2018年高考全国1卷理科数学
18年高考真题——理科数学(全国1卷)
![18年高考真题——理科数学(全国1卷)](https://img.taocdn.com/s3/m/5c520bb0b9d528ea81c7794b.png)
2018年普通高等学校招生全国统一考试数学(理)(全国I 卷)一.选择题(共12 小题,每小题 5 分,共60 分。
在每小题列出的四个选项中,选出符合题目要求的一项)1.设1 iz 2i1 i,则| z|()(A)0 (B)12(C)1 (D) 22.已知集合 2A x | x x 2 0 ,则e R A ()(A )x| 1 x 2 (B)x| 1 x 2 (C)x| x 1 x | x 2 (D)x |x 1 x|x 2 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。
为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如右饼图。
则下面结论中不正确的是()(A )新农村建设后,种植收入减少(B)新农村建设后,其他收入增加了一倍以上(C)新农村建设后,养殖收入增加了一倍(D)新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.设S n 为等差数列a n 的前n项和,若3S3 S2 S4 ,a1 2,则a5 ()(A )12 (B)10 (C)10 (D)125.设函数 3 1 2f x x a x ax,若f x 为奇函数,则曲线y f x 在点0,0 处的切线方程为()(A)y 2x (B)y x (C)y 2x (D)y x 6.在ABC 中,AD 为BC 边上的中线, E 为AD 的中点,则EB ()(A )3 1AB AC (B)4 41 3AB AC (C)4 43 1AB AC (D)4 41 3AB AC4 47.已知正方体的棱长为1,每条棱所在直线与平面所成的角相等,则截此正方体所得截面面积的最大值为()(A )3 34 (B)2 33(C)3 24(D)328.设抛物线 C : 2 4y x 的焦点为F ,过点2,0 且斜率为23的直线与 C交于M , N 两点,则FM FN ()(A)5 (B)6 (C)7 (D)89.已知函数f xxe xln x x 0,g x f x x a 。
2018年高考数学试卷1(理科)
![2018年高考数学试卷1(理科)](https://img.taocdn.com/s3/m/999ddae6f18583d0486459a4.png)
2018年高考试卷理科数学卷本试卷分选择题和非选择题两部分。
全卷共5页,总分值150分,考试时间120分钟。
第I 卷〔共50分〕注意事项:1.答题前,考生务必将自己的、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。
2.每题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
参考公式:球的外表积公式 棱柱的体积公式24S R π= V Sh =球的体积公式 其中S 表示棱柱的底面积,h 表示棱柱的高343V R π= 棱台的体积公式其中R 表示球的半径 11221()3V h S S S S =++棱锥的体积公式 其中12,S S 分别表示棱台的上、下底面积,13V Sh = h 表示棱台的高其中S 表示棱锥的底面积,h 表示棱锥的高 如果事件,A B 互斥,那么 ()()()P A B P A P B +=+一、选择题:本大题共10小题,每题5分,共50分.在每题给出的四个选项中,只有一项是符合题目要求的.1.〔原创〕设函数,0,(),0,x x f x x x ⎧≥⎪=⎨-<⎪⎩ 假设()(1)2f a f +-=,则a =〔 〕A .– 3B .±3C .– 1D .±12. 〔原创〕复数226(12)a a a a i --++-为纯虚数的充要条件是( )A.2a =-B.3a =C.32a a ==-或D. 34a a ==-或3. 〔原创〕甲,乙两人分别独立参加某高校自主招生考试,假设甲,乙能通过面试的概率都为23,则面试结束后通过的人数ξ的数学期望E ξ是( ) A.43 B.119C.1D.894. 〔改编〕右面的程序框图输出的结果为〔 〕.62A .126B .254C .510D5. 〔改编〕已知直线l ⊥平面α,直线m ⊂平面β,下面有三个命题: ①//l m αβ⇒⊥;②//l m αβ⊥⇒;③//l m αβ⇒⊥ 其中假命题的个数为〔 〕.3A .2B .1C .0D6. 〔改编〕已知函数f (x )的图象如右图所示,则f (x )的解析式可能是〔 〕A .()x x x f ln 22-=B .()x x x f ln 2-=C .||ln 2||)(x x x f -=D .||ln ||)(x x x f -=7. 〔原创〕等差数列{}n a 的前n 项和为n S ,且满足548213510S a a -+=,则以下数中恒为常数的是( )A.8aB. 9SC. 17aD. 17S8. 〔改编〕已知双曲线2222:1(,0)x y C a b a b-=>的左、右焦点分别为1F ,2F ,过2F 作双曲线C 的一条渐近线的垂线,垂足为H ,假设2F H 的中点M 在双曲线C 上,则双曲线C 的离心率为〔 〕A .2B . 3C .2D .39. 〔原创〕已知,x y 满足不等式00224x y x y t x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩,且目标函数96z x y =+最大值的变化范围[]20,22,则t 的取值范围( )A.[]2,4B.[]4,6C.[]5,8D. []6,710. 〔改编〕假设函数32()|1|f x x a x a R =+-∈,则对于不同的实数a ,则函数()f x 的单调区间个数不可能是( )A.1个B. 2个C.3个D.5个第II 卷〔共100分〕二、填空题:本大题共7小题,每题4分,共28分。
2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)
![2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)](https://img.taocdn.com/s3/m/1d6e38fa48649b6648d7c1c708a1284ac9500547.png)
2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=+2i,则|z|=()A.0B.C.1D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5B.6C.7D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 11.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3C.2D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018年全国高考新课标1卷理科数学试题(解析版)
![2018年全国高考新课标1卷理科数学试题(解析版)](https://img.taocdn.com/s3/m/790e99d7c77da26924c5b037.png)
高考真题高三数学2018 年普通高等学校招生全国统一考试新课标 1 卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12 小题,每小题 5 分,共60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1-i1.设z=1+i+2i ,则|z|=12A.0 B .C .1D . 2解析:选 C z= 1-i1+i+2i=-i+2i=i2.已知集合A={x|x 2-x-2>0} ,则?R A =R A =A.{x|-1<x<2} B .{x|-1 ≤x≤2} C .{x|x<-1} ∪{x|x>2} D .{x|x ≤-1} ∪{x|x ≥2} 解析:选 B A={x|x<-1 或x>2}3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半解析:选 A4.设S n 为等差数列{a n} 的前n 项和,若3S3=S2+S4,a1=2,则a5=A.-12 B.-10 C.10 D.12解析:选∵3(3a1+3d)=(2a 1+d )+(4a 1+6d) a 1=2 ∴d=-3 a 5=-105.设函数f(x)=x 3+(a-1)x 2+ax,若f(x) 为奇函数,则曲线y=f(x) 在点(0,0) 处的切线方程为A.y=-2x B.y=-x C.y=2x D.y=x解析:选 D ∵f(x) 为奇函数∴a=1 ∴f(x)=x 3+x f ′(x) =3x2+1 f ′(0)=1 故选 D→= 6.在ΔABC中,AD为BC边上的中线, E 为AD的中点,则EB3→- A.AB4 14→B.AC14→-AB34→C.AC34→+AB14→D.AC14→+AB3→AC4共7 页第1页高考真题高三数学→=- 1 →+B→D)=- 1→- 1→=- 1→-1→-A→B)= 3→- 1→解析:选A结合图形,EB (BA BA BC BA (AC AB AC2 2 4 2 4 4 47.