电渗析
电渗析原理
电渗析原理
电渗析是指利用电化学原理,通过电流的作用使液体中的离子分离并沉积在电极上的一种方法。
其原理基于电化学滤波和离子选择性膜的作用。
在电渗析过程中,准备两个电极并将其浸入待分离的液体中。
一个电极称为阳极,另一个电极称为阴极。
通常情况下,阳极为较高氧化还原电位的金属(如铂),而阴极为较低氧化还原电位的金属(如不锈钢)。
当外加电源施加电位差时,阳极上的电位较高,阴极上的电位较低,从而形成电场。
电场的作用下,液体中含有正电荷的离子(称为阳离子)向阴极迁移,而负电荷的离子(称为阴离子)则向阳极迁移。
这是因为阳离子的迁移速率较快,且受到电场力的作用使其向阴极方向移动;而阴离子则由于电场力的反向作用,移动速率较慢。
在电渗析过程中,还需要使用一个离子选择性膜,以只允许特定类型的离子通过。
这种离子选择性膜可以起到滤波的作用,使得特定离子能够通过而其他离子无法通过。
通过电渗析,我们可以将液体中的特定离子分离出来并沉积在电极上。
这对于分离和浓缩离子溶液、分析溶液中的离子种类和浓度等方面具有重要的应用价值。
电渗析
直流电场下,双极 性膜可将水离解, 能够将水分离成H+与 OH- 两种离子,可作 为H+与OH-的供应源。
离子交换膜的主要性能
交换容量(IEC):每克干膜所含活性基团的毫克当量数, 单位为meq/g交换容量高,选择透过性好,导电能力强 ,但溶胀度大,影响机械强度一般约为2~3meq/g 含水量:膜内与活性基团结合的内在水,以每克干膜含水 质量表示,一般含水量为20-40% 膜电阻:关系工作所需电压和电能消耗,通常越小越好 选择透过度:常用反离子迁移数和膜的透过度来表示一般 要求大于85%,反离子迁移数大于0.9,并希望在高浓度 电解质中仍有良好的选择透过性。
膜堆
二、电渗析器的组装
电渗析器的组装依其应用不 同而有所不同。其组装的情 况是用级和段来表示的。 级:一对正、负电极之间的 膜堆称为一级; 段:具有同一水流方向的并 联膜堆称为一段。
三、电渗析器的级与段
一级一段特点是产水量与膜对数成正比,脱盐率取 决于一块隔板的流程长度,常用于大、中制水厂 ,可含200~360个膜对; 二级一段(多级一段)使操作电压降低,便于低操 作电压下获得高产水量; 一级两段可增加脱盐流程长度,提高脱盐率,适用 于单台电渗析器一次脱盐,中、小型制水厂; 多级多段发挥两者优点,同时满足对产量和质量的 要求。
天融净化公司的电渗析器具除盐率
海水、盐泉卤水制盐
电渗析浓缩海水蒸发结晶制备食盐,不受地 理气候限制,易于自动化和工业化
废水处理
⑴ 造纸工业废水处理,利用电渗析法处理造纸工业的亚硫酸 纸浆废液和洗浆废水及碱法造纸黑液,从中回收化学药品 ,已得到工业应用。 ⑵ 从芒硝废液中制取硫酸和氢氧化钠。 ⑶ 从酸洗废液中制取硫酸和沉淀重金属离子。 ⑷ 电镀废水和废液处理,含Cd2+、Cu2+、Ni2+、Zn2+、Cr6+等 重金属离子和氰化物的电镀废水都适宜用电渗析法处理, 其中应用最成熟的是含镍废水处理。 ⑸ 从放射性废水中分离放射性元素,然后将其浓缩液掩埋。
电渗析
1 电渗析技术概述电渗析(ED)技术Il1是膜分离技术的一种,1、1原理:是将阴、阳离子交换膜交替排列于正负电极之间,并用特制的隔板将其隔开,组成除盐(淡化)和浓缩两个系统,在直流电场作用下,以电位差为推动力,利用离子交换膜的选择透过性,把电解质从溶液中分离出来,从而实现溶液的浓缩、淡化、精制和提纯。
1、2优点是:①能量消耗低;②药剂耗量少,环境污染小;⑧对原水含盐量变化适应性强;④操作简单,易于实现机械化、自动化;⑤设备紧凑耐用,预处理简单;⑥水的利用率高。
电渗析也有它自身的缺点:与反渗透(RO)相比,脱盐率较低。
在运行过程中易发生浓差极化而产生结垢;1、3两个基本理论-解释离子交换膜的双电层理论和应用于膜两侧大分子渗透平衡以及离子交换树脂与电解质溶液间平衡的膜平衡理论书本p118-119(规律)1、4 传递现象书本p1192 电渗析技术及其应用2.1 电渗析技术发展简述经历了三大革新:①具有选择性离子交换膜的应用网;②设计出许多层电渗析的组件;③采用倒换电极的操作式。
目前电渗析技术已发展成一个大规模的化工单元过程,在膜分离领域占有重要地位。
应用前景非常广阔。
2.2 几种常见的电渗析过程(6种)2.2.1 倒极电渗析(EDR)EDR为电渗析的应用前景提供了一个重要方向[,根据ED原理,每隔一定时间(一般为15-20min),正负电极极性相互倒换(频繁倒极),能自动清洗离子交换膜和电极表面形成的污垢,以确保离子交换膜工作效率的长期稳定及淡水的水质水量。
在废水处理方面的应用有其独到之处,EDR 浓水循环,水回收率最高可达95%,它的服役寿命长,管理简单,与其他方法相比更有竞争力。
2.2.2 填充电渗析(EDI)填充床电渗析(EDI),它是将电渗析与离子交换法结合起来的一种新型水处理方法,它集中了电渗析和离子交换法的优点,并克服了它们各自的缺点,提高了极限电流密度和电流效率的作用。
在该过程中,粒子交换树脂颗粒填充在电渗析器的淡化室内外,被离子交换树脂吸附的离子在电场作用下不断迁移入浓水室,这样离子交换树脂不需要再生,而原料液中的离子几乎可完全被除去。
