《微波技术与天线》第二章习题

合集下载

《微波技术与天线》第二章传输线理论part3

《微波技术与天线》第二章传输线理论part3

I (z)
I (z)
I (z)
A1 Z0
e
jz [1
(z)]
u( z, t )
2
A1
c os (t
0
2
) sin
z
i(z,t)
2 A1 Z0
c os (t
0 ) cosz
Zin (z) ZL 0
Z0
ZL Z0
jZ0 tan(z) jZL tan(z)
ZL 0
jZ0 tan(z)
2020/5/28
A1 A1 Z0
cos(t cos(t
z z
0 0
) )
2020/5/28
3
工作状态分析 ——行波工作状态(无反射)
2 A1 Z0
cos(t cos(t
z z
0 ) 0 )
4
工作状态分析 ——行波工作状态(无反射)
沿线的输入阻抗
Zin
阻抗具有λ/4变换性和λ/2重复性。
2020/5/28
25
行驻波状态
例2.7
无耗传输线终端接负载ZL=40-j30。要使传输线上驻波比最小, 则该传输线的特性阻抗应取多少?此时最小的反射系数和驻波
比是多少?离终端最近的波节点位置在何处?
【解】要使线上驻波比最小,实质上使终端反射系数的模值最
小即可:
t=/8
-0.5
t=3/8
-1.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0
d ()
图2-19 不同时刻的电压驻波
2020/5/28
12
驻波工作状态——终端短路
沿线的输入阻抗 Zin jZ 0 tan z

微波技术与天线习题答案第二章电子工业出版社

微波技术与天线习题答案第二章电子工业出版社

第二章2-1 答: 将微波元件等效为网络进行分析,就是用等效电路网络参数代替原微波元件对原系统的影响。

它可将复杂的场分析变成简单易行的路分析,为复杂的微波系统提供一种简单便捷的分析工具。

2-2 答: 波导等效为双线的等效条件是两者的传输功率相等,由于模式电压,电流不唯一,导致等效特性阻抗,等效输入阻抗也不唯一,而归一化阻抗仅由反射系数确定,反射系数是可唯一测量的微波参量。