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为A.2 17 B.2 5 C.3 D.2解析:选B所求最短路径即四份之一圆柱侧面展开图对角线的长28.设抛物线C:y =4x 的焦点为F,过点(–2,0)且斜率为23→→的直线与C交于M,N两点,则FM·FN=A.5 B.6 C.7 D.823 解析:选D F(1,0) ,MN方程为y=→=(0,2),FN→=(3,4) (x+2), 代入抛物线方程解得交点M(1,2),N(4,4), 则FM∴F→M·→F N=89.已知函数f(x)= e x,x ≤0x,x ≤0lnx ,x>0,g(x)=f(x)+x+a .若g(x)存在 2 个零点,则 a 的取值范围是A.[ –1,0)B.[0 ,+∞)C.[ –1,+∞)D.[1 ,+∞)解析:选C g(x)=0 即f(x)=-x-a ,即y=f(x) 图象与直线y=-x-a 有2 个交点,结合y=f(x) 图象可知-a<1 10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p1,p2,p3,则A.p1=p2 B.p1=p3C.p2=p3 D.p1=p2+p3解析:选A∵AC=3,AB=4,∴BC=5,∴1 3 1AC= AB=2 ,,2 2 21 5BC=2 2∴以AC和AB为直径的两个半圆面积之和为12×π×(32)1 252 2+ ×π×2 =π2 8∴以BC为直径的半圆面积与三角形ABC的面积之差为12×π×(5)22-1 25×3×4= π-6 ;2 8∴两个月牙形(图中阴影部分)的面积之和等于258258π-( π-6)=6= ΔABC面积∴p1=p22x- y 2 =1 ,O为坐标原点, F 为C的右焦点,过 F 的直线与 C 的两条渐近线的交点分别11.已知双曲线C:3为M、N.若ΔOMN为直角三角形,则|MN|=共7 页第2页高考真题高三数学32A.B.3 C.2 3 D.4解析:选 B 依题F(2,0), 曲线C的渐近线为y=±3x,MN 的斜率为3,方程为y= 3(x-2), 联立方程组解得33 M( ,-23),N(3, 3), ∴|MN|=3 212.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为3 34 A.B.2 33C.3 24D.32解析:选 A 如图正六边形与正方体每条棱缩成角相等。
2018高考数学全国1卷1(理科数学)
![2018高考数学全国1卷1(理科数学)](https://img.taocdn.com/s3/m/53cd4ab528ea81c758f578af.png)
2018年普通高等学校招生全国统一考试(全国I 卷理科数学)一、选择题:本体共12小题,每小题5分,共60分,在每小题给出得四个选项中,只有一项就是符合题目要求得。
1.设i i Z +-=11+i 2,则Z =( )A .0B .21C .1D .22.已知集合A ={x |x 2-x -2<0,则∁R A =() A .{x |-1<x <2} B .{x |-1≤x ≤2}C .{x |x <-1}∪{x |x>2}D .{x |x ≤-1}∪{x |x ≥2}3.某地区经过一年得新农村建设,农村得经济收入增加了一倍,实现翻番,为更好地了解该地区农村得经济收入变化情况,统计了该地区新农村建设前后农村得经济收入构成比例,得到如下饼图:则下面结论中不正确得就是( )A .新农村建设后,种植收入减少B .新农村建设后,其她收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入得总与超过了经济收入得一半4.记n S 为等差数列{a n }得前n 项与4233S S S +=,若,21=a ,则=5a ( )A .-12B .-10C .10D .12 5.设函数()()ax x a x x f +-+=231,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处得切线方程为( )A .y = -2xB .y = -xC .y = 2xD .y = x6.在△ABC 中,AD 为BC 边上得中线,E 为AD 得中点,则→EB =( )A .43AB -41AC B .41AB -43ACC .43AB +41ACD .41AB +43AC 7.某圆柱得高为2,底面周长为16,其三视图如下图,圆柱表面上得点M 在正视图上得对应点为A ,圆柱表面上得点N 在左视图上得对应点为B ,则此圆柱侧面上,从M 到N 得路径中,最短路径得长度为( )A .172B .52C .3D .28.设抛物线C :y 2=4x 得焦点为F ,过点(-2,0)且斜率为32得直线与C 交于M ,N 两点,则=•→→FN FM ( )A .5B .6C .7D .89.已知函数()=x f ⎩⎨⎧≤.0,ln ,0, x x x e x ,()()a x x f x g ++=,若()x g 存在2个零点,则a 得取值范围就是( )A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)10.下图来自古希腊数学家波克拉底研究得几何图形,此图由三个半圆构成,三个半圆得直径分别为直角三角形ABC 得斜边BC ,直角边AB ,AC ,△ABC 得三边所围成得区域记为I ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自I ,Ⅱ,Ⅲ得概率分别记为321,,P P P ,则( )A .1P =2PB .1P =3PC .2P =3PD .1P =2P +3P11.已知双曲线C :1322=-y x ,O 为坐标原点,F 为C 得右焦点,过F 得直线与C 得两条渐近线得焦点分别为M ,N ,若△OMN 为直角三角形,则|MN |=( )A .23B .3C .32D .23 12.已知正方体得棱长为1,每条棱所在直线与平面α所成得角都相等,则α截此正方体所得截面面积得最大值为( )A .343B .332C .243D .23 二、填空题:本题共4小题,每小题5分,共20分。
2018高考数学全国1卷1(理科数学)(最新整理)
![2018高考数学全国1卷1(理科数学)(最新整理)](https://img.taocdn.com/s3/m/888005102cc58bd63086bdbb.png)
2018年普通高等学校招生全国统一考试(全国I 卷理科数学)一、选择题:本体共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设+,则=()iiZ +-=11i 2Z A .0B .C .1D .2122.已知集合A ={x |x 2-x -2<0,则∁R A =()A .{x |-1<x <2}B .{x |-1≤x≤2}C .{x |x <-1}∪{x |x>2}D .{x |x≤-1}∪{x |x≥2}3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记为等差数列{a n }的前n 项和,若,,则()n S 4233S S S +=21=a =5a A .-12B .-10C .10D .125.设函数,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线()()ax x a x x f +-+=231方程为()A .y = -2xB .y = -xC .y = 2xD .y = x6.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则=()→EB A .-B .-43AB41AC 41AB43ACC .+D .+43AB41AC 41AB43AC7.某圆柱的高为2,底面周长为16,其三视图如下图,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则此圆柱侧面上,从M 到N 的路径中,最短路径的长度为()A .B .C .3D .2172528.设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为的直线与C 交于M ,N 两点,32则()=∙→→FN FM A .5B .6C .7D .89.已知函数,,若存在2个零点,则a 的取()=x f ⎩⎨⎧≤.0,ln ,0, x x x e x ()()a x x f x g ++=()x g 值范围是()A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)10.下图来自古希腊数学家波克拉底研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,△ABC 的三边所围成的区域记为I ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自I ,Ⅱ,Ⅲ的概率分别记为,则()321,,P P P A .= B .= C .=D .=+1P 2P 1P 3P 2P 3P 1P 2P 3P11.已知双曲线C :,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两1322=-y x 条渐近线的焦点分别为M ,N ,若△OMN 为直角三角形,则|MN |=()A .B .3C .D .23322312.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A .B .C .D .34333224323二、填空题:本题共4小题,每小题5分,共20分。