电渗析
最小需要能
• 从热力学论点出发,可以推到出电渗析最 小需要能E的表达式如下:
• N0是以当量/升为单位表示的离子物种浓度, f,P,C分别指进水流,制成水流和浓水流。 能量E一般用千瓦·时/千加仑制成水的单位 表示。
• 上式忽略了电极反应所消耗的功率,并且 只考虑进水流,制成流和浓水流的自由能。
• 它可的以主要采缺点用是:膜需堆之间对流或所有的•优这点种浓是布;水置管方道流案和的都阀
参要平数经,行常运调的行整比各方较项敏运式感行,运行。
门的尺寸小;不需 冉循环;所需的能
膜电阻的微量增加就
量最小。
会影响效率。
内部分级连续流系统
• 若要求的出水量不大,则选用内部分级的
单膜堆较为经济。
它的优点是:容易调 节除盐率;不需再加 压;仅需一对电极以
逐渐变成淡化水。
这样,在整个电渗析设备中,出现了 脱盐与浓缩两在个电系极统的。阴与、此阳同极时之,间在,将 电极和溶液的阳界离面子上交,换通膜过与氧阴化离、子还交换 原反应,发生电膜子交与替离排子列之,间井的用交特换制,的隔
即板电符极这反两应种。膜隔开,隔板内 行水流的通道。
而进入浓室的合盐水, 由于阳离子不能迁移透 过阴膜,阴离子迁移不 能透过阳膜,于是,含 盐水不断浓缩变成高浓
• 膜堆有膜片构成,膜片之间设有夹板和垫片,象 板框式压滤机一样组装而成。进出水口通常在垫 片或在膜片上冲眼而形成,然后冉组装杯一起。
• 与大多数化工工艺相似,电渗析除盐也可 以采取连续式或者分批式运行。连续运行 方式的电渗析一般有三种布置方案:多段、 内部分级和进入-渗出式。
多段式连续电渗析系统
• 废水除盐是电渗析的另一种用途。有人研 究用电渗析对农田径流进行反硝化处理。 生活污水处理厂出水的电渗析除盐正处在 研究中。
电渗析法-
电渗析法电渗析法是一种利用电场和膜透析原理相结合的隔膜分离技术,可以用于分离、纯化各种化合物,尤其是水中的离子和小分子有机化合物。
电渗析法具有高效、连续、自动化、对环境污染小等优点,因此在水处理、制药、化工等领域得到了广泛应用。
电渗析法的原理是利用电场作用于带电离子在带电膜上移动,离子会被挤出水分子并被膜固定。
随着时间的推移,离子在膜内聚集,随后被移除。
在电渗析过程中,离子通过离子交换膜向外移动,而水分子则通过通透性高的汲水膜进入电池中。
电渗析法的设备主要包括电渗析池、离子交换膜、汲水膜、运动电场、pH 控制系统等。
其中,离子交换膜是电渗析法的关键部件,其作用是选择性地将带电离子从水中分离出来。
汲水膜则是用于防止水分子进入离子交换膜内,从而防止水分子与带电离子混合。
在电渗析法的实际应用中,首先是将待处理溶液注入电渗析池内,然后加入一些化学试剂调节溶液的pH值和离子浓度。
接着开启电场和水流控制系统,水分子流入汲水膜,而离子通过离子交换膜开始向外移动。
当移动到膜的另一侧时,离子会被收集起来用于后续的分离和纯化。
电渗析法的分离效率受多种因素的影响,如电场强度、交换膜种类、溶液pH值、交换膜邻近环境中的离子浓度等。
在设计电渗析系统时,需要根据待处理溶液的特性和要求,结合上述因素进行优化,以达到最佳的分离效果。
总体来说,电渗析法具有高效、节能、环保等优点,在水处理、食品加工、化学品制造和环境保护等领域都有着广泛应用前景。
随着科技的不断进步和工业需求的不断提高,电渗析法的技术创新和应用研究也将得到更多关注和支持。
电渗析的工作原理
电渗析的工作原理
电渗析(Electrodialysis,简称ED)是一种利用电场作用下的离子选择性透析现象来实现离子选择性透析分离的技术。
它是一种利用电场作用下的离子选择性透析现象来实现离子选择性透析分离的技术。
电渗析技术已经在水处理、食品加工、药品制备等领域得到了广泛应用。
电渗析的工作原理主要包括两个基本过程,电场驱动和离子选择性透析。
在电渗析过程中,通过外加电场,正负离子被分别迁移至阳极和阴极,从而实现了离子的分离。
这种分离是基于膜的选择性透析特性,即膜对不同离子的透析速率不同,从而实现了对混合离子溶液的分离。
在电渗析设备中,通常会采用阳离子交换膜和阴离子交换膜来实现对离子的选择性透析。
阳离子交换膜具有对阴离子通透性,而阴离子交换膜则具有对阳离子通透性。
当混合离子溶液通过这两种离子交换膜时,根据离子的电荷和大小,它们会被分别迁移至阳极和阴极,从而实现了离子的分离。
电渗析技术的工作原理在实际应用中具有重要意义。
首先,它可以实现对混合离子溶液的高效分离,从而得到纯净的产物。
其次,它可以实现对水中的离子、微污染物的去除,达到水处理和净化的目的。
此外,电渗析还可以用于食品加工、药品制备等领域,实现对离子的选择性提取和分离。
总的来说,电渗析是一种利用电场驱动下的离子选择性透析现象来实现离子分离的技术。
通过对离子交换膜的选择和电场的控制,可以实现对混合离子溶液的高效分离,具有广泛的应用前景和重要的工程价值。
电渗析的工作原理
电渗析的工作原理
电渗析是一种利用电场作用下的溶液流动和质量传递现象的分离技术。
它是通过在两个电极之间施加电场,将带电粒子迁移至相应的电极上来实现物质的分离。
电渗析的工作原理基于电动势和电流的作用,其中电动势是通过施加电场产生的。
当电压施加在电渗析膜中时,电场会引起溶液中带电粒子的迁移。
