人教版七年级下数学期中测试

合集下载

人教版七年级下册数学期中考试试题(含答案)

人教版七年级下册数学期中考试试题(含答案)

人教版七年级下册数学期中考试试卷一、单选题1.下列各式中正确的是A2=±B 3=-C2=D =2.下列说法正确的是A .3是分数B .227是无理数C .π-3.14是有理数D .3是有理数3.如图,象棋盘上,若“将”位于点(3,﹣2),“车”位于点(﹣1,﹣2),则“马”位于A .(1,3)B .(5,3)C .(6,1)D .(8,2)4.如图,直线12l l //,直角三角板的直角顶点C 在直线1l 上,一锐角顶点B 在直线2l 上,若0135∠=,则2∠的度数是A .65B .55C .45D .355.如图,△ABC 沿BC 方向平移得到△DEF ,已知BC=7,EC=4,那么平移的距离为A .2B .3C .5D .76.下列说法正确的个数有()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④不重合的三条直线a、b、c,若//a b,//b c,则//a c.A.1个B.2个C.3个D.4个7.点P为直线l外一点,点A,B在直线l上,若5cmPA=,7cmPB=,则点P到直线l的距离()A.等于5cm B.小于5cm C.不大于5cm D.等于6cm 8.如图,下列条件中,不能判定//AB CD的是()A.180∠+∠=︒B.BAC ACDD BAD∠=∠C.CAD ACB∠=∠∠=∠D.B DCE9.如图,这是小明学校周边环境的示意图,以学校为参照点,儿童公园,图书市场分别距离学校500m、700m,若以(南偏西30°,500)来表示儿童公园的位置,则图书市场的位置应表示为()A.(700,南偏东45︒)B.(南偏东45︒,700)C.(700,北偏东45︒)D.(北偏东45︒,700)10.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A,第二次移动到点2A……,第n次移动到点n A,A的坐标是()则点2021A .()1010,0B .()1010,1C .()1011,0D .()1011,1二、填空题11325-3-.(填“>”“<”或“=”)12.根据如表回答下列问题:x 23.123.223.323.423.523.623.723.823.92x 533.61538.24542.89547.56552.25556.96561.69566.44571.21满足23.623.7n <<的整数n 有________个.13.在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为_____.14.如图,四边形ABCD 各个顶点的坐标分别为()2,8-、()11,6-、()14,0-、()0,0,则四边形ABCD 的面积是_______.15.如图所示,//AB CD ,EC CD ⊥.若28BEC ∠=︒,则ABE ∠的度数为_______.三、解答题16.(12-(2)求下列式子中x 的值:()229x -=17.根据要求,画图并回答问题:(1)如图,点P 在AOC ∠的边OA 上.①过点P 画OA 的垂线交OC 于B ;②过点P 作直线//PM OC ;(2)表示点О到直线PB 的距离的线段是__________;(3)直接写出所作图中与O ∠互余的角(可以表示出来的角).18.在平面直角坐标系xOy 中,点A 的坐标为()0,4,线段MN 的位置如图所示,其中点M 的坐标为()3,1--,点N 的坐标为()3,2-.(1)将线段MN 平移得到线段AB ,其中点M 的对应点为A ,点N 的对应点为B .点M 平移到点A 的过程可以是:先向__________平移______个单位长度,再向__________平移__________个单位长度;②点B 的坐标为___________.(2)在(1)的条件下,若点C 的坐标为()4,1,连接AC ,BC ,求ABC ∆的面积.19.如图,已知∠1=∠2,∠3=∠4,∠5=∠A ,试说明:BE ∥CF .完善下面的解答过程,并填写理由或数学式:解:∵∠3=∠4(已知)∴AE ∥()∴∠EDC=∠5()∵∠5=∠A (已知)∴∠EDC=()∴DC ∥AB ()∴∠5+∠ABC=180°()即∠5+∠2+∠3=180°∵∠1=∠2(已知)∴∠5+∠1+∠3=180°()即∠BCF+∠3=180°∴BE ∥CF ().20.如图,直线AB 、CD 相交于O 点,∠AOC 与∠AOD 的度数比为4:5,OE ⊥AB ,OF 平分∠DOB ,求∠EOF 的度数.21.(1)计算下列各式的值:=____________________;;通过计算上面各式的值,你发现:对于任意有理数a=__________.(2)利用所得结论解决问题:若有理数a、b在数轴上对应的点的位置如图所示,化简:a b-.22.如图1,AB∥CD,E是射线FD上的一点,∠ABC=140°,∠CDF=40°(1)试说明BC∥EF;(2)若∠BAE=110°,连接BD,如图2.若BD∥AE,则BD是否平分∠ABC,请说明理由.23.将一副三角板中的两个直角顶点C叠放在一起(如图1),其中30∠=︒,A∠=︒,4560B∠=∠=︒.D E(1)若112∠的度数;BCD∠=︒,求ACE(2)试猜想BCD∠的数量关系,请说明理由;∠与ACE(3)若三角板ABC保持不动,绕顶点C转动三角板DCE,在转动过程中,试探究BCD∠等于多少度时,//CD AB?请你直接写出答案.参考答案1.D 2.D 3.C 4.B 5.B 6.A 7.C 8.C 9.D 10.B 11.>【详解】解:因为-25>-27,3-,故答案为:>.12.5【详解】解:∵23.62=556.96,23.72=561.69,∴556.96561.69n <<∴满足23.623.7<<的整数n 有5个,故答案为:5.13.()5,4-【详解】解:∵点M 在第四象限,∴点M 的横坐标为正,纵坐标为负,∵点M 到x 轴的距离为4,到y 轴的距离为5,∴点M 的坐标为()5,4-,故答案为:()5,4-.14.80【详解】解:(1)如图所示:过点A 作AE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,则四边形ABCD 的面积=12×(14-11)×6+12×(6+8)×(11-2)+12×2×8,=9+63+8,=80;故答案为:80.15.118︒【详解】解:过点E 作EG ∥AB ,则EG ∥CD ,由平行线的性质可得∠GEC =90°,所以∠GEB =90°-28°=62°,因为EG ∥AB ,所以∠ABE =180°-62°=118°.故答案为:118°.16.(1)63(2)1x =-或5【详解】解:(1()238127232---93232=--+63=-;(2)∵()229x -=,∴23x -=±,∴1x =-或5.