2018年全国高考新课标1卷理科数学试题(解析版)
![2018年全国高考新课标1卷理科数学试题(解析版)](https://img.taocdn.com/s3/m/48631d4ffad6195f312ba6ec.png)
2018年普通高等学校招生全国统一考试新课标1卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设z=1-i1+i +2i ,则|z|=A .0B .12 C .1 D .2 解析:选C z=1-i1+i +2i=-i+2i=i 2.已知集合A={x|x 2-x-2>0},则∁R A =A .{x|-1<x<2}B .{x|-1≤x ≤2}C .{x|x<-1}∪{x|x>2}D .{x|x ≤-1}∪{x|x ≥2} 解析:选B A={x|x<-1或x>2}3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半解析:选A4.设S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5= A .-12B .-10C .10D .12解析:选 ∵3(3a 1+3d)=(2a 1+d )+(4a 1+6d) a 1=2 ∴d=-3 a 5=-105.设函数f(x)=x 3+(a-1)x 2+ax ,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为 A .y=-2xB .y=-xC .y=2xD .y=x解析:选D ∵f(x)为奇函数 ∴a=1 ∴f(x)=x 3+x f′(x)=3x 2+1 f′(0)=1 故选D 6.在ΔABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →= A .34AB → - 14AC →B . 14AB → - 34AC →C .34AB → + 14AC →D . 14AB → + 34AC →解析:选A 结合图形,EB →=- 12(BA →+BD →)=- 12BA →-14BC →=- 12BA →-14(AC →-AB →)=34AB → - 14AC → 7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .2 5C .3D .2解析:选B 所求最短路径即四份之一圆柱侧面展开图对角线的长8.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM →·FN →= A .5B .6C .7D .8解析:选D F(1,0),MN 方程为y=23 (x+2),代入抛物线方程解得交点M(1,2),N(4,4),则FM →=(0,2),FN →=(3,4) ∴FM→·FN →=8 9.已知函数f(x)= ⎩⎪⎨⎪⎧e x , x ≤0lnx ,x>0,g(x)=f(x)+x+a .若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)解析:选C g(x)=0即f(x)=-x-a ,即y=f(x)图象与直线y=-x-a 有2个交点,结合y=f(x)图象可知-a<110.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p1,p2,p3,则A .p1=p2B .p1=p3C .p2=p3D .p1=p2+p3解析:选A ∵AC=3,AB=4,∴BC=5,∴12AC=32,12AB=2 , 12BC=52∴以AC 和AB 为直径的两个半圆面积之和为12×π×(32)2+12×π×22=258π∴以BC 为直径的半圆面积与三角形ABC 的面积之差为12×π×(52)2- 12×3×4=258π-6; ∴两个月牙形(图中阴影部分)的面积之和等于258π-(258π-6)=6=ΔABC 面积 ∴p1=p211.已知双曲线C :x 23 - y 2 =1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N.若ΔOMN 为直角三角形,则|MN|= A .32B .3C .2 3D .4解析:选B 依题F(2,0),曲线C 的渐近线为y=±33x,MN 的斜率为3,方程为y=3(x-2),联立方程组解得M(32,- 32),N(3,3),∴|MN|=312.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 A .334B .233C .324D .32解析:选A 如图正六边形与正方体每条棱缩成角相等。
2018年全国1卷理科数学高考原题
![2018年全国1卷理科数学高考原题](https://img.taocdn.com/s3/m/ae3e9e1b87c24028915fc3d8.png)
2018年普通高等学招生全国统一考试(全国1卷)理科数学一、选择题:本题有12小题,每小题5分,共60分。
1、设z=,则|z|= ()A、0B、C、1D、2、已知集合A={x|x2-x-2>0},则A= ()A、{x|-1<x<2}B、{x|-1x2}C、{x|x<-1}∪{x|x>2}D、{x|x-1}∪{x|x2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:()A、新农村建设后,种植收入减少。
B、新农村建设后,其他收入增加了一倍以上。
C、新农村建设后,养殖收入增加了一倍。
D、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
4、记Sn 为等差数列{an}的前n项和,若3S3=S2+S4,a1=2,则a5= ()A、-12B、-10C、10D、125、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:()A、y=-2xB、y=-xC、y=2xD、y=x6、在ABC中,AD为BC边上的中线,E为AD的中点,则=()A、--B、--C、-+D、-7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A、B、C、3D、28.设抛物线C:y²=4x的焦点为F,过点(-2,0)且斜率为的直线与C交于M,N两点,则·= ()A.5B.6C.7D.89.已知函数f(x)=g(x)=f(x)+x+a,若g(x)存在2个零点,则a的取值范围是()A. [-1,0)B. [0,+∞)C. [-1,+∞)D. [1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形。
2018年全国高考理科数学1卷
![2018年全国高考理科数学1卷](https://img.taocdn.com/s3/m/7459e966b0717fd5370cdc6a.png)
2018年普通高等学校招生全国统一考试理科数学Ⅰ注意事项:1.答卷前,考生务必将自己的姓名,准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 2i1i1++-=z ,则=z ( ) A .0 B .21C .1D .22.已知集合{}022>--=x x x A ,则=A R C ( )A .{}21<<-x xB .{}21≤≤-x xC .{}{}21>-<x x x xD .{}{}21≥-≤x xx x3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入 变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如图所示的饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记n S 为等差数列{}n a 的前n 项和. 若4233S S S +=,21=a ,则=5a ( ) A .12-B .10-C .10D .125.设函数ax x a x x f +-+=23)1()(. 若)(x f 为奇函数,则曲线)(x f y =在点)00(,处的切线方程为( ) A .x y 2-=B .x y -=C .x y 2=D .x y =6.在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则=( ) A .4143- B .AC AB 4341- C .AC AB 4143+ D .AC AB 4341+ 7.某圆柱的高为2,底面周长为16,其三视图如图. 圆柱表面上的点M 在 正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B , 则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A .172 B .52 C .3 D .28.设抛物线C :x y 42=的焦点为F ,过点)02(,-且斜率为32的直线与C 交于M ,N 两点,则 =⋅( ) A .5 B .6 C .7 D .89.