近海风力电防台风技术的研究现状

合集下载

海上风电发展现状及趋势

海上风电发展现状及趋势

海上风电发展现状及趋势随着全球对可再生能源的需求不断增长,海上风电作为一种清洁、可再生的能源形式,正逐渐崭露头角。

海上风电发展迅猛,成为全球清洁能源市场的重要一环。

本文将介绍海上风电的发展现状以及未来的发展趋势。

一、海上风电的发展现状海上风电是指在海洋上的风能利用,并通过将风能转化为电能,供应给人们使用。

相比陆地风电,海上风电具有以下优势:1.更稳定的风力资源:海上风电可以利用到更稳定、更强劲的海上风力资源,相比陆地风电更为可靠。

2.更大的装机容量:海上风电场通常可以容纳更多的风力发电机组,具有更大的装机容量。

3.更低的视觉影响:海上风电场相对于陆上风电场,对人们的视觉影响较小,更易被接受。

目前,全球海上风电的发展已经取得了显著的进展。

欧洲是全球海上风电的主要发展地区,其中丹麦、英国、德国等国家在海上风电技术和装备方面处于领先地位。

同时,亚洲国家如中国、韩国、日本等也开始积极推动海上风电的发展。

根据2020年的数据,全球海上风电装机容量已超过25GW,其中欧洲占据了近80%的份额。

这一数字与2010年的不到4GW相比,增长了超过6倍。

可以看出,海上风电正以惊人的速度在发展壮大。

二、海上风电的发展趋势海上风电作为一种新兴的能源形式,未来的发展前景广阔。

以下是海上风电的发展趋势:1.技术进步与成本降低:随着技术不断进步,海上风电的设备和工艺将更加成熟。

与此同时,生产规模的扩大以及成本的降低也将使海上风电更加具有竞争力。

2.深海开发:随着浅海资源的逐渐开发利用,未来海上风电将进一步拓展至深海领域。

深海风资源更为丰富,海上风电的装机容量有望大幅提升。

3.综合利用与能量存储:海上风电场可以与其他能源形式进行综合利用,如与海洋能源、太阳能和储能技术结合,形成能源互补和优化供应系统。

4.国际合作与政策支持:各国政府将继续加大对海上风电的支持力度,加强国际合作,以推动海上风电的发展。

政策的支持和市场的规模也将成为海上风电发展的重要驱动力。

海上漂浮式风电基础的发展现状和趋势

海上漂浮式风电基础的发展现状和趋势

海上漂浮式风电基础的发展现状和趋势全文共四篇示例,供读者参考第一篇示例:海上浮式风电基础是一种新型的风电基础形式,具有灵活性高、安装便捷等优势,近年来得到了越来越多的关注和投资。

本文将分析当前海上浮式风电基础的发展现状和未来趋势。

一、发展现状1. 技术成熟度提高随着技术的不断进步和研发投入的增加,海上浮式风电基础的技术成熟度逐渐提高。

目前,一些海上风电项目已经采用了浮式基础,并取得了不错的效果。

2. 项目规模逐渐扩大随着海上浮式风电基础技术的不断完善,项目规模也在逐渐扩大。

一些大型风电开发商纷纷投入海上浮式风电项目,推动了全球浮式风电的发展。

3. 政策支持力度加大为了推动清洁能源发展,各国政府纷纷加大对海上浮式风电项目的支持力度。

欧洲多国已经出台了针对海上风电的支持政策,促进了浮式风电的发展。

二、发展趋势1. 技术不断创新未来,海上浮式风电基础将会不断进行技术创新,提升风电机组的效率和稳定性。

随着新材料的应用和智能化技术的发展,浮式风电基础将会更加可靠和高效。

3. 区域多元化发展未来,海上浮式风电基础将面向更多的区域进行发展。

除了传统的海洋地区,陆上水域和淡水水域也将成为浮式风电的新兴市场,为风电产业带来新的发展机遇。

海上浮式风电基础是风电行业的未来发展趋势之一,具有巨大的市场潜力和发展空间。

随着技术的不断进步和政策的支持,相信浮式风电将在未来得到更好的发展。

第二篇示例:我们不得不承认,目前海上飘浮式风电基础技术相对于传统的固定式基础技术还处于发展的初级阶段。

随着技术的不断成熟和发展,人们对于海上飘浮式风电基础技术的潜力也有了更大的认识。

相比较于传统的固定式基础技术,海上飘浮式风电基础技术具有以下几个优势:海上飘浮式风电基础技术可以有效解决水深较大的海域无法使用固定式基础的困扰。

由于海上飘浮式风电基础不需要在海底上固定,而是通过浮力或者吸盘等方式保持稳定,因此可以适用于更深的海域,开辟了更多的海上风电开发潜力;海上飘浮式风电基础技术在安装和维护方面更加方便和灵活。

海上风电建设项目质量控制的措施分析

海上风电建设项目质量控制的措施分析

海上风电建设项目质量控制的措施分析摘要:随着经济和社会的发展,海上风力发电已成为可再生能源发展的重要方向。

海上风能作为一种可再生、无污染且储量巨大的能源,具有风力平稳、风机利用率高、不占用土地资源、不受地形地貌影响、单机发电效率高、电力传输距离短且损失少等优点。

文章分析了海上风力发电项目施工管控中的自然因素、质量控制、安全控制方面的问题,并提出相应的措施,希望为类似海上风电场的建设提供参考。

关键词:海上风电;质量控制引言海上风电是节能降耗的关键内容。

它有很多优点,海上风况明显好于陆地,渗流较小,空间较大,空气污染和噪声污染小,利于开发设计。

但是,海上风电仍存在一些不足。

它的前期项目投资很大,在选择实施风电机的基本结构模型,风电机的运输及其中后期维护方面的技术难度较大。

在这样的条件下,积极探讨海上风电的技术问题对于海上风力资源的开发,设计和应用具有重要的现实意义。

1海上风电安装运维市场简述我国海上风电发展市场潜力大,然而目前海上风电施工设备主要关注点在风电安装设备上面,特别是风电安装平台以及起重船。

5年~10年之后,风电运维市场将十分广阔,海上风电运维设备的短缺与我国海上风电市场的巨大需求和迅猛发展形成强烈反差,市场需求矛盾突出,风电运维设备将有广阔的市场。

风电运维主要是指风电机组的定期检修和日常维护,运维成本在整个海上风电成本构成中占据大量的份额,仅次于风机建设成本,大大超过安装成本和海缆成本。

海上风机的工作环境更恶劣,除经受运转机械的机件磨损、电子电气器件的电气运行冲击、金属结构的振动疲劳损伤引起机组各部件故障外,还有可能遭遇海上飓风、超强雷暴等极端气象灾害的袭击等偶发事件,导致海上风电机组故障率更高。

此外,海上气候多变,受大风、洋流以及大雾等天气影响大,导致风电机组可达性差。

最终结果是,海上风电场运行维护费用更高,是陆地的2~3倍,因此风电运维在整个海上风电开发和后期运营中起着十分重要的作用。

海上风力发电的现状及展望

海上风力发电的现状及展望

海上风力发电的现状及展望摘要:随着社会不断向前发展,经济水平不断提高,用电需求的保证成为各国必须确保的基本问题。

然而,传统的火力发电所造成的煤炭资源大量开采以致储量不足和大气污染以及全球变暖等诸多问题亦接踵而至。

为了可持续发展,减轻这些困扰全球的问题,新型分布式清洁能源并入配电网逐渐成为世界各国的研究重点。

在所有清洁能源之中,风能是最常见的,拥有着极大的发展潜力。

相比陆上风电而言,海上风力发电的发展较为落后,但有着天然的优势。

研究结果表明,海上风力发电在减少碳排放、保证可持续发展、提高发电效率、保障用电需求等方面的优势十分显著。

关键词:海上风力发电;发展现状;相关政策;发展前景引言作为一种新兴的海上新能源,海上风电具有风速更高、风能资源更丰富、单机容量高、靠近东部用电负荷中心,就地消纳方便、噪音污染小的优点。