因而归一化阻抗也是唯一可确定的物理量。

故引入归一化阻抗的概念。

2-3 答: 归一化电压U 与电流I 和不归一电压U ,电流I 所表示的功率要相等,由此可得U I,的定义为U I ,2-4 答: (a) 由121220.02U U I U I ==+ 得 10[]0.021A ⎡⎤=⎢⎥⎣⎦ (b) 由12212200U U I I I =+= 得 1200[]01A ⎡⎤=⎢⎥⎣⎦(c) 由12121U nU I I n== 得 0[]01/n A n ⎡⎤=⎢⎥⎣⎦ (d) 由 传输线方程已知终端条件的解双曲函数的形式,将j γβ=,11(),()z l z l U z U I z I ''==''==代入得1202122cos sin sin cos U lU jZ lI l I j U lI Z ββββ=+=+ 即 00cos sin []sin /cos ljZ l A j l Z l ββββ⎡⎤=⎢⎥⎣⎦当 /2l θβπ==时 0100[]0.010j A j ⎡⎤=⎢⎥⎣⎦(e) 将 l θβπ== 代入(d)中解 可得2-5 解: (a) 01/00[]00/0j n jn a j n j n ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦(b) 010*******02020100/.0[]/0/00/.jZ jZ Z Z A j Z j Z Z Z -⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦2-6 解: (a)等效电路如图所示由 1221222U U j I I j U I =-+=+ 得 11221211()2211()22U I I j j U I I j j =-+-=+-即 1/21/2/2/2[]1/21/2/2/2j j jj Z j j j j --⎡⎤⎡⎤==⎢⎥⎢⎥--⎣⎦⎣⎦ (b)等效电路如图所示 由1212U jI I jU == 得12210()()()0U j I U j I =+--=-+ ∴0[]0j Z j -⎡⎤=⎢⎥-⎣⎦(c)等效电路如图所示由 1221222U U J I I j U I =+=- 得 112212()22()22j jU I I j j U I I =---=-+-∴ /2/2[]/2/2j j Z j j --⎡⎤=⎢⎥-⎣⎦2-7 证: 由 111112U Z I Z I =+ ① 2121222U Z I Z I =+ ② 将 22L U Z I =-代入 ② 得 122122L IZ Z Z I -=+ ∴ 212121112111122in LU I Z Z Z Z Z I I Z Z ==+=-+ 2-8 证: 由 111112I Y U Y U =+ ① 212122I Y U Y U =+ ②将 22L I Y U =-代入②得 22121/L Y Y Y UU -=+ 即212122LU Y U Y Y =-- 代入①有 2-9 证: 由互易时 det[A]=1 可得即 12A x = 且 20xB +≠ 0B ≠2-10 证: ∵11121221212222U a U a I I a U a I =+=+ 且22L U Z I = ∴ 1112212111212122222122//L in L U a U I a a Z a Z I a U I a a Z a ++===++ 2-11 解: 设波节处的参考面为1T ' 则将参照面1T '内移到1T 1min1/4l θβπ==∴ 1211110.2j S S e j θ'==-由对称性可知 22110.2S j S =-= 由无耗网络的性质可知 22121112111,/2S S θθπ=-=± ∴ 12210.98S S ==±=±∴ 0.20.98[]0.980.2j S j -±⎡⎤=⎢⎥±-⎣⎦ 2-12 解: 插入相移 21arg S θπ== 插入衰减 2211()10lg0.175L dB dB S ==电压传输系数 210.98j T S e π== 输入驻波比 11111 1.51S S ρ+==-2-13 解: 由 0[]0j a j ⎡⎤=⎢⎥⎣⎦ 可知 0[]0j S j -⎡⎤=⎢⎥-⎣⎦ 由1212U jI I jU == 可得12210()()()0U j I U j I =+--=-+ 即 0[]0j Z j -⎡⎤=⎢⎥-⎣⎦由1221I jU I jU =-= 得 0[]0j Y j ⎡⎤=⎢⎥⎣⎦2-14 解: 插入驻波比 即为输入驻波比 即 111112212211111112212211,,[]011j S a a a aS aS a a a a ρ+⎡⎤+--===⎢⎥-+++⎣⎦∴ 1111, 2.622j S S j ρ====+2-15 解: 11l θβ= 111211122122[]j j j S e S e S S e S θθθ---⎡⎤'=⎢⎥⎣⎦2-16 解: 11l θβ=内移 22l θβ=外移 30θ=不动∴ 11211222122()111213()2212223313233[]j j j j j j j j S e S e S e S S e S e S e S e S e S θθθθθθθθθθ-----⎡⎤⎢⎥'=⎢⎥⎢⎥⎣⎦由 [][]S P S P '= 也可求得 其中 120000001j j e P e θθ-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦2-17 解: 代入式 (2-44a)可得∴ 2/31/3[]1/32/3S ±⎡⎤=⎢⎥±⎣⎦由 [][][1]S S +≠ 可知该网络是互易有耗的。

微波技术与天线例题(2)

微波技术与天线例题(2)

微波技术与天线例题(2)1.电基本振子如图所示沿z轴放置,请回答下列问题:(1)指出辐射场的传播方向、电场方向和磁场方向。

(2)辐射的是什么极化的波?(3)指出过M点的等相位面的形状。

(4)若已知M点的电场E,试求该点的磁场H。

(5)辐射场的大小与哪些因素有关?(6)指出最大辐射方向和最小辐射方向。

(7)指出E面和H面,并概画方向图。

答:(1)辐射场沿r方向传播,电场沿θ方向,磁场沿φ方向;(2)线极化波;(3)球面;(4)120=A/m;H Eπ(5)辐射场的大小与距离r、振子电流I、振子电长度lλ、子午角θ有关;(6)最大辐射方向:θ=π/2;最小辐射方向:θ=0和θ=π。

(7)E面:YOZ平面;H面:XOY平面。

方向图如下图所示。

(a)E面方向图(极坐标)(b)H面方向图(极坐标)1(c)E面方向图(极坐标)(d)H面方向图(极坐标)2.某天线的增益系数为20dB ,工作波长为1m λ=,试求其有效接收面积e A 。

解:接收天线的有效接收面积为 24e A G λπ=这里增益系数 20100G d B ==,波长 1m λ=,代入上式得21251007.964e A m ππ=⨯==3.有两个半波振子组成一个平行二元阵如图所示,其间隔距离d =0.25λ,电流比221jm m I I e π=,求其E 面和H 面的方向函数及方向图。