【详解】解:(1)如图所示,(2)∵OP ⊥PB∴线段OP 的长为点O 到直线PB 的距离故答案为:OP .(3)∵OP ⊥PB ∴∠OPB =90゜∴∠O +∠PBO =90゜即与O ∠互余的角为PBO ∠∵PM ∥OC ∴∠BPM =∠PBO∴∠O +∠BPM =90゜即与O ∠互余的角为BPM∠∴与O ∠互余的角为PBO ∠,BPM ∠.18.(1)①右,3,上,5(或上,5,右,3均可以);②()6,3;(2)7【分析】(1)①由点M 及其对应点的A 的坐标可得平移的方向和距离,即可;②根据①可得点N 的对应点B 的坐标;(2)割补法求解可得.【详解】解:(1)①∵点A 的坐标为()0,4,点M 的坐标为()3,1--,∴点M 移到点A 的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度;也可以是:先向上平移5个单位长度,再向右平移3个单位长度;②由①得:将N (3,-2)先向右平移3个单位长度,再向上平移5个单位长度所得的坐标是(6,3),∴点B 的坐标为(6,3);(2)如图,过点C 作CF y ⊥于点F ,过点B 作BE CF ⊥交FC 延长线于点E ,过点A 作AD y ⊥轴交EB 的延长线于点D ,则四边形AFED 是矩形,∴3AF =,4CF =,2CE =,2BE =,1BD =,6AD =,∴矩形AFED ABC Rt AFC Rt BCE Rt ABDS S S S S =--- 111634322617222=⨯-⨯⨯-⨯⨯-⨯⨯=.19.答案见解析.【详解】试题分析:根据平行线的判定与性质,灵活判断同位角、内错角、同旁内角,逐步可求解.试题解析:解:∵3=4∠∠(已知)∴AE ∥BC (内错角相等,两直线平行)∴5EDC ∠=∠(两直线平行,内错角相等)∵5=A ∠∠(已知)∴EDC ∠=A ∠(等量代换)∴DC ∥AB (同位角相等,两直线平行)∴05180ABC ∠+∠=(两直线平行,同旁内角互补)即0523180∠+∠+∠=∵1=2∠∠(已知)∴0513180∠+∠+∠=(等量代换)即03180BCF ∠+∠=∴BE ∥CF (同旁内角互补,两直线平行).20.50°.【详解】解:设∠AOC =4x ,则∠AOD =5x ,∵∠AOC +∠AOD =180°,∴4x +5x =180°,解得x =20°,∴∠AOC =4x =80°,∴∠BOD =∠AOC =80°,∵OE ⊥AB ,∴∠BOE =90°,∴∠DOE =∠BOE ﹣∠BOD =10°,又∵OF 平分∠DOB ,∴∠DOF =12∠BOD =40°,∴∠EOF =∠EOD +∠DOF =10°+40°=50°.21.(1)4;13;0;3;5;1;a 或()()00a a a a ⎧≥⎪⎨-<⎪⎩;(2)a b-+【详解】(1)4;13;0;3;5;1;a 或()()00a a a a ⎧≥⎪⎨-<⎪⎩(2)解:由数轴知:21a -<<-,01b <<,∴0a b +<,0a b -<,a b -()()a b a b a b =-++--a b =-+.22.(1)见解析;(2)见解析.【详解】(1)证明:∵AB ∥CD ,∴∠ABC+∠BCD =180°,∵∠ABC =140°,∴∠BCD =40°,∵∠CDF =40°,∴∠BCD =∠CDF ,∴BC ∥EF .(2)解:结论:BD 平分∠ABC .理由:∵AE ∥BD ,∴∠BAE+∠ABD =180°,∵∠BAE =110°,∴∠ABD =70°,∵∠ABC =140°,∴∠ABD =∠DBC =70°,∴BD 平分∠ABC .23.(1)68°;(2)180BCD ACE ∠+∠=︒,理由见解析;(3)当120BCD ∠=︒或60︒时,//CD AB .【详解】解:(1)∵90BCA ECD ∠=∠=︒,112BCD ∠=︒∴1129022DCA BCD BCA ∠=∠-∠=︒-︒=︒.∴902268ACE ECD DCA ∠=∠-∠=-︒=︒.(2)180BCD ACE ∠+∠=︒,理由如下:∵90BCD ACB ACD ACD ∠=∠+∠=︒+∠,90ACE DCE ACD ACD ∠=∠-∠=︒-∠,∴180BCD ACE ∠+∠=︒.(3)当120BCD ∠=︒或60︒时,//CD AB .如图2,根据同旁内角互补,两直线平行,当180B BCD ∠+∠=︒时,//CD AB ,此时180BCD ∠=︒-18060120B ∠=︒-︒=︒;如图3,根据内错角相等,两直线平行,当60B BCD ∠=∠=︒时,//CD AB .。

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试卷一、单选题1.下列数据能确定物体具体位置的是()A .朝阳大道右侧B .好运花园2号楼C .东经103︒,北纬30°D .南偏西55︒2.在0.21)A .0.2BC .﹣1D3.下列各式计算正确的是()A 2=±B 1=-C 2=±D .3=4.下列命题中是假命题的是()A .两直线平行,同位角互补B .对顶角相等C .直角三角形两锐角互余D .平行于同一直线的两条直线平行5.在平面直角坐标系内,将M (5,2)先向下平移2个单位,再向左平移3个单位,则移动后的点的坐标是()A .(2,0)B .(3,5)C .(8,4)D .(2,3)6.如图,直线AB 和CD 相交于点O ,45AOC ∠=︒,射线OE 是BOD ∠的角平分线,则∠BOE 的度数为()A .22.5︒B .23.5︒C .45︒D .40︒7.如图,在下列条件中,能判断AB ∥CD 的是()A .∠1=∠2B .∠BAD =∠BCDC .∠BAD +∠ADC =180°D .∠3=∠48.小明在学习平行线的性质后,把含有60°角的直角三角板摆放在自己的文具上,如图,AD ∥BC ,若∠2=70°,则∠1=()A .22°B .20°C .25°D .30°9.如图,数轴上有M ,N ,P ,Q 四点,则这四点中所表示的数最接近)A .点MB .点NC .点PD .点Q10.如图,已知直线AB ,CD 被直线AC 所截,//AB CD ,E 是平面内任意一点(点E 不在直线AB ,CD ,AC 上),设∠BAE =α,∠DCE =β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,④360°﹣α﹣β,∠AEC 的度数可能是()A .①②③B .①②④C .①③④D .①②③④二、填空题11.已知点(1,3)M m m ++在x 轴上,则m 等于______.12.如果一个正数a 的两个不同平方根分别是22x -和63x -,则a =______.13.在平面直角坐标系中,第二象限内有一点M ,点M 到x 轴的距离为5,到y 轴的距离为4,则点M 的坐标是______.14.