经过连续多年的高速增长,我国海上风电装机总量已居世界第一。

因此,大力发展海上风电成为实现“碳达峰、碳中和”目标的主要手段之一。

1影响海上风力发电发展的一些因素目前正处于海上风力发电发展的黄金时期,影响海上风力发电的因素主要有:海上风电机组的单机容量更大,制造技术变得复杂,工程建设成本较高,海上风电机组的运行和维护成本也很高。

对海上风场成本影响较高的因素有:离岸距离、水域深度、升压站的位置、风机等基础造价及人工费用等。

此外,海上风电处于强腐蚀性的海洋环境,组件长期暴露在外,防腐蚀防护问题面临巨大挑战。

而且,海上气候环境恶劣且复杂多变,风电机组的吊装、项目施工及运行难度大,需要加强气候监测能力,科学制定吊装和施工方案等应对措施。

2我国海上风力发电的发展2.1漂浮式海上风电目前我国海上风电的开发主要集中在浅水滩涂海域,在近海即水深在5~50m 的海域海上风能储量约为5亿kW,据统计,水深大于50m的深水海域风能储量约为13亿kW,这一储量远远高于浅水区域。

但是当水深大于60m时,固定式海上风机建造以及维护的成本会急剧上升,且难以保证其安全性。

海上风电机组运行维护现状研究与展望

海上风电机组运行维护现状研究与展望

海上风电机组运行维护现状研究与展望海上风电机组是利用海风发电的设备,具有广阔的开发前景和巨大的能源潜力。

然而,海上风电机组的运行维护需要面对众多挑战和困难。

本文将对海上风电机组运行维护的现状进行研究,并展望未来的发展趋势。

海上风电机组的运行维护涉及到多个方面,包括设备状况监测、故障诊断与维修、预防性维护等。

首先,设备状况监测是海上风电机组运行维护的重要环节。

通过监测设备在运行中的参数,可以及时发现异常情况,预测设备可能出现的故障。

常见的参数监测包括风速、转速、温度、振动等。

目前,常用的监测方法有传感器监测、无线通信监测等。

传感器监测可以实时采集设备参数,并通过有线或无线方式传输到地面监测中心,以便工作人员及时发现并处理故障。

无线通信监测可以通过网络连接设备和监测中心,实现实时数据传输和远程监测。

这些监测方法的应用,可以提高设备的可靠性和运行效率,减少故障发生的概率。

其次,故障诊断与维修是保证海上风电机组正常运行的必要措施。

一旦设备出现故障,需要及时进行诊断,确定故障原因,并采取相应的维修措施。

目前,常见的故障诊断方法有传统的观察和检测法、数据分析法等。

观察和检测法是最直观的诊断方法,通过观察设备的运行状况和检测故障现象,获得一些初步信息。

而数据分析法则是通过采集设备运行数据,并进行数据处理和分析,以获得更详细和准确的故障信息。

针对不同类型的故障,维修人员可以采用相应的修复方法,如更换零部件、修复叶片等。

在未来,随着技术的发展,人工智能、机器学习等技术的应用将提高故障诊断的准确性和效率。

最后,预防性维护是海上风电机组运行维护中的关键环节。

通过定期检查和维护,可以预防设备故障的发生。

预防性维护包括设备巡检、润滑维护、清洁维护等。

设备巡检是定期检查设备状态和运行状况,及时发现潜在问题。

润滑维护是为设备提供充足的润滑剂,以减少磨损和摩擦。

清洁维护是保持设备表面的清洁,防止腐蚀和污染。

预防性维护的目的是延长设备的使用寿命,提高设备的可靠性和运行效率。

海上风电场及其关键技术发展现状分析

海上风电场及其关键技术发展现状分析

海上风电场及其关键技术发展现状分析摘要:风力发电属于近些年来世界各国普遍较为关注的一种可再生能源开发方案,这一技术发展速度较快,已经得到了全面落实与开展,而海上风力发电由于干扰较小,并且风力发电量较大,因此广受欢迎与重视。

江苏省具有较长的海岸线,具有良好的风力发电条件。

本文主要针对海上风力发电关键技术进行分析,希望可以起到参考的作用。

关键词:海上;风力发电;关键技术随着现如今非再生能源逐渐稀少,能源问题已经成为人们关注的重点。

能源危机的出现,意味着人们必须要寻找更加合理的能源获取方式,而风力就属于一项较为关键的可再生能源。

通过海上风力发电,可以有效地完成供电,而发展这一类的新能源是我国未来走向可持续化发展的关键途径。

因此,必须要针对海上风力发电技术进行分析讨论,积极优化技术体系,提升工作质量。

一、海上风力发电建设的主要趋势(一)技术整体发展速度较快风力发电不需要消耗非再生能源,同时也不会污染环境,属于一种发展潜力巨大的清洁能源技术,不仅拥有环保效益,同时也具有一定的社会效应。

随着风力发电技术的不断优化与改进,现如今风力发电生产成本也开始逐渐降低,我国各地都开始建设风力发电场。

由于海上风力资源更加丰富,并且风速也更加稳定,因此适合在海上建设大功率风力发电机组,不仅节约用地,同时对环境造成的影响比较小,这意味着现如今我国风力发电技术不断提升与改进。

以江苏省为例,现如今我国江苏省建设了江苏如东海上风力发电场、江苏东台海上风力发电场,都属于主要的海上风力发电场所[1]。

江苏开发风力发电资源具有巨大的优势和好处,可以缓解江苏省一次能源不足、用电荒等问题,更有效的促进地方经济走向发展与改革,因此可以说这一技术属于建设生态大省的一项关键要求。

(二)单机容量提升现如今大型风力发电机组一般都会选择水平轴风力发电设备,这一设备包括风轮、增速齿轮箱、发电机、偏航装置、控制系统、塔架等部件。

大型风力发电机组的单机容量越大,意味着发电能力越强,而对于技术的需求也就越高。

海上风电基础研究现状

海上风电基础研究现状
为普遍,最 早 由 MCClelland[1]提 出 ,随 后 Matl〇ck( 1970) [2]先后提 出 软 黏 土 和 砂 土 中 水 平 受 荷 桩 P— F 曲 线 计 算 方 法 ,美 国 API ( 2 0 0 0 ) 采 用 其 研 究 成 果 ,Neil[3]为 适 应 相 应 基 础 与 地 基 的 需 求 后
用 水 深 10 25 m 软 基 础 ,其 受 力 明 确 ,技 术 成 熟 ,适用范围广
泛 ,浅 水 区 地 质 条 件 较 好 时 经 济 性 最 优 ,施 工 最 快 。 单桩基础使用较早,应 用 广 泛 ,国 内 外 相 继 开 展 了 大 量 的 理
论 分 析 、实 验 和 数 值 仿 真 等 研 究 ,并 形 成 了 相 对 成 熟 的 一 些 评 价 方法。国内外基 本 上 有 四 种 分 析 计 算 方 法 :有 限 单 元 法 、极限地 基反力法、弹性地基反力法和P — F 曲线法。P — 7 曲线法用法较
续进行了改进。 近些年国内学者主要研究了动荷载作用下海上风电单桩基
础承载特性。尤 汉 强 和 杨 敏 等 [4]对循环 荷 载 作 用 下 海 上 风 电 单 桩 基 础 模 型 进 行 了 简 化 分 析 ,研 究 了 土 体 极 限 抗 力 退 化 和 桩 土 开 脱效应对桩基承载力的影响;罗庆[5]通 过 数 值 分 析 ,并结合室内 试 验 的 方 法 ,研 究 了 循 环 荷 载 在 水 平 向 、竖 向 及双向耦合作用下 的单桩基础响应,分 析 了 循 环 频 率 和 循 环 次 数 对 桩 基 础 的 影 响 ; 杨 永 鑫 等 在 软 黏 土 中 进 行 了 水 平 静 载 和 循 环 动 载 的 加 载 试 验 ,并 以双曲线型P —F 曲线模型对水平静力与循环动载下桩身弯矩展 开 模 拟 与 比 较 ,研 究 发 现 刚 度 对 计 算 结 果 有 重 要 的 影 响 。 3 . 2 海上风电导管架基袖

