.4.八年级()1班部分学生去春游时,每人都和同行的其他每一人合照一张双人照,共照了双人照片36张,则同去春游的人数是( )A .9B .8C .7D .6 【答案】A【解析】【分析】设同去春游的人数是x 人,由每人都和同行的其他每一人合照一张双人照且共照了双人照片36张,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设同去春游的人数是x 人, 依题意,得:1(1)362x x -=, 解得:19x =,28x =-(舍去).故选:A .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.5.某厂四月份生产零件100万个,第二季度共生产零件282万个.设该厂五、六月份平均每月的增长率为x ,那么x 满足的方程是( )A .100(1+x )2=282B .100+100(1+x )+100(1+x )2=282C .100(1+2x )=282D .100+100(1+x )+100(1+2x )=282【答案】B【解析】【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x ,那么可以用x 分别表示五、六月份的产量,然后根据题意可得出方程.【详解】五月份的产量=100(1+x ),六月份的产量=1002(1)x +,根据题意可得:100+100(1+x )+1002(1)x +=282.故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,增长率问题,一般形式为2(1)a x b +=,a 为起始时间的有关数量,b 为终止时间的有关数量.6.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( )A .1a ≥B .1a >且5a ≠C .1a ≥且5a ≠D .5a ≠ 【答案】A【解析】【分析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a 的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-14; 当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a 的取值范围为a≥1.故选A .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.7.我市郊区大力发展全域旅游产业,打造了大来岗风景区、敖其湾赫哲族风景区等精品旅游 项目,郊区全年旅游人数逐年增加,据统计,2016年为30万人次,2018年为43.2万人次.设旅游人次的年平均增长率为x ,则可列方程为( )A .()30143.2x +=B .()30110.8x -=C .()230143.2x +=D .()()2301143.2x x ⎡⎤+++=⎣⎦【答案】C【分析】关于增长率问题,一般用增长后的量=增长前的量×(1+增长率),旅游人次的年平均增长率为x ,然后根据已知可以得出方程.【详解】设旅游人次的年平均增长率为x ,那么根据题意得:()230143.2x +=.故选:C .【点睛】此题考查了由实际问题抽象出一元二次方程,平均增长率问题,一般形式为a (1+x )2=b ,a 为起始时间的有关数量,b 为终止时间的有关数量.8.用配方法解方程:x 2﹣2x ﹣3=0时,原方程变形为( )A .(x+1)2=4B .(x ﹣1)2=4C .(x+2)2=2D .(x ﹣2)2=3【答案】B【解析】试题分析:将原方程的常数项﹣3变号后移项到方程右边,然后方程两边都加上1,方程左边利用完全平方公式变形后,即可得到结果.解:x 2﹣2x ﹣3=0,移项得:x 2﹣2x=3,两边加上1得:x 2﹣2x+1=4,变形得:(x ﹣1)2=4,则原方程利用配方法变形为(x ﹣1)2=4.故选B .9.若关于x 的一元二次方程x 2﹣2x +m =0没有实数根,则实数m 的取值是( )A .m <1B .m >﹣1C .m >1D .m <﹣1【答案】C【解析】试题解析:关于x 的一元二次方程2x 2x m 0-+=没有实数根, ()224241440b ac m m ∆=-=--⨯⨯=-<,解得: 1.m >故选C .10.关于方程x 2﹣x +9=0的根的情况,下列说法正确的是( )A .有两个相等实根B .有两个不相等实数根C .没有实数根D .有一个实数根【答案】C【分析】找出方程a ,b 及c 的值,计算出根的判别式的值,根据其值的正负即可作出判断.【详解】这里a=1,b=-42,c=9,∵△=b 2-4ac=32-36=-4<0,∴方程无实数根.故选:C .【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.