如图://AB CD ,AE CE ⊥,13EAF EAB ∠=∠,13ECF ECD ∠=∠,则AFC ∠=__.15a ,小数部分是b ,计算a ﹣2b 的值是__.16<x x 的整数有4个;③﹣3⑥对于任意实数a a .其中正确的序号是_____.三、解答题17218.求下列各式中的x :(1)24810x -=;(2)35(1)48x -+=.19.如图,已知AD BC ⊥于点D ,点E 在AB 上,EF BC ⊥于点F ,12∠=∠,试说明//DE AC .20.按要求画图及填空:在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O 及△ABC 的顶点都在格点上.(1)点A 的坐标为;(2)将△ABC 先向下平移2个单位长度,再向右平移5个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1.(3)△A 1B 1C 1的面积为.21.(1)由8个同样大小的立方体组成的魔方,体积为64,则出这个魔方的棱长是_____.(2)图1正方形EFGH 的边长等于魔方的棱长,求出阴影部分的面积及其边长.(3)把正方形ABCD 放到数轴上,如图2,使得A 与1-重合,那么D 在数轴上表示的数为______.22.在平面直角坐标系中,有A(﹣2,a +1),B(a ﹣1,4),C(b ﹣2,b )三点.(1)当点C 在y 轴上时,求点C 的坐标;(2)当AB ∥x 轴时,求A ,B 两点间的距离;(3)当CD ⊥x 轴于点D ,且CD =1时,求点C 的坐标.23.先阅读下列一段文字,再回答后面的问题:已知在平面直角坐标系内两点P 1(x 1,y 1),P 2(x 2,y 2),其两点间的距离P 1P 2轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x 2﹣x 1|或|y 2﹣y 1|.(1)已知A (1,3),B (﹣3,﹣5),试求A ,B 两点间的距离;(2)已知线段MN ∥y 轴,MN =4,若点M 的坐标为(2,﹣1),试求点N 的坐标;(3)已知一个三角形各顶点坐标为D (0,6),E (﹣3,2),F (3,2),你能判定此三角形的形状吗?说明理由.24.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,直接写出A ∠和C ∠之间的数量关系________;(2)如图2,过点B 作BD AM ⊥于点D ,请说明ABD C ∠=∠的理由;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE ,BP 、CF ,BF 平分DBC ∠,BE 平分ABD ∠,若180FCB NCF ∠+∠=︒,3BFC DBE ∠=∠,求EBC ∠的度数.参考答案1.C【分析】在平面中,要用两个数据才能表示一个点的位置.【详解】解:朝阳大道右侧、好运花园2号楼、南偏西55︒都不能确定物体的具体位置,东经103︒,北纬30°能确定物体的具体位置,故选:C.【点睛】此题主要考查了坐标确定位置,要明确,一个有序数对才能确定一个点的位置.2.D【分析】按照无理数的定义逐个来判定即可.【详解】解:A、0.2属于有理数,故A不符合题意;3,为有理数,故B不符合题意;BC、﹣1为有理数,故C不符合题意;D符合题意.D故选:D.【点睛】此题主要考查无理数的识别,解题的关键是熟知无理数的定义.3.B【分析】根据算术平方根、平方根和立方根的定义分别判断即可.【详解】解:A2=,故选项错误;B1=-,故选项正确;C2=,故选项错误;D、3=±,故选项错误;故选B.【点睛】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.4.A【分析】根据平行线、相交线、三角形内角和等性质,对选项逐个判断即可.【详解】解:A:两直线平行,同位角相等,同旁内角互补,选项错误,符合题意;B:对顶角相等,为真命题,故选项不符合题意;C:直角三角形两锐角相加为90︒,即互余,为真命题,故选项不符合题意;D:平行于同一直线的两条直线平行,为真命题,故选项不符合题意;故选A.【点睛】此题主要考查了真假命题,涉及到平行线、相交线、三角形内角和、平行公理等内容,熟练掌握相关几何性质是解题的关键.5.A【分析】根据平移变换与坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减,可得答案.【详解】因为M点坐标为(5,2),根据平移变换的坐标变化规律可知,向下平移2个单位,再向左平移3个单位后得到的点的坐标是(5−3,2-2),即(2,0).故选:A.【点睛】此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.6.A【分析】根据对顶角相等可得∠BOD=∠AOC,再根据射线OE是∠BOD的角平分线即可得解.【详解】解:由对顶角相等得,∠BOD=∠AOC=45°,∵射线OE是∠BOD的角平分线,∴∠BOE=12∠BOD=12×45°=22.5°.故选:A.【点睛】本题考查了对顶角的性质和角平分线的定义,熟记概念并求出∠BOD的度数是解题的关键.7.C【分析】利用平行线的判定方法逐一判断即可.【详解】解:A.由∠1=∠2可判断AD∥BC,不符合题意;B.∠BAD=∠BCD不能判定图中直线平行,不符合题意;C.由∠BAD+∠ADC=180°可判定AB∥DC,符合题意;D.由∠3=∠4可判定AD∥BC,不符合题意;故选择:C.【点睛】本题主要考查平行线的判定,掌握平行线的判定方法是解题的关键.8.B【分析】过F作FG∥AD,则FG∥BC,即可得到∠2=∠EFG=70°,再根据∠AFE=90°,即可得出∠AFG=90°-70°=20°,进而得到∠1=∠AFG=20°.【详解】解:如图,过F作FG∥AD,则FG∥BC,∴∠2=∠EFG=70°,又∵∠AFE=90°,∴∠AFG=90°-70°=20°,∴∠1=∠AFG=20°,故选:B.【点睛】本题考查了平行线的性质,三角板的知识,比较简单,熟记平行线的性质是解题的关键.9.B【分析】先估算.【详解】∵∴43-<-∴最接近N故答案选择B.【点睛】本题考查的是无理数,正确估算.10.D【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图1,由AB//CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图2,过E2作AB平行线,则由AB//CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.当AE2平分∠BAC,CE2平分∠ACD时,∠BAE2+∠DCE2=12(∠BAC+∠ACD)=12×180°=90°,即α+β=90°,又∵∠AE2C=∠BAE2+∠DCE2,∴∠AE2C=180°﹣(α+β)=180°﹣α﹣β;(3)如图3,由AB//CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图4,由AB//CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.