海上风力发电机组抗台风设计

海上风力发电机组抗台风设计

海上风力发电机组抗台风设计随着全球气候变化问题的日益突出,可再生能源逐渐成为国际关注的焦点。

而海上风力发电作为一种可再生能源的重要形式,具有潜力巨大。

然而,海上风力发电遇到的一个严峻问题是台风的袭击,因为台风带来的强风与大浪会对海上风力发电机组造成损害。

为了抵御台风,海上风力发电机组的抗台风设计变得至关重要。

首先,抗台风设计的关键在于选择合适的区域建设海上风电场。

在选址时,需要考虑到当地的气象条件,包括台风频率、强度和路径等。

优选的区域应尽可能远离台风路径,并且有足够的海洋空间来减缓台风带来的风力与浪涌。

其次,海上风力发电机组的抗台风设计需要考虑机组的结构强度。

风力发电机组应采用轻质材料和坚固的结构,以抵抗强风的冲击。

机组的外壳应具备良好的抗风性能,以减少风力对机组的影响。

此外,机组的台座也需要具备良好的抗台风能力,在台风来临时能够稳定地支撑机组。

另外,海上风力发电机组的抗台风设计还需要考虑运维方面的因素。

台风来临时,风力发电机组应能够迅速停机并进行紧急维护。

为了实现这一目标,机组应配备高效的监测系统,能够及时监测气象条件,准确判断台风的路径和强度,并自动控制机组停机。

此外,机组的维护通道和作业平台也需要设计得足够安全,使维修人员能够在恶劣天气条件下进行必要的维护工作。

最后,为了增强海上风力发电机组的抗台风能力,还可以采取一些辅助措施。

例如,可以在机组周围设置护波堤或人工岛屿,来减缓台风带来的浪涌和风力。

此外,还可以采用一些先进的减振技术和预警系统,及时预判台风的来临,并采取相应的措施来保护机组。

总结起来,海上风力发电机组的抗台风设计有赖于综合考虑选址、结构强度、运维措施和辅助措施等多个方面的因素。

只有在这些方面都做到充分考虑和合理设计,才能增强机组的抗台风能力,保障海上风力发电的安全运行。

随着技术的不断进步和经验的积累,相信海上风力发电机组的抗台风设计会不断得到改进和完善,为可再生能源的发展做出更大的贡献。

海上风力发电及其技术发展分析

海上风力发电及其技术发展分析

海上风力发电及其技术发展分析摘要:传统火力发电导致煤炭资源的大规模开发,造成了能源储备短缺、空气污染、气候变化等环境问题。

我国在“十四五”期间明确提出了要大力提高风电规模和有序推进海上风电建设,推行并实现“双碳”目标,关注和发展新型分布式清洁能源并使之纳入配电网,已成为我国电力行业未来发展和关注的焦点问题。

基于此,本文以海上风力发电为主要研究对象,分析了其行业发展现状,探讨了海上风力发电技术面临的问题及发展方向,以供参考。

关键词:海上风电;行业发展;发电技术;风力发电近年来,随着社会经济的不断发展以及人们环保意识的增强,传统化石能源日益枯竭,寻找新能源迫在眉睫。

而作为一种可再生且无污染的绿色能源——清洁能源受到了各国政府的高度重视。

在众多的清洁能源中,风能具有巨大的发展潜力。

由于我国海上风电储量丰富,且具备运行高效、输电距离短、便于就地消纳、节约土地资源、适合大规模发展等特点。

因此,海上风力发电必将是我国发展可再生能源的必然之选。

一、海上风力发电的优势我国拥有1.8万公里大陆海岸线和300万平方公里以上的可利用海域,是一个海上风能资源十分丰富的大国。

随着我国经济的发展和人民生活水平的提高,对能源结构提出了更高要求。

目前,中国已成为世界第二大风力发电国,根据中国气象局风能和太阳能资源评估中心近期估算,中国陆海风电潜在开发规模约为2亿千瓦。

与陆上风电相比,海上风电主要有以下优点:第一,风力更稳定,电网友好性强。

海上风速大且出力波动小,每年使用小时更长,使得机组发电量平稳,单机电能输出更大,使用寿命更长。

第二,场地成本低,适合规模化开发。

海上风电场大多建在我国东南部沿海潮间带地区或沿岸滩涂、近海海域上,此处场地广且成本低,具有容纳更大型化风机机组、适合大规模开发的优点。

第三,风速高,发电量高。

海上风速高于陆地风速的约20%,在相同发电容量下,海上风机年发电量可高于陆地70%,且海上风电单机容量、同区域扫风面积及风能利用率更大。

台风对海上风电项目建设的影响及对策

台风对海上风电项目建设的影响及对策

台风对海上风电项目建设的影响及对策摘要:浙江省海上风能资源丰富,尤其是台风盛行季节,对海上风力发电产能是一个利好条件,但是对于海上风电项目基建期来说,是一个不利因素。

本文以浙江省首个海上风电项目为例,介绍台风对海上风电建设的影响及防台过程中积累的经验、对策。

关键词:台风;海上风电;普陀6号海上风电场;基建浙江省地处我国东部沿海,东西与南北直线距离均约为450km,面积约为10万km2。

浙江省地形复杂,地势自西向东北呈阶梯状倾斜,沿海有3000多个岛屿,是我国岛屿最多的省份。

区域属亚热带季风气候,四季分明,光照充足,降水充沛,风能资源较丰富,具有较好的大型近海风电场建设条件。

浙江省同时也是我国受台风影响显著的省份。

根据监测显示,1949-2017年,共有43个台风登陆浙江,其中33个直接登陆,10个为二次登陆。

登陆浙江的大部分台风在西北太平洋上生成后向西北方运动进入浙江沿海。

7-9月,是台风登陆浙江最多的时节,占总登陆风数的93%。

秋季开始,副热带高压东退南移,台风路径偏南,所以秋台风较难直接影响浙江。

一、浙江舟山普陀6号海上风电场2区工程基本概况及防台设计浙江舟山普陀6号海上风电场是浙江省首个海上风电示范项目。

风电场位于舟山市六横岛东南侧,风场东西长约12km,南北宽约3~5km,总面积约50km2。

风场场区内海底地形变化较小,水深在12m~16m之间,风电场中心离六横岛距离约11k,场区主要特点是厚淤泥、大涌浪。

整个风电场2区工程总装机容量为252MW,布置63台上海电气4MW风电机组及1座220kV海上升压站。

因风电场地处热带气旋影响区域及沿海大浪区,故对风机选型及基础设计提出了相应的要求[1]。

本项目风机设备选用西门子SWT130-4.0机组,是世界上最成熟、占有率最高的海上风电机组。

其叶片按照10min最大风速50m/s设计,一体化叶片工艺提升叶片强度;塔架根据实际风场环境工况定制;液压变桨系统可在失电情况下通过UPS继续维持主控工作,指挥风机安全顺桨停机,机组可在失电和无法偏航的情况下,长时间耐受在设计风速范围内的台风眼最恶劣工况。