下列一元二次方程中,没有实数根的是( )A .x 2﹣2x =0B .x 2﹣2x +1=0C .2x 2﹣x ﹣1=0D .2x 2﹣x +1=0【答案】D【解析】【分析】根据判别式即可求出答案.【详解】A.△=4,故选项A 有两个不同的实数根;B.△=4﹣4=0,故选项B 有两个相同的实数根;C.△=1+4×2=9,故选项C 有两个不同的实数根;D.△=1﹣8=﹣7,故选项D 没有实数根;故选D .【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的根的判别式,本题属于基础题型.12.如图,过点()1,2C 分别作x 轴、y 轴的平行线,交直线5y x =-+于A 、B 两点,若反比例函数(0)k y x x=>的图象与ABC V 有公共点,则k 的取值范围是( )A.2524k≤≤B.26k≤≤C.24k≤≤D.46k≤≤【答案】A【解析】【分析】由点C的坐标结合直线AB的解析式可得出点A、B的坐标,求出反比例函数图象过点C时的k值,将直线AB的解析式代入反比例函数解析式中,令其根的判别式△≥0可求出k的取值范围,取其最大值,找出此时交点的横坐标,进而可得出此点在线段AB上,综上即可得出结论.【详解】解:令y=−x+5中x=1,则y=4,∴B(1,4);令y=−x+5中y=2,则x=3,∴A(3,2),当反比例函数kyx=(x>0)的图象过点C时,有2=1k,解得:k=2,将y=−x+5代入kyx=中,整理得:x2−5x+k=0,∵△=(−5)2−4k≥0,∴k≤254,当k=254时,解得:x=52,∵1<52<3,∴若反比例函数kyx=(x>0)的图象与△ABC有公共点,则k的取值范围是2≤k≤254,故选:A.【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数图象过点A、C时的k值以及直线与双曲线有一个交点时k的值.13.关于x的一元二次方程x2+ax﹣1=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【答案】D【解析】∵△=24a+>0,∴方程有两个不相等的实数根.故选D.14.某新建火车站站前广场绿化工程中有一块长为20米,宽为12米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为112米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是( )A .2米B .323米C .2米或323米D .3米【答案】A【解析】【分析】 根据矩形面积的相关知识进行作答.【详解】设宽度为x ,将大矩形空地划分为两个相等的小矩形绿地和两个相等的细长矩形和三个相等的小细长矩形,运用大矩形空地面积等于划分的几个矩形面积之和建立方程式,即20121123122x 220x ⨯=+⨯-+⨯ ,解出x=2,所以,选A.【点睛】本题考查了矩形面积的相关知识,熟练掌握矩形面积的相关知识是本题解题关15.目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元.设每半年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( )A .438(1+x )2=389B .389(1+x )2=438C .389(1+2x )=438D .438(1+2x )=389【答案】B【解析】【分析】【详解】解:因为每半年发放的资助金额的平均增长率为x ,去年上半年发放给每个经济困难学生389元,去年下半年发放给每个经济困难学生389 (1+x) 元,则今年上半年发放给每个经济困难学生389 (1+x) (1+x) =389(1+x)2元.据此,由题设今年上半年发放了438元,列出方程:389(1+x )2=438.故选B .16.两个不相等的实数m ,n 满足2265,65m m n n +=+=,则mn 的值为( ) A .6B .-6C .5D .-5【答案】D【解析】【分析】根据题意得到m ,n 可看作方程x 2-6x-5=0的两根,然后根据根与系数的关系求解即可.【详解】∵两个不相等的实数m ,n 满足22650, 650m m n n +-=+-=,∴m ,n 可看作方程x 2-6x-5=0的两根,∴mn=-5故选:D.【点睛】此题考查了一元二次方程的根与系数的关系:x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,12b x x a +=-,12c x x a=.17.某商品经过连续两次降价,销售单价由原来100元降到81元.设平均每次降价的百分率为x ,根据题意可列方程为( )A .()2100181x +=B .()2811100x +=C .()2811100x -=D .()2100181x -=【答案】D【解析】【分析】此题利用基本数量关系:商品原价×(1-平均每次降价的百分率)=现在的价格,列方程即可.