解:此题所设的二元阵属于等幅二元阵,1m =,这是最常见的二元阵类型。

对于这样的二元阵,阵因子可以简化为 (,)2cos 2a f ψθϕ=1) E 平面(y Oz) 相位差: ()cos cos 22E kd ππψδξδδ=+=+阵因子: ()2cos(cos )44a f ππδδ=+半波振子在E 面的方向函数可以写为 1cos(sin )2()cos f πδδδ= 根据方向图乘积定理,此二元阵在E 平面(y Oz)的方向函数为cos(sin )2()2cos(cos )cos 44E f πδππδδδ=⨯+由上面的分析,可以画出E 平面方向图如下图所示。

《微波天线》习题课解析

《微波天线》习题课解析
《微波技术与天线》 习题课
助教:郭琪 2016.4.27
第 1章 均匀传输线理论
习题1.1 、1.3、1.5
1.3 设特性阻抗为Z0的无耗传输线的驻波比为ρ,第一个电压波
节点离负载的距离为lminl,试证明此时终端负载应为:
1 j tan lmin1 Zl Z0 j tan lmin1
知识点(三): 回波损耗和插入损耗
1、回波损耗Lr
2、插入损耗Li
1、回波损耗
对于无耗传输线,回波损耗定义为入射波功率与反射波 功率之比, 表示为Lr
Lr ( z) 20lg Γl
dB
式中,Γ l为负载反射系数。可见,回波损耗只取决 于反射系数,反射越大,回波损耗越小。
2、插入损耗
定义入射波功率与传输功率之比,以分贝来表示为
Z1 jZ 0 tan(z ) Z in ( z ) Z 0 Z 0 jZ1 tan(z )
式中, Zl为终端负载阻抗,β为相移常数,Z0为传输线特性阻抗。
Z in (lminl ) 在距负载第一个波节点处的阻抗为:
Z0

Zin (lmaxl ) Z0 在距负载第一个波腹点处的阻抗为:
Z1 Z 0 式中, 1 1 e j1 称为终端反射系数。Z0为特 Z1 Z 0
征阻抗,Zl为负载阻抗,。
输入阻抗与反射系数的关系 1 ( z ) Z in Z 0 1 ( z )

Z in Z 0 ( z ) Z in Z 0
结论: 当传输线的特性阻抗一定时,输入阻抗与反射系数一一 对应,因此输入阻抗可通过反射系数的测量来确定。 当Zl=Z0,Γl=0,此时传输线上任意一点的反射系数等于 零,称之为负载匹配。 无耗传输线的阻抗具有λ/2重复性和阻抗变换特性两个 重要性质。

《微波技术与天线》第二章传输线理论part1

《微波技术与天线》第二章传输线理论part1
2/7/2019 8
引言
分布电路参数模型
相同的传输线,虽然不同频率、不同几何长度,但电长度 相同,都属于长线。
3 2 1 0 -1 -2 -3
3 2 1 0 -1 -2 -3
t=0
t=0
V(z,t)
V(z,t)
z, m 图2-1 10MHz信号的电压分布
0
10
20
30400123
4
z,cm 图2-2 10GHz信号的电压分布
2/7/2019 7
边界条件
引言
分布电路参数模型
1、长线的概念

长线—— 传输线的几何长度和线上传输电磁波的波 长的比值>>1 或≈1 的传输线。
l / 0.1
短线——传输线的几何长度<<线上传输电磁波的波
长。
l / 0.1
举例:频率为50Hz、 λ=6000km的交流电,1000m场的 输电线<<λ(电长度为0.000167<0.1)------短线 10GHz的电磁波,λ=3cm,5cm长的传输线与波 长相当(电长度为1.67 >0.1 )------长线
2/7/2019
23
均匀传输线方程及其解
已知终端边界条件(z=0、U(0)=UL、I(0)=IL )
1 A 1 2 (U L Z 0 I L ) U L , RL 1 A2 (U L Z 0 I L ) I L 2
1 1 z z U ( z ) ( U Z I ) e ( U Z I ) e L 0 L L 0 L 2 2 1 1 z (U L Z 0 I L )e (U L Z 0 I L )e z I ( z ) 2Z 0 2Z 0 U ( z ) U L chz I L Z 0 shz I ( z ) I chz U L shz L Z0