海上风力发电技术现状及发展趋势

海上风力发电技术现状及发展趋势

海上风力发电技术现状及发展趋势一、本文概述随着全球能源结构的转型和清洁能源的日益重视,海上风力发电作为可再生能源的重要组成部分,正逐渐崭露头角。

本文旨在对海上风力发电技术的现状进行深入剖析,并展望其未来的发展趋势。

文章将首先介绍海上风力发电的基本概念、原理及其在全球能源转型中的重要性。

随后,将重点阐述当前海上风力发电技术的关键进展,包括风力发电机组的大型化、深远海风电技术的发展以及海上风电与海洋能的融合等。

在此基础上,文章将探讨海上风力发电面临的挑战,如海洋环境的复杂性、基础设施建设的高成本等。

文章将展望海上风力发电技术的未来发展趋势,包括技术创新、成本控制、政策支持等方面,以期为全球海上风力发电产业的可持续发展提供参考。

二、海上风力发电技术现状近年来,随着全球能源结构的调整与环保意识的加强,海上风力发电作为一种清洁、可再生的能源形式,逐渐受到世界各地的重视。

目前,海上风力发电技术已经取得了显著的进步,并在全球范围内实现了商业化应用。

在技术层面,海上风力发电的关键技术主要包括风机设计、风机基础结构、海上施工与运维等方面。

风机设计方面,现代海上风力发电机组已实现了大型化、高效率、高可靠性,单机容量不断提升,以适应更为复杂和严苛的海上环境。

风机基础结构方面,随着技术的发展,已经形成了固定式基础(如单桩基础、三脚架基础等)和浮式基础(如半潜式基础、张力腿平台等)两大类,以适应不同水深和地质条件的需求。