溶液中的带电粒子在电场的作用下,沿着电场方向迁移,并通过电渗析膜上的孔洞或选择性通透材料进行传递。
传递过程中,溶液中的带电粒子会被电渗析膜上的孔洞或通透材料所阻隔,从而使其分离。
带电粒子在电渗析膜上的分离程度主要取决于粒子的大小、电荷以及膜的孔径大小和性质。
较大的粒子可能会被膜上较小的孔洞所阻挡,而较小的粒子则可以通过孔洞传递。
同时,电渗析过程中质量传递的方向也会受到电场的影响。
在正向电场下,阳离子会向负电极迁移,而阴离子则会向正电极迁移。
这样,阳离子和阴离子可以被有效地分离。
总的来说,电渗析利用电场的作用和溶液中粒子的大小、电荷等特性,通过电渗析膜上的通透孔洞或材料进行分离。
电渗析技术在水处理、药物制剂、化学分离等领域具有重要的应用价值。
电渗析
电渗析的极化现象对电渗析的运行有很大影响:
(1)极化时一部分电能消耗在水的电离上,使电流效率下降; (2)极化时,在浓水侧的阴膜界面上形成沉淀会堵塞水流通道。 (3)由于沉淀和结垢的影响,膜性能发生变化,机械强度下降, 膜电阻增大,缩短了膜的使用寿命。
为了避免极化和结垢,目前采用的措施包括: (1)控制工作电流密度在极限电流密度下运行;
反 渗 透
纯水制备流程示意图
压力 大分子 供水 超滤膜 水 盐 超滤过程 压力(要大于渗透压力) 盐 大分子 供水 反渗透膜 水 反渗透
超 滤 与 反 渗 透 的 区 别 示 意
渗透:是指稀溶液中的水分子自发地透过半透膜进入浓溶液的过 程。 渗透压:是指某溶液在自然渗透过程中,浓溶液液面不断升高, 稀溶液液面相应降低,直到两侧形成的水柱压力抵消了水分子的 迁移,溶液两侧的液面不再变化,渗透达到平衡点,此时的液柱 高差称为该溶液的渗透压。
电渗析器组装
–膜对:由1张阳膜、1张淡水隔板, 1张阴膜、1张浓水隔板按一定顺序组成的 电渗析器膜堆的最小脱盐单元 –膜堆:若干模对的集合体 –级:电渗析器中一对电极之间所包含的膜堆称为一级,一台电渗析器的电极 对数就是这台电渗析器的级数
–段:电渗析器中淡水水流方向相同的膜堆称为一段
–台:用锁紧装置将电渗析器各部件锁紧成一整体称为一台电渗析器 –系列:将多台电渗析器串联起来成为一脱盐整体称为一系列
渗透压的计算:渗透压的大小取决于溶液的种类、浓度和温度而与半透膜本身 无关。计算公式如下(仅适用于稀溶液): π=CRT π— 渗透压(kg/cm2) C — 离子浓度差(摩尔/升) R — 气体常数(等于0.082升· 大气压/摩尔· °k) T — 绝对温度(°k)
电渗析的工作原理
电渗析的工作原理
电渗析是一种利用电场作用下的离子选择性透析现象,它是通过半透膜来实现的。
半透膜是一种在一定条件下只允许某些物质通过的薄膜,而阻止其他物质通过。
电渗析是通过半透膜来实现对离子的选择性透析,从而达到分离和浓缩的目的。
在电渗析过程中,首先需要将含有需要分离的离子的溶液放置在半透膜的一侧,而在另一侧则放置一种电解质溶液。
接下来,施加电场,使得半透膜两侧的离子受到电场的作用,从而在半透膜上形成电化学梯度。
这个梯度会导致离子在半透膜上的运动,从而实现了对离子的选择性透析。
在电渗析的过程中,离子的选择性透析是通过半透膜的特性来实现的。
半透膜
能够根据离子的大小、电荷和溶剂化作用来选择性地透析离子。
在电场的作用下,这种选择性透析会更加明显,从而实现对离子的有效分离和浓缩。
此外,电渗析还可以通过调节电场的强度和方向来实现对离子的精确控制。
通
过改变电场的参数,可以调节离子在半透膜上的运动速度和方向,从而实现对离子的精确分离和浓缩。
总的来说,电渗析是一种利用电场作用下的半透膜选择性透析现象,通过对离
子的选择性透析,实现了对离子的分离和浓缩。
它在分离和浓缩离子方面具有重要的应用价值,可以在生物医学、化工等领域得到广泛的应用。
电渗析工作原理
电渗析工作原理电渗析是一种物质分离技术,通过电场作用力将带电颗粒从离子溶液中分离出来。
它是一种基于离子迁移的传质机制的分离方法,可以用于去除溶液中的有机物、无机物以及重金属离子等。
电渗析的工作原理基于离子的电荷状态以及电场作用力。
在电渗析过程中,首先需要将待处理的溶液通过电渗析装置,该装置一般由两个电极之间的间隙组成,其中一个电极带正电荷,称为阳极,另一个带负电荷,称为阴极。
当电场被建立起来后,溶液中的正负离子就会受到电场力的作用开始向电极迁移。
正离子会朝阴极迁移,而负离子则朝阳极迁移。
同时,存在于溶液中的颗粒也会受到电场力的影响,被迁移到靠近与其带相反电荷的电极附近。
在离子迁移过程中,溶液中的水和不带电的溶质也会随之迁移。
当溶液中的颗粒靠近电极时,电场力对溶质的作用将导致颗粒离开溶液,而水会通过离子溶液中的电解作用分解成氢氧离子,然后再通过阴离子回归至溶液中。
离子的迁移是通过离子电迁移过程实现的,这是一种通过电场驱动离子运动的现象。
它基于离子在电场作用下的电势差,通过离子与电场之间的相互作用而产生。
离子电迁移过程的速率取决于离子的电荷数、绝对值和离子的迁移距离。
电渗析技术的应用非常广泛。
它可以用于处理各种溶液,包括有机溶液和无机溶液。
电渗析可以帮助去除水中的重金属离子,如铅、铜、镍和锡等。