【详解】由题意可列方程是:()2100181x -=.故选:D.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于列出方程18.深圳沙井某服装厂2017年销售额为8亿元,受中美贸易战影响,估计2019年销售额降为5.12亿元,设平均每年下降的百分比为x ,可列方程为( )A .8(1﹣x )=5.12B .8(1+x )2=5.12C .8(1﹣x )2=5.12D .5.12(1+x )2=8【答案】C【解析】【分析】一般用降低后的量=降低前的量×(1-降低率),降低前的价格设为1,则第一次降价后的价格是(1-x ),第二次降价后的价格是(1-x )2,可得出方程.【详解】设平均每次降价的百分比为x ,则根据题意可得出方程为:8(1﹣x)2=5.12;故选C.【点睛】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“-”).19.对于两个不相等的实数a,b,我们规定符号max{a,b}表示a、b中的较大的数,如:max{2,4}=4,按照这个规定,方程max{x,﹣x}=x2﹣x﹣1的解为()A.或1B.1或﹣1 C.1或1 D.或﹣1【答案】D【解析】【分析】根据题意应分为x>0和x<0两种情况讨论,并列出关于x的分式方程求解,结合x的取值范围确定方程max{x,﹣x}=x2﹣x﹣1的解即可.【详解】解:①当x≥﹣x,即x≥0时,∵max{x,﹣x}=x2﹣x﹣1,∴x=x2﹣x﹣1,解得:x=(1<0,不符合舍去);②当﹣x>x,即x<0时,﹣x=x2﹣x﹣1,解得:x=﹣1(1>0,不符合舍去),即方程max{x,﹣x}=x2﹣x﹣1的解为或﹣1,故选:D.【点睛】本题考查了解分式方程,有关实数、实数运算的新定义,掌握分式方程的解法是解题的关键.20.关于x的一元二次方程ax2+2x+1=0有两个不相等的实数根,那么a的取值范围是( ) A.a>1 B.a=1 C.a<1 D.a<1且a≠0【答案】D【解析】【分析】由于原方程是一元二次方程,首先应该确定的是a≠0;然后再根据原方程根的情况,利用根的判别式建立关于a的不等式,求出a的取值范围.【详解】解:由于原方程是二次方程,所以a≠0;∵原方程有两个不相等的实数根,∴△=b2-4ac=4-4a>0,解得a<1;综上,可得a≠0,且a<1;故选D.【点睛】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.。
中考数学一元二次方程的综合热点考点难点附答案解析
一、一元二次方程 真题与模拟题分类汇编(难题易错题) 1.已知关于x 的一元二次方程x 2﹣x+a ﹣1=0. (1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值. 【答案】(1)123,4x x =-=(2)54a ≤(3)-4 【解析】分析:(1)根据一元二次方程的解法即可求出答案; (2)根据判别式即可求出a 的范围; (3)根据根与系数的关系即可求出答案.详解:(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54a ≤:; (3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,.∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把22112211x x a x x a -=--=-, 代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9,解得:a =﹣4,a =2(舍去),所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.2.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC 和△DEF ,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.将△DEF的斜边DE 与△ABC 的斜边AC 重合在一起,并将△DEF 沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合). (1)请回答李晨的问题:若CD=10,则AD= ;(2)如图2,李晨同学连接FC ,编制了如下问题,请你回答: ①∠FCD 的最大度数为 ; ②当FC ∥AB 时,AD= ;③当以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形,且FC 为斜边时,AD= ; ④△FCD 的面积s 的取值范围是 .【答案】(1)2;(2)① 60°;②;③;④.【解析】试题分析:(1)根据等腰直角三角形的性质,求出AC的长,即可得到AD的长.(2)①当点E与点C重合时,∠FCD的角度最大,据此求解即可.