已知函数⎩⎨⎧>≤=0ln 0e )(x x x xf x ,,,a x x f xg ++=)()(. 若)(x g 存在2个零点,则a 的取值范围是( )A .)01[,-B .)0[∞+,C .)1[∞+-,D .)1[∞+,10.如图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆 构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC ∆的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分另记为1P ,2P ,3P ,则( ) A .21P P =B .31P P =C .32P P =D .321P P P +=11.已知双曲线C :1322=-y x ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别 为M ,N . 若OMN ∆为直角三角形,则=MN ( ) A .23 B .3 C .32 D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值 为( ) A .433 B .332 C .423 D .23二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+-≤--001022y y x y x ,则y x z 23+=的最大值为_____________.14.记n S 为数列{}n a 的前n 项和. 若12+=n n a S ,则=6S _____________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有__________种.(用数字作答)16.已知函数x x x f 2sin sin 2)(+=,则)(x f 的最小值是__________ .三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答. (一)必考题:共60分17.(本小题满分12分)在四边形ABCD 中,︒=∠90ADC ,︒=∠45A ,2=AB ,5=BD . (Ⅰ)求ADB ∠cos ;(Ⅱ)若22=DC ,求BC .绝密★启用前%4%6%60%30种植收入其他收入第三产业收入养殖收入建设前经济收入构成比例 %5%28%37%30种植收入其他收入第三产业收入养殖收入建设后经济收入构成比例AB18.(本小题满分12分)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把DFC ∆ 折起,使点C 到达点P 的位置,且BF PF ⊥. (Ⅰ)证明:平面⊥PEF 平面ABFD ; (Ⅱ)求DP 与平面ABFD 所成角的正弦值.19.(本小题满分12分)设椭圆C :1222=+y x的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的 坐标为)02(,.(Ⅰ)当l 与x 轴垂直时,求直线AM 的方程; (Ⅱ)设O 为坐标原点,证明:OMB OMA ∠=∠.20.(本小题满分12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验, 如检验出不合格品,则更换为合格品. 检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是 否对余下的所有产品作检验. 设每件产品为不合格品的概率都为p (10<<p ),且各件产品是否为不合格 品相互独立.(Ⅰ)记20件产品中恰有2件不合格品的概率为)(p f ,求)(p f 的最大值点0p ;(Ⅱ)现对一箱产品检验了20件,结果恰有2件不合格品,以(Ⅰ)中确定的0p 作为p 的值. 已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用. (ⅰ)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求X E ; (ⅱ)以检验费用与赔偿费用和的期望值作为决策依据,是否该对这箱余下的所有产品作检验?21.(本小题满分12分)已知函数x a x xx f ln 1)(+-=. (Ⅰ)讨论)(x f 的单调性;(Ⅱ)若)(x f 存在两个极值点1x ,2x ,证明:2)()(2121-<--a x x x f x f .(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分. 22.[选修44-:坐标系与参数方程](本小题满分10分)在直角坐标系xOy 中,曲线1C 的方程为2+=x k y .以坐标原点为极点,x 轴的正半轴为极轴建立极坐 标系,曲线2C 的极坐标方程为03cos 22=-+θρρ. (Ⅰ)求2C 的直角坐标方程;(Ⅱ)若1C 与2C 有且仅有三个公共点,求1C 的方程.23.[选修54-:不等式选讲](本小题满分10分)已知11)(--+=ax x x f .(Ⅰ)当1=a 时,求不等式1)(>x f 的解集;(Ⅱ)若)10(,∈x 时不等式x x f >)(成立,求a 的取值范围.ABCD E PF参考答案一、选择题二、填空题三、解答题17.解:(Ⅰ)ABD ∆中,由正弦定理得,ADBABA BD ∠=∠sin sin ,∴ADB∠=︒sin 245sin 5,∴52sin =∠ADB , ∵︒=∠<∠90ADC ADB ,∴523sin 1cos 2=∠-=∠ADB ADB .(Ⅱ)52sin )90cos()cos(cos =∠=∠-︒=∠-∠=∠ADB ADB ADB ADC BDC , BDC ∆中,由余弦定理得,25cos 2222=∠⨯⨯-+=BDC DC BD DC BD BC∴5=BC .18.解:(Ⅰ)证明:∵ABCD 为正方形,∴BC AD //,BF AD //,∵E ,F 分别为AD ,BC 的中点, ∴AB EF //, ∴EF AD ⊥, ∵BF PF ⊥, ∴AD PF ⊥, ∵F PF EF = , ∴⊥AD 平面PEF , ∵⊂AD 平面ABFD , ∴平面⊥PEF 平面ABFD .(Ⅱ)过点P 作EF PH ⊥,垂足为H ,连接DH ,设正方形边长为a 2.则a PD 2=,a PF =,a DE =,a EF 2=,∵⊥AD 平面PEF ,⊂PE 平面PEF ,⊂PH 平面PEF , ∴PE AD ⊥,PH AD ⊥,∴a DE PD PE 322=-=,∴222EF PF PE =+,∴︒=∠90EPF ,︒=∠30PEF ,∴a PH 23=, ∵EF PH ⊥,E EF AD = ,∴⊥PH 平面ABFD ,∴PDH ∠就是DP 与平面ABFD 所成的角, 又43sin ==∠PD PH PDH , ∴DP 与平面ABFD 所成角的正弦值是43. 19.解:(Ⅰ)焦点为)01(,F .当l 与x 轴垂直时,l 方程为1=x ,代入椭圆C 的方程得1212=+y , ∴A 的坐标为⎪⎪⎭⎫ ⎝⎛±221,, ∴AM 的斜率为22=AM k 或22-=AM k ,∴直线AM 的方程为222-=x y 或222+-=x y . (Ⅱ)设)(11y x A ,,)(22y x B ,.直线l 斜率不存在时,方程为1=x ,代入椭圆C 的方程得212=y , ∴021=+y y ,又直线AM ,BM 的斜率分别为11120y y k AM -=--=,同理21120y y k BM -=--=。
2018年普通高等学校招生全国统一考试理科数学试题(1、2、3卷)参考答案
![2018年普通高等学校招生全国统一考试理科数学试题(1、2、3卷)参考答案](https://img.taocdn.com/s3/m/96a7aa07aaea998fcc220ea4.png)
2502018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 CBABD ABDCA BA第Ⅱ卷(非选择题 90分)二、填空题(共20分)13.6 14.63- 15.16 16.2-三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分) 解:(1)在ABD ∆中,由正弦定理得sin sin BD ABA ADB=∠∠. 由题设知,52sin 45sin ADB=︒∠,∴sin =5ADB ∠.由题设知,90ADB ∠<︒,∴cos ADB ∠==.(2)由题设及(1)知,cos sin 5BDC ADB ∠=∠=. 在BCD ∆中,由余弦定理得2222cos BC BD DC BD DC BDC=+-⋅∠25825255=+-⨯⨯=.∴5BC =.18.(本小题满分12分) 解:(1)由已知可得,BF ⊥PF ,BF ⊥EF ,∴BF ⊥平面PEF .又BF ⊂平面ABFD , ∴平面PEF ⊥平面ABFD . (2)作PH ⊥EF ,垂足为H . 由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF 的方向为y 轴正方向,BF 为单位长,建立如图所示的空间直角坐标系H −xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,∴PE.