2023年大学_微波技术与天线(王新稳著)课后答案下载

2023年大学_微波技术与天线(王新稳著)课后答案下载

2023年微波技术与天线(王新稳著)课后答案下载2023年微波技术与天线(王新稳著)课后答案下载绪篇电磁场理论概要第1章电磁场与电磁波的基本概念和规律1.1 电磁场的四个基本矢量1.1.1 电场强度E1.1.2 高斯(Gauss)定律1.1.3 电通量密度D1.1.4 电位函数p1.1.5 磁通密度B1.1.6 磁场强度H1.1.7 磁力线及磁通连续性定理1.1.8 矢量磁位A1.2 电磁场的基本方程1.2.1 全电流定律:麦克斯韦第一方程1.2.2 法拉第一楞次(Faraday-Lenz)定律:麦克斯韦第二方程1.2.3 高斯定律:麦克斯韦第三方程1.2.4 磁通连续性原理:麦克斯韦第四方程1.2.5 电磁场基本方程组的微分形式1.2.6 不同时空条件下的麦克斯韦方程组1.3 电磁场的媒质边界条件1.3.1 电场的边界条件1.3.2 磁场的边界条件1.3.3 理想导体与介质界面上电磁场的边界条件1.3.4 镜像法1.4 电磁场的能量1.4.1 电场与磁场存储的能量1.4.2 坡印廷(Poyllfing)定理1.5 依据电磁场理论形成的电路概念1.5.1 电路是特定条件下对电磁场的简化表示1.5.2 由电磁场方程推导出的电路基本定律1.5.3 电路参量1.6 电磁波的产生——时变场源区域麦克斯韦方程的解 1.6.1 达朗贝尔(DAlembert)方程及其解1.6.2 电流元辐射的电磁波1.7 平面电磁波1.7.1 无源区域的时变电磁场方程1.7.2 理想介质中的均匀平面电磁波1.7.3 导电媒质中的均匀平面电磁波1.8 均匀平面电磁波在不同媒质界面的入射反射和折射 1.8.1 电磁波的极化1.8.2 均匀平面电磁波在不同媒质界面上的垂直入射 1.8.3 均匀平面电磁波在不同媒质界面上的斜入射__小结习题上篇微波传输线与微波元件第2章传输线的基本理论2.1 传输线方程及其解2.1.1 传输线的电路分布参量方程2.1.2 正弦时变条件下传输线方程的解2.1.3 对传输线方程解的讨论2.2 无耗均匀传输线的工作状态2.2.1 电压反射系数2.2.2 传输线的工作状态2.2.3 传输线工作状态的测定2.3 阻抗与导纳厕图及其应用2.3.1 传输线的匹配2.3.2 阻抗圆图的构成原理2.3.3 阻抗圆图上的特殊点和线及点的移动2.3.4 导纳圆图2.3.5 圆图的应用举例2.4 有损耗均匀传输线2.4.1 线上电压、电流、输入阻抗及电压反射系数的'分布特性 2.4.2 有损耗均匀传输线的传播常数2.4.3 有损耗均匀传输线的传输功率和效率__小结习题二第3章微波传输线3.1 平行双线与同轴线3.1.1 平行双线传输线3.1.2 同轴线3.2 微带传输线3.2.1 微带线的传输模式3.2.2 微带线的传输特性3.3 矩形截面金属波导3.3.1 矩形截面波导中场方程的求解3.3.2 对解式的讨论3.3.3 矩形截面波导中的TElo模3.3.4 矩形截面波导的使用3.4 圆截面金属波导3.4.1 圆截面波导中场方程的求解3.4.2 基本结论3.4.3 圆截面波导中的三个重要模式TE11、TM01与TE01 3.4.4 同轴线中的高次模3.5 光波导3.5.1 光纤的结构形式及导光机理3.5.2 单模光纤的标量近似分析__小结习题三第4章微波元件及微波网络理论概要4.1 连接元件4.1.1 波导抗流连接4.1.2 同轴线——波导转接器4.1.3 同轴线——微带线转接器4.1.4 波导——微带线转接器4.1.5 矩形截面波导——圆截面波导转接器4.2 波导分支接头……微波技术与天线(王新稳著):内容简介本书是在作者三十多年教学及科研实践基础上编写而成的,系统讲述电磁场与电磁波、微波技术、天线的基本概念、理论、分析方法和基本技术。