(5)(6)当点E 在CD 的下方时,同理可得,∠AEC =α﹣β或β﹣α.综上所述,∠AEC 的度数可能为β﹣α,α+β,α﹣β,180°﹣α﹣β,360°﹣α﹣β.故选:D .【点睛】本题主要考查了平行线的性质的运用与外角定理,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.11.3-【分析】当点M 的纵坐标为0时,即可列式求值.【详解】解:由题意得:m+3=0,解得m=-3,故答案为:3-.【点睛】此题主要考查点的坐标;用到的知识点为:x 轴上点的纵坐标为0.12.36【分析】根据平方根的定义,两不同平方根互为相反数,列式求解即可【详解】解:由题意可得()3262x x -=--,即2263x x -=-+,解得4x =,222426x ∴-=⨯-=,36a ∴=故答案为:36【点睛】本题主要考查了平方根的定义,利用正数的平方根有两个且互为相反数列出正确的关系式是解决本题的关键.【分析】根据点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值,得到点M 的横纵坐标可能的值,进而根据所在象限可得点M 的具体坐标.【详解】解:设点M 的坐标是(x ,y ).∵点M 到x 轴的距离为5,到y 轴的距离为4,∴|y|=5,|x|=4.又∵点M 在第二象限内,∴x =−4,y =5,∴点M 的坐标为(−4,5),故答案是:(−4,5).【点睛】本题考查了点的坐标,用到的知识点为:点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值;第二象限(−,+).14.60︒【分析】利用两直线平行,同旁内角互补,垂直的定义,方程的思想求解即可.【详解】解:连接AC ,设EAF x ∠=,ECF y ∠=,3EAB x ∠=,3ECD y ∠=,//AB CD ,180BAC ACD ∴∠+∠=︒,33180CAE x ACE y ∴∠++∠+=︒,180(33)CAE ACE x y ∴∠+∠=︒-+,180(22)FAC FCA x y ∠+∠=︒-+180()AEC CAE ACE ∴∠=︒-∠+∠180[180(33)]x y =︒-︒-+33x y=+3()x y =+,180()AFC FAC FCA ∠=︒-∠+∠180[180(22)]x y =︒-︒-+2()x y =+,AE CE ⊥ ,90AEC ∴∠=︒,22906033AFC AEC ∴∠=∠=⨯︒=︒.故答案为:60︒.【点睛】本题考查了平行线的性质,垂直的定义,方程的思想,熟练应用平行线的性质,科学引入未知数是解题的关键.15.3﹣【分析】a 、b 的值,代入求出即可.【详解】解:∵12,∴a =1,b 1,∴a ﹣2b =1﹣21)=3﹣故答案为:3﹣【点睛】此题主要考查无理数的估算,解题的关键是根据无理数的大小先表示出a 、b ,代入求解.16.②③【分析】根据有理数、无理数、实数的意义逐项进行判断即可.【详解】解:①开方开不尽的数是无理数,但是有的数不开方也是无理数,如:π,3π等,因此①不正确,不符合题意;x x 的整数有﹣1,0,1,2共4个,因此②正确,符合题意;③﹣3是99,因此③正确,符合题意;④π就是无理数,不带根号的数也不一定是有理数,因此④不正确,不符合题意;⑤无限循环小数,是有理数,因此⑤不正确,不符合题意;⑥若a <0|a|=﹣a ,因此⑥不正确,不符合题意;因此正确的结论只有②③,故答案为:②③.【点睛】本题考查无理数、有理数、实数的意义,理解和掌握实数的意义是正确判断的前提.172++.【分析】先化简绝对值、化简二次根式、立方根、二次根式的乘法,再计算二次根式的加减法即可得.【详解】原式35=+,2+.【点睛】本题考查了化简绝对值、立方根、二次根式的乘法与加减法,熟记各运算法则是解题关键.18.(1)92x =±;(2)12x =-【分析】(1)移项后根据平方根的定义求解;(2)移项后根据立方根的定义求解;【详解】解:(1)∵24810x -=,∴2481x =,∴2814x =,∴92x =±;(2)∵35(1)48x -+=,∴327(1)8x -=-,∴312x -=-,∴12x =-.【点睛】本题考查了利用平方根和立方根的定义解方程,熟练掌握平方根和立方根的定义是解答本题的关键.19.见解析【分析】先由垂直于同一条直线的两条直线平行,得出∠1=∠3,再用∠1=∠2代换,最后用内错角相等得出结论.【详解】解:如图,∵AD BC ⊥于点D ,EF BC ⊥于点F ,∴//AD EF ,∴13∠=∠,∵12∠=∠,∴23∠∠=,∴//DE AC .【点睛】此题是平行线的判定,主要考查了平行线的性质和判定,用判断垂直于同一条直线的两直线平行,解本题的关键是判断出AD ∥EF .20.(1)(-4,2);(2)见解析;(3)5.5.【分析】(1)根据点A 的的位置和平面直角坐标系求解即可;(2)根据平移规律即可画出△A 1B 1C 1;(3)利用割补法求△A 1B 1C 1的面积,把△A 1B 1C 1补全成一个矩形,然后用矩形的面积减去其他三个三角形的面积,即可求出△A 1B 1C 1的面积.【详解】(1)A (-4,2);(2)如图,△A 1B 1C 1即为所求.(3)11111134231413 5.5222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯= .∴△A 1B 1C 1的面积是5.5.【点睛】此题考查了平移变换以及利用割补法求三角形面积,解题的关键是熟练掌握平移变换以及利用割补法求三角形面积.21.(1)4;(2)阴影部分的面积是8,边长是(3)-1-【分析】(1)根据正方体的体积公式可求这个魔方的棱长.(2)根据魔方的棱长为4,所以小立方体的棱长为2,阴影部分由4个直角三角形组成,算出一个直角三角形的面积乘以4即可得到阴影部分的面积,开平方即可求出边长.(3)根据两点间的距离公式可得D 在数轴上表示的数.【详解】解:(1=4,答:这个魔方的棱长为4.(2)∵魔方的棱长为4,∴小立方体的棱长为2,∴阴影部分面积为:12×2×2×4=8,答:阴影部分的面积是8,边长是(3)D 在数轴上表示的数为-1-故答案为:-1-【点睛】本题考查的是立方根在实际生活中的运用,解答此题的关键是根据立方根求出魔方的棱长.22.(1)(0,2);(2)4;(3)(﹣1,1)或(﹣3,﹣1)【分析】(1)利用y 轴上点的坐标特征得到b ﹣2=0,求出b 得到C 点坐标;(2)利用与x 轴平行的直线上点的坐标特征得到a +1=4,求出a 得到A 、B 点的坐标,然后计算两点之间的距离;(3)利用垂直于x 轴的直线上点的坐标特征得到|b |=1,然后求出b 得到C 点坐标.