又PF =1,EF =2,∴PE ⊥PF .可得3,22PH EH ==,且3(0,0,0),(0,0,1,,0)22H P D -,3(1,22DP =.3(0,0,)2HP =为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则3sin 4HP DP HP DPθ⋅==⋅. ∴DP 与平面ABFD所成角的正弦值为4. 19.(本小题满分12分) 解:(1)由已知得(1,0)F ,l 的方程为x =1. 由已知可得,点A的坐标为(1,)2或(1,2-. ∴AM 的方程为20x -=或20x --=.(2)当l 与x 轴重合时, 0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴OMA OMB ∠=∠.251当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,且11(,)A x y ,22(,)B x y,则12x x MA ,MB 的斜率之和为121222MA MB y yk k x x +=+--. 由1122,y kx k y kx k =-=-得 []()()12121223()422MA MB k x x x x k k x x -+++=--.将(1)(0)y k x k =-≠代入2212x y +=得 2222(21)4220k x k x k +-+-=. ∴22121222422=,2121k k x x x x k k -+=++,∴[]121223()4k x x x x -++3332441284021k k k k k k --++==+. 从而0MA MB k k +=,∴MA ,MB 的倾斜角互补, ∴OMA OMB ∠=∠. 综上,OMA OMB ∠=∠. 20.(本小题满分12分) 解:(1)20件产品中恰有2件不合格品的概率为221820()(1)f p C p p =-,且 21821720()[2(1)18(1)]f p C p p p p '=---217202(110)(1)C p p p =--.令()0f p '=,得0.1p =. 当(0,0.1)p ∈时,()0f p '>; 当(0.1,1)p ∈时,()0f p '<. ∴()f p 的最大值点为0.1p =. (2)由(1)知,0.1p =.(i )令Y 表示余下的180件产品中的不合格品件数,依题意知(180,0.1)Y B ,202254025X Y Y =⨯+=+.∴(4025)4025490EX E Y EY =+=+=.(ii )如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于400EX >,∴应该对余下的产品作检验. 21.(本小题满分12分)解:(1)()f x 的定义域为(0,)+∞,且22211()1a x ax f x x x x -+'=--+=-.(i )若2a ≤,则()0f x '≤,当且仅当2,1a x ==时,()0f x '=, ∴()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,2a x -=或2a x +=.当2a a x ⎛⎛⎫+∈+∞⎪ ⎪⎝⎭⎝⎭时,()0f x '<;当x∈⎝⎭时,()0f x '>. ∴()f x 在⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭单调递减,在⎝⎭单调递增.(2)由(1)知,()f x 存在两个极值点时,当且仅当2a >.由于()f x 的两个极值点12,x x 满足21=0x a x -+,∴121x x =,不妨设12x x <,则21x >. 1212()()f x f x x x --121212ln ln 11x x a x x x x -=--+-1212ln ln 2x x a x x -=-+-2522222ln 21x ax x -=-+-,∴1212()()2f x f x a x x -<--等价于 22212ln 0x x x -+<. 设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)=0g ,从而当(1,)x ∈+∞时,()0g x <. ∴22212ln 0x x x -+<,即 1212()()2f x f x a x x -<--.(二)选考题:22. (本小题满分10分)[选修4—4:坐标系与参数方程]解:(1)由cos ,sin x y ρθρθ==得2C 的直角坐标方程为22(1)4x y ++=. (2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为2,2=,解得43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,2=,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为423y x =-+.23.(本小题满分10分) [选修4—5:不等式选讲] 解:(1)当1a =时,()11f x x x =+--,即2(1),()2(11),2(1).x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩∴不等式()1f x >的解集为1,2⎛⎫+∞⎪⎝⎭. (2)当(0,1)x ∈时11x ax x +-->成立等价于当(0,1)x ∈时1ax -<1成立. 若0a ≤,则当(0,1)x ∈时1ax -≥1; 若a >0,1ax -<1的解集为20x a<<,∴21a≥,∴02a <≤. 综上,a 的取值范围为(]0,2.2532018年普通高等学校招生全国统一考试(全国卷Ⅱ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 DABBA ABCCA CD第Ⅱ卷(非选择题 90分)二、填空题(共20分) 13.2y x = 14.9 15.12-16.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分)解:(1)设{a n }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.∴{a n }的通项公式为a n =2n –9.(2)由(1)得S n =n 2–8n =(n –4)2–16.∴当n =4时,S n 取得最小值,最小值为–16.18.(本小题满分12分)解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 =–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为 =99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠. 理由如下:(i )从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y =–30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii )从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠. 以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分. 19.(本小题满分12分)解:(1)由已知得(1,0)F ,l 的方程为为(1)(0)y k x k =-≠. 设11(,)A x y ,22(,)B x y .由2(1),4y k x y x =-⎧⎨=⎩得22222(2)0k x k x k -++=. ∴ 216160k ∆=+>,212224=k x x k++. ∴AB AF BF =+212244(1)(+1)=k x x k +=++.由题设知2244=8k k+,解得k =–1(舍去),k =1.∴l 的方程为y =x –1.(2)由(1)得AB 的中点坐标为(3,2),∴AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+. 设所求圆的圆心坐标为(x 0,y 0),则00220005,(1)(1)16,2y x y x x =-+⎧⎪⎨-++=+⎪⎩ 解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩∴所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=. 20.(本小题满分12分) 解:(1)∵4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =254连结OB .因为2AB BC AC ==,所以ABC ∆为等腰直角三角形,且OB AC ⊥,122OB AC ==.由222OP OB PB +=知OP OB ⊥. 由OP OB ⊥,OP AC ⊥知 OP ⊥平面ABC .(2)如图,以O 为坐标原点,OB 的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得(0,0,0),(2,0,0),(0,2,0)O B A -,(0,2,0)C,(0,0,P ,(0,2,AP =.