在施工与运维方面,随着工程经验的积累和技术进步,海上风力发电项目的建设周期不断缩短,施工效率不断提高。

同时,随着远程监控、智能诊断等技术的应用,海上风力发电项目的运维管理也日趋智能化、精细化,有效提升了项目的运营效率和安全性。

在全球范围内,欧洲是海上风力发电技术的先行者和领导者,特别是英国、德国和荷兰等国家,已经建成了一批规模化的海上风力发电场。

亚洲地区,特别是中国,近年来在海上风力发电领域也取得了显著的进展,已成为全球海上风力发电市场的重要力量。

中国近海海上风场分布特征研究——以近10_年(2010—2022_年)为例

中国近海海上风场分布特征研究——以近10_年(2010—2022_年)为例

第26期2023年9月江苏科技信息JiangsuScienceandTechnologyInformationNo 26Septemberꎬ2023基金项目:上海勘测设计研究院有限公司科标业ꎻ项目名称:基于多源卫星遥感数据的海上风电场海洋环境参数分析研究ꎻ项目编号:2021FD(8)-001ꎮ作者简介:张鑫凯(1985 )ꎬ男ꎬ江苏启东人ꎬ高级工程师ꎬ本科ꎻ研究方向:海上风电ꎬ光伏ꎮ中国近海海上风场分布特征研究以近10年(2010 2022年)为例张鑫凯(上海勘测设计研究院有限公司ꎬ上海200335)摘要:相比传统观测手段ꎬ卫星遥感技术具有易获取㊁大时空㊁低成本等优势ꎬ在海上风场资料观测方面具有独特优势ꎮ目前ꎬ行业内基于卫星遥感手段对中国近海海上风场的分布变化特征研究相对较少ꎮ文章利用2010 2022年海上风场融合资料ꎬ系统分析了中国近海海上风场近10年的时空分布变化特征ꎮ结果显示:卫星反演海面风场与实测海面风场相比具有较好的一致性ꎬ风速平均相对绝对误差为14 8%ꎬ均方差误差为1 1m/sꎬ风向的均方差误差为17 33ʎꎬ平均偏差为15 17ʎꎻ中国近海整体上呈现冬春季风速大㊁夏季风速低的特点ꎬ在东海和南海交界处呈现出三角形高风速区域ꎮ本研究成果有望对海上风电场的前期规划提供理论支撑和科学支持ꎮ关键词:卫星遥感ꎻ海面风场ꎻ中国近海ꎻ时空分布特征中图分类号:P71㊀㊀文献标志码:A0㊀引言㊀㊀海面风场是海洋上层运动的主要动力来源ꎬ与海洋中几乎所有的海水运动直接相关[1]ꎮ在海洋动力学过程中ꎬ它不仅是形成海面波浪的直接动力ꎬ而且是区域和全球海洋环流的动力[2]ꎮ因此ꎬ海面风场的测量对于海洋环境数值预报㊁海洋灾害监测㊁海气相互作用㊁海上风电场规划建设等都具有重要意义ꎮ目前ꎬ观测海面风场的传统方法主要是通过浮标㊁船舶㊁沿岸及岛屿自动气象站等手段获取资料[3]ꎮ然而ꎬ由于海洋环境恶劣㊁仪器耗费高等原因ꎬ我国近海观测网多设置于沿海一带且数量有限㊁分布稀疏ꎬ无法获得大面积同步㊁长时间序列的观测资料ꎬ缺乏对海面风场整体性㊁系统性的认知ꎮ与传统观测手段相比ꎬ卫星遥感则具有大面积㊁准同步和全天候的观测能力ꎮ1978年美国国家航空航天局(NationalAeronauticsandSpaceAdministrationꎬNASA)发射了全球第一颗SeaSAT卫星ꎬ此后一系列用于测量地表风向量的卫星传感器发射升空ꎬ为海面风场的全球观测提供了行之有效的技术手段ꎮ目前ꎬ可以观测海面风的卫星传感器主要有微波散射计㊁微波辐射计和微波高度计[4]ꎮ同时ꎬ交叉校准多平台(Cross-CalibratedMulti-PlatformꎬCCMP)为世界海洋提供了矢量风场融合信息ꎬ能够更加深入地了解海上风速和风向的变化ꎬ掌握风速风向的变化规律ꎬ更好地利用海上风能ꎮ中国近海区域在人类生产和生活中占有重要的地位ꎬ其跨越不同的气候区域ꎬ气候差异显著ꎬ各类天气活动频繁ꎬ是世界上受海洋灾害最严重的区域之一ꎮ除海啸灾害外ꎬ中国近海海洋灾害都与风场密切相关ꎬ其中ꎬ台风引起的风暴潮灾害造成的损失最严重[5]ꎬ其次为台风㊁寒潮天气带来的海上大风相伴生的海浪灾害ꎬ这两类海洋气象灾害造成的经济损失达总灾害损失的80%以上[6]ꎮ因此ꎬ对我国近海海面风的深入研究ꎬ不仅对台风等海洋天气形势的分析预报具有重要意义ꎬ而且可以为近海区域海上风能的有效利用提供科学支撑ꎮ然而ꎬ行业内基于卫星遥感手段对海上风场的分析研究相对较少ꎮ针对实际的开发需求和目前研究存在的不足ꎬ本文利用长时序(2010 2022年)的卫星遥感产品资料ꎬ对中国近海目标海域的海面风场分布特征开展分析评估研究ꎬ获取不同近海海域的海面风场时空变化特征ꎬ以期为海上风电场的前期规划提供科学支撑ꎮ1 研究区域与数据1 1㊀研究区域概况㊀㊀研究区域为中国近海ꎬ包括渤海㊁黄海㊁东海和南海ꎮ渤海三面被陆地环绕ꎬ大陆径流较强ꎬ湾内海水不易与外部进行交换ꎮ黄海是西太平洋重要的陆架边缘海之一ꎬ位于东亚季风区ꎬ受太阳辐射㊁大气强迫㊁河流径流及地形㊁岸线㊁潮汐潮流等多种因素的影响ꎬ水文和环流存在显著的季节变化和空间差异ꎮ东海西有宽广陆架㊁东有深海槽ꎬ兼有深浅海特征ꎬ是海况十分复杂的海区ꎮ南海位于中国大陆的南面ꎬ通过狭窄的海峡或水道ꎬ东与太平洋相连ꎬ西与印度洋相通ꎬ是一个东北-西南走向的半封闭海ꎮ为了研究分析典型子区域的海面风场特征ꎬ本文将中国近海分为12个子区域ꎬ包括渤海㊁渤海海峡㊁黄海北部㊁黄海中部㊁黄海南部㊁东海北部㊁东海南部㊁台湾海峡㊁南海东北部㊁南海北部㊁琼州海峡和北部湾ꎮ1 2㊀卫星遥感数据㊀㊀微波测量海面风速是基于海面的后向散射或亮温与海面的粗糙度有关ꎬ而海面粗糙度与海面风速之间具有一定的经验关系进行的ꎮ微波散射计通过测量海面微波后向散射系数ꎬ根据它与海面风矢量的经验模式函数来反演海面风场ꎮ对同一海域不同入射角的资料进行分析ꎬ可获得风向分布信息ꎮ交叉校准多平台(Cross-CalibratedMulti-PlatformꎬCCMP)是一种网格化的4级风场产品(L4)ꎬ可为世界海洋提供矢量风场信息ꎮCCMP是通过对卫星微波遥感和仪器观测的海面风数据进行交叉校准和同化而得出的合成风场资料ꎮ使用的卫星传感器主要有两种类型ꎬ即成像辐射计和散射计ꎮ成像辐射计通过评估随着风的增加ꎬ海洋表面的发射和散射特性变化所引起的微波辐射变化ꎬ反演无冰海洋上近地面的风速[7-9]ꎮ以欧洲中期天气预报中心(EuropeanCentreforMedium-RangeWeatherForecastsꎬECMWF)的再分析业务资料为背景场[10]ꎬCCMP产品采用一种增强的变分同化分析法(VariationalAnalysisMethodꎬVAM)[11-12]ꎬ同化了特殊传感器微波/成像仪(SpecialSensorMicrowave/ImagerꎬSSM/I)㊁TMI㊁散射计QuikSCAT㊁辐射计WindSAT和高级散射计(AdvancedScatterometerꎬASCAT)等20多种卫星探测海面风资料以及部分船舶㊁浮标观测资料ꎮAtlas等[13]验证了CCMP合成风场资料较单个的卫星平台风场资料在精度方面有很大的提高ꎮ毛科峰等[14]分析验证了CCMP风场资料的均方根误差精度在东中国海海域高于ERA-Interim风场资料和QuikSCAT/NCEP合成风场资料ꎮ由此产生的产品是一个空间上完整的数据集ꎬ每6h提供一次ꎮ本文通过网站https://www.remss.com/measurements/ccmp/下载了2010 2022年共13年的风场天数据ꎮ该产品以u和v分量的方式提供每天UTC0时㊁6时㊁12时和18时的海面矢量风场ꎬu和v分量分别为距海面10m处风矢量在纬线和经线方向的分量[15]ꎮ1 3㊀现场实测数据㊀㊀本文利用中国近海多个浮标观测资料ꎬ对CCMP风场产品进行了精度验证ꎮ在资料的时间匹配上ꎬ将对应时次(UTC0时㊁6时㊁12时和18时)的现场观测资料与产品资料进行最近时间匹配ꎮ在资料的空间匹配上ꎬ将CCMP产品资料采取双线性二次插值方案插值到现场观测站点所在的经纬度上ꎬ然后进行空间匹配ꎮ此外ꎬ根据对数风廓线风速高度换算方法ꎬ本文通过CCMP和实测10m风场数据得到100m高度处风场数据ꎮ海面高度Z处风速计算公式如下:VZV0=(ZZ0)17(1)式(1)中:VZ为高度Z处的风速ꎻV0为高度Z0处风速ꎻZ㊁Z0为距海面高度ꎮ1 4㊀精度评价㊀㊀本文基于现场实测数据资料ꎬ对CCMP海面风速风向融合产品进行了精度检验ꎬ采用的精度检验指标包括决定系数(R2)㊁平均偏差(Bias)㊁均方根误差(RootMean-squareErrorꎬERMS)和平均绝对百分比误差(MeanAbsolutePercentageErrorꎬEMAP)ꎬ其具体计算如公式(2) (5)所示ꎮR2=ðNi=1yoi-yoi()ypi-ypi()[]2ðNi=1yoi-yoi()2ðNi=1ypi-ypi()2(2)Bias=ðNi=1(yoi-ypi)/N(3)ERMS=1NðNi=1(yoi-ypi)2(4)EMAP=1NðNi=1yoi-ypiyoiˑ100%(5)式(2) (5)中:yoi为实测值ꎻy-oi为实测数据平均值ꎻypi为卫星反演值ꎻypi为卫星反演值平均值ꎻN为数据量ꎮ2㊀研究结果与分析2 1㊀海上风场资料的精度评估㊀㊀基于星地同步数据ꎬ本文获得的实测海面100m高度风速与卫星反演值对比情况如图1所示ꎮ可以看出:大多数散点都集中在1ʒ1线附近ꎬ表明反演的海面风速与实测值较为接近ꎮ从误差值来看ꎬEMAP与ERMS值均比较低ꎬ决定系数R2值较高ꎬ其中R2=0 9ꎬEMAP=14 8%ꎬERMS=1 1m/sꎮ综合以上精度评价指标ꎬ卫星数据能够较好地反演出海面100m高度的风速ꎮ同时ꎬ基于星地同步数据ꎬ获得的实测海面100m高度风向与卫星反演值对比情况如图2所示ꎮ可以看出:大多数散点都集中在1ʒ1线附近ꎬ表明反演的海面风向与实测值较为接近ꎮ从误差值来看ꎬBias与ERMS值均比较低ꎬERMS=17 33ʎꎬBias=15 17ʎꎮ综合以上精度评价指标ꎬ卫星数据能够较好地反演出海面100m高度的风向ꎮ图1㊀实测海面风速与反演得到的海面风速之间的散点图图2㊀实测海面风向与反演得到的海面风向之间的散点图2 