华北电力大学电力系统分析第二章PPT课件

合集下载

第2章电力系统分析 79页PPT文档

第2章电力系统分析 79页PPT文档

注:式(2-3)~(2-5)是按单股导线的条件推导的。对 于多股铝导线或铜线r’/r小于0.799,而钢芯铝铰线的r’/r可取 0.95。
由(2-5)可见,电抗x1与几何平均距离Dm、导线半径r 为对数关系,因而Dm 、r对x1的影响不大,在工程计算中对 于高压架空电力线路一般近似取x1=0.4Ω/km。
第二章 电力系统元件参数和等值电路
电缆的敷设方式:
直接埋入土中:埋设深度一般为0.7~0.8m,应在冻土层 以下。当多条电缆并列敷设时,应留有一定距离,以利于散 热。 电缆沟敷设:当电缆条数较多时,宜采用电缆沟敷设,电 缆置于电缆沟的支架上,沟面用水泥板覆盖。 穿管敷设:当电力电缆在室内明敷或暗敷时,为了防电缆 受到机械损坏,一般多采用穿钢管的敷设方式。
第二章 电力系统元件参数和等值电路
第二章 电力系统元件参数和等值电路
2. 电缆线路
导体 绝缘层 包护层
图2-2 扇形三芯电缆的构造 1—导体;2—绝缘层;3—铅包皮; 4—黄麻层;5—钢带铠甲; 6—黄麻保护层
第二章 电力系统元件参数和等值电路
绝缘层:用来使导体与导体之间、导体与保护包皮之间保 持绝缘。绝缘材料一般有油浸纸、橡胶、聚乙烯、交联聚氯 乙烯等。 保护包皮:用来保护绝缘层,使其在运输、敷设及运行过 程中免不受机械损伤,并防止水分浸入和绝缘油外渗。常用 的包皮有铝包皮和铅包皮。此外,在电缆的最外层还包有钢 带铠甲,以防止电缆受外界的机械损伤和化学腐蚀。
第二章 电力系统元件参数和等值电路
第二章 电力系统元件参数和等值电路
第一节 电力线路参数和等值电路 第二节 变压器、电抗器的参数和等值电路 第三节 发电机和负荷的参数及等值电路 第四节 电力网络的等值网络

《电力系统分析》课件

《电力系统分析》课件

频率调整的方法与策略
频率调整的方法
电力系统频率的调整可以通过改变发电机的出力、投切负荷、投切发电机组等方法实现。
频率调整的策略
频率调整的策略包括基于频率偏差的调整、基于负荷预测的调整、基于经济性的调整等。 这些策略各有优缺点,应根据电力系统的实际情况选择合适的策略。
频率调整的自动化
为了实现快速、准确的频率调整,需要建立自动化的频率调整系统。该系统可以根据实时 监测到的频率值,自动调整发电机的出力或投切负荷,以维持频率稳定。
电力系统的组成
电源
包括发电厂、小型发电装置等,负责将各种 一次能源转换为电能。
负荷
各种用电设备,消耗电能并转换为其他形式 的能量。
电网由各种电压等级的输电线路和电线路组成 的网络,负责传输和分配电能。
电力系统的运行和管理
通过调度中心等机构对电力系统的运行进行 管理和控制。
电力系统的基本参数
电压
事故状态
发生重大事故导致电力系 统严重受损,无法满足正 常需求。
电力系统的运行状态
01
02
03
正常运行状态
电力系统在正常条件下运 行,满足负荷需求,各项 参数在规定范围内。
异常运行状态
由于某些原因导致电力系 统部分设备异常运行,但 仍能满足基本需求。
事故状态
发生重大事故导致电力系 统严重受损,无法满足正 常需求。
04
电力系统无功功率平衡与 电压调整
04
电力系统无功功率平衡与 电压调整
电力系统无功功率平衡
无功功率平衡的概念
无功功率平衡是电力系统稳定运行的重要条件,它确保了系统中 的无功电源和无功负荷之间的平衡。
无功功率不平衡的影响
无功功率不平衡会导致电压波动、系统稳定性降低、设备过热等问 题,影响电力系统的正常运行。

