LTE 功率控制

合集下载

LTE功率控制

LTE功率控制

LTE 功率控制OFDMA系统如果要使用下行功控,主要用于补偿信道的路径损耗和阴影。

但下行功控和频域调度存在一定的冲突。

●1.系统完全可以通过频域调度的方式避免在那些路径损耗较大的RB进行传输,因此对PDSCH采用下行功率控制就不是很重要了。

●2.采用下行功率控制反而会扰乱下行CQI测量,由于功控补偿了某些RB的路径损耗,UE无法获得真实的下行信道质量信息,从而影响到下行调度的准确性。

LTE的小区公共参考信号CRS,必须每个子帧都发射,而且是跨整个系统带宽的。

根据基站的发射天线数量,小区公共参考信号所占的资源比例在4.8%-14.3%下行物理信号包括:同步信号和参考信号,同步信号又分为主同步信号(PSS)和辅同步信号(SSS),用来做小区的同步,确定唯一的物理小区ID;参考信号分为小区专用参考信号(CRS)和终端专用参考信号(DRS),CRS用来做下行信道估计和测量,DRS还可以用来做UE端的相干检测和解调。

小区专用参考信号CRS在时频资源中的位置与端口数有关,不同的端口数所占用的位置不同。

扩展CP和常规CP也不同。

下行参考信号简介及功能在R9中,下行定义了四种参考信号,分别为分别为小区专用参考信号(C-RS),用户专用参考信号(UE-RS,又称DM-RS),MBSFN参考信号,位置参考信号(P-RS)。

在R10中,下行定义了五种参考信号,分别为小区专用参考信号(C-RS),用户专用参考信号(UE-RS,又称DM-RS),MBSFN参考信号,位置参考信号(P-RS),以及CSI参考信号(CSI-RS)。

在R9与R10中定义的这些参考信号的主要功能及区别如下:Rel9 中:C-RS:用于除了不基于码本的波束赋形技术之外的所有下行传输技术的信道估计和相关解调。

在天线端口{0}或{0,1}或{0,1,2,3}上传输。

UE-RS(D-RS):用于不基于码本的波束赋形技术的信道估计和相关解调。

支持PDSCH的单天线端口传输,在天线端口5或7或8上传输。

LTE功率控制的基本思路范文

LTE功率控制的基本思路范文

LTE功率控制的基本思路1概述根据上行和下行信号的发送特点,LTE物理层定义了相应的功率控制机制。

对于上行信号,终端的功率控制在节电和抑制小区间干扰两方面具有重要意义,因此,上行功率控制是LTE重点关注的部分。

小区内的上行功率控制,分别控制上行共享信道PUSCH、上行控制信道PUCCH、随机接入信道PRACH和上行参考信号SRS。

PRACH信道总是采用开环功率控制的方式。

其它信道/信号的功率控制,是通过下行PDCCH信道的TPC信令进行闭环功率控制。

对于下行信号,基站合理的功率分配和相互间的协调能够抑制小区间的干扰,提高同频组网的系统性能。

严格来说,LTE的下行方向是一种功率分配机制,而不是功率控制。

不同的物理信道和参考信号之间有不同的功率配比。

下行功率分配以开环的方式完成,以控制基站在下行各个子载波上的发射功率。

下行RS 一般以恒定功率发射。

下行共享控制信道PDSCH功率控制的主要目的是补偿路损和慢衰落,保证下行数据链路的传输质量。

下行共享信道PDSCH的发射功率是与RS发射功率成一定比例的。

它的功率是根据UE反馈的CQI与目标CQI的对比来调整的,是一个闭环功率控制过程。

在基站侧,保存着UE反馈的上行CQI值和发射功率的对应关系表。

这样,基站收到什么样的CQI,就知道用多大的发射功率,可达到一定的信噪比(SINR)目标。

2上行功率控制上行功率控制可以兼顾两方面的需求,即UE的发射功率既足够大以满足QoS的要求,又足够小以节约终端电池并减少对其他用户的干扰。

为了实现这个目标,上行链路功率控制必须使自己适应于无线传播信道的特征(包括路径损耗特征、阴影特征和快速衰落特征),并克服来自其他用户的干扰(包括小区内用户的干扰和相邻小区内用户的干扰)。

LTE功率控制室开环功控和闭环功控的组合,这样与纯粹的闭环功控相比,理论上需要的反馈信息量比较少,即只有当LTE UE不能准确估算功率设置时才需要闭环功控。

LTE功率控制技术介绍

LTE功率控制技术介绍

.LTE功率控制技术介绍目录1LTE功率控制概述 (2)2下行功率分配技术 (2)3上行功率控制技术 (3)3.1.1PUSCH (3)3.1.2PUCCH (6)3.1.3SRS (8)3.1.4PRACH (9)1 LTE 功率控制概述LTE 系统中,下行链路采用功率分配方法来确定基站的发送功率,主要目的是保证下行链路传输的有效性。

同时,由于不同的下行物理信道的可靠性、实现方式的差异导致功控需求不同,系统中对不同物理信道的功率分配分开考虑。

上行链路采用功率控制技术来确定用户的发送功率,包含小区内功率控制和小区间功率控制,主要目的是抑制小区间干扰,同时补偿路损与阴影衰落,保证信号达到上行传输的目标信噪比。

其中,小区内功率控制主要为了达到上行传输的目标信噪比,小区间功率控制主要是为了降低小区间的干扰水平。

2 下行功率分配技术ENodeB 决定下行传输的EPRE 。

UE 假设下行导频EPRE 在整个带宽和子帧内是常量,直到不同的导频功率信息到达。

下行导频EPRE 来源于高层配置的Reference-signal-power 参数提供的下行导频传输功率。

而这个下行导频传输功率定义为系统带宽内包含参考信号的所有RE 的功率的线性平均值。

每个OFDM 符号上的PDSCH EPRE 与RS EPRE 的比值用A ρ or B ρ表示,由OFDM 符号的索引值决定,如下表所示。

此外,A ρ和B ρ都是UE 相关参数。

表格 1 一个时隙内OFDM 符号的PDSCH EPRE 与RS EPRE 比值的设置在16QAM ,64QAM ,TRI>1空间复用和多用户MIMO 传输模式下: 当基站侧是4天线的发送分集时,A ρ = )2(log 1010offset -power ++A P δ[dB]; 其他时候,A ρ = A P +offset -power δ[dB]。