②过点F作FH⊥AC于点H,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.③过点F作FH⊥AC于点H,AD=x,应用含30度角直角三角形的性质把FC用x来表示,根据勾股定理列式求解.④设AD=x,把△FCD的面积s表示为x的函数,根据x的取值范围来确定s的取值范围.试题解析:(1)∵∠B=90°,∠A=45°,BC=,∴AC=12.∵CD=10,∴AD=2.(2)①∵∠F=90°,∠EDF=30°,∴∠DEF=60°.∵当点E与点C重合时,∠FCD的角度最大,∴∠FCD的最大度数=∠DEF="60°."② 如图,过点F作FH⊥AC于点H,∵∠EDF=30°, EF=2,∴DF=. ∴DH=3,FH=.∵FC∥AB,∠A=45°,∴∠FCH="45°." ∴HC=. ∴DC=DH+HC=.∵AC=12,∴AD=.③如图,过点F作FH⊥AC于点H,设AD=x,由②知DH=3,FH=,则HC=.在Rt△CFH中,根据勾股定理,得.∵以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边,∴,即,解得.④设AD=x,易知,即.而,当时,;当时,.∴△FCD的面积s的取值范围是.考点:1.面动平移问题;2.等腰直角三角形的判定和性质;3.平行的性质;4.含30度角直角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.3.关于x的方程(k-1)x2+2kx+2=0(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.【答案】(1)详见解析;(2)S的值能为2,此时k的值为2.【解析】试题分析:(1)本题二次项系数为(k-1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,x=有一个解;②当k-1≠0即k≠1时,方程为一元二次方程,△=(2k)²-4×2(k-1)=4k²-8k+8="4(k-1)" ²+4>0方程有两不等根综合①②得不论k为何值,方程总有实根(2)∵x ₁+x ₂=,x ₁ x ₂=∴S=++ x1+x2=====2k-2=2, 解得k=2,∴当k=2时,S 的值为2 ∴S 的值能为2,此时k 的值为2.考点:一元二次方程根的判别式;根与系数的关系.4.某社区决定把一块长50m ,宽30m 的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x 为何值时,活动区的面积达到21344m ?【答案】当13x m =时,活动区的面积达到21344m 【解析】 【分析】根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答. 【详解】解:设绿化区宽为y ,则由题意得502302x y -=-.即10y x =-列方程: 50304(10)1344x x ⨯--= 解得13x =- (舍),213x =.∴当13x m =时,活动区的面积达到21344m 【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.5.如图,在Rt ABC 中,90B =∠,10AC cm =,6BC cm =,现有两点P 、Q 的分别从点A 和点B 同时出发,沿边AB ,BC 向终点C 移动.已知点P ,Q 的速度分别为2/cm s ,1/cm s ,且当其中一点到达终点时,另一点也随之停止移动,设P ,Q 两点移动时间为xs .问是否存在这样的x ,使得四边形APQC 的面积等于216cm ?若存在,请求出此时x 的值;若不存在,请说明理由.【答案】假设不成立,四边形APQC 面积的面积不能等于216cm ,理由见解析 【解析】 【分析】根据题意,列出BQ 、PB 的表达式,再列出方程,判断根的情况. 【详解】解:∵90B ∠=,10AC =,6BC =, ∴8AB =.∴BQ x =,82PB x =-;假设存在x 的值,使得四边形APQC 的面积等于216cm , 则()1168821622x x ⨯⨯--=, 整理得:2480x x -+=, ∵1632160=-=-<,∴假设不成立,四边形APQC 面积的面积不能等于216cm . 【点睛】本题考查了一元二次方程的应用,熟练掌握方程根的判别方法、理解方程的意义是本题的解题关键.6.已知x=﹣1是关于x 的方程x 2+2ax+a 2=0的一个根,求a 的值. 【答案】1【解析】试题分析:根据一元二次方程解的定义,把x=﹣1代入x 2+2ax+a 2=0得到关于a 的一元二次方程1﹣2a+a 2=0,然后解此一元二次方程即可. 试题解析:把x=﹣1代入x 2+2ax+a 2=0得 1﹣2a+a 2=0, 解得a 1=a 2=1, 所以a 的值为1.7.