电力系统分析第二版课件第二章

电力系统分析第二版课件第二章

物理现象:
➢ 电流流过导线时会因电阻损耗产生热量; 电阻R
➢ 交流电流通过电力线路时,导线内部和周围都产生交变磁场,
交变磁通将在导线中产生感应电动势;
电抗X
➢ 交流电压加在电力线路上,在导线周围产生交变电场,在它
的作用下,不同相的导线之间和导线与大地之间产生位移电
流,形成容性电流和容性功率; 电纳B
-1
第二章 电力网的正序参数和等值电路
本书中无特殊说明,所有功率指三相总功率,电压均指线电压, 电流为线电流。

S ~ 3U I* 3U Iθuθi
3U IScosjsi nPjQ
负荷
滞后功率因数 超前功率因数
运行时,所吸取的无功功率
为正,感性无功 为负,容性无功
发电机
滞后功率因数
运行时,所发出的无功功率
d1d 213 d1n:某根导n线 1根与 导其 线余 间的
分裂导线线路由于每相导线等值半径的增大,使每相电抗减小,一 般比单根导线线路的电抗约减小20%以上。一般分裂根数为2、3、4时, 每公里的电抗分别在0.33、0.30、0.28欧姆左右。当分裂根数更多时, 费用增加很多,电抗下降不明显,因此一般很少超过4根。
-11
§2-1 电力线路的数学模型
-12
§2-1 电力线路的数学模型
第二章 电力网的正序参数和等值电路
分析电力系统
掌握各元件的电气特性,建立数学模型
电力系统正常运行时,系统的三相结构和三相负荷完全对称, 系统各处电流和电压都对称,并只含正序分量的正弦量。
系统不对称运行或发生不对称故障时,电压和电流除包含正序 分量外,还可能出现负序和零序分量。
CB
A
A
B

华北电力大学电力系统分析2-05

华北电力大学电力系统分析2-05

③实部和虚部的迭代合用同一个实数信息矩阵 (BTDB),既节约内存,又节约矩阵分解计算 时间。
二、算法特点
④只能处理支路潮流测量量,而不能处理其他 形式的测量量,如节点注入功率。在实际系 统中,如果排除掉支路潮流以外的其他测量 量后,系统可观测性被破坏,则本方法不能 使用。而且,因不能充分利用全部测量量而 降低了状态估计结果的可信度。
* *
* * U j y jj U j
*
2 j ) / Z ij U i
y ii
U j (U j U i ) / Z ij U 2 y jj j
*
*
一、数学模型
变压器支路:U i
i
S ij
K Z ij
j
S ji
Uj
1 1 yii 1 K KZ ij
变压器j侧:S ji U j (U j U i ) /( K Z ij ) U 2 (K 1) /( K Z ij ) j
U M ,ij U i U j
*
*
*
*
KZ ij
*
S M , ji U j ( K 1)
*
U

一、数学模型
统一表示成矩阵形式:
状态向量——节点复电压 U
目标函数变为
J (U ) [ S M S c (U )]T R 1 [ S M S c (U )]*
一、数学模型
线路支路:
Ui
i
S ij
Z ij
j
S ji
Uj
yii
y jj
* U j U Ui S ij yiiU i i Z ij