2㊀中国近海风场的时空分布特征㊀㊀基于13年间海上风场月产品数据ꎬ本文采用均值合成法得到并绘制海面风场多年月平均变化图ꎬ以探究海面风场月变化特征ꎮ整体上东海和南海交界处风速一直高于其他区域ꎬ但在不同的季节也表现出一定的差异性ꎮ春冬季节东海和南海交界处海面风速达到高峰ꎬ夏秋季节此处海面风速与其他海域海面风速差异远小于春㊁冬两季ꎮ从典型区域渤海海域㊁黄海海域㊁东海海域和南海海域角度分析ꎬ4个子区域的海面风场在3 10月风速都保持较低的水平ꎬ风速变化不明显ꎮ11月至次年2月风速逐渐升高ꎬ全年风速整体呈现冬春季高㊁夏季低的趋势ꎮ为分析中国近海海面100m高风场多年的年际变化特征ꎬ绘制2010 2022年13年间风速风向年平均图ꎮ整体上来看ꎬ在不同年份中国近海海域海面风场也表现出一定的差异ꎮ虽然风速和风向大小在13年间均呈现出相对稳定的趋势ꎬ但也有一定的分布特征ꎬ东海和南海交界处区域风速相比其他区域常年偏大ꎬ呈现一个三角状的高风速区域ꎮ综合来看ꎬ典型区域渤海海域㊁黄海海域㊁东海海域和南海海域4个子区域的海面风场在2010 2011年呈现上升趋势ꎬ随后在2012 2016年逐渐下降ꎬ又在2017 2019年逐年上升ꎬ在2020 2021年有所下降ꎬ到2022年风速回升ꎮ2010 2022年13年间一直维持在较低值ꎬ平均风速小于10m/sꎮ2 3㊀典型子区域的风场变化特征㊀㊀为了更深入地了解中国近海风场的时空变化特征ꎬ本文分析了12个子区域的风速变化特征ꎬ结果如图3所示ꎮ可以看出:总体上12个区域的风速最大值都集中在冬季ꎬ夏季风速略有回升ꎬ但总体呈现低值状态ꎮ就风速变化而言ꎬ其中渤海㊁渤海海峡㊁琼州海峡㊁北部湾风速的变化较为平缓ꎬ其余地区的风速变化较大ꎮ针对不同子区域而言ꎬ12个区域虽然波动程度有大有小ꎬ但波动起伏趋势相似ꎮ风速月均值峰值都集中在12月ꎬ最低值分布略有不同:渤海㊁渤海海峡㊁黄海北部㊁黄海中部㊁黄海南部㊁东海北部的最低值分布在4月ꎻ东海南部的最低值分布在6月ꎻ台湾海峡㊁南海东北部㊁南海北部㊁琼州海峡最低值在8月ꎻ北部湾最低值在9月ꎮ3㊀结论㊀㊀针对我国近海海域ꎬ本文利用实测海上风速风向㊀㊀图3㊀中国近海12个子区域的海面风速月均值变化数据对海上风场融合资料进行精度评价ꎬ进而系统地分析了13年间(2010 2022年)我国近海海上风速风向的时空特征ꎬ并对典型子海域开展局部特征分析ꎮ本文得到的主要结论如下:(1)基于星地同步数据ꎬ获得的卫星反演海面风场与实测海面风场进行对比ꎬ其中海面风速平均相对绝对误差为14 8%ꎬ均方差误差为1 1m/sꎬ海面风向的均方差误差为17 33ʎꎬ平均偏差为15 17ʎꎮ(2)整体上而言ꎬ我国近海海域呈现冬春季风速大ꎬ夏季风速低的特点ꎻ东海和南海交界处有三角形高风速区域ꎬ秋冬季三角区域向两角延伸ꎬ春夏季向沿岸区域收缩ꎮ(3)针对12个典型子海域ꎬ风速最大值均集中在冬季ꎬ夏季风速略低ꎬ其中渤海㊁琼州海峡㊁北部湾的月尺度风速变化较小ꎬ黄海㊁东海㊁台湾海峡㊁南海北部的月尺度风速变化较大ꎮ参考文献[1]吕柯伟ꎬ胡建宇ꎬ杨小怡.南海及邻近海域海面风场季节性变化的空间差异[J].热带海洋学报ꎬ2012(6):41-47.[2]沈春ꎬ蒋国荣ꎬ施伟来ꎬ等.南海QuikSCAT海面风场变化特征分析[J].海洋预报ꎬ2012(3):1-8. [3]张振克ꎬ丁海燕.近十年来中国大陆沿海地区重大海洋灾害分析[J].海洋地质动态ꎬ2004(7):25-27. [4]杨华庭.近十年来的海洋灾害与减灾[J].海洋预报ꎬ2002(1):2-8.[5]项杰ꎬ杜华栋.南海海面风场融合研究[C]//第32届中国气象学会年会S18气象卫星遥感新资料 新方法 新应用.天津ꎬ2015:147-148.[6]蒋兴伟ꎬ宋清涛.海洋卫星微波遥感技术发展现状与展望[J].科技导报ꎬ2010(3):105-111.[7]DRAPERDWꎬNEWELLDAꎬWENTZFJꎬetal.Theglobalprecipitationmeasurement(GPM)microwaveimager(GMI):instrumentoverviewandearlyon-orbitperformance[J].IEEEJournalofSelectedTopicsinAppliedEarthObservationsandRemoteSensingꎬ2015(7):3452-3462.[8]MEISSNERTꎬWENTZFJ.Theemissivityoftheoceansurfacebetween6and90GHzoveralargerangeofwindspeedsandearthincidenceangles[J].IEEETransactionsonGeoscienceandRemoteSensingꎬ2012(8):3004-3026.[9]WENTZFJ.Awell-calibratedoceanalgorithmforspecialsensormicrowave/imager[J].JournalofGeophysicalResearch:Oceansꎬ1997(C4):8703-8718.[10]ATLASRꎬHOFFMANRNꎬARDIZZONEJꎬetal.Across-calibratedꎬmultiplatformoceansurfacewindvelocityproductformeteorologicalandoceanographicapplications[J].BulletinoftheAmericanMeteorologicalSocietyꎬ2011(2):157-174.[11]HOFFMANRN.SASSwindambiguityremovalbydirectminimization[J].MonthlyWeatherReviewꎬ1982(5):434-445.[12]HOFFMANRN.SASSwindambiguityremovalbydirectminimization.partⅡ:useofsmoothnessanddynamicalconstraints[J].MonthlyWeatherReviewꎬ1984(9):1829-1852.[13]ATLASRꎬARDIZZONEJꎬHOFFMANR.Applicationofsatellitesurfacewinddatatooceanwindanalysis[Z].2008.[14]毛科峰ꎬ陈希ꎬ李妍ꎬ等.东中国海域交叉定标多平台合成洋面风场资料的初步评估[J].气象ꎬ2012(12):1456-1463.[15]WENTZFJ.A17-yrclimaterecordofenvironmentalparametersderivedfromthetropicalrainfallmeasuringmission(TRMM)microwaveimager[J].JournalofClimateꎬ2015(17):6882-6902.(编辑㊀姚㊀鑫)Spatial-temporaldistributioncharacteristicsofthewindfieldintheChinesecoastalregions takingthepastdecade2010-2022asanexampleZhangXinkaiShanghaiInvestigation Design&ResearchInstituteCo. Ltd. Shanghai200335 ChinaAbstract Comparedtotraditionalobservationmethods satelliteremotesensingtechnologyoffersadvantagessuchaseaseofacquisition largetemporalandspatialcoverage andcost-effectiveness makingitparticularlyvaluableforobservingseasurfacewindfields.Currently thereislimitedresearchthatutilizessatelliteremotesensingforthestudyofthespatial-temporalcharacteristicsofseasurfacewindfieldsinChinesecoastalregions.Inthisstudy basedonafusionproductofseasurfacewindfields weanalyzedthespatialandtemporaldistributioncharacteristicsofseasurfacewindfieldsinChinesecoastalwatersoverthepastdecade2010-2022 .Theresultsdemonstrategoodconsistencybetweensatellite-retrievedandmeasuredseasurfacewindfields.Theaveragerelativeabsoluteerrorofwindspeedis14 8% witharootmeansquareerrorof1 1m/s whiletherootmeansquareerrorforwinddirectionis17 33ʎ withanaveragedeviationof15 17ʎ.Overall Chinesecoastalregionsexhibithigherwindspeedsduringwinterandspring andlowerwindspeedsduringsummer.Furthermore atriangularhigh-speedwindregionneartheboundaryoftheEastChinaSeaandSouthChinaSeawasobserved.Thefindingsofthisstudyprovidevaluablescientificsupportfortheplanningofoffshorewindfarms.Keywords satelliteremotesensing seasurfacewindfield Chinesecoastalregions spatio-temporaldistributioncharacteristic。