【详解】解:(1)∵点C 在y 轴上,∴20b -=,解得2b =,∴C 点坐标为(0,2);(2)∵AB ∥x 轴,∴A 、B 点的纵坐标相同,∴a +1=4,解得a =3,∴A(﹣2,4),B(2,4),∴A ,B 两点间的距离=2﹣(﹣2)=4;(3)∵CD ⊥x 轴,CD =1,∴|b |=1,解得b =±1,∴C 点坐标为(﹣1,1)或(﹣3,﹣1).【点评】本题考查平面直角坐标系中点坐标的求解,解题的关键是掌握坐标轴上点的坐标特征.23.(1)(2)(2,3)或(2,﹣5);(3)等腰三角形,见解析【分析】(1)直接利用两点间的距离公式计算;(2)利用MN∥y轴得到M、N的横坐标相同,设N(2,t),利用两点间的距离为4得到|t+1|=4,然后求出t即可;(3)利用两点间的距离公式计算出DE、DF、EF,然后根据三角形的分类进行判断.【详解】解:(1)A,B(2)∵线段MN∥y轴,∴M、N的横坐标相同,设N(2,t),∴|t+1|=4,解得t=3或﹣5,∴N点坐标为(2,3)或(2,﹣5);(3)△DEF为等腰三角形.理由如下:∵D(0,6),E(﹣3,2),F(3,2),∴DE5,DF5,EF6,∴DE=DF,∴△DEF为等腰三角形.【点睛】本题考查了两点间的距离公式.解答该题时,先弄清两点在平面直角坐标系中的位置,然后选取合适的公式来求两点间的距离.24.(1)∠A+∠C=90°;(2)证明见解析(3)105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)过点B作BG∥DM,证∠DBG=90°,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∴∠D+∠DBG=180°,∵BD⊥AM,∴∠D=90°,∴∠DBG=90°,∴∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,∴∠DBF=∠CBF,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,∵BE平分∠ABD,∴∠DBE=∠ABE,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠ABF=β,∵BG∥DM,∴∠AFB=∠GBF=β,∵∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵BG∥DM,∴∠AFC+∠NCF=180°,∵∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质和三角形内角和,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.。

人教版数学七年级下学期《期中检测题》附答案

人教版数学七年级下学期《期中检测题》附答案

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共40分)1. 已知的值不大于3-,用不等式表示的范围是( )A. 3a >-B. 3a <-C. 3a ≥-D. 3a ≤- 2. 若代数式31x -的值为4-,则的值为( )A. 1B.C. 53-D. 353. 下列各组中,不是二元一次方程37x y +=的解的是( )A. 14x y =⎧⎨=⎩B. 07x y =⎧⎨=⎩C. 32x y =⎧⎨=-⎩D. 1.53.5x y =⎧⎨=⎩4. 若a b >,则下列不等式中错误的是( )A. 22a b +>+B.22a b > C. 22a b -<- D. 22a b > 5. 将方程3213123x x x -++=-去分母,正确的是( ) A. ()()18336221x x x +-=-+B. ()()3331221x x x +-=-+C. ()()93321x x x +-=-+D. ()()33121x x x +-=-+6. 某文具店开展促销活动,某种笔记本原价每本元,第一次每本按原价打“六折”,第二次每本再降1元,经两次降价后售价为8元,依题意,可列方程为( )A. 0.68x x -=B. 0.0618x -=C. 80.61x -=D. 0.618x -= 7. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A. x y 50{x y 180=-+=B. x y 50{x y 180=++=C. x y 50{x y 90=++= D. x y 50{x y 90=-+=8. 《九章算术》是中国传统数学重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八盈三;人出七,不足四.问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱.问人数、物价各是多少?设合伙人数为人,物价为钱,则下列方程组正确的是( )A. 8374x y y x -=⎧⎨-=⎩B. 8374y x y x -=⎧⎨-=⎩C. 8374y x x y -=⎧⎨-=⎩D. 8374x y x y -=⎧⎨-=⎩ 9. 若关于x ,y 的方程组2315x y m x y +=+⎧-=-⎨⎩的解满足x +y =-3,则m 的值为( ) A. 2- B. 2 C. D. 110. 已知关于,x y 的二元一次方程组43335x y m x y m +=-⎧⎨-=-⎩,则关于代数式x y -的值的说法正确的是( ). A. 随增大而增大 B. 随减小而减小C. 既可能随增大而增大,也可能随减小而减小D. 与的大小无关 二、填空题(共24分)11. 若2x =-是方程520x k +=解,则k =__________.12. 已知二元一次方程235x y +=,若用含的代数式表示,则y =_______.13. 已知关于的不等式()15m x ->的解集为51x m <-,则的取值范围是_________. 14. 已知320a b --=,那么261a b -+=_________.15. 方程组457x y y z x z +=⎧⎪+=⎨⎪+=⎩的解是_____________.16. 若不等式组24x x m-≤⎧⎨<⎩无解,则的取值范围是____________. 三、解答题(共86分)17. 解方程:()()103421x x x --=+.18. 解不等式组:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩,并把它解集在数轴上表示出来.19. 在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18-,求,a b 的值. 20. 