大学课件电力系统继电保护第二章2-3节

大学课件电力系统继电保护第二章2-3节

相应动作方程可有如下 三种表示方式:
90 arg Ure jsen 90 Ir
sen
90 arg Ur Ir
r
sen
90
Ur Ir cos(r sen ) 0
当采用刚才提到的功率方向继电器时,即采用的A相功率方 向元件输入电压Ur=UA,输入电流Ir=IA,相应的动作方程可 表示为UrIrcos(φr – φsen )>0时,A相功率方向元件可能会出现 “电压死区”问题,如下所示:
Ik 2max
当 Ik 2max Ik1max
II set .1
II set.2
K I I rel k 2 max
备注: 1、A相为非故障相,当忽略负荷电流时,流入A相继电器的电流 近似为0,A相继电器不动作。 2、“对应α范围” 指当0°<φk<90°时使继电器动作的内角 α 的取值 范围。
综合三相和各种两相短路的分析得出,当0°<φk<90°时, 使故障相方向继电器在一切故障情况下都能动作的条件应 为30°<α<60°。
k1点短路时的电流分布 k2点短路时的电流分布
分析k2点和其它任意 点短路,都有相同的 特征,即短路功率的 流动方向为正,是保 护应该动作的方向。
利用了电流的幅值特征 利用了功率方向的特征
方向性电流保护 = 电流保护 + 方向元件
其中的方向元件可以判别短路功率的流动方向,只当功率方 向为正方向时才动作。
IrA I A
UBC IA cos(k 90 ) 0(2 40)
U rA U BC
A相继电器的动作条件为: 一般而言,电力系统任何电缆或架空线阻抗角都位于
rA k 90 0°~90°之间,为使方向继电器在任何情况下均能动

电力系统暂态分析第二章 260页PPT文档

电力系统暂态分析第二章 260页PPT文档

&& &
&
U|0| jI|0|xqjId|0|(xdxq) EQ|0| jId(xd xq)
&& & EQ U|0| jI|0|xq
由于E q |0|
&
、jId|0| (xd xq )
&
均在q轴方向,所以E Q |0 |也必在q轴方
向,据此即可确定q轴方向。
d轴和q轴方向的确定
1、同步发电机结构特点
同步发电机简化等值图
气隙
定子 转子
定子上3个等效绕组
B相绕组
A相绕组
C相绕组
转子上3个等效绕组
q轴等效的阻 尼绕组
励磁绕组
d轴等效的阻 尼绕组
同步发电机简化为:定子3个绕组、转子3个绕组、 气隙、定子铁心、转子铁心组成的6绕组电磁系统。
同步发电机的特点:
转子是旋转的。 绕组是分散的。 存在磁饱和现象。
定子:按去磁规律来定义; 转子:按助磁规律来定义; 绕组电压方向: 定子:发电机规律来定义; 转子:电动机规律来定义
2电压同方程步:电机的电压方程、磁链方程
ra
rf
rD
Z
Z
rQ
Z
u a uf
--
a iarua
定子侧:
uf rfif f
转子侧:
0rDiDD
直轴阻尼绕组: 0rQiQQ
(3)空载电动势的确定
对于隐极机可以从正常运行时的电压和电流以及相角
求出 E q |0|
;对于凸极机需要知道I& d
|
0
、&
| I q |0
|
、U& d

华北电力大学电力系统稳定性分析第二章 复杂电力系统静态稳定分析

华北电力大学电力系统稳定性分析第二章 复杂电力系统静态稳定分析

(2-2)式不是状态方程,因为在(2-2) 式中,除了能作为状态变量的 , 及 其变化率外,还有其它中间变量 P 和 P 。要把这些中间变量消除后,相应 的方程才能构成状态方程。
i
i
Ti
Ei
第二章 复杂电力系统静态稳定分析
二、原动机功率方程 分析电力系统小干扰稳定性时,通 常有以下简化条件: ⑴ 原动机功率(转矩)恒定,即 P P ; ⑵ 用恒定阻抗代替负荷; ⑶ 不计电力网络内的电磁暂态过程。
m
Y mm Y mn Y nn Y nm E Y m E


Y 式中: 由发电机电势节点的自导纳和互 导纳组成。
m
第二章 复杂电力系统静态稳定分析
⑸ 发电机电磁功率表达式。
~ . Gi * i
S
PGi jQ Gi E i I
i 1, 2 , m
由式(2-7),有:
PGi
i0 i
i i
Ti Ti 0 Ti
PEi PEi 0 PEi
i 1, 2 , m
代入(2-1)式,整理得:

. i . i
i
0
PTi P Ei

T Ji
i 1, 2 , m
(2-2)
第二章 复杂电力系统静态稳定分析

T
U . E
.

