扩频分类

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

免执照频段。使用工业科学医疗(ISM)频段,915MHz(美国), 868MHz(欧洲), 2. 4GHz(全球) ,
由于此三个频带物理层并不相同,其各自信道带宽也不同,分别为0.6MHz, 2MHz和5MHz。分别有1个, 10个和16个信道
这三个频带的扩频和调制方式亦有区别。
扩频都使用直接序列扩频(DSSS),但从比特到码片的变换差别较大。
调制方式都用了调相技术,但868MHz和915MHz频段采用的是BPSK,而2.4GHz频段采用的是OQPSK

OQPSK也称为偏移四相相移键控(offset-QPSK),是QPSK的改进型。它与QPSK有同样的相位关系,也是把输入码流分成两路,然后进行正交调制。

不同点在于它将同相和正交两支路的码流在时间上错开了半个码元周期。由于两支路码元半周期的偏移,每次只有一路可能发生极性翻转,不会发生两支路码元极性同时翻转的现象。因此,OQPSK信号相位只能跳变0°、±90°,不会出现180°的相位跳变。

OQPSK信号可采用正交相干解调方式解调,它与QPSK信号的解调原理基本相同,其差别仅在于对Q支路信号抽样判决时间比I支路延迟了T/2,这是因为在调制时Q支路信号在时间上偏移了T/2,所以抽样判决时刻也应偏移T/2,以保证对两支路交错抽样。

OQPSK克服了QPSK的l80°的相位跳变,信号通过BPF后包络起伏小,性能得到了改善,因此受到了广泛重视。但是,当码元转换时,相位变化不连续,存在90°的相位跳变,因而高频滚降慢,频带仍然较宽。

MSK是一种特殊的OQPSK调制。

MSK是最小频移键控,是2FSK的改进,是一种相位连续、包络恒定且占用带宽最小的二进制正交2FSK信号




扩频分类
按结构和调制方式,大体分为以下几类:

(1)直接序列扩频(DS-SS—— Direct-sequence/spread spectrum)并包括CDMA(码分多址)

(2)跳频(FH——Frequency-Hop),并包括慢跳频(SFH)CDMA和快跳频(FFH)系统(3)载波意义上的多址(CSMA)扩频

(4)时跳扩频(TH——Time-Hop)

(5)线性调频(鸟声信号——bird-sound)

(6)混和扩频方式

扩频调制基本方式

主要包括直接序列扩频(DS或DS-SS)、跳频扩频(FH)。扩频通信可实现多用户同时共享公用信道来传输信息——此种技术称作码分多址(CDMA)


调制方式
为了保证通信效果,克服远距离信号传输中的问题,必须要通过调制将信号频谱搬移到高频信道中进行传输。这种将要发送的信号加载到
高频信号的过程就叫调制,实际应用中,无论模拟信号还是数字信号,通常有三种最基本的调制方法:调幅、调频和调相。


数字信号的调制方式
数字信号三种最基本的调制方法(调幅、调频和调相)英文简写为ASK、FSK和PSK,其

他各种调制方法都是以上方法的改进或组合,
例如:正交振幅调制QAM就是调幅和调相的组合;MSK是FSK的改进;GMSK是MSK的一种改进,是在MSK(最小频移键控)调制器之前插入了高斯低通预调制滤波器,
从而可以提高频谱利用率和通信质量;OFDM则可以看做是对多载波的一种调制方法。

ASK
载波幅度是随着调制信号而变化的。其最简单的形式是,载波在二进制调制信号控制下通断, 这种方式还可称作通-断键控或开关键控(OOK) 。

l 调制方法:用相乘器实现调制器。

l 调制类型:2ASK,MASK。

l 解调方法:相干法,非相干法。

MASK,又称多进制数字调制法。在二进制数字调制中每个符号只能表示0和1(+1或-1)。但在许多实际的数字传输系统中却往往采用多进制的数字调制方式。
与二进制数字调制系统相比,多进制数字调制系统具有如下两个特点:第一:在相同的信道码源调制中,每个符号可以携带log2M比特信息,因此,当信道频带受限时可以使信息传输率增加,提高了频带利用率。
但由此付出的代价是增加信号功率和实现上的复杂性。 第二,在相同的信息速率下,由于多进制方式的信道传输速率可以比二进制的低,因而多进制信号码源的持续时间要比二进制的宽。
加宽码元宽度,就会增加信号码元的能量,也能减小由于信道特性引起的码间干扰的影响等。

二进制2ASK与多进制MASK调制性能的比较:

在相同的输出功率和信道噪声条件下,MASK的解调性能随信噪比恶化的速度比OOK要迅速得多。这说明MASK应用对SNR的要求比普通OOK要高。在相同的信道传输速率下M电平调制与二电平调制具有相同的信号带宽。
即在符号速率相同的情况下,二者具有相同的功率谱。