设m 是不小于﹣1的实数,关于x 的方程x 2+2(m ﹣2)x+m 2﹣3m+3=0有两个不相等的实数根x 1、x 2,(1)若x 12+x 22=6,求m 值;(2)令T=121211mx mx x x +--,求T 的取值范围. 【答案】(1)m=517-;(2)0<T≤4且T≠2. 【解析】 【分析】由方程方程由两个不相等的实数根求得﹣1≤m <1,根据根与系数的关系可得x 1+x 2=4﹣2m ,x 1•x 2=m 2﹣3m+3;(1)把x 12+x 22=6化为(x 1+x 2)2﹣2x 1x 2=6,代入解方程求得m 的值,根据﹣1≤m <1对方程的解进行取舍;(2)把T 化简为2﹣2m ,结合﹣1≤m <1且m≠0即可求T 得取值范围. 【详解】∵方程由两个不相等的实数根, 所以△=[2(m ﹣2)]2﹣4(m 2﹣3m+3) =﹣4m+4>0,所以m <1,又∵m 是不小于﹣1的实数, ∴﹣1≤m <1∴x 1+x 2=﹣2(m ﹣2)=4﹣2m ,x 1•x 2=m 2﹣3m+3; (1)∵x 12+x 22=6, ∴(x 1+x 2)2﹣2x 1x 2=6,即(4﹣2m )2﹣2(m 2﹣3m+3)=6 整理,得m 2﹣5m+2=0 解得m=;∵﹣1≤m <1 所以m=. (2)T=+=====2﹣2m .∵﹣1≤m<1且m≠0所以0<2﹣2m≤4且m≠0即0<T≤4且T≠2.【点睛】本题考查了根与系数的关系、根的判别式,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.8.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?【答案】裁掉的正方形的边长为2dm,底面积为12dm2.【解析】试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2.9.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解析】【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x , 根据题意得:400(1﹣x )2=361,解得:x 1=0.05=5%,x 2=1.95(不合题意,舍去). 答:每个月生产成本的下降率为5%; (2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元. 【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.10.如图,在四边形 ABCD 中, AD //BC , C 90∠=︒ , BC 16=, DC 12= ,AD 21= ,动点P 从点D 出发,沿线段 DA 的方向以每秒2个单位长的速度运动;动点Q 从点 C 出发,在线段 CB 上以每秒1个单位长的速度向点 B 运动;点P ,Q 分别从点D ,C 同时出发,当点 P 运动到点 A 时,点Q 随之停止运动,设运动的时间为t 秒).(1)当 t 2=时,求 BPQ 的面积;(2)若四边形ABQP 为平行四边形,求运动时间 t . (3)当 t 为何值时,以 B 、P 、Q 为顶点的三角形是等腰三角形? 【答案】(1)S 84=;(2)t 5= ;(3)7t 2=或163. 【解析】 【分析】(1)过点P 作PM BC ⊥于M ,则PM=DC ,当t=2时,算出BQ ,求出面积即可;(2)当四边形ABQP 是平行四边形时,AP BQ =,即212t 16t -=-,解出即可;(3)以 B 、P 、Q 为顶点的三角形是等腰三角形,分三种情况,①PQ BQ =,②BP BQ =,③PB PQ =分别求出t 即可. 【详解】解 :(1)过点P 作PM BC ⊥于M ,则四边形PDCM 为矩形.∴PM DC 12==, ∵QB 16t =-, 当t=2时,则BQ=14,则1S QB PM 2=⨯=12×14×12=84; (2)当四边形ABQP 是平行四边形时,AP BQ =,即212t 16t -=-: 解得:t 5=∴当t 5=时,四边形ABQP 是平行四边形.(3)由图可知,CM=PD=2t ,CQ=t ,若以B 、P 、Q 为顶点的三角形是等腰三角形,可以分为以下三种情况:①若PQ BQ =,在Rt PMQ 中,222PQ 12t =+,由22PQ BQ =得()2221216t t +=- 解得:7t 2=; ②若BP BQ =,在Rt PMB 中,()222PB 16212t =-+,由22PB BQ ?=得()()222 1621216t t -+=- ,即2332t 1440t -+=,此时,()232431447040=--⨯⨯=-<△ , 所以此方程无解,所以BP BQ ≠ ;③若PB PQ =,由22PB PQ ?=得()2222 12162t 12t +=-+ , 得 1163t =,216t =(不合题意,舍去); 综上所述,当7t 2=或163时,以B 、P 、Q 为顶点的三角形是等腰三角形. 【点睛】本题是对四边形即可中动点问题的考查,熟练掌握动点中线段的表示、平行四边形和等腰三角形的性质及判断是解决本题的关键,难度适中.。