(2-5)
式中: 入电流;
.
I
m
I
.
. n2
.
n 1
,I
, , I
nm
是发电机电势节点注
. . ni . '
E E

电力系统分析(完整版)PPT课件

电力系统分析(完整版)PPT课件

输电线路优化运行
总结词
输电线路是电力系统的重要组成部分,其优化运行对于提高电力系统的可靠性和经济性具有重要意义 。
详细描述
输电线路优化运行主要涉及对线路的路径选择、载荷分配、无功补偿等方面的优化,通过合理的规划 和管理,降低线路损耗,提高线路的输送效率和稳定性,确保电力系统的安全可靠运行。
分布式电源接入与控制
分布参数线路模型考虑线路的电感和 电容在空间上的分布,用于精确分析 长距离输电线路。
行波线路模型
行波线路模型用于描述行波在输电线 路中的传播特性,常用于雷电波分析 和继电保护。
负荷模型
负荷模型概述
静态负荷模型
负荷是电力系统中的重要组成部分,其模 型用于描述负荷的电气特性和运行特性。
静态负荷模型不考虑负荷随时间变化的情 况,只考虑负荷的恒定阻抗和电流。
电力系统分析(完整版)ppt 课件
• 电力系统概述 • 电力系统元件模型 • 电力系统稳态分析 • 电力系统暂态分析 • 电力系统优化与控制 • 电力系统保护与安全自动装置
01
电力系统概述
电力系统的定义与组成
总结词
电力系统的定义、组成和功能
详细描述
电力系统是由发电、输电、配电和用电等环节组成的,其功能是将一次能源转 换为电能,并通过输配电网络向用户提供安全、可靠、经济、优质的电能。
无功功率平衡的分析通常需要考虑系统的无功损耗、无功补偿装置的容 量和响应速度等因素。
有功功率平衡
有功功率平衡是电力系统稳态分析的 核心内容,用于确保系统中的有功电 源和有功负荷之间的平衡。
有功功率平衡的分析通常需要考虑系 统的有功损耗、有功电源的出力和负 荷的特性等因素。
有功功率不平衡会导致系统频率波动, 影响电力系统的稳定运行。因此,需 要合理配置有功电源和调节装置,以 维持系统的有功平衡。

电力系统分析完整PPT课件

电力系统分析完整PPT课件

330、500、750:超高压
>750:特高压
➢ 提高输电电压的利弊:减小载流截面和线路
电抗,利于提高线路功率极限和稳定性,增
加绝缘成本
2020/8/1
南京理工大学
19
1.2我国的电力系统(3)
电力系统的电压与输电容量和输电距离
线路电压(kv) 输送容量(MV) 输送距离(km)
6
0.1~0.2
4~15
2020/8/1
南京理工大学
17
1.2我国的电力系统(1)
• 4个发展阶段
195x:城市电网 196x:省网 1970~1990:区域电网 1990~:区域电网互联
• 电力系统的规模
2004 400GW
2010 535GW
2020 790GW
2020/8/1
南京理工大学
18
1.2我国的电力系统(2)
2020/8/1
南京理工大学
6
教学进度
• 总学时数:56~64
➢ 课堂教学:48~52 ➢ 实践环节:8~12
• 学时分配
➢ 电力系统的基本概念:2~3 ➢ 电网等值:8~10 ➢ 电力系统潮流计算:10~12 ➢ 电力系统运行方式的调整和控制:10 ➢ 电力系统故障分析:10~12 ➢ 电力系统稳定性分析:8~10
• 电磁感应定律 法拉第,1831
• 世界上第一个完整的电力系统 1882,法国
• 三相变压器和三相异步电动机 1891
• 直流电力系统和交流电力系统 爱迪生和西屋
2020/8/1
南京理工大学
13
1.1.2电力系统的组成
• 电力系统 发电厂、输电和配电网络、用户
• 电网、电力系统和动力系统 • 一次设备和二次设备

华北电力大学电力系统分析2-07

华北电力大学电力系统分析2-07
ri Σ r ,ii
标准化残差方程:rN D 1 r D 1Wv W N v 标准化残差灵敏度矩阵:WN D 1W
T T 标准化残差的协方差矩阵:E[rN rN ] W N ( Err T )W N
D 1W (WR)W T D 1 D 1 (WR) D 1
协方差矩阵的对角元素全为1。
一、不良数据的检测