其中,A P 是高层配置的UE 相关的参数,由RRC 信令指示;除多用户MIMO 情况offset -power δ是0dB 。

2.LTE 功率控制

2.LTE 功率控制
PowerSCH=ReferenceSignalPwr +SchPwr
MO
参数
小区信道功率配置
信息
SchPwr
ID 所属命令
描述
含义:该参数表示小 区同步信道功率相对 于参考信号的功率偏 置。
MOD CELLCHPWRCFG
LST CELLCHPWRCFG
界面取值范围:3175~3175
单位:0.005分贝
缺省值:0
PHICH 功率控制通过参数DlPcAlgoSwitch 设置。 当子开关PhichInnerLoopPcSwitch 打开时,PHICH 功率控制原理如下: eNodeB 首先由CQI(Channel Quality Indicator)估算出SINRRS,然后根据 SINRRS 和SINRTarget 的差异周期性地调整PHICH 发射功率,适应路径损耗 和阴影衰落的变化。 如果SINRRS 小于SINRTarget,则增大PHICH 发射功率。 反之则减小PHICH 发射功率。 当子开关PhichInnerLoopPcSwitch 关闭时,PHICH 功率通过参数PwrOffset 设置基于小区参考信号功率的偏置。PHICH 发射功率计算公式如下:
1.覆盖:ReferenceSignalPwr设置过大会造成越区覆盖,对其他小区造成干扰; ReferenceSignalPwr设置过小,会造成覆盖不足,出现盲区;
2.干扰:由于受周围小区干扰的影响,ReferenceSignalPwr设置也会不同,干 扰大的地方需要留出更大的干扰余量;
3.信道估计:ReferenceSignalPwr设置会影响信道估计,ReferenceSignalPwr 越大,信道估计精度越高,解调门限越低,接收机灵敏度越高,同时对邻区干 扰也越大;

LTE功率控制综述综述

LTE功率控制综述综述

2019扰协调 小区专属天线端口下的ρ A/ρ B比。其由高层信令 通知的小区专用参数 以及 eNodeB 配置的小区专用 天线端口数目决定。
小区专属天线端口下的ρ A/ρ B比
2019/2/20
2019/2/20
7
用户功率分配和小区间干扰协调
小区专属比值与PDSCH使用的不同传输模式有关。对于16QAM、 64QAM调制、多层空分复用,或多用户MIMO的PDSCH传输: ������ 当UE接收使用4小区特定天线端口发送分集预编码传输的PDSCH数 据时:ρ A= power -offset PA 10log10 (2) 其他情况下:ρ A= power -offset PA 其中,在除了多用户MIMO之外的所有传输模式中, power -offset 均为0; 在指示 B / A基础上,通过高层参数 PA 确定 ρ A的具体数值,得到 基站下行针对用户的PDSCH发射功率。
下行功率分配
在频率和时间上采用恒定的发射功率,基站通过高 层信令指示该发射功率数值。 在LTE系统中,使用每资源单元容量(Transmit Energy per Resource Element, EPRE)来衡量下行 发射功率大小。 下行功率分配方法: 提高参考信号的发射功率(Power Boosting) 与用户调度相结合实现小区间干扰抑制的相关 机制
2019/2/20
5
提高参考信号的发射功率-Power Boosting
ρ A或 ρ B表示每个OFDM符号内的PDSCH EPRE和小区专属RS EPRE的比 值,且ρ A或ρ B是UE专属的。 在包含RS的数据OFDMA的EPRE与小区专属RS EPRE的比值标识用ρ B
表示; 在不包含RS的数据OFDMA的EPRE与小区专属RS EPRE的比值标识用 ρ A表示。

LTE下行功率控制

LTE下行功率控制

LTE下行功率分配与功率控制LTE下行功率控制采用固定功率分配和动态功率控制两种策略:1、固定功率分配:由于不同的物理信道的作用不同,为了让终端能更好的解调公共信道的信息所以采用固定功率分配,公共信道如下:小区参考信号(RS):固定功率分配的基准,根据信道功率分配的原则,所有固定功率分配均由RS功率加偏置分配。

LTE小区功率配置原则:上下行链路平衡公共信道与业务信道平衡能够保证覆盖,降低干扰,保证容量和覆盖平衡TypeA符号和TypeB符号上的PDSCH RE功率尽量相等TypeA符号和TypeB符号上的总功率尽量相等DL-RS-Power=P-10*log(12*NRB)+10*log(1+Pb)DL-RS-Power下行参考信号RS功率P:单天线发射功率Pb:表示PDSCH上RE的功率因子NRB:RB数量与带宽有关后台设置参数:ReferenceSignalPwr:参考信号功率。

同步信号(SCH):RS功率+SchPwr(同步信道功率,建议值:0)PBCH:RS功率+PbchPwr(物理广播信道功率,建议值:-600即-3dB)PCFICH:RS功率+PcfichPwr(物理控制格式指示信道功率,建议值:-600即-3dB)PDCCH(承载小区公共信息的调度信息):PDSCH(公共信息):2、动态功率控制或者固定功率分配:专用信道采用固定或动态功率控制PHICH :承载HARQ的ACK/NACK反馈信息,如果UE对PHICH解调错误率过高,会严重影响用户吞吐率。