一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,求这个两位数.21. 已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,求a +b 的值. 22. 某商店需要购进甲、乙两种商品共1000件,其进价和售价如下表所示:(1)若商店计划销售完这批商品后能获利4200元,则甲、乙两种商品应分别购进多少件;(2)若该商店销售完这批商品后获利要多于5000元,则至少应购进乙种商品多少件?23. 在等式y =kx +b (k ,b 为常数)中,当x =2时,y =﹣5;当x =﹣1时,y =4.(1)求k 、b 的值;(2)若不等式5﹣2x >m +4x 的最大整数解是k ,求m 的取值范围.24. 一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由;(3)已知(),m n “相伴数对”,试说明91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对”. 25. 某体育彩票经销商计划用4500元从省体彩中心购进彩票20捆,已知体彩中心有、、三种不同价格的彩票,进价分别是彩票每捆150元,彩票每捆200元,彩票每捆250元.(1)若经销商同时购进两种不同型号的彩票20捆,刚好用去4500元,请你帮助设计进票方案;(2)若销售型彩票每捆获手续费20元,型彩票每捆获手续费30元,型彩票每捆获手续费50元.在问题(1)设计的购进两种彩票的方案中,为使销售完时获得的手续费最多,你选择哪种进票方案?(3)若经销商准备用4500元同时购进、、三种彩票20捆,请你帮助经销商设计进票方案.答案与解析一、选择题(共40分)1. 已知的值不大于3-,用不等式表示的范围是( )A. 3a >-B. 3a <-C. 3a ≥-D. 3a ≤- [答案]D[解析][分析]的值不大于3-就是的值小于或等于3-,据此解答即可.[详解]解:的值不大于3-,用不等式表示的范围是:3a ≤-.故选:D .[点睛]本题考查了列出问题中的不等式,解题的关键是正确理解题意、把“不大于”转化为“≤”. 2. 若代数式31x -的值为4-,则的值为( )A. 1B. C. 53- D. 35[答案]B[解析]分析]根据题意,列出关于x 的一元一次方程314x -=-,通过解该方程可以求得x 的值.[详解]解:由题意,得314x -=-,解得1x =-;故选B .[点睛]本题考查一元一次方程的解法及一元一次方程的解的定义.牢记解一元一次方程的步骤及一元一次方程的解的定义是解题的关键.3. 下列各组中,不是二元一次方程37x y +=的解的是( ) A. 14x y =⎧⎨=⎩ B. 07x y =⎧⎨=⎩ C. 32x y =⎧⎨=-⎩ D. 1.53.5x y =⎧⎨=⎩[答案]D[解析][分析]把各选项中的x 、y 的值逐一代入计算即得答案.[详解]解:A 、把14x y =⎧⎨=⎩代入原方程,得3147⨯+=,∴14x y =⎧⎨=⎩是方程37x y +=的解,本选项不符合题意; B 、把07x y =⎧⎨=⎩代入原方程,得3077⨯+=,∴07x y =⎧⎨=⎩是方程37x y +=的解,本选项不符合题意; C 、把32x y =⎧⎨=-⎩代入原方程,得3327⨯-=,∴32x y =⎧⎨=-⎩是方程37x y +=的解,本选项不符合题意; D 、把 1.53.5x y =⎧⎨=⎩代入原方程,得3 1.5 3.587⨯+=≠,∴ 1.53.5x y =⎧⎨=⎩不是方程37x y +=的解,本选项符合题意. 故选:D .[点睛]本题考查了二元一次方程的解的定义,属于基础题型,熟练掌握二元一次方程的解的概念是解题关键. 4. 若a b >,则下列不等式中错误的是( )A. 22a b +>+B. 22a b >C. 22a b -<-D. 22a b > [答案]D[解析][分析]根据不等式的性质逐项判断即可.[详解]解:A 、不等式a b >两边同时加上2,得22a b +>+,所以本选项变形正确,不符合题意; B 、在不等式a b >两边同时除以2,得22a b >,所以本选项变形正确,不符合题意; C 、在不等式a b >两边同时乘以﹣2,得22a b -<-,所以本选项变形正确,不符合题意;D 、由a b >不能得出22a b >,如1>﹣2,但()2212<-,所以本选项变形错误,符合题意.故选:D .[点睛]本题考查了不等式的性质,属于基础题型,熟练掌握不等式的性质是解题关键.5. 将方程3213123x x x -++=-去分母,正确的是( ) A. ()()18336221x x x +-=-+ B. ()()3331221x x x +-=-+C. ()()93321x x x +-=-+D. ()()33121x x x +-=-+ [答案]A[解析][分析]根据去分母的方法:原方程两边同时乘以6可得答案.[详解]解:原方程两边同时乘以6,得:()()18336221x x x +-=-+.故选:A .[点睛]本题考查了一元一次方程解法,属于基本题型,熟练掌握去分母的方法是解本题的关键.6. 某文具店开展促销活动,某种笔记本原价每本元,第一次每本按原价打“六折”,第二次每本再降1元,经两次降价后售价为8元,依题意,可列方程为( )A 0.68x x -=B. 0.0618x -=C. 80.61x -=D. 0.618x -=[答案]D[解析][分析]由题意可得第一次每本笔记本按原价打“六折”后售价为0.6x 元,第二次降价后的售价为()0.61x -元,进一步即可列出方程.[详解]解:根据题意可列方程为:0.618x -=.故选:D .[点睛]本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.7. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A. x y 50{x y 180=-+= B. x y 50{x y 180=++= C. x y 50{x y 90=++= D. x y 50{x y 90=-+= [答案]C[解析] [详解]根据平角和直角定义,得方程x+y=90;根据∠1比∠2的度数大50°,得方程x=y+50.可列方程组为5090x y x y =+⎧⎨+=⎩,故选C . 考点:1.由实际问题抽象出二元一次方程组;2.余角和补角.8. 《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八盈三;人出七,不足四.问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱.问人数、物价各是多少?设合伙人数为人,物价为钱,则下列方程组正确的是( )A. 8374x y y x -=⎧⎨-=⎩B. 8374y x y x -=⎧⎨-=⎩C. 8374y x x y -=⎧⎨-=⎩D. 8374x y x y -=⎧⎨-=⎩ [答案]A[解析][分析]设合伙人数为人,物价为钱,根据该物品价格不变,即可得出关于x 、y 的二元一次方程组,进而得到答案.