虽然,多电平MASK调制方式是一种高效率的传输方式,但由于它的抗噪声能力较差,尤其是抗衰落的能力不强,因而它一般只适宜在恒参信道下采用。


PSK
FSK是信息传输中使用得较早的一种调制方式,它的主要优点是: 实现起来较容易,抗噪声与抗衰减的性能较好。在中低速数据传输中得到了广泛的应用。所谓FSK就是用数字信号去调制载波的频率。
如果是采用二进制调制信号,则称为2FSK;采用多进制调制信号,则称为MFSK。

l 调制方法:2FSK可看作是两个不同载波频率的ASK已调信号之和。

l 解调方法:相干法和非相干法。

l 类型:二进制移频键控(2FSK),多进制移频键控(MFSK)。

在上述三种基本的调制方法之外,随着大容量和远距离数字通信技术的发展,出现了一些新的问题,主要是信道的带宽限制和非线性对传输信号的影响。
在这种情况下,传统的数字调制

方式已不能满足应用的需求,需要采用新的数字调制方式以减小信道对所传信号的影响,以便在有限的带宽资源条件下获得更高的传输速率。这些技术的研究,主要是围绕充分节省频谱和高效率的利用频带展开的。
多进制调制,是提高频谱利用率的有效方法,恒包络技术能适应信道的非线性,并且保持较小的频谱占用率。

从传统数字调制技术扩展的技术有最小移频键控(MSK)、高斯滤波最小移频键控(GMSK)、正交幅度调制(QAM)、正交频分复用调制(OFDM)等等。


QAM
在二进制ASK系统中,其频带利用率是1bit/s·Hz,若利用正交载波调制技术传输ASK信号,可使频带利用率提高一倍。
如果再把多进制与其它技术结合起来,还可进一步提高频带利用率。能够完成这种任务的技术称为正交幅度调制(QAM)。

QAM一种幅度、相位联合调制的技术,同时使用载波的幅度和相位来传递信息比特,将一个比特映射为具有实部和虚部的矢量,然后调制到时域上正交的两个载波上,然后进行传输。
每次在载波上利用幅度和相位表示的比特位越多,则其传输的效率越高。通常有 4QAM,16QAM,64QAM,256QAM,……等

以16QAM为例,其规定了16种幅度和相位的状态,一次就可以传输1个4位的二进制数。当然可以规定更多的传输状态(采样点),这种状态越多,则传输效率越高。
目前4096QAM的调制方式都已经在研制中,而2048QAM的调制方式已经在微波产品中得到应用。

QAM是无线通信中应用最为广泛的调制方式。


MSK

当信道中存在非线性的问题和带宽限制时,幅度变化的数字信号通过信道会使己滤除的带外频率分量恢复,发生频谱扩展现象,同时还要满足频率资源限制的要求。
因此,对己调信号有两点要求,一是要求包络恒定;二是具有最小功率谱占用率。因此,现代数字调制技术的发展方向是最小功率谱占有率的恒包络数字调制技术。
现代数字调制技术的关键在于相位变化的连续性,从而减少频率占用。新发展起来的技术主要分两大类:一是连续相位调制技术(CPFSK),在码元转换期间无相位突变,
如MSK,GMSK等;二是相关相移键控技术(COR-PSK),利用部分响应技术,对传输数据先进行相位编码,再进行调相(或调频)。 MSK(最小频移键控)是移频键控FSK的一种改进形式。
在FSK方式中,每一码元的频率不变或者跳变一个固定值,而两个相邻的频率跳变码元信号,其相位通常是不连续的。所谓MSK方式,就是FSK信号的相位始终保持连续变化的一种特殊方式。
可以看成是调制指数为0.5的一种CPFSK信号。

实现MSK调制的过程为:先将输入的基带信

号进行差分编码,然后将其分成I、Q两路,并互相交错一个码元宽度,再用加权函数cos(πt/2Tb)和sin(πt/2Tb)分别对I、Q两路数据加权,最后将两路数据分别用正交载波调制。
MSK使用相干载波最佳接收机解调。




GMSK

高斯滤波最小移频键调制方式(简称为GMSK)使用高斯滤波器的连续相位移频键控,它具有比等效的未经滤波的连续相位移频键控信号更窄的频谱。
在GSM系统中,为了满足移动通信对邻信道干扰的严格要求,采用高斯滤波最小移频键调制方式,该调制方式的调制速率为270833Kbit/sec,每个时分多址TDMA帧占用一个时隙来发送脉冲簇,其脉冲簇的速率为33.86Kbs。
它使调制后的频谱主瓣窄、旁瓣衰落快,从而满足GSM系统要求,节省频率资源。




OFDM

正交频分复用调制(简称为OFDM,Orthogonal Frequency Division Multiplexing) 采用正交频分复用技术,是多载波调制的一种。
其主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰ICI 。
每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上的可以看成平坦性衰落,从而可以消除符号间干扰。而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。在向B3G/4G演进的过程中,
OFDM是关键的技术之一,可以结合分集,时空编码,干扰和信道间干扰抑制以及智能天线技术,最大限度的提高了系统性能。包括以下类型:V-OFDM,W-OFDM,F-OFDM,MIMO-OFDM,多带-OFDM


相关文档
最新文档