所以要保证每个UE有相似的PHICH性能;其可以采用固定功率分配方式,也可以采用动态功率分配方式,通过PhichlnnerLoopPcSwitch参数设置,当PhichlnnerLoopPcSwitch开关关闭的时候,为固定功率分配,PHICH的功率为PowerPHICH= ReferenceSignalPwr+PwrOffset;当PhichlnnerLoopPcSwitch开关开启的时候,PHICH会根据信道质量,来动态调整PHICH的功率,通过测量SINR(由UE上报CQI计算得出)与目标阀值SINR(门限)比较来调整,如下图:PDCCH(承载UE专用信道的调度的信息):当承载小区公共消息在PDSCH上传输的指示,采用固定功率分配,eNodeB通过设置基于小区参考信号功率的固定偏置进行PDCCH功率控制;当承载UE PDSCH专用信息的传输指示,可采用固定功率分配,也可以采用动态功率分配,通过PdcchPcSwitch参数设置,如下图:PdcchPcSwitch:PDCH工控开关,建议值ON(开),DediDciPwrOffset:UE专用搜索空间的DCI功率偏置,建议值:-30,即-3dBPDSCH(承载UE专用信息):A类符号和B类符号功率分别为PPDSCH-A,PPDSCH-B PPDSCH-A=ρA+ ReferenceSignalPwrPPDSCH-B=ρB+ ReferenceSignalPwr下图:红色线表示传输的是公共信息采用固定功率分配,黑色线表示专用信息传输可以固定也可以动态。

lte相对功率控制容限fail

lte相对功率控制容限fail

标题:LTE相对功率控制容限失败的原因及解决方法1. 引言LTE相对功率控制容限(Relative Power Control Range)是LTE系统中常见的一种参数,它用于调整用户设备的发射功率,以保证网络中所有设备的信号质量均衡。

然而,在实际应用中,我们常常会遇到LTE相对功率控制容限失败的情况。

本文将就这一问题展开探讨,并提出解决方法。

2. LTE相对功率控制容限的概念LTE相对功率控制容限是LTE系统中的一个重要参数,它用于控制用户设备的发射功率范围。

当用户设备与基站之间的信号质量发生变化时,LTE系统会根据相对功率控制容限来调整用户设备的发射功率,以保证信号质量的稳定和均衡。

3. LTE相对功率控制容限失败的原因在实际应用中,LTE相对功率控制容限可能会出现失败的情况。

造成这一问题的原因主要包括:- 网络拓扑结构设计不合理,导致用户设备与基站之间信号质量波动较大。

- 基站硬件故障或软件问题,导致基站无法正确地处理LTE相对功率控制容限。

- 环境影响,如天气、电磁干扰等因素影响了用户设备和基站之间的信号传输。

4. 解决LTE相对功率控制容限失败的方法针对LTE相对功率控制容限失败的情况,可以采取以下方法来解决:- 优化网络拓扑结构,合理规划基站布局,减少不必要的信号质量波动。

- 加强基站硬件和软件的维护和监控,确保基站设备能够正确地处理LTE相对功率控制容限。

- 采用先进的天线技术和信号处理算法,提高用户设备和基站之间的信号传输质量,减少外部环境因素的影响。

5. 个人观点和总结作为LTE系统中的重要参数,LTE相对功率控制容限的合理设置和有效管理对于保障系统的稳定性和性能至关重要。

在实际应用中,我们需要密切监控LTE相对功率控制容限的工作情况,及时发现并解决可能存在的问题,保证LTE系统能够提供稳定高效的通信服务。

6. 总结LTE相对功率控制容限作为LTE系统中的重要参数,其合理设置和有效管理对于保障系统的稳定性和性能至关重要。

LTE功率控制总结

LTE功率控制总结

LTE功率控制总结LTE (Long Term Evolution) 是一种高速无线通信技术,由于其高速率和低延迟,广泛应用于移动通信领域。

在LTE中,功率控制是保证信号质量、最大限度利用系统资源的重要技术。

下面是我对LTE功率控制的总结。

首先,LTE功率控制的目标是保证用户的通信质量,同时最大程度地利用系统资源。

因此,功率控制主要关注两个方面,即上行功控和下行功控。

上行功控是指对用户终端(UE)的上行信号进行功率控制。

在LTE中,上行功控通过调整UE的传输功率来控制其到达基站的信号强度,以保证信道质量。

LTE中采用了多种功控算法,例如关闭循环功控、开环加权功控和闭环功控等。

其中,闭环功控利用了基站对收到的上行PUCCH(物理上行共享信道)信号的质量进行反馈来调整功率。

基站通过应答信令中携带的反馈信息来控制UE的发射功率,实现了根据实际情况进行功率调节的闭环控制。

下行功控是指对基站对UE的下行信号进行功率控制。

在LTE中,下行功控通过调整基站的传输功率来保证UE接收到的信号强度在适当范围内,以保证信道质量。

下行功控主要包括两种方式,即全局功控和子载波功控。

全局功控通过调整基站的全局传输功率来控制信道质量,保证覆盖范围内所有UE的接收信号质量。

而子载波功控则是根据每个子载波的接收信号质量来调整功率,以实现对不同位置或用户间信号的灵活控制。

对于LTE功率控制的优化,可以从多个方面进行考虑。

首先,可以优化功控算法,提高功控的精确度和灵活性。

例如,可以引入更复杂的功控算法,结合信道质量、拥塞状态等因素进行综合权衡,以实现更加准确的功率调节。

其次,可以优化功控策略,根据网络负载、用户需求等因素,动态调整功控目标,以实现更好的资源利用效率。

此外,还可以优化功控参数的配置,根据网络拓扑和用户分布等特点,合理配置功控参数,以实现全网覆盖和负载均衡的最优化。

此外,LTE功率控制还需要考虑与其他技术的协同工作。

例如,与LTE调度算法的协同可以实现对功率控制和调度资源的优化配置,以提高系统性能。

LTE功率控制

LTE功率控制

功率控制功率控制是无线系统中重要的一个功能。

UE 在不同的区域向基站发送信号,这样发送的功率就会有不一致。

远的UE 发送的功率应该大一些,近的稍微小一些,这样以便基站能够更好的将不同的UE 能够解调出来。

功率控制也通常分为开环功率控制和闭环功率控制。

开环功率控制通常不需要UE 反馈,基站通过自身的一些测量或者其他信息,来控制UE 的功率发送或者自身的功率发送。

闭环功率控制通常需要UE 的一些相应的信息,包括信噪比(SIR/ SINR) 或者是BLER/FER 等信息,来调整UE 的发送功率。

闭环功率控制又一般分为两种,一种是内环功率控制,一种是外环功率控制。

内环功率控制是通过SIR 来进行相应的功率控制,基站通过接收到UE 的SIR ,发现与预期的SIR 有差距,然后产生功率控制命令,指示UE 进行调整发送功能,以达到预期的SIR 。