此外,电渗析还可以用于去除有机物,如颜料、染料和农药等。
电渗析技术的主要优点是操作简便、低能耗和高效率。
与其他分离技术相比,电渗析不需要使用大量的添加剂或额外的能源。
它可以在常温下进行操作,并且能够高效地去除目标物质,同时保留其他溶质。
总的来说,电渗析是一种有效的物质分离技术。
它利用电场作用力将带电颗粒从溶液中分离出来,广泛应用于水处理、废水处理和溶液纯化等领域。
电渗析不仅具有高效、节能和环保的特点,而且操作简单,易于实施。
通过进一步的研究和开发,电渗析技术有望在更多的领域发挥重要作用。
电渗析原理
电渗析原理电渗析,又称电渗析法,是一种利用电场作用下,将离子从溶液中分离出来的技术。
它是一种重要的分离技术,在化学、生物、环境等领域都有着广泛的应用。
电渗析原理的理解对于掌握电渗析技术的应用具有重要意义。
电渗析技术的原理是利用电场作用下,离子在溶液中的迁移和分离。
在电渗析过程中,首先需要准备一个电渗析池,池内设置有正负电极,通过外加电压,在电场的作用下,离子会向相应的电极迁移。
正离子向阴极迁移,负离子向阳极迁移。
在迁移的过程中,离子会与水分子发生相互作用,最终在电极上析出。
通过这种方式,可以将溶液中的离子分离出来。
在电渗析过程中,离子的迁移速度与电场强度、离子的电荷量、溶液的离子浓度等因素有关。
电场强度越大,离子迁移速度越快;离子的电荷量越大,迁移速度也越快。
此外,溶液的离子浓度也会影响离子的迁移速度,浓度越高,迁移速度越快。
电渗析技术在实际应用中有着广泛的用途。
在化学工业中,电渗析被广泛用于离子交换树脂的制备、金属离子的分离等工艺中。
在生物领域,电渗析技术可以用于蛋白质的纯化和富集。
在环境领域,电渗析技术可以用于处理废水中的重金属离子等。
电渗析技术的应用范围非常广泛,对于提高分离效率、降低成本、保护环境等方面有着重要的意义。
总的来说,电渗析技术是一种利用电场作用下,将离子从溶液中分离出来的技术。
它的原理是利用电场作用下,离子在溶液中的迁移和分离。
电渗析技术在化学、生物、环境等领域都有着广泛的应用。
对于掌握电渗析技术的原理和应用具有重要意义。
通过对电渗析原理的深入理解,可以更好地应用电渗析技术,提高分离效率,降低成本,保护环境,促进科技进步。
电渗析技术
膜堆:
其结构单元包括阳膜、隔板(浓、淡水室)、阴膜,一 个结构单元也叫一个膜对。 一台电渗析器由许多膜对 组成,这些膜对总称为膜堆。 隔板常用l~2mm的硬聚氯乙 烯板制成,板上开有配水孔、 布水槽、流水道、集水槽和集 水孔。隔板的作用是使两层膜 间形成水室,构成流水通道, 并起配水(淡化室)和集水(浓缩 室)的作用。
基本条件:
(1)离子交换膜的选择透过性 (2)直流电场
1.1 电渗析的定义
离子交换膜:离子交换膜的实质是渗析膜,对阴、阳离
子具有选择透过性。离子交换膜具有选择透过性是由于膜 上的固定离子基团吸引膜外溶液中异种电荷离子,使它能 在电位差或同时在浓度差的推动下透过膜体,同时排斥同 种电荷的离子,拦阻它进入膜内。
2.2 电渗析器的介绍
电渗析器(electordialyzer)简称ED,利用电渗析原理, 在离子交换膜和直流电场的基本条件下,使电解质的离 子产生选择性迁移,可实现溶液的淡化、浓缩、精制或 纯化等工艺过程的设备。
2.2 电渗析器的介绍
电渗析器的构造由膜堆、极区和压紧装置三
大部分构成。
2.2 电渗析器的介绍
1.2 电渗析的原理
(2)从作用机理来说,离子交换属于 离子转移 置换,离子交换树脂在过程中发生离子交换反应。 而电渗析属于离子截留置换,离子交换膜在过程 中起离子选择透过和截阻作用。所以更精确地说, 应该把离子交换膜称为离子选择性透过膜; (3)电渗析的工作介质不需要再生,但消耗电 能;而离子交换的工作介质必须再生,但不消耗 电能。
①非均相(异相)离子交换膜。指由离子交换树脂的细粉末
和起粘合作用的高分子材料经加工制成的离子交换膜。 (树脂分散在粘合剂中,因而在膜结构上是不连续的,固 称为异相膜)。 ②均相离子交换膜。由具有离子交换基团的高分子材料直 接制成的连续膜,或是在高分子膜基上直接接上活性基团 而成的。(膜中离子交换基团与成膜的高分子材料发生化 学结合起来,其组成完全均一,故称之为均相膜) ③半均相离子交换膜。成膜的高分子材料与离子交换基团 组合得十分均匀,但它们之间并没有形成化学结合。
电渗析的原理及其应用
电渗析的原理及其应用1. 原理电渗析(Electrodialysis,ED)是一种通过利用电场作用对溶液进行分离的技术。
其原理基于离子迁移的规律,利用带电离子在电场中的导电性差异,实现离子的选择性分离。
电渗析系统由多个正负交替变化的离子选择膜组成,其中正离子选择膜只允许正离子通过,负离子选择膜只允许负离子通过。
当将含有混合离子的溶液通过电渗析系统时,正离子会通过正离子选择膜向负极迁移,而负离子则通过负离子选择膜向正极迁移。
通过连续的离子选择,有效地实现溶液中离子的分离。
电渗析系统中的电场是由电极提供的,正极和负极之间的电压差使电场得以形成。
应用外部电源源提供电能,使电源间膜上的离子总能量发生变化,进而驱动溶液中的离子迁移。
2. 应用2.1 离子分离与浓缩电渗析技术在离子分离与浓缩方面具有广泛的应用。