取平面P AC 的法向量(2,0,0)OB =. 设(,2,0)(02)M a a a -<≤,则(,4,0)AM a a =-.设平面P AM 的法向量为(,,)x y z m =.由0,0,AP AM ⎧⋅=⎪⎨⋅=⎪⎩m m即20,(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩得,).y a x z a ⎧=⎪⎨-=⎪⎩可取),,)a a -m =.所以cos OB <>=m,由已知得cos 2OB <>=m,.=. 解得4a =或4a=-(舍去).∴4(,)333-m =.又∵(0,2,PC =-,∴3cos PC <>=m, ∴PC 与平面P AM 所成角的正弦值为4. 21.(本小题满分12分)解:(1)当a =1时,()1f x ≥等价于2(1)10x x e -+-≤.设函数2()(1)1xg x x e-=+-,则22()(21)(1)x x g x x x e x e --'=--+=--. 当1x ≠时,()0g x '<, ∴()g x 在(0,)+∞单调递减. 而(0)0g =,∴当0x ≥时,()0g x ≤,即()1f x ≥.(2)设函数2()1x h x ax e -=-.()f x 在(0,)+∞只有一个零点当且仅当()h x 在(0,)+∞只有一个零点.(i )当0a ≤时,()0h x >,()h x 没有零点;(ii )当a >0时,()(2)x h x ax x e -'=-.当(0,2)x ∈时,()0h x '<;当(2,)x ∈+∞时,()0h x '>.∴()h x 在(0,2)单调递减,在(2,)+∞单调递增.∴2(2)14h ae -=-是()h x 在[0,)+∞的最小值.①若(2)0h >,即214a e <,()h x 在255(0,)+∞没有零点;②若(2)0h =,即214a e =,()h x 在(0,)+∞只有一个零点;③若(2)0h <,即214a e >,由于(0)1h =,∴()h x 在(0,2)内有一个零点, 由(1)知,当0x >时,2x e x >,∴334221616(4)11()a a a a h a e e =-=-34161110(2)a a a>-=->.∴()h x 在(2,4)a 内有一个零点, ∴()h x 在(0,)+∞有两个零点.综上,()f x 在(0,)+∞只有一个零点时,214a e =.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.(本小题满分10分)[选修4-4:坐标系与参数方程] 解:(1)曲线C 的直角坐标方程为221416x y +=. 当cos 0α≠时,l 的直角坐标方程为 (tan )2tan y x αα=+-. 当cos 0α=时,l 的直角坐标方程为x =1. (2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程22(13cos )4(2cos t αα+++ sin )80t α-=.①∵曲线C 截直线所得线段的中点(1,2)在C 内,∴方程①有两个解12,t t ,且1224(2cos sin )13cos t t ααα++=-+. 由参数t 的几何意义得120t t +=.∴2cos sin 0αα+=,于是直线的斜率tan 2k α==-. 22.(本小题满分10分) [选修4—5:不等式选讲] 解:(1)当a =1时,24(1),()2(12),26(2).x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩当1x ≤-时,由()240f x x =+≥得2x ≥-,即21x -≤≤-;当12x -<≤时,()20f x =>; 当2x >时,由()260f x x =-+≥得 3x ≤,即23x <≤. 综上可得()0f x ≥的解集为[]2,3-. (2)()1f x ≤等价于24x a x ++-≥. 而22x a x a ++-≥+,且当x=2时等号成立.∴()1f x ≤等价于24a +≥. 由24a +≥可得6a ≤-或2a ≥. ∴a 的取值范围是(][),62,-∞-+∞.2562018年普通高等学校招生全国统一考试(全国卷Ⅲ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 CDABC ADBCB CB第Ⅱ卷(非选择题 90分)二、填空题(共20分) 13.1214.3- 15.3 16.2 (一)必考题:共60分. 一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合) 1.C解:∵{}[)101,A x x =-≥=+∞,{}012B =,,, ∴ {}1,2AB =,∴选C .2.D解:∵()()212223i i i i i i +-=-+-=+, ∴选D . 3.A解:选A . 4.B解:由已知条件,得2217cos 212sin 1239αα⎛⎫=-=-= ⎪⎝⎭,∴选B .5.C解:由已知条件,得 251031552()2rr r r r r r T C x C x x --+⎛⎫== ⎪⎝⎭,令1034r -=,解得2r =, x 4的系数为22552240rr C C ==, ∴选C .6.A解:由已知条件,得(2,0),(0,2)A B --,∴||AB == 圆22(2)2x y -+=的圆心为(2,0),∴圆心到直线20x y ++=的距离为= ∴点P 到直线20x y ++=的距离的取值范围为d ≤≤+d ≤≤,∴1||[2,6]2ABP S AB d ∆=⋅∈.∴选A . 7.D解:令0x =,得2y =,∴A,B 不能选. 令321424()02y x x x x '=-+=-->,得2x <-或02x <<,即函数在0⎛ ⎝⎭内单调递增, ∴选D . 8.B解:由已知条件知,X ~B (10,p ),且 10p (1-p )=2.4,解得p =0.6或p =0.4. 又由P (X=4)< P (X=6)得,即4466641010(1)(1)C p p C p p -<-,0.5p >,∴p =0.6. ∴选B . 9.C解:由已知条件,得2222cos 44ABC a b c ab CS ∆+-==cos 1sin 22ab C ab C ==,即tan 1C =,∴4C π=.∴选C . 10.B解:如图,ABC ∆为等边三角形,点O 为,,,A B C D 外接球的球心,E 为ABC ∆的重心,点F 为边BC 的中点.当点D 在EO 的延长上,即DE ⊥面ABC 时,三棱锥D ABC -体积取得最大值.V =,5分,.1=2,x,且196π.257258当366x πππ≤+≤时有1个零点,3,629x x πππ+==;当326x πππ<+≤时有1个零点,343,629x x πππ+==; 当192366x πππ<+≤时有1个零点,573=,629x x πππ+=. ∴零点个数为3,∴填3. 16.2解:由已知条件知,抛物线C 的焦点为(1,0)F . 设22121212(,),(,)()44y yA yB y y y ≠,则由A ,F ,B 三点共线,得221221(1)(1)44y y y y -=-,∴12=4y y -. ∵∠AMB =90º,∴221212(1,1)(1,1)44y y MA MB y y ⋅=+-⋅+-,221212(1)(1)(1)(1)44y y y y =+++-⋅-2121(2)04y y =+-=, ∴12=2y y +.∴212221124244y y k y y y y -===+-,∴填2. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. 17.(本小题满分12分) 解:(1)设数列{}n a 的公比为q ,则由534a a =,得2534a q a ==,解得2q =±. ∴12n n a -=或1(2)n n a -=-.(2)由(1)知,122112nn n S -==--或1(2)1[1(2)]123n n n S +-==--+,∴2163mm S =-=或1[1(2)]633m m S =--=(舍), ∴6m =.18.(本小题满分12分) 解:(1)第一种生产方式的平均数为184X =,第二种生产方式平均数为274.7X =,∴12X X >,∴第一种生产方式完成任务的平均时间大于第二种,即第二种生产方式的效率更高. (2)由茎叶图数据得到中位数80m =,∴列联表为(3)()()()()()22n ad bc K a b c d a c b d -=++++,()24015155510 6.63520202020⨯-⨯==>⨯⨯⨯,∴有99%的把握认为两种生产方式的效率有差异. 19.(本小题满分12分) 解:(1)由已知条件知,在正方形ABCD 中,AD CD ⊥.∵正方形ABCD ⊥半圆面CMD ,平面ABCD 半圆面CMD CD =, ∴AD ⊥半圆面CMD .∵CM 在平面CMD 内,∴AD CM ⊥,即CM AD ⊥.259OM (0,0,1)(0,-1,0)0)又∵M 是CD 上异于C ,D 的点, ∴CM MD ⊥.又∵AD DM D =, ∴CM ⊥平面AMD , ∵CM 在平面BMC 内,∴平面AMD ⊥平面(2)由条件知,2ABC S ∆=是常数, ∴当点M 到平面ABCD 的距离.