《微波技术与天线》第二章 传输线理论part4

《微波技术与天线》第二章  传输线理论part4
原理
利用在传输线上并接或串接终端短路或开路的支节线。
分类
单支节匹配器 双支节匹配器 三支节匹配器
2020/3/1
12
传输线的阻抗匹配
单支节匹配器
串联单支节匹配
离负载第一个电压波腹点位置及该点输入阻抗:
lmax1 L / 4 , Z1' Z0
参考面AA’处输入阻抗为:
Z in1
1

lmax1
0.1462m
调配支节的长度为

1
l2 2 arctan
0.1831m

2020/3/1
16
传输线的阻抗匹配
单支节匹配器
并联单支节匹配
离负载第一个电压波节点位置及该点输入导纳:
lmin1 L / 4 / 4,Y1' Y0
参考面AA’处输入导纳为:
负载阻抗匹配(匹配负载) :负载阻抗等于传输线 的特性阻抗。
负载阻抗匹配时:传输线上只有从信源到负载的入射波, 而无反射波。匹配负载完全吸收了由信源入射来的微波功 率。
负载阻抗失配时:传输大功率时易击穿,因为有驻波的存 在。
源阻抗匹配(匹配源) :电源的内阻等于传输线的 特性阻抗。
源阻抗匹配时:给传输线的入射功率是不随负载变化的。 负载有反射时,反射回来的反射波被电源吸收。
单支节匹配器
串联单支节匹配
要使其与传输线特性阻抗匹配,应有:
Zin Z0 R1 Z0 , X1 Z0 tan(l2 ) 0
tan(l1')
Z0 Z1 '
1

, tan(l2 )

Z1' Z0 1
Z 0 Z1 '

电磁场微波技术与天线(盛振华版)第二章答案

电磁场微波技术与天线(盛振华版)第二章答案
极化方式
天线的极化方式分为线极化、圆极化和椭圆极化三种。线极化是指电场矢量或磁场矢量与 地面平行,圆极化是指电场矢量或磁场矢量在垂直于传播方向上的投影为圆,椭圆极化则 是介于两者之间。
天线的主要参数
工作频率
天线的工作频率决定了其应用范围和性能。不同频率的电磁波具有不 同的传播特性和应用场景。
增益
天线的增益表示其在特定方向上对信号的放大能力。增益越高,天线 的定向性和抗干扰能力越强。
电磁场微波技术与天线(盛振华版) 第二章答案
目录
• 电磁场与微波技术的基本概念 • 天线的种类与工作原理 • 电磁场与天线的关系 • 天线的设计与优化 • 实际天线案例分析
01 电磁场与微波技术的基本 概念
电磁场与电磁波
电磁场与电磁波的形成
电磁波的分类
电磁场是由变化的电场和磁场相互激 发而形成的,而电磁波则是在空间传 播的电磁场。
根据频率的不同,电磁波可分为无线 电波、微波、红外线、可见光、紫外 线、X射线和伽马射线等。
电磁波的波动特性
电磁波具有波动性,表现为振荡的电 场和磁场在空间中传播,具有波长、 频率等参数。
微波技术的基本特点
01
02
03
微波的频率范围
微波的频率范围通常在 300MHz到300GHz之间, 是无线电波中较高频段的 组成部分。
探测和定位。
利用微波传输信号,实 现全球定位系统(GPS)
等导航定位服务。
微波可用于加热物体和 治疗某些疾病,如肿瘤
等。
02 天线的种类与工作原理
天线的分类
按工作频段分类
分为超长波天线、长波天线、 中波天线、短波天线、超短波
天线、微波天线等。
按方向性分类

微波技术与天线,课后答案

微波技术与天线,课后答案
在bc段以行驻波传输,其中ZL < Z01,以c端为电压波节点、电流波腹点; b端为电压波腹点、电流波节点。
|U |max = UC = 450 V
|I|min = UC /Zbc = 0.5 A
|U |min = |I|minZ01 = 300 V
|I|max = |U |max/Z01 = 0.75 A
(20)
Γ
=
RL RL
− Z0 + Z0
当RL > Z0时 ,Γ(z)为 正 实 数 , 终 端 为 电 压 的 波 腹 点 , 则 有RL = Z0ρ,所以ρ = RL/Z0 当RL < Z0时,Γ(z)为负实数,终端为电压的波节点,则有RL = Z0/ρ,所 以ρ = Z0/RL 证毕。
2-15 有一特性阻抗为75Ω、长为9λ/8的无耗传输线,测得电压结点 的 输入阻抗为25Ω,终端为电压腹点,求:(1)终端反射系数; (2)负载阻抗; (3)始端的输入阻抗; (4)距终端3λ/8处的反射系数。
图 5: ZL = 0的情况 2-26 ( ) 传输线电路如下图所示。图中,Z0 = 75Ω,R1 = 150Ω,R2 = 37.5Ω,行波 电压幅值|U +| = 150V 。 (1)试求信号源端的电流|ID|; (2)画出各传输线上的电压、电流幅值分布并标出极大、极小值; (3)分别计算负载R1、R2吸收的功率。 解: (1) CA段的输入阻抗为:ZCA = R1 = 150Ω; CB段的输入阻抗为:ZCB = Z02/R2 = 150Ω; C点阻抗为:ZC = ZCA//ZCB = 75Ω;
ZCE
=
Z02 2Z0
=
Z0/2
(10)
ZCF
=
Z0