[详解]解:设合伙人数为人,物价为钱,根据该物品价格不变,即可得出关于x 、y 的二元一次方程组为:8374x y y x -=⎧⎨-=⎩, 故选:A ;[点睛]本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,找出合适的等量关系,列方程求解.9. 若关于x ,y 的方程组2315x y m x y +=+⎧-=-⎨⎩的解满足x +y =-3,则m 的值为( ) A. 2-B. 2C.D. 1[答案]C[解析][分析]先把m 看作是常数,解关于x ,y 二元一次方程组,求得用m 表示的x ,y 的值后,再代入3x+2y=19,建立关于m 的方程,解出m 的数值. [详解]x 2y 3m 1x y 5+=+⎧-=-⎨⎩①②, ①-②得:y=m+2③,把③代入②得:x=m-3,∵x+y=-3,∴m-3+m+2=-3,∴m=-1.故选C .[点睛]本题实质是解二元一次方程组,先用m 表示出x ,y 的值后,再求解关于m 的方程,解方程组关键是消元.10. 已知关于,x y 的二元一次方程组43335x y m x y m +=-⎧⎨-=-⎩,则关于代数式x y -的值的说法正确的是( ). A. 随增大而增大B. 随减小而减小C. 既可能随增大而增大,也可能随减小而减小D. 与的大小无关[答案]D[解析][分析]方程组中的两个方程相加,再两边同时除以2即可进行判断. [详解]解:对方程组43335x y m x y m +=-⎧⎨-=-⎩①②,①+②,得()21x y -=-,即12x y -=-, ∴代数式x y -的值与的大小无关.故选:D .[点睛]本题考查了二元一次方程组的特殊解法,属于常考题型,灵活应用整体的思想方法是解题的关键.二、填空题(共24分)11. 若2x =-是方程520x k +=的解,则k =__________.[答案]5[解析][分析]将2x =-代入方程520x k +=即可求算.[详解]解:∵2x =-是方程520x k +=的解,2x =-代入方程:∴1020k -+=,解得:5k =故答案为:5[点睛]本题考查一元一次方程的解,掌握一元一次方程解的意义是解题关键.12. 已知二元一次方程235x y +=,若用含的代数式表示,则y =_______.[答案]523x - [解析][分析]移项,把x 看做已知数求出y 即可.[详解]解:二元一次方程235x y +=,移项得:352y x =-, 即:523x y, 故答案为:523x -; [点睛]此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .13. 已知关于的不等式()15m x ->的解集为51x m <-,则的取值范围是_________. [答案]1m <[解析][分析]根据不等式的性质可得10m -<,解不等式即得答案.[详解]解:由题意得:10m -<,解得:1m <.故答案为:1m <.[点睛]本题考查了不等式的性质和一元一次不等式的解法,属于基础题型,熟练掌握不等式的性质是解题的关键14. 已知320a b --=,那么261a b -+=_________.[答案]5[解析][分析]由已知可得32a b -=,然后将所求的代数式变形为()231a b -+后再整体代入求解即可.[详解]解:∵320a b --=,∴32a b -=,∴()2612312215a b a b -+=-+=⨯+=.故答案为:5.[点睛]本题考查了代数式求值,属于基本题型,熟练掌握整体代入的思想方法是解答的关键. 15. 方程组457x y y z x z +=⎧⎪+=⎨⎪+=⎩的解是_____________.[答案]314x y z =⎧⎪=⎨⎪=⎩[解析][分析]根据解三元一次方程组的方法解答即可.[详解]解:对457x yy zx z+=⎧⎪+=⎨⎪+=⎩①②③,①+②+③,得()216x y z++=,即8x y z++=④,④-①,得z=4, ④-②,得x=3, ④-③,得y=1,∴方程组的解是:314xyz=⎧⎪=⎨⎪=⎩.故答案为:314 xyz=⎧⎪=⎨⎪=⎩.[点睛]本题考查了三元一次方程组的解法,属于基本题型,熟练掌握解三元一次方程组的方法是解答的关键.16. 若不等式组24xx m-≤⎧⎨<⎩无解,则的取值范围是____________.[答案]2m≤-[解析][分析]先求出不等式的解集,再根据无解得出m的取值范围.[详解]解:24xx m-≤⎧⎨<⎩①②由①得:2x≥-由②得:x m<∵不等式组无解,没有公共部分∴2m≤-故答案为:2m≤-[点睛]本题考查不等式组参数问题,掌握求解不等式组的方法是解题关键.三、解答题(共86分)17. 解方程:()()103421x x x --=+.[答案]2x =-[解析][分析]根据解一元一次方程的方法和步骤解答即可.[详解]解:去括号,得1031222x x x -+=+,移项,得1032212x x x --=-,合并同类项,得510x =-,系数化为1,得2x =-.[点睛]本题考查了一元一次方程的解法,属于基础题型,熟练掌握解一元一次方程的方法是解题的关键.18. 解不等式组:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩,并把它的解集在数轴上表示出来.[答案]0x <,图见解析[解析][分析]分别解出每一个不等式,再求出公共部分即可,然后在数轴上表示.[详解]解:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩①②由①得:3x ≤由②得:0x <∴不等式组的解集为:0x <该不等式组解集在数轴上表示如图:[点睛]本题考查一元一次不等式组,掌握一元一次不等式组的解法是解题关键.19. 在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18-,求,a b 的值.[答案]a=5,b=-2[分析]将3x =,2y =时,ax by +的值是11;当2x =-,4y =时,ax by +的值是18-分别代入得出关于a 、b 的二元一次方程组,解方程即可.[详解]解:∵在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18- ∴32112418a b a b +=⎧⎨-+=-⎩①②由②得:29a b =+ ③将③代入①得:()329211b b ++= 解得:2b =-将2b =-代入③解得:5a =∴a=5,b=-2[点睛]本题考查代数式,将已知条件代入建立关于a 、b 的二元一次方程组是解题关键.20. 一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,求这个两位数.