一元二次方程经典难题
一元二次方程经典难题一元二次方程,听起来好像很高深,其实它就像生活中的小难题,时不时地给我们来个“刁钻”考验。
想象一下,你和朋友们在聊天,突然聊到一个经典的数学难题,大家一阵哄笑,接着就开始争论这个方程究竟是个什么鬼。
最简单的说,就是一种形如ax² + bx + c = 0 的方程,哦,听起来很“官方”,但不怕,咱们可以轻松地把它搞定。
先说说这个“a、b、c”,它们就像我们生活中的调味料。
没有了“a”,方程就成了一根空架子;“b”就像是调味品,让整体味道更丰富;而“c”就是那最后的一点点点睛之笔。
三者合一,才能把这道方程的“菜”做得美味可口。
很多小伙伴一看到这玩意儿,就想打退堂鼓,其实这只是个“表面功夫”。
只要掌握了方法,解开这个方程就像切水果一样简单。
咱们可以“深入”一下这个方程的解法。
最经典的就是“求根公式”,有点像一把钥匙,能打开方程的秘密大门。
你知道吗?这个公式是x = b ± √(b² 4ac) / (2a),乍一看,有点复杂,其实只要记住,先算出“b² 4ac”,然后再用这个神奇的公式,嘿,结果就出来了!这就像煮汤,先把水烧开,再放菜,最后调味,汤才会鲜美。
有时候这个“b² 4ac”不太妙,可能会出现负数,这就意味着方程没有实数解。
简直就像你心心念念的外卖,结果发现地址填错了,没法送到你手里。
这时候别沮丧,想想虚数吧,生活中总有些“奇葩”事物,它们虽然看似不靠谱,但却能带来新的视角。
有些朋友常常觉得一元二次方程枯燥乏味,哎,我告诉你们,实则它和咱们的生活息息相关。
想想看,抛物线的轨迹,简直就像我们每天的起伏。
比如你打篮球,球的轨迹就是个标准的抛物线;或者说,你在公园里散步,偶尔抬头看到的那只飞翔的小鸟,它也是在遵循某种数学法则。
数学和生活,其实就是一对好基友。
这就让我想起我小时候学数学的日子,那个时候真是头疼。
每次上课,老师一讲方程,我的脑袋就像一团浆糊。
一元二次方程奥数难题
一元二次方程奥数难题一元二次方程(quadratic equation)是指形式为ax²+bx+c=0 的方程,其中 a、b、c 都是实数,且 a 不等于 0。
一元二次方程是初等代数中的一个重要概念,也是奥数竞赛中常见的难题类型之一、在本文中,我将为你提供一个关于一元二次方程的奥数难题,并给出详细的解答。
题目如下:有一个正方形花坛,边长为x米。
在正方形花坛的四个角上,分别种植了四株玫瑰花。
为了让花坛更美观,我们希望将每两株玫瑰花之间的距离都保持为d米。
现在问题是,给定花坛的边长x,如何确定d的值,使得符合要求?请你用一元二次方程来解答。
解答:首先,我们可以根据问题描述画出正方形花坛的示意图,如下所示:A---------------BD---------------C正方形花坛的四个角分别为A、B、C、D,这四个角上分别种植了四株玫瑰花。
假设玫瑰花之间的距离为d米,我们可以绘制出每两株玫瑰花之间的连线,如下所示:A---------------BD-------O-------C在连线AD和BC的中点O处,我们可以看到一个等边三角形。
因为正方形的对角线相等,所以连线AD和BC的长度也相等,设为x米。
由于等边三角形的性质,连线AD和BC之间的距离也等于x米。
现在,我们可以看到一个由正方形ABDC和等边三角形ABO构成的直角三角形AOB。
我们可以利用勾股定理来求解这个直角三角形的边长。
根据勾股定理,我们知道a²+b²=c²,其中a、b、c分别表示直角三角形两条直角边的长度,c表示斜边的长度。
在这个问题中,直角边a和直角边b的长度分别为(x-d)/2米和d/2米,斜边c的长度为x/2米(即连线AD或BC的长度的一半)。
所以我们可以得到以下方程:((x-d)/2)²+(d/2)²=(x/2)²接下来,我们将这个方程进行展开和化简,求解一元二次方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程难题解答 (一)1.已知m 是方程022=--x x 的一个根,则代数式)12)((2+--mm m m 的值是______ 解: m 是方程022=--x x 的一个根∴022=--m m 即22=-m m 0≠m 方程两边除以m 得: 021=--mm 12=-m m∴4)11(2)12)((2=+⨯=+--m m m m 2.已知a x =是方程0120162=+-x x 的一个根,求代数式12016140312222+-+-a a a a 的值解: a x =是方程0120162=+-x x 的一个根∴0120162=+-a a ∴120162-=-a a 或a a 201612=+12016140312222+-+-a a a a =aa a a a 2016201614032222-++-a a a a -++-=1)2016(22 3.关于m 的方程02722=--m n nm 的一个根为2,求22-+n n 的值。