外环功率通常是一种慢功率调整,主要是通过链路的质量来调整SIR ,通过测量链路的BLER ,来指示SIR 的调整情况。

LTE 的功率控制,有别于其他系统的功率控制。

LTE 在一个小区是一个信号正交的系统,所以小区内相互干扰比较小,LTE 主要是在小区之间的干扰。

所以LTE 对于小区内的功率控制的频率相对比较慢。

LTE 有个概念下行功率分配时要使用到,the energy per resource element (EPRE),可以立即为每个RE 的平均功率。

1上行功率控制1.1 PUSCH1.1.1 PUSCH 的功率控制UE 需要根据eNB 的指示设置每个子帧的PUSCH 的发射功率PUSCH P :)}()()()())((log 10,min{)(TF O_PUSCH PUSCH 10CMAX PUSCH i f i PL j j P i M P i P +∆+⋅++=α[dBm]以下对于各个参数进行相应的解析。

CMAX P 是UE 的发射的最大的功率,在协议36101中定义的,)(PUSCH i M 是UE 在子帧i 所分配的PUSCH 的RB 的数目或者PUSCH 的RB 带宽,用RB 数目来表示;)(O_PUSCH j P 是预期的PUSCH 的功率,包括两部分,一部分是小区属性的参数)( PUSCH O_NOMINAL_j P ,一个是UE 属性的参数)(O_UE_PUSCH j P 。

LTE功率控制

LTE功率控制

LTE功率控制LTE功率控制的对象包括PUCCH,PUSCH,SRS,RA preamble,RA Msg3等。

由于这些上行信号的数据速率和重要性各自不同,其具体功控方法和参数也不尽相同。

PUSCH和SRS的功控基本相同。

1 标称功率(Nominal Power)eNB首先为该小区内的所有UE半静态设定一标称功率P0(对PUSCH和PUCCH有不同的标称功率,分别记为P0_PUSCH和P0_PUCCH ),该值通过系统消息SIB2(UplinkPowerControlCommon: p0-NominalPUSCH, p0-NominalPUCCH)广播给所有UE;P0_PUSCH的取值范围是(-126,24)dBm。

需要注意的是对于动态调度的上行传输和半持久调度的上行传输,P0_PUSCH的值也有所不同(SPS-ConfigUL: p0-NominalPUSCH-Persistent)。

另外RA Msg3的标称功率不受以上值限制,而是根据RA preamble初始发射功率(preambleInitialReceivedTargetPower)加上?Preamble_Msg3 (UplinkPowerControlCommon: deltaPreambleMsg3)。

每个UE还有UE specific的标称功率偏移(对PUSCH和PUCCH 有不同的UE标称功率,分别记为P0_UE_PUSCH和P0_UE_PUCCH ),该值通过dedicated RRC信令(UplinkPowerControlDedicated: p0-UE-PUSCH, p0-UE-PUCCH)下发给UE。

P0_UE_PUSCH和P0_UE_PUCCH的单位是dB,因此这个值可以看成是不同UE对于eNB范围标称功率P0_PUSCH和P0_PUCCH的一个偏移量。

对于动态调度的上行传输和半持久调度的上行传输,P0_UE_PUSCH的值也有所不同。

LTE 功率控制

LTE 功率控制

LTE功率控制手机刚开机,手机(在这种情况下为发射器)必须向基站(在这种情况下为接收器)发送一些信号。

手机必须发送多大的功率才能发射它的第一个信号?这非常重要。

如果移动电话以太低的功率发射信号,则基站将无法检测到它;而如果发射的功率过高,则基站将无法检测到它,它可能会干扰其他手机与基站之间的通信。

因此,它必须确定适当的发射功率电平,该功率应足够强以被基站正确解码,并且足够弱以不干扰其他移动电话与基站之间的通信。

UE应该使用哪种方法确定适当的传输功率?手机通信系统中常用的总体逻辑如下:1.网络(基站)正在传输具有固定功率值的特定参考信号;2.网络传输有关其正在传输的参考信号的信息(例如,功率);3.网络还发送UE可以发送的最大允许功率;4.UE解码来自基站的参考信号并测量功率;5.UE可以通过比较步骤4和2的结果来找出UE与基站之间的路径损耗;6.同样从步骤2中的信息,UE知道允许它使用多少功率;7.根据步骤5和步骤4的结果,UE可以算出它实际可以发送多少功率。