通过调整电渗析系统中离子选择膜的排列方式,可以实现对特定离子的选择性分离。
这在海水淡化、废水处理和食品工业中的盐分去除等方面具有重要的应用价值。
此外,电渗析还可以用于提取和回收溶液中的有价金属离子,从而实现资源的利用和循环利用。
2.2 酸碱调节电渗析技术还可以用于酸碱调节。
在饮料和食品工业中,pH值是控制产品品质的重要参数。
通过调整电渗析系统中的正离子选择膜和负离子选择膜的排列方式,可以实现溶液中酸性和碱性成分的选择性去除或浓缩,从而实现对溶液pH值的调节。
2.3 分离气体混合物电渗析技术还可以应用于分离气体混合物。
通过将气体混合物溶解在溶液中,并利用电渗析系统中的离子选择膜实现离子的分离,从而实现对气体成分的选择性分离。
这种方法可以应用于多个领域,如气体分离和制备纯度较高的气体。
2.4 药物分离与纯化电渗析技术在药物分离与纯化方面也有潜在应用。
通过设计合适的电渗析系统,可以实现多种药物的分离和纯化。
这种方法可以用于药物制剂的生产中,提高药物的纯度和质量。
3. 总结电渗析是一种利用电场作用对溶液进行分离的技术,其原理基于离子迁移的规律。
电渗析的原理特点及应用
电渗析的原理特点及应用1. 电渗析的原理电渗析(Electrodialysis)是一种利用电场力和离子选择性渗透膜分离离子的方法。
其原理基于离子在电场中的迁移和选择性渗透膜的特性。
主要包括以下几个步骤:1.构建电场:在电渗析装置中,有一对正负电极,通过电源提供电场。
正负电极之间设置离子选择性渗透膜,形成电场。
2.迁移离子:在电场的作用下,正离子会向负极迁移,负离子会向正极迁移。
这种迁移过程符合离子的电荷性质。
3.渗透膜选择性:离子选择性渗透膜可以选择性地让某些离子通过,而阻止其他离子通过。
这种选择性渗透膜可以帮助分离溶液中的离子。
4.分离离子:通过电场力和离子选择性渗透膜的作用,原本混合的离子可以被有效分离。
2. 电渗析的特点电渗析具有以下几个特点:•高效分离:电渗析具有高效的离子分离性能,可以有效地将溶液中不同离子分离。
•能耗低:相比传统的分离方法,电渗析的能耗较低。
电渗析过程中主要耗能的就是提供电场的电源。
•操作简单:电渗析设备结构相对简单,操作起来较为方便。
只需要设置正负电极和离子选择性渗透膜,连接电源即可开始分离。
•适用范围广:电渗析适用于分离不同离子的场景,可以用于水处理、化学品制备、药物制备等领域。
3. 电渗析的应用电渗析在多个领域都有广泛的应用。
以下是几个常见的应用领域:3.1 水处理电渗析可以用于水处理过程中的离子分离。
比如,可以将含有盐类的海水通过电渗析进行脱盐,得到淡化水。
3.2 药物制备电渗析可以在药物制备过程中用于纯化和分离离子。
通过电渗析,可以有效地除去溶液中的杂质离子,得到纯净的药物。
3.3 化学品制备在化学品制备过程中,电渗析可以用于分离和提纯离子。
例如,可以通过电渗析分离溶液中的阳离子和阴离子,以获得高纯度的化学品。
3.4 生物科技电渗析在生物科技领域也有一定的应用。
例如,可以用于蛋白质的富集和纯化过程,提高蛋白质的纯度和浓度。
3.5 废水处理电渗析可以用于废水处理中的离子分离和浓缩。
电渗析
利用半透膜的选择透过性来分离不同的溶质粒子(如离子)的方法称为渗析。
在电场作用下进行渗析时,溶液中的带电的溶质粒子(如离子)通过膜而迁移的现象称为电渗析。
利用电渗析进行提纯和分离物质的技术称为电渗析法,它是20世纪50年代发展起来的一种新技术,最初用于海水淡化,现在广泛用于化工、轻工、冶金、造纸、医药工业,尤以制备纯水和在环境保护中处理三废最受重视,例如用于酸碱回收、电镀废液处理以及从工业废水中回收有用物质等。
中文名:电渗析外文名:electroosmosis利用材质:半透膜的选择透过性对象:溶质粒子广泛用于:化工、轻工、冶金等特点:价格便宜等目录1 简介2 原理3 实际应用4 应用范围5 基本性能6 方法特点简介电渗析装置 (3张)电渗析过程是电化学过程和渗析扩散过程的结合;在外加直流电场的驱动下,利用离子交换膜的选择透过性(即阳离子可以透过阳离子交换膜,阴离子可以透过阴离子交换膜),阴、阳离子分别向阳极和阴极移动。
离子迁移过程中,若膜的固定电荷与离子的电荷相反,则离子可以通过;如果它们的电荷相同,则离子被排斥,从而实现溶液淡化、浓缩、精制或纯化等目的[1] 。
电渗析与近年引进的另一种膜分离技术反渗透相比,它的价格便宜,但脱盐率低。
当前国产离子交换膜质量亦很稳定,运行管理也很方便。
电渗析原理电渗析使用的半渗透膜其实是一种离子交换膜。
这种离子交换膜按离子的电荷性质可分为阳离子交换膜(阳膜)和阴离子交换膜(阴膜)两种。
在电解质水溶液中,阳膜允许阳离子透过而排斥阻挡阴离子,阴膜允许阴离子透过而排斥阻挡阳离子,这就是离子交换膜的选择透过性。
在电渗析过程中,离子交换膜不像离子交换树脂那样与水溶液中的某种离子发生交换,而只是对不同电性的离子起到选择性透过作用,即离子交换膜不需再生。
电渗析工艺的电极和膜组成的隔室称为极室,其中发生的电化学反应与普通的电极反应相同。
阳极室内发生氧化反应,阳极水呈酸性,阳极本身容易被腐蚀。
什么叫渗析--什么叫电渗析
什么叫渗析?什么叫电渗析?