沿海架空输电线路防台风灾害的探讨——220kV架空输电线路风偏闪络原因分析及改造方案

沿海架空输电线路防台风灾害的探讨——220kV架空输电线路风偏闪络原因分析及改造方案

沿海架空输电线路防台风灾害的探讨——220kV架空输电线路风偏闪络原因分析及改造方案李晓斌【摘要】导线风偏是威胁架空输电线路安全稳定运行的重要因素之一,风偏闪络常常会造成线路跳闸、导线断股甚至是断线等.文章基于对2008、2009年度江门沿海地区的220kV输电线路遭受台风正面袭击而造成线路闪络跳闸的分析调查,建立起直线杆塔、耐张杆塔风偏故障成因的计算分析模型,研究制定并实施了相关输电线路防风偏技术措施,有效避免了近年来台风登陆等可能引起沿海地区输电线路的风偏故障,提高了输电线路的防风偏性能.文章提及的防风偏技术措施已在江门沿海地区其他的220kV和110kV线路上进行了推广应用,取得了良好的成效,可对沿海架空输电线路防风偏技术提供实践参考经验.【期刊名称】《价值工程》【年(卷),期】2015(034)035【总页数】3页(P110-112)【关键词】架空输电线路;台风;风偏闪络;防风偏技术【作者】李晓斌【作者单位】广东电网有限责任公司江门供电局,江门529000【正文语种】中文【中图分类】TM8630 引言江门市濒临南海,海岸线长达680公里,在台风季节极易受到台风的正面侵袭。

台风登录时,近中心风速可以达到40m/s以上,风圈影响半径大,对输电线路的导线、引流线、绝缘子串产生极大的风压荷载,引起线路风偏摇摆闪络放电,导致线路故障跳闸。

台山核电厂、国华台山电厂作为珠三角的能源心脏,其多条500kV、220kV输电线路位于那些地形复杂多变的微气象地区,这些地区的输电线路由于容易受到台风的影响,很容易出现意外状况,严重威胁着电网的安全稳定运行。

有资料显示,台风登陆时的最高瞬时风速曾高达50m/s,因此,开展沿海输电线路防台风灾害的研究,对提高供电可靠性和电网抵御自然灾害的能力具有重要意义。

1 江门沿海地区输电线路故障跳闸概况根据多年运行经验,风偏闪络基本就发生在台风登录期间,风偏闪络的放电路径主要是带电导线对杆塔构件放电,其特点是导线或导线侧金具上烧伤痕迹明显,这一点在我们登塔查找故障点时就得到证实。

海上风力发电机组抗台风分析

海上风力发电机组抗台风分析

专版研究园地海上风力发电机组抗台风分析文/陈俊生 张斌0 引言随着海上风电的不断发展,在国家政策的大力持下,我国即将迈入大规模的海上风电场建设阶段。

我国东海、南海风能资源丰富,适宜进行风能开发,然而在这两个海域台风频频发生,抗台风设计成为海上风力发电机组设计的重要内容,应对台风措施已经关系到沿海海上风电是否能安全可靠运行。

为提出适合我国国情的抗台风设计方法,本文首先给出了台风极值风速大、非平稳性强、风向变化快、与巨浪同步等基本特征,分析了海上风力发电机组在台风作用下常见的失效模式,其中以整体倾覆、塔筒失效、叶片破坏居多;在此基础上,从设计到控制策略上做好相关保障措施,避免海上风电机组颠覆性破坏,并力争实现基于可靠度的抗台风设计;最后进一步提出了相应的抗台风举措,以期为我国海上风力发电机组抗台风设计提供参考。

1 台风对海上风力发电机组的危害在台风作用下,海上风力发电机组如果基础尺寸或者埋深不够,将导致基础大面积脱开,进而结构整体倾覆。

这种结构失效形式又称为颠覆性破坏,将带来巨大的经济损失。

2017年台风“天鸽”造成珠三角某陆上风电场叶片大量折断,多台风电机组破坏性倒塌,造成了严重的经济损失,甚至有些风机连根拔起;同时,珠江口某海上风电场附近船舶受台风影响,船舶在台风和海浪的作用下的漂移撞击到了风机基础桁架,造成了风机机舱桁架严重变形,部分海底电缆在台风期间受到船舶锚具的破坏,海底电缆需要较长的修复期,对工期以及经济损失造成了严重的影响。

2 我国沿海地区台风状况2.1 沿海极端风速频率本文通过对我国东南沿海海上风电极端风速统计发现,54m/s的风速可以覆盖所有统计数据的96%,如表1所示。

2.2 年平均风速本文综合了我国沿海测风塔计算的年平均风速进行分析,发现福建中部沿岸风速最大,为8.0m/s~9.8 m/s;浙江中北部沿岸、广东部分沿岸、广西沿岸和海南部分沿岸风速为5 m/s~6 m/s;其余地区为6.0 m/s~7.9 m/s。

近海风力发电技术论文

近海风力发电技术论文

近海风力发电技术论文篇一:近海风力发电技术论文长沙理工大学CHANGSHA UNIVERSITY OF SCIENCE & TECHNOLOGY近海风力发电技术论文题目:世界海上风力发电发展趋势学院:专业:姓名:学号:时间:世界海上风力发电发展现状和趋势彭伟(长沙理工大学,湖南省长沙市雨花区万家路,长沙410114)【摘要】能源与环境问题已经成为全球可持续发展所面临的主要问题,日益引起国际社会的广泛关注并寻求积极的对策。

风能是一种可再生、无污染的绿色能源,而且储量十分丰富。

风能的大规模开发利用,将会有效减少石化能源的使用、减少温室气体排放、保护环境。

由于发展海上风电,不占用陆上土地,而且海上风能资源丰富,适宜于大规模开发,所以海上风电已成为未来风电发展的必然趋势。

因此海上风电装机容量近年持续增长。

【关键词】风能海上风力发电发展趋势装机容量。

The current situation and future trend of offshore wind powerPengweiAbstract:The problem of energy and environment has become a major problem facing the global sustainable development, has attracted wide attention fromthe international community and actively seek countermeasures. Wind energy isa renewable, pollution-free green energy, but also very rich in reserves. The large-scale development and utilization of wind energy, will effectivelyreduce the use of fossil energy, reduce greenhouse gas emissions and protectthe environment. Due to the development of offshore wind power, does notoccupy the land on the land, and offshore wind energy resource rich, suitable for large-scale development of offshore wind power, so it has become the inevitable trend of the future development of wind power. Therefore, the offshore wind power installed capacity in recent years continued growth.Key words: The windOffshore wind power generationThe development trend ofInstalled capacity。

我国海上风电开发现状分析

我国海上风电开发现状分析

我国海上风电开发现状分析【摘要】我国海上风电是我国新能源领域的重要组成部分,具有巨大的开发潜力和市场前景。

本文通过对我国海上风电开发现状进行分析,探讨了我国海上风电发展历程、政策环境、技术水平、市场前景以及面临的挑战。

在此基础上,总结了我国海上风电开发现状,提出了发展建议,并展望了未来发展趋势。

研究发现,我国海上风电在政策支持和技术创新方面取得了显著进展,但仍面临着融资难、技术不足、市场竞争激烈等挑战。

未来,需要进一步完善政策法规,提高技术水平,增加投入,加强产学研合作,以推动我国海上风电行业的健康发展。

【关键词】海上风电、发展历程、政策环境、技术水平、市场前景、挑战、总结、建议、展望1. 引言1.1 背景介绍自2009年我国启动海上风电建设以来,取得了明显的进展。