这种过程也称为功率控制过程。

但是,由于该功率确定过程不像闭环功率控制中那样基于反馈环路,因此被称为“开环功率控制”。

功率控制机制大致有两种不同的方式。

一种称为开环功率控制,另一种称为闭环功率控制。

不要对“循环”一词感到困惑。

当我们说“开环”时,它并不意味着“循环”控制。

这只是一个方向控制过程,没有反馈,如下图所示。

(实际上,“没有任何反馈输入的控制路径”是控制理论中的“开环”的定义。

)。

在开环控制中,UE通过自己的功率设置算法确定其传输功率。

该功率设置算法接受许多输入,但是所有这些输入均来自UE内部设置或UE的测量数据。

没有来自eNB的反馈输入。

开环功控开环功率控制的最常见示例之一是初始PRACH功率。

如下所示确定该PRACH功率。

一旦检测到初始PRACH,UE功率将由TPC(传输功率控制)命令(DCI 0中的MAC CE或TPC字段)动态控制。

LTE功率控制

LTE功率控制



4 12 4 4 4 4 4 3 3
4 16 4 4 4 4 4 2 2
4 12
4 16

B B A
/
A
RS所占功率
5 5 4 4
/ / / /
4 4 4 24 1 / 6
4 4 4 8
/ / / /
4 8 8 24 2 / 6
3 / 4 3 /12 4 /12 12 / 24 3 / 6
通过X2接口交换小区间干扰信息,进行协调调度,抑制小区间的
同频干扰,交互的信息有:
过载指示OI(被动):指示本小区每个PRB上受到的上行干扰情况。
相邻小区通过交换该消息了解对方的负载情况。 高干扰指示HII(主动):指示本小区每个PRB对于上行干扰的敏感 程度。反映了本小区的调度安排,相邻小区通过交换该信息了解对方将 要采用的调度安排,并进行适当的调整以实现协调的调度。
提高参考信号的发射功率-Power Boosting
对于PDSCH信道的EPRE可以由下行小区专属参考信号功率EPRE 以及每个OFDM符号内的PDSCH EPRE和小区专属RS EPRE的比值ρA 或ρB的得到。 PDSCH_EPRE =小区专属RS _ EPRE ×ρA PDSCH_EPRE =小区专属 RS_ EPRE ×ρB 下行小区参考信号EPRE定义为整个系统带宽内所有承载下行小区专 属参考信号的下行资源单元(RE)分配功率的线性平均。UE可以认为 小区专属RS_EPRE在整个下行系统带宽内和所有的子帧内保持恒定, 直到接收到新的小区专属RS_EPRE。小区专属RS_EPRE由高层参数 Reference-Signal-power通知。

) 在j=0或者1时, PO _ PUSCH ( j) PO_NOMINAL_ PUSCH ( j) PO_UE_ PUSCH ( j,PO_NOMINAL_ PUSCH ( j) 为针对一个

第九课:LTE功率控制

第九课:LTE功率控制

第九课:LTE功率控制LTE下行功率控制由于LTE下行采用OFDMA技术,一个小区内发送给不同UE的下行信号之间是相互正交的,因此不存在CDMA系统因远近效应而进行功率控制的必要性。

就小区内不同UE的路径损耗和阴影衰落而言,LTE系统完全可以通过频域上的灵活调度方式来避免给UE分配路径损耗和阴影衰落较大的RB,这样,对PDSCH采用下行功控就不是那么必要了。

另一方面,采用下行功控会扰乱下行CQI测量,影响下行调度的准确性。

因此,LTE系统中不对下行采用灵活的功率控制,而只是采用静态或半静态的功率分配(为避免小区间干扰采用干扰协调时静态功控还是必要的)。

下行功率分配的目标是在满足用户接收质量的前提下尽量降低下行信道的发射功率,来降低小区间干扰。

在LTE系统中,使用每资源单元容量(Transmit Energy per Resource Element, EPRE)来衡量下行发射功率大小。

对于PDSCH信道的EPRE可以由下行小区专属参考信号功率EPRE以及每个OFDM符号内的PDSCH EPRE和小区专属RS EPRE的比值ρA或ρB的得到。

其中,下行小区参考信号EPRE定义为整个系统带宽内所有承载下行小区专属参考信号的下行资源单元(RE)分配功率的线性平均。

UE可以认为小区专属RS_EPRE在整个下行系统带宽内和所有的子帧内保持恒定,直到接收到新的小区专属RS_EPRE。

小区专属RS_EPRE 由高层参数Reference-Signal-power通知。

ρA或 ρB表示每个OFDM符号内的PDSCH EPRE和小区专属RS EPRE的比值,且ρA或ρB 是UE专属的。

具体来说,在包含RS的数据OFDMA的EPRE与小区专属RS EPRE的比值标识用Bρ表示;在不包含RS的数据OFDMA的EPRE与小区专属RS EPRE的比值标识用ρA表示。

一个时隙内不同OFDMA的比值标识ρA或ρB与OFDMA符号索引对应关系图1OFDMA系统如果要使用下行功控,主要用于补偿信道的路径损耗和阴影。

LTE中的功率控制总结

LTE中的功率控制总结

LTE中的功率控制总结1、LTE框图综述2、LTE功率控制与CDMA系统功率控制技术的比较下表所示。

3、LTE当中上下行分别采用OFDMA和SC-FDMA的多址方式,所以各子载波之间是正交不相关的,这样就克服了WCDMA当中远近效应的影响。

为了保证上行发送数据质量,减少归属不同eNodeB的UE使用相同频率的子载波产生的干扰,同时也减少UE的能量消耗,并使得上行传输适应不同的无线传输环境,包括路损,阴影,快衰落等。

(质量平衡与信干噪比平衡的原则相结合使用,是现在功率控制技术的主流.)4、功率控制方面,只是对上行作功率调整(采用慢速功率控制),下行按照参数配置进行固定功率的发送,即只有eNodeB对UE的发送功率作调整。

LTE中,上行功率控制使得对于相同的MCS(Modulation And Coding Scheme), 不同UE到达eNodeB的功率谱密度(Power Spectral Density,PSD单位带宽上的功率)大致相等。

eNodeB 为不同的UE分配不同的发送带宽和调制编码机制MCS,使得不同条件下的UE获得相应不同的上行发射功率.5、对于下行信号,基站合理的功率分配和相互间的协调能够抑制小区间的干扰,提高同频组网的系统性能。

严格来说,LTE的下行方向是一种功率分配机制,而不是功率控制。

不同的物理信道和参考信号之间有不同的功率配比。

下行功率分配以开环的方式完成,以控制基站在下行各个子载波上的发射功率。

下行RS一般以恒定功率发射。

下行共享控制信道PDSCH功率控制的主要目的是补偿路损和慢衰落,保证下行数据链路的传输质量。

下行共享信道PDSCH的发射功率是与RS发射功率成一定比例的。

它的功率是根据UE反馈的CQI与目标CQI 的对比来调整的,是一个闭环功率控制过程。

在基站侧,保存着UE 反馈的上行CQI值和发射功率的对应关系表。

这样,基站收到什么样的CQI,就知道用多大的发射功率,可达到一定的信噪比(SINR)目标。

LTE中的功率控制总结

LTE中的功率控制总结

LTE中的功率控制总结LTE框图综述1、系统功率控制技术的比较下表所示。

LTE功率控制与CDMA、2 LTE CDMA明显不明显远近效应补偿路径损耗和阴影衰对抗快衰落功控目的落功控周期慢速功控快速功控小区功控围小区和小区间上行:每个RE具体功率目标上的能量整条链路的总发射功率EPRE;资料Word的多址方式,所SC-FDMA当中上下行分别采用OFDMA和3、LTE 当中远近WCDMA以各子载波之间是正交不相关的,这样就克服了eNodeB效应的影响。