渗析是属于一种自然发生的物理现象。
如将两种不同含盐量的水,用一张渗透膜隔开,就会发生含盐量大的水的电解质离子穿过膜向含盐量小的水中扩散,这个现象就是渗析。
这种渗析是由于含盐量不同而引起的,称为浓差渗析。
渗析过程与浓度差的大小有关,浓差越大,渗析的过程越快,否则就越慢。
因为是以浓差作为推动力的,因此,扩散速度始终是比较慢的。
如果要加快这个速度,就可以在膜的两边施加一直流电场。
电解质离子在电场的作用下,会迅速地通过膜,进行迁移过程,这就称为电渗析。
电渗析膜是用高分子材料制成的一种薄膜,上面有离子交换活性基团。
膜内含有酸性活性基团的称为阳膜;有碱性活性基团的称为阴膜。
从膜的结构上分,又可分为异相膜、均相膜、半均相膜三种。
电渗析
20
Electrodialysis
35
Electrodialysis
36
4
第六节 ED的脱盐过程
利用ED技术各种脱盐流程 C——浓缩室;D——脱盐室
37
5
1
电渗析与反渗透 电渗析与反渗透
不同点: 反渗透过程,水是在低压下透过膜,必要能 耗是水分子透过膜在通道中摩擦引起的,表 明与原水浓度无关; 电渗析过程,是离子透过膜,从淡水侧迁移 到浓水侧,必要能耗是离子透过膜通道中摩 擦引起的,与原水浓度成正比。
•非选择性膜三室电渗析器
阳离子交换膜:含有酸性活性基团,可解离出阳离子 对阳离子具有选择透过性,简称为阳膜 阴离子交换膜:含有碱性活性基团,可解离出阴离子 对阴离子具有选择透过性,简称为阴膜
ED技术的特点(续)
不足之处:只能除去水的盐分,而不能除去其中的 有机物,某些高价离子和有机物还会污染膜;易发 生浓差极化而产生结垢(用 EDR 可以避免);与 RO相比,脱盐率较低,装置比较庞大且组装要求 高,因此它的发展不如RO快。
Electrodialysis
34
Electrodialysis
16
17
Electrodialysis
18
2
二、离子交换膜的选择透过性
可由以下几个方面加以说明: 1. 孔隙作用——只有当被选择的离子的水合半径小于 孔隙半径时,该离子才能透过膜。 2. 静电作用——根据同电性相斥、异电性相吸的静电 作用规律,阳膜选择吸附阳离子;阴膜选择吸附 阴离子。 3. 扩散作用——膜对溶解离子具有传递迁移能力。由 吸附 ~ 解吸 ~ 迁移的方式,把离子从膜的一端输 送到另一端。
电渗析
膜对数(面积)计算
(Cdi Cd 0 ) 1 QF N1 i1 Ap
1 Cdi Cdi Cdi (Cdi ) 1 n ( )1 ( ) 2 ( )n [ ] k 2 Cd 0 Cd 0 Cd 0 (Cd 0 ) n
• 各脱盐级采用等流速运行,任何两级的电流密 度之比等于该两级淡水对数浓度之比,
柠檬汁减酸阴离子膜电渗析
氨基酸电渗析过程
电渗析中的传递现象
电渗析中的传递
• a.反离子迁移,也即为与膜上固定离子基团电荷相反 的离子的迁移。 b;同名离子的迂移,也即为与膜上固定离子(基团)电 荷相同的离子的迁移。 c.电解质的渗析,这种渗析主要由于膜两侧浓水室与 淡水室的浓度差引起的,使得电解质由浓水室向淡水室扩 散。 d.水的渗透,随着电渗析的进行,淡水室中水含量逐 渐升高,由于渗透压的作用,淡水室中的水会向浓水室渗 透。 e.水的分解,这是由于电渗析过程中产生浓差极化, 或中性水离解成OH-和H+所造成,控制浓差极化可防止这 种现象产生。 f.水的电渗析,由于离子的水合作用,在反离和同名 离子迁移时,会携带一定的水分子迁移。 g.压差渗漏,由于膜两侧的压力差,造成高压侧溶液 向低压侧渗漏。
特殊离子交换膜
• 抗污染的阴离子交换膜 由于膜污染的缘故,阴离子交换膜比阳离子交换膜 允许的电流强度小。 当阴离子很小时,能进入膜内,膜被堵塞, 膜的 电迁移性能很差, 可以通过调节膜的交联度和高分子网络中交联体的 链长来提高阴离子交换膜对大有机酸的渗透性。
特殊离子交换膜
• 抗污染的阴离子交换膜
7
膜对电压计算
U p k ' CmV
• 式中 • UP为单位膜对电压降(V); • k’、 、为与处理水型有关的常数,对碳酸氢 盐水型分别为0.065、0.1589、0.67。
电渗析原理及应用
电渗析原理及应用电渗析(Electrokinetic Chromatography,简称EKC)是一种基于电动力学原理的色谱技术。
它是既有电泳分离机理又有色谱分离机理的一种色谱技术,可以在一种载流液中实现离子和中性物质的分离。
电渗析的原理是基于溶质在电场中的迁移速率与溶质与电双层之间作用力的平衡关系。
在电场中,带电分子会受到电场力的作用而迁移,而中性分子则主要由于弥散作用而迁移。
电双层是电解质溶液中电极表面附近的层状结构,由溶剂中的离子和溶液中的电极起荶氧化还原反应生成的电子组成。
当电场施加在电双层上时,带电粒子在电极表面附近沿电场方向迁移。
电渗析的应用广泛。
首先,在生物医药领域中,电渗析常用于对生物样品中的蛋白质和胜肽进行分离和分析。
它可以通过选择合适的电泳缓冲溶液和添加表面活性剂,实现复杂蛋白质混合物的高效分离和富集。