解:由题意得:2=m 把2=m 代入方程得:022742=--n n整理得:01722=+-n n 方程两边除以n 得:0172=+-n n 721=+nn 方程两边平方得:281222=++nn 2622=+∴-n n 4.已知36)41(222=-+m m ,求m m 1-的值。
解: 36)41(222=-+m m 64122±=-+∴m m10122=+∴m m 或2122-=+∴mm (舍去)102)1(2=+-∴m m 即8)1(2=-m m 221±=-∴mm 5.用换元法解下列方程:解:设y x =-12,则原方程为032=-y y 0)3(=-y y 3021==∴y y当0=y 时,012=-x 1±=x 当3=y 时,312=-x 2±=x∴原方程的解为22114321-==-==x x x x6.设y x 、为实数,求542222+-++y y xy x 的最小值,并求出此时x 与y 的值。
解:542222+-++y y xy x 1)44()2(222++-+++=y y y xy x当⎩⎨⎧=-=+020y y x 即⎩⎨⎧=-=22y x 时,该式的最小值为17.关于x 的方程)0(0)(2≠=++m k h m k h x m 均为常数,、、的解是31-=x22=x ,求方程0)3(2=+-+k h x m 的解。
解:0)(2=++k h x m mkh x -=+2)( m k h x -±=+ m k h x -±-=8.对于*,我们作如下规定:2*22+-=b a b a ,试求满足10*)12(=+x x 的x 的值。
解:由题意得:102)12(22=+-+x x 0214422=+-++x x x9.解含绝对值的方程:解方程:0112=---x x解:当01≥-x 时,即1≥x ,11-=-x x原方程化为01)1(2=---x x 即02=-x x 解得:1021==x x1≥x ,故是原方程的解舍去)1(021==x x当01<-x 时,即1<x ,x x -=-11原方程化为01)1(2=---x x 即022=-+x x 解得:2121-==x x1<x ,故是原方程的解舍去)2(121-==x x综上所述,原方程的解为2,121-==x x10.解方程:1)1(2122=+-+xx x x 解:配方得:03)1(2)1(2=-+-+xx xx设y xx =+1,原方程可化为0322=--x y ,解得1321-==y y当31=y 时,31=+xx ,即0132=+-x x ,解得253±=x 当12-=y 时,11-=+xx ,即012=+-x x ,方程无实数解 。
经检验:2531+=x ,2532-=x 是原方程的解。
11.解方程:1221222-=--x xx x 解:01212222=+---xx x x设y x x =-22,则原方程可化为0112=+-yy ,0122=-+y y ,解得:3421=-=y y当41-=y 时,422-=-x x ,即0422=+-x x ,此方程无实数解当32=y 时,322=-x x ,即0322=--x x ,解得:1,321-==x x经检验:1,321-==x x 是原方程的解。
17.已知关于x 的一元二次方程0)(2)(2=-+++c a bx x c a ,其中c a 、、b 分别为△ABC 三边的长。
(1)如果1-=x 是方程的根,试判断△ABC 的形状,并说明理由; (2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由; (3)如果△ABC 是等边三角形,试求这个一元二次方程的根。
解:(1)把1=x 代入方程得:02=-+-+c a b c a b a b a ==-∴即022∴△ABC 为等腰三角形又 方程有两个相等的实数根0444222=+-∴c a b 即222a c b =+ ∴△ABC 为直角三角形(3)当c b a ==时,原方程化为02=+x x 解得:1021-==x x18.已知关于x 的方程的方程01)1(2)3(12=--++-x m x m m(1)m 为何值时,原方程是一元二次方程? (2)m 为何值时,原方程是一元一次方程?解:(1)由题意得:⎪⎩⎪⎨⎧=-≠+21032m m 解得3=m (2)当原方程是一元一次方程时,m 的值应分三种情况讨论:①⎩⎨⎧≠-=+0)1(203m m 解得3-=m ②⎪⎩⎪⎨⎧≠-++=-0)1(23112m m m 解得2±=m ③⎩⎨⎧≠-=-0)1(2012m m 解得1-=m综上所述:当22,1,3或---=m 时,原方程是一元一次方程。