为了保证上行发送数据质量,减少归属不同的能量消UEUE使用相同频率的子载波产生的干扰,同时也减少的耗,并使得上行传输适应不同的无线传输环境,包括路损,阴影,快(质量平衡与信干噪比平衡的原则相结合使用,是现在功率衰落等。

)控制技术的主流。

,下采用慢速功率控制)4、功率控制方面,只是对上行作功率调整(的发送对UE行按照参数配置进行固定功率的发送,即只有eNodeB的相于同控制使得对功中调功率作整。

LTE,上行率eNodeBUE到达MCS(Modulation And Coding Scheme), 不同单位带宽上的功率)Density,PSD的功率谱密度(Power Spectral 分配不同的发送带宽和调制编码机UEeNodeB 为不同的大致相等。

获得相应不同的上行发射功率。

,使得不同条件下的制MCSUE、对于下行信号,基站合理的功率分配和相互间的协调能够抑制小5的下行方向LTE区间的干扰,提高同频组网的系统性能。

严格来说,资料Word是一种功率分配机制,而不是功率控制。

不同的物理信道和参考信号之间有不同的功率配比。

下行功率分配以开环的方式完成,以控制基站在下行各个子载波上的发射功率。

下行RS一般以恒定功率发射。

下行共享控制信道PDSCH功率控制的主要目的是补偿路损和慢衰落,保证下行数据链路的传输质量。

下行共享信道PDSCH的发射功率是与RS发射功率成一定比例的。

LTE系统中的功率控制技术

LTE系统中的功率控制技术

1LTE 系统的干扰分析从3GPP 长期演进(LTE)的设计目标可以看出,下行100Mbit/s 和上行50Mbit/s 的速率指标对物理层传输技术提出了较高要求。

经过多轮的讨论,最终确定3GPP LTE 系统物理层传输方案为上行采用单载波SC -FDMA 、下行采用OFDMA 。

由于LTE 采用OFDMA 多址方式,相较于CDMA系统,对功率控制的依赖性大大降低了。

CDMA 系统是自干扰系统,小区内用户占用相同的频率,只是通过码分来区分用户,同频干扰非常大,必须使用高效的功率控制技术,限制系统内部的干扰电平,降低小区内和小区间的干扰。

另外,CDMA 系统还需要通过小区内的功率控制来克服“远近效应”,并减小UE 的功耗。

对于LTE 系统来说,系统采用OFDMA 和SC -FDMA 多3G 系统采用CDMA 多址方式,小区内/小区间的用户使用相同的频率资源,同频干扰较大,而LTE系统采用OFDMA 多址方式,小区内的不同用户占用不同的频率资源,小区间一般占用相同的频率资源,小区内用户间同频干扰相对减弱,因此,在主要用于解决干扰问题的功率控制技术方面,LTE 系统比3G 系统有较大简化。

本文重点介绍LTE 系统的功率控制技术,在介绍之前,首先分析了LTE 系统的干扰情况,随后对现有系统中的通用功率控制技术进行探讨,从而引出LTE 系统的功率控制方案。

关键词LTE ;OFDM ;上行功控;干扰LTE 系统中的功率控制技术龙紫薇,邓伟,杨光(中国移动通信集团公司研究院北京100053)TD 与LTE 技术创新论坛协办了各种多天线发射技术在终端不同移动速度下的吞吐量。

8结束语在LTE 系统中,根据覆盖场景、信道环境的变化,可自适应地采用发送分集、空间复用和波束赋形等技术,以获得较好的覆盖质量和小区吞吐量。

根据上面的仿真结果,发送分集、空间复用和波束赋形的应用场景建议如下。

·对于运动速度低、信噪比高的场景,建议采用闭环空间复用技术发射多个数据流,可获得较高的小区吞吐量。

LTE中的功率控制总结

LTE中的功率控制总结

LTE中的功率控制总结1、LTE框图综述2、LTE功率控制与CDMA系统功率控制技术的比较下表所示。

3、LTE当中上下行分别采用OFDMA和SC-FDMA的多址方式,所以各子载波之间是正交不相关的,这样就克服了WCDMA当中远近效应的影响。

为了保证上行发送数据质量,减少归属不同eNodeB的UE使用相同频率的子载波产生的干扰,同时也减少UE的能量消耗,并使得上行传输适应不同的无线传输环境,包括路损,阴影,快衰落等。

(质量平衡与信干噪比平衡的原则相结合使用,是现在功率控制技术的主流。

)4、功率控制方面,只是对上行作功率调整(采用慢速功率控制),下行按照参数配置进行固定功率的发送,即只有eNodeB对UE的发送功率作调整。

LTE中,上行功率控制使得对于相同的MCS(Modulation And Coding Scheme), 不同UE到达eNodeB的功率谱密度(Power Spectral Density,PSD单位带宽上的功率)大致相等。

eNodeB 为不同的UE分配不同的发送带宽和调制编码机制MCS,使得不同条件下的UE获得相应不同的上行发射功率。

5、对于下行信号,基站合理的功率分配和相互间的协调能够抑制小区间的干扰,提高同频组网的系统性能。

严格来说,LTE的下行方向是一种功率分配机制,而不是功率控制。

不同的物理信道和参考信号之间有不同的功率配比。

下行功率分配以开环的方式完成,以控制基站在下行各个子载波上的发射功率。

下行RS一般以恒定功率发射。

下行共享控制信道PDSCH功率控制的主要目的是补偿路损和慢衰落,保证下行数据链路的传输质量。

下行共享信道PDSCH的发射功率是与RS发射功率成一定比例的。

它的功率是根据UE反馈的CQI与目标CQI的对比来调整的,是一个闭环功率控制过程。

在基站侧,保存着UE 反馈的上行CQI值和发射功率的对应关系表。

这样,基站收到什么样的CQI,就知道用多大的发射功率,可达到一定的信噪比(SINR)目标。

LTE功率控制技术分析

LTE功率控制技术分析

LTE功率控制技术分析1LTE下行功率控制1)在频率和时间上采用恒定的发射功率,基站通过高层信令指示该发射功率数值。

2)下行功率分配以每个RE为单位,控制基站在各个时刻各个子载波上的发射功率。

3)下行功率分配方法:●提高参考信号的发射功率(Power Boosting)●与用户调度相结合实现小区间干扰抑制的相关机制4)PDSCH不采用功率控制●采用OFDMA技术,不同UE信号互相正交,不存在CDMA系统的远近效应。