其次,在环境监测和食品安全领域,电渗析可以用于快速检测样品中的有害物质,并提供高灵敏度和高分辨率的分析结果。
此外,电渗析还可以应用于药物分析、生物化学分离和化学品分析等领域。
电渗析技术具有许多优点。
首先,由于电渗析使用电动力学力实现分离,其分离速度快。
此外,电渗析技术对样品的处理要求较低,可以直接对复杂的样品进行分析。
另外,电渗析还可以在一定程度上减小操作误差,提高分析结果的准确性和重复性。
在实际应用中,电渗析还可以与其他色谱技术(如毛细管电泳、气相色谱等)结合使用,从而实现更广泛的应用。
尽管电渗析技术在实际应用中存在一些局限性,如样品的盐度和pH 值对分离效果的影响等,但随着技术的不断发展和改进,电渗析在分析领域的应用前景十分广阔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.液膜类型
内相
外相
①浸渍型:以多孔高分子膜作 由于将液膜含浸在多孔支撑体上,可以承 受较大的压力,且具有更高的选择性,可 为支架 , 使液体膜溶液 ( 有机 以承担合成聚合物膜不能胜任的分离要求。 溶剂 ) 浸渍在其孔穴部位 , 并 通常孔径越小液膜越稳定,但孔径过小将 使空隙率下降,从而将降低透过速度,存 在内外相均接触水溶液。 在传质面积小。
-31-
膜支架
O
3. 液膜分离原理
C 液料 液料 液膜 R C+R→P 液膜 液料 液膜
R1
C+R1 → P1
(c) 膜中化学反应
主要过程对电渗析有利,次要过程均会影响电渗析的除盐 或浓缩效率,增加电耗。设计中,应选择理想的离子交换膜和 最佳的操作条件,设法消除或改善这些不利影响。
-5-
极化与极限电流浓度
• 电渗析过程中,膜内反离子的迁移数大于溶液中的迁移数,从而造 成淡水室中在膜与溶液的界面处形成离子亏空现象,当操作电流密 度增大到一定程度时,主体溶液内的离子不能迅速补充到膜的界面 电渗析的极化现象对电渗析的运行有很大影响: 上,从而迫使水分子电离产生H+和OH—来负载电流,这就是电渗 ( 1)极化时一部分电能消耗在水的电离上,使电流效率下降; 析的极化现象。
2)极化时,在浓水侧的阴膜界面上形成沉淀会堵塞水流通道。 • ( 电流密度是指单位面积膜通过的电流,使水分子产生离解反应时的 操作电流密度称为极限电流密度。 ( 3)由于沉淀和结垢的影响,膜性能发生变化,机械强度下降, 膜电阻增大,缩短了膜的使用寿命。
为了避免极化和结垢,目前采用的措施包括:
•
-23-
纳滤膜及其技术的应用领域
--------
--------------------- Nhomakorabea-24-
五、微孔过滤(自学)
微孔过滤与超滤从原理上说没有本质的差别, 微滤只能截留更大分子的膜 分离过程。以压力为推动力的膜分离过程。
一 价 离 子 二小 价分 离 子 大分子 微粒 子 微滤
水
超滤
纳滤 反渗透
-8-
电渗析器组装
• 几个术语:
• 膜对:由1张阳膜、1张淡水隔板, 1张阴膜、1张浓水隔板 按一定顺序组成的电渗析器膜堆的最小脱盐单元 • 膜堆:若干模对的集合体 • 级:电渗析器中一对电极之间所包含的膜堆称为一级,一台 电渗析器的电极对数就是这台电渗析器的级数 • 段:电渗析器中淡水水流方向相同的膜堆称为一段 • 台:用锁紧装置将电渗析器各部件锁紧成一整体称为一台电 渗析器 • 系列:将多台电渗析器串联起来成为一脱盐整体称为一系列
-1-
海水淡化----电渗析原理
盐水 极水
+
-
淡水
关 注
1 离子在电场下的定向迁移 2 膜的选择性透过 3 分离对象/产品的去向
-2-
1、电渗析的基本原理
原理:阴阳离子交换膜对溶液中阴阳离子的选择透过性,而
使溶液中的溶质与水分离的一种物理化学过程。
阴膜只让阴离子穿过;阳膜只让阳离子穿过 电极两侧会发生氧化还原反应
-16-
压力 大分子 供水 超滤膜 水 盐 超滤过程 压力(要大于渗透压力) 盐 大分子 供水 反渗透膜 水 反渗透
-17-
超 滤 与 反 渗 透 的 区 别 示 意
超滤的截留机理:主要是物质在膜表面及微孔内的吸附、在孔
内的停留(阻塞)、膜表面的机械截留(筛分)、架桥截留和
膜内部网络截留。
机械截留 吸附截 留 架桥 截留
②乳化型:将表面活性剂、添 加剂及溶剂(内相试剂)的水溶 液高速搅拌(>2000转/分钟), 制成一个油包水(W/O)的乳状液, 然后再把这种乳状液加入到低 速搅拌(100转/ 分钟)的试液中, 并使乳状液均匀分散在试液中, 乳液型液膜的传质比表面最大,膜的厚度 最小,因此传质速度快,分离效果较好, 结果形成水包油, 再包水 具有较好的工业化前景。 (W/O/W)的多相乳浊液。
(1)控制工作电流密度在极限电流密度下运行; (2)定时倒换电极; (3)定期酸洗。
-6-
电渗析装置示意动画
-7-
2.电渗析器装置与组装
主要部件 离子交换膜:组装前膜预处理,操作溶液浸泡24-48小时,停运时充 满溶液 隔板:膜的支撑体,保持膜间距,水流通道;浓、淡室隔开 电极:要求耐腐蚀、导电性能好 夹紧装置:把极区和膜堆组成不漏水的电渗析器整体