19.用配方法求二次三项式的最大值与最小值)1(当x 为何值时,代数式1222--x x 有最小值?并求出最小值 ∴当21=x 时,代数式1222--x x 有最小值23-(2)当x 为何值时,代数式4632+--x x 有最大值?并求出最大值解:7)1(34)112(3463222++-=+-++-=+--x x x x x∴当1-=x 时,代数式有最大值7.20.若a 满足不等式组⎪⎩⎪⎨⎧>-≤-021112a a ,则关于x 的方程021)12()2(2=++---a x a x a 的根的情况是______________________解:解不等式组得3-<a 2-≠∴a 则方程为一元二次方程52)21)(2(4)12(2+=+---=∆a a a a 3-<a 152-<+∴a 即0<∆∴关于x 的一元二次方程没有实数根。
21.关于x 的一元二次方程0112=--+x k x 有两个不相等的实数根,求k 的取值范围。
解由题意得:⎩⎨⎧>+-=∆≥-04)1(012k k ⎪⎩⎪⎨⎧≥≥∴511k k 1≥∴k 22.关于x 的方程012=+-+m x mx 有以下三个结论:①当0=m 时,方程只有一个实数根;②当0≠m 时,方程有两个不相等的实数根;③无论m 取何值时,方程都有一个负数解;其中正确的是______________ 解:①当0=m 时,原方程为101-==+x x 方程只有一个实数根②当0≠m 时,0)12(144)1(4122≥-=+-=+--=∆m m m m m 方程有两个实数根③当0=m 时,1-=x 当0≠m 时,mm m m x 2)12(12)12(12-±-=-±-= 11121-=-=x mx ∴无论m 取何值时,方程都有一个负数解23.关于x 的方程068)6(2=+--x x a 有实数根,则整数a 的最大值是___________解:当6=a 时,原方程为43068==+-x x 当6≠a 时,020824)6(2464≥+-=--=∆a a 438≤a ∴整数a 的最大值是824.已知关于x 的一元二次方程m x x =--)2)(3(,求证:对于任意实数m ,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m 的值及方程的另一个根。
解:(1)m x x =--)2)(3( 0652=-+-m x x 014)6(4)5(2>+=---=∆m m∴ 对于任意实数m ,方程总有两个不相等的实数根(2)把1=x 代入原方程得:m =--)21)(31( 2±=m∴原方程为2)2)(3(=--x x 41045212===+-x x x x∴2±=m ,方程的另一根为4=x25.已知关于x 的方程022)13(22=+++-k k x k x ,(1)求证:无论k 取何实数值,方程总有实数根;(2)若等腰三角形ABC 的一边长6=a ,另两边b 、c 恰好是这个方程的两个根,求此三角形的周长。
解:1)[]0)1(1288169)22(4)13(222222≥-=+-=--++=+-+-=∆k k k k k k k k k k∴无论k 取何实数值,方程总有实数根当c b =时,方程有两个相等的实数根,即112=+=k k k 2==c b 622<+ ∴不能构成三角形。
当腰长为6时,62=k 3=k 41=+k 16466=++=∴∆ABC C或102561===+k k k 221066=++=∴∆ABC C综上所述:16=∆ABC C 或2226.若关于x 的方程m x m x =++-4)5(2恰好有3个实数根,则实数________=m解:04)5(2=-++-m x m x 方程恰好有3个实数根 0021=>∴x x27.若关于x 的方程0)2(22=+++a x a ax 有实数根,则实数a 的取值范围________解:当0=a 时,原方程为04=x 方程有解0=x当0≠a 时,[]8848844)2(22222+=-++=-+=∆a a a a a a方程有实数根 088≥+∴a 1-≥a综上所述:1-≥a28.如果关于x 的一元二次方程01122=++-x k kx 有两个不相等的实数根,则k 的取值范围_________________解:由题意得:⎪⎩⎪⎨⎧>-+-=∆≥+≠08)12(01202k k k k 解得: 2121<≤-k 且0≠k29.设方程42=+ax x 只有3个不相等的实数根,求a 的值和相应的3个根。
解:4422-=+=+ax x ax x 或 ∴040422=++=-+ax x ax x 或01621>+=∆a ∴第一个方程有两个不相等的实数根1622-=∆a 原方程只有3个不相等的实数根,02=∆∴ 即40162±==-a a当4=a 时,04404422=++=-+x x x x 或 2222222321-=--=+-=x x x 当4-=a 时,04404422=+-=--x x x x 或 2222222321=-=+=x x x综上所述:4±=a ,当4=a 时,2222222321-=--=+-=x x x当4-=a 时,2222222321=-=+=x x x30.已知函数xy 2=和)0(1≠+=k kx y ,(1)若这两个函数图象都经过点)a ,1(,求a 和k 的值。