常用的不良数据检测方法有三种:
ˆ 1. J ( x ) 检测法
2. 加权残差检测法
3. 标准化残差检测法
一、不良数据的检测
ˆ 1. J ( x ) 检测法
(1) 假定电力系统没有不良数据
T T T T ˆ 目标函数为 J z ( x) rwz rwz v wzWW WW v wz v wzWW v wz


概述
1.不良数据检测和辨识的必要性

电力系统中测量系统的标准误差 大约为正常测量 范围的 0.5~2% 。 正常测量条件下,误差超过 3 的测量值出现的概 率仅 0.27% 。因此,误差超过 3 的测量值就可以 认为是不良数据。 但实用上,一般不良数据的界限往往大于 (6~7) 以上。显然,这种数值一定是工作不正常时的值, 即不良数据。 当电力系统出现不良数据时,需要通过检测与辨识 的方法处理,以满足状态估计对测量数据的要求。
(i=1,2,…,m)
一、不良数据的检测
3. 标准化残差检测法
T 标准化残差的协方差矩阵:E[rN rN ] D 1 (WR) D 1
协方差矩阵的对角元素全为1。 故有
2 ErN ,i 1
(i 1,2, L , m) (i 1,2, L , m)
当取 pe = 0.005,得到第 i 个标准化残差的检验阈值为

华电《电力系统分析基础》 PPT

华电《电力系统分析基础》 PPT
电网监视与控制
SCADA-数据采集与监视控制系统 (Supervisory Control And Data Acquisition )
电气设备在线监测与故障诊断(计划检修→状态检修) 负荷分级(一级、二级、三级),故障时,按负荷等级
限电。
➢负荷(一级 二级 三级)
一级负荷:对这一级负荷中断供电,将造成人 身事故,经济严重损失,人民生活发生混乱。
一、电力系统的形成与发展 二、电力系统的基本概念 三、电力系统的基本参量和接线图
电的产生
1831年 法拉第发现 电磁感应定律
交流发电机 直流发电机 直流电动机
= 直流发电机
100~400V
电弧灯
M 直流电动机
特点:输电电压低,输送距离短,输送功率小。
高压输电
1882年,法国人M ·德波列茨将位于弥斯巴赫煤矿的蒸汽 机发出的电能输送到 57km外的慕巴黑,并用以驱动水泵。
二级负荷:对这一级负荷中断供电,将造成大 量减产,人民生活受影响。
三级负荷:所有不属于一、二级的负荷。
2.保证良好的电能质量
衡量电能质量的基本指标:
电压质量 35kV及以上:±5% 10kV及以上:±7% 频率质量 ±0.2 ~ 0.5Hz
主要指标:
电压偏差、频率偏差、谐波畸变率、三相不平衡度、 电压波动和闪变。
电气接线图:主要显示系统中某发电厂(变电所) 内的发电机、变压器、母线、断路器、电力线路等主 微观
要电机、电器、线路之间的电气接线。
1.2 电力系统运行的特点和要求
1. 可以很方便地转换成其他形式的能,如光能、热 能、机械能、化学能等。
2. 便于生产、输送、分配、使用,易于控制。
3. 可以方便地将自然界的一次能源转化为电能,如 煤、石油、天然气、水能、核能、风能和太阳能 等。