截至目前,我国已建成海上风电装机近30GW,位居全球第一。

政府先后出台了一系列支持海上风电发展的政策,包括补贴政策、产业政策、技术支持政策等,为行业的快速发展提供了有力支持。

我国海上风电技术水平不断提升,已经具备自主研发和建设海上风电项目的能力,市场前景广阔。

我国海上风电发展仍面临一些挑战,包括部分地区海岸线环境复杂、海上风电成本偏高、装备供应链不完善等问题。

加强海上风电技术研发、降低成本、完善政策体系等成为当前发展的重点。

未来,我国海上风电有望在能源结构转型中发挥更大作用,助力我国实现碳中和目标。

1.2 研究目的本文旨在对我国海上风电开发现状进行深入分析,以全面了解我国海上风电产业的发展情况。

通过对我国海上风电发展历程、政策环境、技术水平、市场前景以及面临的挑战进行详细研究,旨在揭示我国海上风电开发现状存在的问题和发展趋势,为我国海上风电产业的可持续发展提供科学依据和发展建议。

通过本研究,希望能够为我国海上风电产业的未来发展提供参考,促进我国海上风电产业的健康发展,推动我国清洁能源领域的进步和发展。

1.3 研究方法研究方法是制定研究方案和实施研究的具体步骤和方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定性分析
理论和实践 相结合研究
三.风电机组设计技术的研究与发展
合理选址 改善偏航控制系统设计 减轻叶片重量
风机在台风过程中易损件的控制和新技术的应用
充分利用风资源
新叶片的推动力一新技术在叶片上的应用
及时跟踪气象信息
பைடு நூலகம்
带来更大利润 减少维护成本
四、结论
1、加强风电场建设的微观选址风电机组的微观选址应当综合考虑风电机组的安全 性和发电效益。微观选址方面,因台风强气流突然改变带来的非常湍流是造成风机 破坏性损害的主要原因,避免在环境湍流大的区域安装风电机组就是最有效的预防 措施。风电场在场址选择时,应避开台风经常登陆的地方,避开强风区。风机基座 在微观选址时,应紧密结合风电场实际资料,选取合理的风机基座位置。 2、机组选型按照国标风力发电机组安全等级的要求,风电机组应设计成能安全承 受由其等级决定的风况。设备在选型时要重视控制系统电源防风、防雨能力。 3、管理措施层面风电场的安全经济运行涉及多个部门,包括风电机组制造商、风 电场业主及运行单位等相关部门。有效地提高风电抗台风能力,只有以上单位通力 协作,才能充分保障风电的安全经济运行。. 4、风电机组制造商设备制造单位为沿海地区及海上风电场生产供应风机设备时, 应充分考虑台风的影响,针对不同的风场,不同的机位采取差异化设计制造。
5、 风电场业主及运行单位台风易发、频发地区,应当对风电场所有风机的湍流强 度重新进行校核计算,并按计算结果采取相应的防范措施。 6、灾害预警风电场应根据气象部门发布的台风灾害预警信息,跟踪台风的移动路径 及风雨强度变化,及时做好应对策略,最大程度上减少台风灾害对风电场的破坏, 并充分利用台风,提高发电效益。 7.、台风是强烈的热带气旋,台风蕴涵的巨大能量将对风机设备结构施加静载荷和 动载荷叠加效应,形成周期性激荡,若周期恰与风电机组固有振动周期相近时(或整 数倍时),使叶片出现裂纹、撕裂、折断,偏航和变浆系统受损,甚至倒塔,最终导 致机组损坏。因此防范台风时要求对电力变浆风机紧急备用电源正常,确保停机时 风机叶片能够执行顺浆避风的安全指令,使叶轮处于自由避风状态,避免设备与台 风湍流频率形成共振。
浙江苍南风电场
• 2006年8月10日, “桑美”袭击了 我国浙江沿海, 当日最高风力19 级。导致浙江苍 南风电场28台风 机倒了20台,整 个风场几乎报废。
福建六鳌风电场
• 2010年10月23日12时55分, 强台风“鲇鱼”在福建漳浦 县六鳌镇正面登陆,登陆时 近中心最大风力13级(38米/ 秒),是2010年最强台风。 • 强台风“鲇鱼”的正面登 陆造成六鳌风电场三期Z13 号风机倒塌、Z10号风机叶 片折断。造成一期两台箱变 线圈短路烧损;二期两台风 机轮毂进水,控制柜内元器 件损坏;三期Z2、Z13号两台 箱变绕组短路烧损
2、近年来受台风影响东南沿海风机运行事故
• • • • • • 2003年“杜鹃”台风造成广东汕尾红海湾风电场25台机组中13台受损, 损坏率达52%; 2006年“桑美”台风对浙江苍南风电场造成了毁灭性重创,全场26台 机组中有5台倒塔,32支叶片严重损坏,11台开启式机舱罩的风电机 组除倒塔损毁外,所有机舱盖全部被吹掉; 2008年“蔷薇”台风造成台湾2兆瓦风电机组全部倒塔; 2010年“鲇鱼”台风造成福建省六鳌风电场1台2兆瓦风电机组倒塔, 1台风机叶片折断,2台风机轮毂进水,4台箱变线圈短路烧损 2013年9月23日,“天兔”台风登陆汕尾,而红海湾风电场则是此次 台风的直接登陆点。“天兔”过境,让该风力发电场遭受重创,一些 风电机组钢板厚度高达40厘米还是被大风拦腰截断。 2014年7月18日,41年来华南最强台风“威马逊”登陆海南省文昌市。 台风过境,产生了巨大的破坏力海南文昌风电场中的33台华锐风电 1.5MW、叶轮直径70米的风电机组中有3台机组严重受损,其中一台 倒塔; 广东徐闻勇气风电场中的33台天威1.5MW、叶轮直径77米的风 电机组有18台遭到重创,其中有15台出现倒塔,3台机组严重受损。
汕头红树湾风电场
• 2013年09月20日19时40分 强台风“天兔” 在广东省 汕尾市沿海登陆。“天兔” 影响期间,陆丰市湖东镇 17时出现最大阵风60.7米/ 秒(17级) • 汕头红树湾风电场有25台 风电机组,“天兔”过后有 8台机组被拦腰折断倒塌在 地,另外9台风机叶片被折 断,剩余8台机组在外观上 没有出现明显损毁现象。据 该风电场吴总介绍,目前 “天兔”台风侵袭造成损失 接近一个亿。
二. 台风分析
分析内容 分析要点 强烈的热带气旋 形成于高温、高湿的热带洋面 中心附近最大风力达到12级以上 直径通常为500--1000公里左右,最大可达2000公里 台风由大风区、暴风区、风眼三部分构成。 生命期一般可达一周以上 在我国常发生在5—10月,每年约6次,集中于7-9三个月 备注
台风形成
理论研究
对风力机组 的影响 实例分析 (福建六鳌 风电场)
能给风电设备带来满发的“好台风”和对风电设施 有极大破坏的台风。 对风机设计制造技术有很高的要求 我国无法借助国外已有的技术规范和标准 1 、台风造成的瞬时风速、湍流强度和入流角超过 受损风机的设计制造标准,是事故的直接原因。 2 、台风造成箱变进水短路,导致风机失去电网电 源,是事故扩大的原因。
近海风力发电课程设计(论文)
近海风力发电 防台风技术的研究现状
论文内容
绪论 台风分析
风电机组设计技术的研究与发展
结论 参考文献
一、绪论 1、研究背景和意义
我国风力发电起步较晚,风电技术还比较落后,专业技术 力量还十分薄弱,一方面是风电发展所表现出来的高速发 展势头,另一方面又是各大投资商的风电项目而缓建,这 其中固然有市场和政策方面的影响因素,而一个更深层次 的原因是,随着技术研究逐步深入的时候,人们发现,沿 海风电场的风资源远比北方风电场的风资源要复杂得多, 尤其是因为要对抗恶劣气候(如台风)而发生在微观选址、 设备选型、工程建设等方面的投资和风险都相应增大。
相关文档
最新文档