-11-
3、电渗析在水处理中的应用
• 海水淡化 • 流程:海水→海水泵→无阀滤池→海水池→水泵→ 纤维布过滤器→第一组电渗析器→中间水池→第二 组电渗析器→成品水池→脱硼装置→饮用水。 • 电渗析—离子交换组合工艺制取纯水 • 电渗析法处理电镀含镍废水、酸洗废水回收硫酸和 铁、芒硝回收硫酸和碱。
-12-
-26-
小结:膜滤分类及基本特征
方法
微滤 MF 超滤 UF 纳滤 NF 反渗透 RO 电渗析 ED 渗析 D
推动力
压力差 0.01-0.2MPa 压力差 0.1-0.5MPa 压力差 0.5-2.5MPa 压力差 1-10Mpa
传递机 理
透过物及大小
水、溶剂、 溶解物
截留物
膜类型
对称和不对 称的多孔膜 非对称的多 孔膜 致密非对称 膜或复合膜 致密非对称 膜或复合膜
膜表面截留
膜内部网络截留
-18-
超滤在水处理的应用
• 1.给水
• 去除细菌、胶体等物质。家庭用膜式净水器 • 与反渗透联合制备纯水
• 2.废水
• 回收分离有用物:涂料、羊毛脂、染料、纸浆等 • 废水深度处理 • 膜-生物反应器
-19-
超 滤 过 滤 装 置
-20-
超滤处理流程示意图
-21-
四、纳滤技术(nanofiltration,NF)
• 最大缺点:强度低,破损率高,难以稳定操作,而且过程与设备复杂。
-29-
• 2. 液膜的组成与类型 • (1)液膜的组成 •
● 成膜的基本物膜溶剂:有机溶剂或水, 构成膜的基 体。如煤油、石蜡。
主要考虑液膜的稳定性和对溶质的溶解度。 对无载体液膜, 膜溶剂能优先溶解欲分离 组分, 而对其它组分溶质的溶解度则应很小; 对有载体液膜, 膜溶剂要能溶解载体, 而不 溶解溶质。
-15-
三、超滤法
• 超滤与反渗透类似,依靠压力和膜进行工作
• 制膜材料:
• 醋酸纤维素或聚砜酰胺等,省去热处理工序,成膜孔径较大,能够 在较小的压力下工作,有较大的通水量。
• 与反渗透的区别:
• 用途:分离分子量500-500000的物质,直径为0.00510μm的大分子和胶体 超滤过程的本质:是一种筛滤过程,膜表面的空隙 大小是主要的控制因素,溶质能否被膜孔截留取决 于溶质粒子的大小、形状、柔韧性以及操作条件等, 而与膜的化学性质关系不大。
-9-
一对正、负电极之间的膜堆称为一级 具有同一水流方向的并联膜堆称为一段
-10-
组装形式:
可按级段组装成各种方式
增加级数可降低电渗析的总电压,增加段数可以增加脱盐流 程长度,提高脱盐率 一般每段内的膜对数为150-200对,每台电渗析器的总膜对 数不超过400-500对 附属设备 整流器、水质检测、水量计量、升压升泵、预处理装置、 进出水管路、酸洗设施等
电位差
浓度差
悬浮物、颗粒 筛分 物、纤维和细 菌 水、溶剂、离子 胶体、大分子 筛分 和小分子 不溶解的有机 0.0004-10μm 物 筛分+溶 溶质、二价盐、 水和溶剂 解/扩散 糖和染料 水、溶剂 溶质、盐(SS、 溶剂的 扩散 0.0004-0.06μm 大分子、离子) 电离离子 离子交 非解离和大分 换 0.0004-0.1μm 子物质 低分子物质、离 溶质扩 溶剂,分子量 子 >1000 散 0.0004-0.15μm
海水淡化流程
-13-
电 渗 析
反 渗 透
纯水制备流程示意图
-14-
补 充 水
补 充 水
半光亮镀镍 电渗析
回收槽
光亮镀镍
回收槽 水洗槽 水洗槽 离子交换
电渗析
电渗析法回收含镍污水的工艺流程
镀镍废水回收镍:含镍废水经电渗析处理后,浓水中的镍浓度增高,可以返 回镀镍重复利用;淡水水镍浓度减少,可以返回水洗槽用在清洗水的补充水。 以硫酸钠溶液作为电极液,进行循环,加入硫酸钠是为了减轻铅电极的腐蚀, 经电渗析处理后,浓液浓度可以使NiSO4 · 7H2O达到100g/L左右,除镍率达 到90%以上。
阴极还原反应 2H++2 e→H2↑阴极室溶液呈碱性结垢 阳极氧化反应 4OH-→O2+2H2O+4e 阳极室溶液呈酸性腐蚀
-3-
原水
阳 阴
+
极水
阳
+
阴
阳
+
阴
阳 极
极
+ 阳极
+
+
+
室
浓
—
淡
—
浓
—
淡
—
浓
—
淡
—
室 — 阴极
浓水
淡水
电渗析分离原理图
-4-
电渗析过程
①反离子的迁移 交换膜不可能100%的选择性,有少 次要 过程
微滤、超滤、纳滤、反渗透对物质的截留
-25-
小结:膜滤分类及基本特征
根据推动力的不同,膜分离有下列几种: 浓度差:扩散渗析 电位差:电渗析 压力差: 反渗透(RO, reverse osmosis):MW<100, 0.2-0.3nm, 2 -3 A0 纳滤(NF, nanofiltration):MW: 100-1000, 0.5-5 nm 超滤(UF, ultrafiltration):MW: 1000—百万, 5 nm-0.2m 微滤(MF, microfiltration):0.2-1 m (1A0=10-8 cm, 1m =10-4cm, 1nm=10-7cm)