优质课件精选电力系统分析

优质课件精选电力系统分析
*
2)长线路的等值电路 长线路:长度超过300km的架空线和超过100km的电缆。 精确型 根据双端口网络理论可得:
*
四.电力系统中性点的运行方式
1. 中性点经消弧线圈接地(电抗线圈) 中性点不接地方式 2. 中性点经非线性电阻接地 过补偿(总电流为感性) 欠补偿(总电流为容性)
*
电力线路的阻抗
有色金属导线架空线路的电阻 有色金属导线指铝线、钢芯铝线和铜线 每相单位长度的电阻: 其中: 铝的电阻率为31.5 铜的电阻率为18.8 考虑温度的影响则:
*
一.基本概念
年发电量——指该系统中所有发电机组全年实际发出电能的总和,以千瓦时(KWh)、兆瓦时(MWh)、吉瓦时(GWh)为单位计。 最大负荷——指规定时间内,电力系统总有功功率负荷的最大值,以千瓦(KW)、兆瓦(MW)、吉瓦(GW)为单位计。
*
一.基本概念
额定频率——按国家标准规定,我国所有交流电力系统的额定功率为50Hz。 最高电压等级——是指该系统中最高的电压等级电力线路的额定电压。
*
按对供电可靠性的要求将负荷分为三级
一级负荷:对这一级负荷中断供电,将造成人身事故,经济严重损失,人民生活发生混乱。 二级负荷:对这一级负荷中断供电,将造成大量减产,人民生活受影响。 三级负荷:所有不属于一、二级的负荷。
*
二.电力系统的结线方式
包括单回路放射式、干线式和链式网络 优点:简单、经济、运行方便 无备用结线 缺点:供电可靠性差 适用范围:二级负荷 包括双回路放射式、干线式和链式网络 优点:供电可靠性和电压质量高 有备用结线 缺点:不经济 适用范围:电压等级较高或重要的负荷
*
为增加架空线路的性能而采取的措施 目的:减少电晕损耗或线路电抗。 多股线 其安排的规律为:中心一股芯线,由内到外,第一层为6股,第二层为12股,第三层为18股,以此类推 扩径导线 人为扩大导线直径,但不增加载流部分截面积。不同之处在于支撑层仅有6股,起支撑作用。 分裂导线 又称复导线,其将每相导线分成若干根,相互间保持一定的距离。但会增加线路电容。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

RT jXT
2、实际变压器
-jBT GT
通过短路和开路试 验求RT、XT、BT、 GT
6
§2.2 变压器的数学模型
3、短路试验求RT、XT
条件:一侧短路,另一侧加电压使短路绕组电流达到额定值
短路损耗:
2
Pk3I2 NRT3
S 3U NNRTU S2 N 2 NRT
RT
Pk
U2 N
S2 N
()
注意单位:UN(V)、SN(VA)、Pk(W)
2
Pk(23)
P' k(23)
IN 0.5IN
P 4 ' k(23)
3) 对于(100/100/50)
2
Pk(13)
P' k(13)
IN 0.5IN
P 4 ' k(13)
代入可计算
2
Pk(23)
P' k(23)
IN 0.5IN
P 4 ' k(23)
12
§2.2 变压器的数学模型
4) 只给出一个最大短路损耗Pkmax时(两个100%绕组间短路)
进相运行时受定 子端部发热限制 受原动机出力限制
定子绕组不超 过额定电流
励磁绕组不超 过额定电流 留稳定储备
5
§2.2 变压器的数学模型
一、双绕组变压器
I1 n1:n2 I2
1、理想变压器 u1
u2
I1n1=I2n2 I2=k I1 u1/n1=u2/n2 u2= u1/k k=n1/n2
特征:无铜损、铁损、漏抗、激磁电流
k(12)(%) k(23)(%) (%) k(13)
X T 2
U
k 2 (%) U 100 S N
2 N
U U U U k3(%)
1 2
k(13)(%) k(23)(%) (%) k(12)
X T 3
U
k 3 (%) U 100 S N
2 N
排列不同,阻抗不同,中间绕组最小,甚至为负,一般取0
2
2