●频域调度能够避免在深度路径损耗的RB上传输。

●采用功控会扰乱下行CQI测量,影响下行调度的准确性。

5)下行信道(PDSCH/PDCCH/PCFICH/PHICH)采用半静态的功率分配。

◇OFDMA系统如果要使用下行功控,主要用于补偿信道的路径损耗和阴影。

但下行功控和频域调度存在一定的冲突。

1.系统完全可以通过频域调度的方式避免在那些路径损耗较大的RB进行传输,因此对PDSCH 采用下行功率控制就不是很重要了。

2.采用下行功率控制反而会扰乱下行CQI测量,由于功控补偿了某些RB的路径损耗,UE无法获得真实的下行信道质量信息,从而影响到下行调度的准确性。

1.1 提高参考信号的发射功率-Power Boosting小区通过高层信令指示,通过不同比值设置RS信号在基站总功率中的不同开销比例,来实现RS发射功率的提升。

1.2 用户功率分配和小区间干扰协调在指示基础上,通过高层参数确定的具体数值,得到基站下行针对用户的PDSCH发射功率。

●关系:●用于MU-MIMO的场景●表示功率平均分配给两个用户●为了支持下行小区间干扰协调,定义了基站窄带发射功率限制(RNTP,Relative Narrowband Tx Power)的物理层测量,在X2口上进行交互。

它表示了该基站在未来一段时间内下行各个PRB将使用的最大发射功率的情况,相邻小区利用该消息来协调用户,实现同频小区干扰协调。

2LTE上行功率控制1)终端的功率控制目的:节电和抑制用户间干扰2)手段:采用闭环功率控制机制3)控制终端在上行单载波符号上的发射功率,使得不同距离的用户都能以适当的功率达到基站,避免“远近效应”。

4G LTE 第九课:LTE功率控制

4G LTE 第九课:LTE功率控制

第九课:LTE功率控制LTE下行功率控制由于LTE下行采用OFDMA技术,一个小区内发送给不同UE的下行信号之间是相互正交的,因此不存在CDMA系统因远近效应而进行功率控制的必要性。

就小区内不同UE的路径损耗和阴影衰落而言,LTE系统完全可以通过频域上的灵活调度方式来避免给UE分配路径损耗和阴影衰落较大的RB,这样,对PDSCH采用下行功控就不是那么必要了。

另一方面,采用下行功控会扰乱下行CQI测量,影响下行调度的准确性。

因此,LTE系统中不对下行采用灵活的功率控制,而只是采用静态或半静态的功率分配(为避免小区间干扰采用干扰协调时静态功控还是必要的)。

下行功率分配的目标是在满足用户接收质量的前提下尽量降低下行信道的发射功率,来降低小区间干扰。

在LTE系统中,使用每资源单元容量(Transmit Energy per Resource Element, EPRE)来衡量下行发射功率大小。

对于PDSCH信道的EPRE可以由下行小区专属参考信号功率EPRE以及每个OFDM符号内的PDSCH EPRE和小区专属RS EPRE的比值ρA或ρB的得到。

其中,下行小区参考信号EPRE定义为整个系统带宽内所有承载下行小区专属参考信号的下行资源单元(RE)分配功率的线性平均。

UE可以认为小区专属RS_EPRE在整个下行系统带宽内和所有的子帧内保持恒定,直到接收到新的小区专属RS_EPRE。

小区专属RS_EPRE 由高层参数Reference-Signal-power通知。

ρA或 ρB表示每个OFDM符号内的PDSCH EPRE和小区专属RS EPRE的比值,且ρA或ρB 是UE专属的。

具体来说,在包含RS的数据OFDMA的EPRE与小区专属RS EPRE的比值标识用Bρ表示;在不包含RS的数据OFDMA的EPRE与小区专属RS EPRE的比值标识用ρA表示。