最大,即点M 为弧CD 的中点时,三棱锥M – ABC 体积最大.如图,以CD 中点O 为原点,过点O 且平行于AD 的直线为x 轴,OC ,OM 所在直线为y ,Z 轴建立空间直角坐标系O-xyz ,则由已知条件知,相关点的坐标为 A(2,-1,0),B(2,1,0),M(0,0,1) ,且(0,2,0)AB =,(2,1,1)MA =--.由(1)知,平面MCD 的法向量为(1,0,0)=m .令平面MXB 的法向量为(,,)x y z =n ,则(,,)(0,2,0)=20,(,,)(2,1,1)20AB x y z y MA x y z x y z ⎧⋅=⋅=⎪⎨⋅=⋅--=--=⎪⎩,n n 即0,2y z x ==, ∴取(1,0,2)=n.∴cos ,⋅<>==⋅m nm n m n ,∴sin ,5<>=m n ,即面MAB 与MCD 所成二面角的正弦值.为5.20.(本小题满分12分)解:(1)设直线l 的方程为y kx t =+,则由22,143y kx t x y =+⎧⎪⎨+=⎪⎩消去y ,得222(43)84120k x ktx t +++-=,①由22226416(43)(3)0k t k t ∆=-+->,得2243t k <+.②设1122(,),(,)A x y B x y ,则12,x x 是方程①的两个根,且122843ktx x k -+=+,121226()243ty y k x x t k +=++=+. ∵线段AB 的中点为()()10M m m >,, ∴1228243ktx x k -+==+,121226()2243ty y k x x t m k +=++==+. ∵0m >,∴0t >,0k <,且2434k t k+=-.③由②③得22243434k k k ⎛⎫+-<+ ⎪⎝⎭,解得12k >或12k <-.∵0k <,∴12k <-.(2)∵点()()10M m m >,是线段AB 的中点,且FP FA FB ++=0,∴2FP FM +=0,即2FP FM =-.④ 由已知条件知,()()10M m m >,,()10F ,.令(,)P x y ,则由④得:(1,)2(0,)x y m -=-,即1,2x y m ==-, ∴P 的坐标为(1,2)m -.由于点P 在椭圆上,得214143m +=,解得26034m =或34m =-(舍去),且3(1,)2P -.又222211221,14343x y x y +=+=, ∴两式相减,得2112211234y y x xx x y y -+=--+. 又12123=2,22x x y y m ++==,∴21122112314y y x xk x x y y -+==-=--+, 243744k t k +=-=,∴直线l 的方程为74y x =-+. 将71,4k t =-=代入方程①,得 2285610x x -+=,解得121,11414x x =-=+,1233414414y y =+=-.∴3(2FA x ==+, 32FP =,3(2FB x == ∴=2FA FB FP +,即,,FA FP FB 成等差数列,且该数列的公差28d =±. 另解:(1)设1122(,),(,)A x y B x y ,则222211221,14343x y x y +=+=, 两式相减,得2112211234y y x xk x x y y -+==--+. ∵线段AB 的中点为()()10M m m >,, ∴122x x +=,122y y m +=,34k m=-. 由点()()10M m m >,在椭圆内得21143m +<,即302m <<. ∴12k <-.(2)由题设知(1,0)F .令(,)P x y ,则由FP FA FB ++=0得1122(1,)(1,)(1,)(0,0)x y x y x y -+-+-=,∴1212=3(),()x x x y y y -+=-+. 由得=1,2x y m =-<0. ∴P 的坐标为(1,2)m -.由于点P 在椭圆上,得214143m +=,解得34m =或34m =-(舍去),且3(1,)2P -,且32FP =. (FA x =122x=-,同理222xFB =-.∴12=2222x xFA FB +-+-124322x xFP +=-==,即,,FA FP FB 成等差数列.把34m =代入34k m =-得1k =-,且3(1,)4M∴直线l 的方程为74y x =-+. 把直线方程与椭圆方程联立,消去y 得:2285610x x -+=,于是有121212,28x x x x +==.设成等差数列的公差为d ,则26121122d FB FA x x =-=-==, d =±21.(本小题满分12分)解:由条件知,函数()f x 的定义域为(1,)-+∞.(1)若0a =,则函数()(2)ln(1)2f x x x x =++-,且1()ln(1)11f x x x'=++-+, 2211()1(1)(1)xf x x x x ''=-=+++. ∴(0)0f =,(0)0f '=,(0)0f ''=. ∴当10x -<<时,()0f x ''<,∴当10x -<<时,()f x '单调递减. ∴()(0)0f x f ''>=,∴当10x -<<时,()f x 单调递增, ∴()(0)0f x f <=,即()0f x <. 当x > 0时,()0f x ''>,∴当x > 0时, ()f x '单调递增.∴()(0)0f x f ''>=,∴当x > 0时,()f x 单调递增, ∴()(0)0f x f >=,即()0f x >. 综上可得,当10x -<<时,()f x <0; 当x > 0时,()0f x >. (2)(i )若0a ≥,由(1)知,当x >0时,()(2)ln(1)20(0)f x x x x f ≥++->=,这与x=0是()f x 的极大值点矛盾.(ii )若0a <,设函数2()()2f x g x x ax =++22ln(1)2xx x ax =+-++. 由于当min x ⎧⎪<⎨⎪⎩时,220x ax ++>, ∴()g x 与()f x 符号相同. 又(0)(0)0g f ==,∴0x =是()f x 的极大值点当且仅当0x =是()g x 的极大值点.22212(2)2(12)()12x ax x ax g x x x ax ++-+'=-+++() 22222(461)(1)(2)x a x ax a x x ax +++=+++. 如果610a +>,则当6104a x a+<<-,且m i n 1,x ⎧⎪<⎨⎪⎩时,()0g x '>,∴0x =不是()g x 的极大值点.如果610a +<,则22461=0a x ax a +++存在根10x <.∴当1(,0)x x ∈,且m in 1,x ⎧⎪<⎨⎪⎩时,()0g x '<,∴0x =不是()g x 的极大值点. 如果61=0a +,则322(24)()(1)(612)x x g x x x x -'=+--.当(1,0)x ∈-时,()0g x '>; 当(0,1)x ∈时,()0g x '<. ∴0x =是()g x 的极大值点,从而0x =是()f x 的极大值点.综上,16a =-.(二)选考题:共10分,请考生在第22、23题中任选一题作答。
2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)
![2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)](https://img.taocdn.com/s3/m/dd6891f4284ac850ac024201.png)
绝密★启用前2018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z = A .0 B .12C .1D .22.已知集合2{|20}A x x x =-->,则A =RA .{|12}x x -<<B .{|12}x x -≤≤C {|1}{|2}x x x x <->D .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a ,则5aA .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .28.设抛物线24C y x :的焦点为F ,过点(2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN A .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y :,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若OMN △为直角三角形,则||MN A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .334B .233C .324D .32二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年普通高等学校招生全国统一考试
全国Ⅰ卷 理科数学
一、
选择题:本题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中, 只有一项是符合题目要求的。
1.设i i
i
z 211++-=
,则=||z A.0 B.