微波技术与天线习题答案

微波技术与天线习题答案

《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少解:1))(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ (二分之一波长重复性)31)25.0(-=ΓλΩ-∠=++= 79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之一波长阻抗变换性)Ω=100)5.0(λin Z (二分之一波长重复性)求内外导体直径分别为和的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。

解:同轴线的特性阻抗abZ rln600ε= 则空气同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600abZ rε 当MHz f 300=时的波长:m f c rp 67.0==ελ题设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(传输线上的波长为:m fr2cg ==ελ因而,传输线的实际长度为:m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输入反射系数为: 961.0514921==Γ=Γ-lj in eβ 根据传输线的4λ的阻抗变换性,输入端的阻抗为:Ω==2500120R ZZ in试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。

《微波技术与天线》习题集规范标准答案

《微波技术与天线》习题集规范标准答案

《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少?解:1)()(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ (二分之一波长重复性)31)25.0(-=ΓλΩ-∠=++=ο79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之一波长阻抗变换性)Ω=100)5.0(λin Z (二分之一波长重复性)1.2求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。

解:同轴线的特性阻抗abZ rln600ε= 则空气同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600abZ rε 当MHz f 300=时的波长:m f c rp 67.0==ελ1.3题设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(Θ1.4传输线上的波长为:m fr2cg ==ελ因而,传输线的实际长度为:m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输入反射系数为: 961.0514921==Γ=Γ-lj in eβ 根据传输线的4λ的阻抗变换性,输入端的阻抗为:Ω==2500120R ZZ in1.5试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。

微波技术与天线习题包括答案.docx

微波技术与天线习题包括答案.docx

《微波技术与天线》习题答案章节微波传输线理路1.1设一特性阻抗为 50 的均匀传输线终端接负载 R 1100 ,求负载反射系数1 ,在离负载 0.2 , 0.25 及 0.5处的输入阻抗及反射系数分别为多少解: 1 ( Z 1Z 0 ) (Z 1 Z 0 ) 1 3(0.2) 1e j 2 z1 e j 0 .813(0.5)(二分之一波长重复性)3 (0.25 )13Z in (0.2 )Z 1jZ 0 tan l 29.4323.79Z 0jZ 1 tan lZ 0Z in (0.25 ) 502 /100 25(四分之一波长阻抗变换性)Z in (0.5) 100(二分之一波长重复性)求内外导体直径分别为和的空气同轴线的特性阻抗; 若在两导体间填充介电常数 r 2.25的介质,求其特性阻抗及 f300MHz 时的波长。

解:同轴线的特性阻抗 Z 060blnra则空气同轴线 Z 060 lnb65.9a当 r 2.25 时, Z 0 60b 43.9lnra当 f 300MHz 时的波长:cp0.67mfr题设特性阻抗为Z 0 的无耗传输线的驻波比,第一个电压波节点离负载的距离为l m in1,试证明此时的终端负载应为Z1 Z01j tan lmin 1j tan lmin 1证明:对于无耗传输线而言:Zin (l min 1)Z1Z 0 j tanlmin 1 Z 0Z1 j tanlmin 1 Z 0Zin (l min 1 )Z0/由两式相等推导出:Z1Z 0 1 j tan lmin 1j tan lmin 1传输线上的波长为:cfg2mr因而,传输线的实际长度为:gl0.5m4终端反射系数为:R1Z0490.9611Z 051R1输入反射系数为:in1e j 2 l490.96151根据传输线的 4 的阻抗变换性,输入端的阻抗为:2Z0Z in2500R1试证明无耗传输线上任意相距λ/4 的两点处的阻抗的乘积等于传输线特性阻抗的平方。