电压%未归算
U k(1-3)%
=
U
' k(1
-
3
)
%
SN S3

最大短路损耗
新标准
归算的电压%
U k(2-3)%
=
U
' k
(
2
-
3
)
%
SN S3
RT
(100%)
P U2 kmax N
2000S2N
RT(50%) 2RT(100%)
2、由短路电压百分比求XT(制造商已归算,直接用)
U U U U 1 k1(%) 2
k(12)(%) k(13)(%) (%) k(23)
X T 1
U
k 1 (%) U 100 S N
2 N
U U U U 1 k2(%) 2
二、同步发电机的允许运行范围
Xd
Eqn
Eqn
IN
UN
jINXd
UN
P EqU sin IN
Xd 4
§2.1 发电机的数学模型
受限条件
定子绕组: IN为限—S园弧 转子绕组: E qn ife 励磁电流为限—F园弧
Xd 原动机出力:额定有功功率—BC直线
其它约束: 静稳、进相导致漏磁引起温升—T弧
如 UN(KV)、SN(MVA)、Pk(KW)时
RTPk1U 02 NS 02 N0()
7
§2.2 变压器的数学模型
短路电压百分比
uk%
3INZT 10% 0 UN
ZT1uk0 % 0 3U IN Nu1k% 0SU 0 N2 N
X TR T X T1 u k % 03 U I 0 N Nu 1 k % 0 S U N2 N 0
13
§2.2 变压器的数学模型
三、自耦变压器
特点:电阻小、损耗小、运行经济、结构紧凑、电抗小、 输送容量大、重量轻、便于运输
接线:Y0/Y0/Δ,第三绕组容量比额定容量小
P k(1-3 )
=
P' k (1 -3 )
损耗未归算
P k(2 -3 )
=
P' k (2 -3 )
旧标准
SN S3
SN S3
1000
S2 N
R
T 3
P
k 3U
2 N
1000
S2 N
11
§2.2 变压器的数学模型
对于第Ⅱ类(100/50/100)第Ⅲ类(100/100/50)
试验时小绕组不过负荷,存在归算问题,归算到SN
2) 对于(100/50/100)
2
Pk(12)
P' k(12)
IN 0.5IN
P 4 ' k(12)
电力系统分析基础 Power System Analysis Basis
(二)
1
第二章电力系统各元件的数学模型
1、发电机的数学模型 2、变压器的参数和数学模型 3、电力线路的参数和数学模型 4、电抗器和负荷的数学模型 5、电力网的数学模型
§2.1 发电机的数学模型
一、数学模型
电阻:小,忽略 X G % X Z N G10 % 0Z NU 3N INU SN 2 N
P P P P 1
2 k1
k(12)
k(13)
k ( 23)
P P P P 1
2 k2
k(12)
k ( 23)
k(13)
P P P P 1
2 k3
k(13)
k ( 23)
k(12)
R
T 1
P
k1U
2 N1000S2 N NhomakorabeaR
T 2
P
k 2U
2 N
9
§2.2 变压器的数学模型
二、三绕组变压器
参数的求法与双绕组相同
RT1 jXT1 -jBT GT
三绕组容量比不同 注
各绕组排列不同 意
导纳的求法与双绕组相同
短路试验求RT、XT
条件:令一个绕组开路,一个绕组短路,而在余下的一个 绕组施加电压,依此得的数据(两两短路试验)
10
§2.2 变压器的数学模型
UN(KV)、SN(MVA)
8
§2.2 变压器的数学模型
4、开路试验求GT、BT
条件:一侧开路,另一侧加额定电压
空载损耗: GT 1 0P00U 02 N (S)
空载电流百分比 I0%
有功分量Ig 无功分量Ib
I0
Ib
UN
3
BT
I0% I IN 010 0 I01 I% 0 IN 0Ib
BT
I0%SN 100U2N
电抗: X G X 1 G % 0 •U 3 0 N I N X 1 G % 0 • U S N 2 N 0 X 1 G % 0 • U 2 N 0 c P N o Ns
jXG 机端
机端

值 电
EG
P+jQ

机端
P U
§2.1 发电机的数学模型
唯一的注入功率元件
调负荷——原动机转速(汽门、导水翼) 调电压——励磁
1、由短路损耗求RT
1) 对于第Ⅰ类(100/100/100)
P IR IR P P 3 3 k(12)
2 N T1
2 N T2
k1
k2
P IR IR P P 3 3 k(13)
2 N T1
2 N T3
k1
k3
P IR IR P P 3 3 k(23)
2 N T2
2 N T3
k2
k3
相关文档
最新文档