2
1
C.1
D. 2
2.已知集合},02|{2
>--=x x x A 则=A C R A. }21|{<<-x x B. }21|{≤≤-x x
C. }2|{}1|{>-<x x x x
D. }2|{}1|{≥-≤x x x x
3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:
则下面结论不正确的是
A.新农村建设后,种植收入减少
B.新农村建设后,其他收入增加了一倍以上
C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记n S 为等差数列}{n a 的前n 项和.若,2,31423=+=a S S S 则=5a A.-12 B.-10 C.10 D.12
5.设函数.)1()(2
3ax x a x x f +-+=若)(x f 为奇函数,则曲线)(x f y =在点)0,0(处的切线方程为
A. x y 2-=
B. x y -=
C. x y 2=
D. x y = 6.在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则=EB
60%
30%
6%
4% 种植收入
第三产业收入 其他收入
养殖收入
建设前经济收入构成比例 37%
30%
28%
5% 种植收入
养殖收入 其他收入
第三产业收入
建设后经济收入构成比例
A.
AC AB 4143- B. AC AB 4
341- C. AC AB 4143+ D. AC AB 4341+
7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表 面上的点N 在左视图上的对应点为B ,则在此圆柱侧 面上,从M 到N 的路径中,最短路径的长度为 A. 172 B. 52 C.3 D.2
8.设抛物线C :x y 42
=的焦点为F ,过点)0,2(-且斜率为
3
2
的直线与C 交于M ,N 两点,则=⋅FN FM
A.5
B.6
C.7
D.8
9.已知函数⎩⎨⎧>≤=,
0,ln ,
0,)(x x x e x f x .)()(a x x f x g ++=若)(x g 存在2个零点,则a 的取值
范围是
A. )0,1[-
B. ),0[+∞
C. ),1[+∞-
D. ),1[+∞ 10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB,AC. ABC ∆的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,321p p p 则
A. 21p p =
B. 31p p =
C. 32p p =
D. 321p p p +=
11.已知曲线C :,13
22
=-y x O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N.若OMN ∆为直角三角形,则=||MN
A
B
A
B C
A.
2
3
B.3
C. 32
D.4 12.已知正方体的棱长为1,每条棱长所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A.
433 B. 332 C. 423 D. 2
3
二、填空题:本题共4小题,每小题5分,共20分.
13.若y x ,满足约束条件⎪⎩
⎪
⎨⎧≤≥+-≤--,0,01,
022y y x y x 则y x z 23+=的最大值为___________________.
14.记n S 为数列}{n a 的前n 项和.若,12+=n n a S 则=6S ___________________.
15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法
共有_______________种.(用数字填写答案)
16.已知函数,2sin sin 2)(x x x f +=则)(x f 的最小值是___________________.
二、 解答题:共70分。
解答题应写出文字说明、证明过程或演算步骤。
第17~21题为
必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一) 必考题:共60分。
17.(12分) 在平面四边形ABCD 中,.5,2,45,90==︒=∠︒=∠BD AB A ADC (1) 求;cos ADB ∠ (2) 若,22=DC 求BC.
18.(12分)
如图,四边形ABCD 为正方形,E ,F 分别 为AD ,BC 的中点,以DF 为折痕把DFC ∆折 起,使点C 到达点P 的位置,且.BF PF ⊥ (1)证明:平面PEF ⊥平面ABFD ;
(2)求DP 与平面ABFD 所成角的正弦值.
19.(12分)
P
A E
D
C
F
B
设椭圆C :12
22
=+y x 的右焦点为F , 过F 的直线l 与C 交于A,B 两点, 点M 的坐标为)0,2(.
(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMB OMA ∠=∠.
20.(12分)
某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为
),10(<<p p 且各件产品是否为不合格品相互独立.
(1)记20件产品中恰有2件不合格品的概率为),(p f 求)(p f 的最大值点0p .
(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.
(ⅰ)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX :
(ⅱ)以检测费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?
21.(12分) 已知函数.ln 1
)(x a x x
x f +-=
(1)讨论)(x f 的单调性;
(2)若)(x f 存在两个极值点,,21x x 证明:
.2)
()(2
121-<--a x x x f x f
(二) 选考题:共10分。
请考生在第22、23题中任选一题作答,如果多做,则按所做的
第一题计分.
22.[选修4-4:坐标系与参数方程](10分)
在直角坐标系xOy 中,曲线1C 的方程为.2||+=x k y 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标极坐标方程为.03cos 22
=-+θρρ (1)求2C 的直角坐标方程;
(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.
23.[选修4-5:不等式选讲](10分) 已知.|1||1|)(--+=ax x x f
(1)当1=a 时,求不等式1)(>x f 的解集;
(2)若)1,0(∈x 时不等式x x f >)(成立,求a 的取值范围.。