《微波技术与天线》习题答案

《微波技术与天线》习题答案

ln b 43.9 a
当 f 300MHz 时的波长:
p
f
c r
0.67m
1.3 题
设特性阻抗为 Z0 的无耗传输线的驻波比 ,第一个电压波节点离负载的距离为
.
.
lmin1 ,试证明此时的终端负载应为
Z1
Z0
1 j j
t anlmin1 t anlmin1
证明:
对于无耗传输线而言:
Z in(lmin 1)
1.11
设特性阻抗为 Z0 50 的均匀无耗传输线,终端接有负载阻抗 Z1 100 j75 为复
阻抗时,可用以下方法实现λ/4 阻抗变换器匹配:即在终端或在λ/4 阻抗变换器前并接一段
终端短路线, 如题 1.11 图所示, 试分别求这两种情况下λ/4 阻抗变换器的特性阻抗 Z01 及短
路线长度 l。 (最简便的方式是:归一化后采用 Smith 圆图计算)
1 e j0.8 3
(0.5) 1 (二分之一波长重复性) 3
(0.25) 1 3
Zin (0.2 )
Z0
Z1 Z0
jZ0 jZ1
t an l t an l
29.43
2 3.7 9
Zin(0.25) 502 /100 25 (四分之一波长阻抗变换性)
Zin(0.5) 100
(二分之一波长重复性)
令并联短路线和负载并联后的输入阻抗为 Z 2 .
Z 2 =1/ Re[Y1] 156 则 Z 01 Z0Z2 =88.38
(2)
令 4
特性阻抗为 Z 01 ,并联短路线长为 l
Z in2 Z01
Z1 Z01 j t an Z01 Z1 j t an
4

【精品】《微波技术与天线》习题答案.docx

【精品】《微波技术与天线》习题答案.docx

《微波技术与天线》习题答案章节微波传输线理路1.1设一特性阻抗为50Q的均匀传输线终端接负载& =100Q,求负载反射系数L,在离负载0.22, 0.25/1及0.52处的输入阻抗及反射系数分别为多少?解:r i=(Z1-Z0)/(Z1+Z0) = l/3「(0.2人)=二〃"=:疽° 服「(0.5/1) = | (二分之一波长重复性)r(0.252) = -|Z,,(0.22) = Z o Zi + jZ°tan 例=29 43z _ 23.79g0 Z o + tan/?/Z,… (0.252) = 502/100 = 25Q (四分之一波长阻抗变换性)Z,,(0.52) = 100Q (二分之一波长重复性)1. 2求内外导体直径分别为0. 25cm和0. 75cm的空气同轴线的特性阻抗;若在两导体间填充介电常数& =2.25的介质,求其特性阻抗及f = 300MHz时的波长。

解:同轴线的特性阻抗Z0=-^ln-山.ah则空气同轴线Z.=601n- = 65.9Qa当&=2.25 时,Z0=4L In-= 43.90A a当f = 300MHz时的波长:C = 0.67m1.3题设特性阻抗为Z o的无耗传输线的驻波比p ,第一个电压波节点离负载的距离为/mini,试证明此时的终端负载应为Z] = Z0X—土_七耍min 1 1 u • .07X?-jtan/?/minl证明:对于无耗传输线而言:..7_ 7 *Z] +Zo/tan—mini■ i"— ° Z°+Z"tan% 函=ZJ P由两式相等推导出:Z|=Z°x上些久些Q — J tan 风顽11.4传输线上的波长为:C/f久=# = 2m因而,传输线的实际长度为:2I =里=0.5m4终端反射系数为:=R I-Z Q =_竺如96]&+Z。

《微波技术与天线》第二章习题优选全文

《微波技术与天线》第二章习题优选全文

可编辑修改精选全文完整版
《微波技术与天线》习题
第二章矩形波导
2.3矩形波导截面尺寸为a×b=23mm×10mm,波导内充满空气,信号源频率为10 GHz,试求:
①波导中可以传播的模式。

②该模式的截止波长λc,相移常数β,波导波长λg及相速
2.4(张晓龙,冯德顺)
用BJ-100矩形波导以主模传输10 GHz的微波信号,则
①求λc、λg、β和波阻抗Zw 。

②若波导宽边尺寸增加一倍,上述各量如何变化?
③若波导窄边尺寸增大一倍,上述各量如何变化?
④若尺寸不变,工作频率变为15GHz,上述各量如何变化?
2.10已知矩形波导的尺寸为a×b=23mm×10 mm,试求:
①传输模的单模工作频带。