一个时隙内不同OFDMA的比值标识ρA或ρB与OFDMA符号索引对应关系图1OFDMA系统如果要使用下行功控,主要用于补偿信道的路径损耗和阴影。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年5月TD-SCDMA 月报
——— LTE 功率控制
姓名:张巍巍
For internal use
1
© Nokia Siemens Networks
MS-NPO-CHN-2009-Weekly-for-FuZhou
LTE 功率控制
Service Excellence
功率控制目的
功率控制就是在一定范围内,用无线方式来改变UE或者eNodeB的传输功率,用于补偿信道的路径损耗 和阴影衰落,并抑制小区间干扰。 其主要作用和目的如下所述: 1. 保证业务质量 功率控制通过调整发射功率,使业务质量刚好满足BLER(Block Error Rate)要求,避免功率浪费。 2. 降低干扰 LTE干扰主要来自邻区,功率控制可减小对邻区的干扰。 3. 降低能耗 上行功率控制减少UE 电源消耗,下行功率控制减少eNodeB 电源消耗。 4. 提升覆盖与容量 下行功率控制为不同UE 分配不同功率来满足系统覆盖要求,扩展小区覆盖范围;另外,通过最小化分配 在每个UE 上的发射功率使其刚好满足SINR(Signal to Interference plus Noise Ratio)要求,提高系统容 量。 由于对邻区的干扰主要来自边缘用户,上行功率控制采用部分路损补偿FPC(Fraction Power Compensate)降低对邻区干扰,提升网络容量
For internal use
8
© Nokia Siemens Networks
MS-NPO-CHN-2009-Weekly-Report-for-FuZhou
LTE功率控制
Service Excellence
PDSCH如何实现功率控制
由于PDSCH使用AMC和HARQ,对于PDSCH的功控协议不强制要求,PDSCH功控主要作用是与ICIC结合改 善小区边缘用户数据速率,提高小区覆盖。 PDSCH功率控制分为针对动态调度的功率控制和针对半静态调度的功率控制。对采用动态调度的非VoIP业务 和混合业务进行功率控制(均匀/非均匀)或设置两档功率(结合ICIC);对采用半静态调度的VoIP业务进 行闭环功率控制。 1. 动态调度PDSCH • 对动态调度的功率控制 PDSCH功率(P_A)初始设置(用户QoS以及功率利用率与资源利用率平衡准则);PDSCH功率(P_A) 调整(根据新的参考信号SINR得出新的功率利用率)。 • IBLER目标值调整 对不同的小区干扰情况设置不同的IBLER目标值, 最大化小区吞吐率。 • HARQ最大发送次数调整 通过调整最大重传次数,保证业务的RBLER满足要求。 2. 半静态调度PDSCH 半静态调度下,用户的PDSCH 所占RB 资源相对固定,MCS 也相对固定。eNodeB 根据VoIP数据包的IBLER (Initial Block Error Rate)测量值和IBLER Target 间的差异,周期性调整PDSCH 发射功率,以满足 IBLER Target要求。如果IBLER测量值小于IBLER Target,减小发射功率,反之,增大发射功率
LTE在实现功率控制时,可采用以下两种方式: 1. 均匀分配功率(下行):对所有UE, PDSCH (PDCCH、PHICH)的EPRE相同; 2. 非均匀分配功率(上行/下行):以一定准则调节eNodeB或UE的发射功率。
For internal use
3
© Nokia Siemens Networks
LTE功率控制
Service Excellence
下行功率控制概念
下行功率控制分为下行功率设置和下行功率控制。 下行功率设置 对于Cell-specific Reference Signal、Synchronization Signal、PBCH、PCFICH 以及承载小区公 共信息的PDCCH、PDSCH,其发射功率需保证小区的下行覆盖,采用固定功率设置。 下行功率控制 对于PHICH 以及承载UE 专用信息的PDCCH、PDSCH 等信道,其功率控制要在满足用户的QoS 同时,降低干扰、增加小区容量和覆盖,采用动态功率控制
For internal use
7
© Nokia Siemens Networks
MS-NPO-CHN-2009-Weekly-Report-for-FuZhou
LTE功率控制
Service Excellence
在PHICH/PDCCH功控
PDCCH的发射功率由参考DCI格式的发射功率和传输格式的偏置值组成,对不同类型的PDCCH分别设置功率 (将PDCCH分为三类:上行授权,下行调度和TPC联合编码)。PDCCH/PHICH的功控: 开环功控:初始设置PDCCH/PHICH发射功率 内环功控,根据CQI闭环调整功率,适应路径 损耗和阴影衰落的变化 外环功控,由PDCCH BLER/PHICH BER测量值,对SINR目标值进行调整
MS-NPO-CHN-2009-Weekly-Report-for-FuZhou
LTE功率控制
Service Excellence
LTE SRS功率控制
For internal use
6
© Nokia Siemens Networks
MS-NPO-CHN-2009-Weekly-Report-for-FuZhou
For internal use
4
© Nokia Siemens Networks
MS-NPO-CHN-2009-Weekly-Report-for-FuZhou
LTE功率控制
Service Excellence
PRACH功控机制
For internal use
5
© Nokia Siemens Networks

For internal use
9
© Nokia Siemens Networks
MS-NPO-CHN-2009-Weekly-Report-for-FuZhou
THANKS!
For internal use
10
© Nokia Siemens Networks
MS-NPO-CHN-2009-Weekly-for-kia Siemens Networks
MS-NPO-CHN-2009-Weekly-Report-for-FuZhou
LTE功率控制
Service Excellence
LTE 功率控制分类
LTE的功控可以分为上行功控和下行功控。其中上行功率控制用于上行物理信号和信道的功率
Po_pucch:由eNodeB 决定,体现了达到PUCCH 解调性能要求时,eNodeB 期望的接收:
Po_uepcch功率水平,表示对参考TF 格式,eNodeB 期望的目标信号功率水平。为UE 相对Po_nomal_pucch ( 小区级)的功率偏置,反映了UE 等级、业务类型以及信道质量对不同UE 的PUCCH 发射功率的影响。
MS-NPO-CHN-2009-Weekly-Report-for-FuZhou
LTE功率控制
Service Excellence
PUCCH的功控机制
PUCCH发射功率计算公式如下: i :第i个上行子帧 Pcmax :UE最大发射功率 Po_pucch : eNB所期望的目标信号功率 PL :UE 估计的下行路径损耗,通过RSRP 测量值和Cell-specific RS 发射功率获: :由PUCCH 格式决定。 nCQI 为CQI 的信息比特数,nHARQ 为HARQ的信息比特数。反映 PUCCH 上的CQI 比特数以及HARQ 信令比特数对功率的影响。 : 反映PUCCH 不同的传输格式对发射功率的影响。 G(i) :为UE 的PUCCH发射功率的调整量,由PDCCH 中的TPC 信息映射获得


LTE上行功率控制 1. Sounding reference signal 2. PRACH(Physical Random Access Channel) 3. PUSCH(Physical Uplink Shared Channel) 4. PUCCH(Physical Uplink Control Channel LTE下行功率控制 1. Cell-specific Reference Signal 2. Synchronization Signal 3. PBCH(Physical Broadcast Channel) 4. PCFICH(Physical Control Format Indicator Channel) 5. PDCCH(Physical Downlink Control Channel) 6. PDSCH(Physical Downlink Shared Channel) 7. PHICH(Physical HARQ Indication Channel)
相关文档
最新文档