②在a,b不变情况下,如何才能获得更宽的频带?
1/ 1。

微波技术与天线第二章

微波技术与天线第二章

例(补充)传输线电路如 图所示,试求: (1)输入阻抗ZAA’
λ/2 A Z0 A’ B Z0
λ/4 C Z0/2
(2)B点和D点的反射系数
D
(3)AB段和BC段的驻波比
λ/2 2Z0
解: A与B点相差半波长,因此AA’处的输入阻
抗等于B处的输入阻抗 B点处的输入阻抗,可以看出是由3个阻抗 并联而成
UL = ZL IL
ZL + jZ0 tan β z Zin ( z ) = Z0 Z0 + jZL tan β z
输入阻抗 计算公式
输入阻抗的理解
ZL + jZ0 tan β z Zin ( z ) = Z0 Z0 + jZL tan β z
注意: 注意: 1. 输入阻抗是长度为z的传输线段和终 端负载组成的传输线电路的等效阻抗 输入阻抗随位置z而改变, 2. 输入阻抗随位置z而改变,有周期性 长度为z的传输线段, 3. 长度为z的传输线段,起到将负载阻 抗ZL变换为Zin的作用 变换为Z
均匀无耗传输线上, 反射系数 均匀无耗传输线上,距负载z处的反射波电压 与入射波电压之比。 与入射波电压之比
Γ( z) = U − ( z) U + ( z) = − I − ( z) I + ( z) 1 UL − Z0 IL ) e− jβ z ( ZL − Z0 − j 2β z 2 = = e 1 ZL + Z0 (UL + Z0IL ) e jβ z 2 Z L − Z0 z = 0处,终端反射系数 Γ L = Z + Z 0 L
(3)AB段和BD段的驻波比
ρ AB =
1+ ΓB 1− ΓB
=2
ρ BD =

《微波技术与天线》课件第2章

《微波技术与天线》课件第2章
轴向流动的电子 流交换能量,所以可将其应用于微波电子管
中的谐振腔及直线电子加速器中的工作模式。
图 2-8 圆波导 TM01场结构分布图
3)低损耗的TE01模
TE01模是圆波导的高次模式,比它低的模式有 TE11、
TM01和 TE21,它与 TM11是简并 模。它也是圆对称模故无极
化简并,其电场分布如图2-9所示。其磁场只有径向和轴向分
规则金属波导如图2-1所示,对它的分析,一般采用场分析
方法,即麦克斯韦方程加 边界条件的方法。
图 2-1 金属波导管结构图
金属波导内部的电磁波满足矢量亥姆霍兹 方程,即
其中,k2=ω2με。
将电场和磁场分解为横向分量和纵向分量, 即
其中,az 为z 方向的单位矢量;t表示横向坐标,代表直角坐标中
示,从而构成方圆波导变换器。
图 2-6 圆波导 TE11场结构分布图
图 2-7 方圆波导变换器
2)圆对称TM01模
TM01模是圆波导的第一个高次模,其场分布如图2-8所示。
由于它具有圆对称性, 故不存在极化简并模,因此常作为雷达
天线与馈线的旋转关节中的工作模式。另外,因其 磁场只有
Hφ 分量,故波导内壁电流只有纵向分量,因此它可以有效地和
矩形波导中,TE1பைடு நூலகம்、TE20的截止波长为
可见,波导中只能传输 TE10模。
波导波长为
波阻抗为
【例 3】 一圆波导的半径a=3.8cm,空气介质填充。试求:
① TE11、TE01、TM01三种模式的截止波长。
② 当工作波长为λ=10cm 时,求最低次模的波导波长λg。
③ 求传输模单模工作的频率范围。
波信息称为波导的耦合。波导的 激励与耦合本质上是电磁
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《微波技术与天线》习题
第二章矩形波导
2.3 矩形波导截面尺寸为a×b=23mm×10 mm,波导内充满空气, 信号源频率为
10 GHz,试求:
①波导中可以传播的模式。

②该模式的截止波长λc,相移常数β, 波导波长λg及相速
2.4 (张晓龙,冯德顺)
用BJ-100矩形波导以主模传输10 GHz的微波信号,则
①求λc、λg、β和波阻抗Z w。

②若波导宽边尺寸增加一倍,上述各量如何变化?
③若波导窄边尺寸增大一倍,上述各量如何变化?
④若尺寸不变, 工作频率变为15GHz,上述各量如何变化?
2.10 已知矩形波导的尺寸为a×b=23mm×10 mm, 试求:
①传输模的单模工作频带。

②在a, b不变情况下, 如何才能获得更宽的频带?。

相关文档
最新文档