[答案]这个两位数为45.[解析][分析]要求这个两位数,可以转化为求个位数字与十位数字分别是多少,若设原数的个位数字是x ,则十位数字是9﹣x ,则原数是10(9﹣x )+x ,新数是10x +(9﹣x ),然后根据等量关系:新数=原数+9即可列出方程,解方程即得结果.[详解]解:设原两位数的个位数字是x ,则十位数字是9﹣x .根据题意得:10x +(9-x )=10(9﹣x )+x +9解得:x =5,则9﹣x =4,答:这个两位数为45.[点睛]本题考查了一元一次方程的应用之数字问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.21. 已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,求a +b 的值. [答案]16[解析]根据题意列出x 和y 的方程组,然后进行求解,将解代入另外的两个方程求出a 和b 的值,进而即可求解.[详解]解方程组5325x y x y +=⎧⎨-=⎩,得12x y =⎧⎨=-⎩. 把12x y =⎧⎨=-⎩代入5451ax y x by +=⎧⎨+=⎩,得142a b =⎧⎨=⎩∴a+b=16.22. 某商店需要购进甲、乙两种商品共1000件,其进价和售价如下表所示:(1)若商店计划销售完这批商品后能获利4200元,则甲、乙两种商品应分别购进多少件;(2)若该商店销售完这批商品后获利要多于5000元,则至少应购进乙种商品多少件?[答案](1)购进甲种商品800件,购进乙种商品200件;(2)334;[解析][分析](1)设购进甲种商品x 件,购进乙种商品y 件,根据购进甲乙两种商品共1000件及销售完这批商品后能获利4200元,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进乙种商品a 件,则购进甲种商品(1000-a )件,根据总利润=单件利润×购进数量结合该商店销售完这批商品后获利要多于5000元,即可得出关于a 的一元一次不等式,解之取其中的最小的整数即可得出结论.[详解]解:(1)设购进甲种商品x 件,购进乙种商品y 件,根据题意得:()()1000181544354200x y x y +⎧⎨-+-⎩== , 解得:800200x y ⎧⎨⎩== , 则购进甲种商品800件,购进乙种商品200件,答:购进甲种商品800件,购进乙种商品200件;(2)设购进乙种商品a 件,则购进甲种商品(1000-a )件,根据题意得:(44-35)a+(18-15)(1000-a )>5000,解得:10003a > , ∵a 为整数,∴a 的最小值为334.答:至少应购进乙种商品334件.[点睛]本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,列出关于a 的一元一次不等式.23. 在等式y =kx +b (k ,b 为常数)中,当x =2时,y =﹣5;当x =﹣1时,y =4.(1)求k 、b 的值;(2)若不等式5﹣2x >m +4x 的最大整数解是k ,求m 的取值范围.[答案](1)31k b =-⎧⎨=⎩;(2)7≤m <13 [解析][分析](1)把25x y ⎧⎨⎩==﹣和14x y ⎧⎨⎩=﹣=代入y =kx +b ,可得254k b k b +=-⎧⎨-+=⎩,再解出关于k,b 的二元一次方程组即可解出k 、b 的值;(2)解不等式5﹣2x >m +4x 得x <56m -,再根据不等式最大整数解是k =-3,来得到m 的取值范围. [详解]解:(1)根据题意可得:254k b k b +=-⎧⎨-+=⎩解得:31k b =-⎧⎨=⎩; (2)解不等式5﹣2x >m +4x ,得:x <56m -, 因为该不等式的最大整数解是k ,即﹣3,所以﹣3<56m -≤﹣2, 解得:7≤m <13.[点睛]主要考查二元一次方程组的解与一元一次不等式的整数解.24. 一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”,记为(),a b .(1)若()1,b 为“相伴数对”,试求的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由;(3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对”. [答案](1)94b =-;(2)92,2⎛⎫- ⎪⎝⎭(答案不唯一);(3)见解析 [解析][分析] (1)根据“相伴数对”的定义,将()1,b 代入2323a b a b ++=+,从而求算答案; (2)先根据“相伴数对”的定义算出a 、b 之间的关系为:94a b =-,满足条件即可;(3)将将,a m b n == 代入2323a b a b ++=+得出49m n ,再将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到491,94n n -+-⎛⎫ ⎪⎝⎭,分别去计算等式左右两边,看是否恒等即可. [详解]解:(1)∵()1,b 为“相伴数对”,将()1,b 代入2323a b a b ++=+得: 112323b b ++=+ ,去分母得:()151061b b +=+ 解得:94b =- (2)2323a b a b ++=+化简得:94a b =- 只要满足这个等量关系即可,例如:92,2⎛⎫-⎪⎝⎭(答案不唯一) (3)∵(),m n 是“相伴数对” 将,a m b n == 代入2323a b a b ++=+: ∴2323m n m n ++=+ ,化简得:49m n 将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到:491,94n n -+-⎛⎫ ⎪⎝⎭ 将:491,94a n b n =-+=- 代入2323a b a b ++=+左边=49149 942336n n n-+--+=右边=49149 942336n n n-++--=+∴左边=右边∴当(),m n是“相伴数对”时,91,4m n⎛⎫⎪⎝+⎭-也是“相伴数对”[点睛]本题考查定义新运算,正确理解定义是解题关键.25. 某体育彩票经销商计划用4500元从省体彩中心购进彩票20捆,已知体彩中心有、、三种不同价格的彩票,进价分别是彩票每捆150元,彩票每捆200元,彩票每捆250元.(1)若经销商同时购进两种不同型号的彩票20捆,刚好用去4500元,请你帮助设计进票方案;(2)若销售型彩票每捆获手续费20元,型彩票每捆获手续费30元,型彩票每捆获手续费50元.在问题(1)设计的购进两种彩票的方案中,为使销售完时获得的手续费最多,你选择哪种进票方案?(3)若经销商准备用4500元同时购进、、三种彩票20捆,请你帮助经销商设计进票方案.[答案](1)购进A种彩票5捆,C种彩票15捆或B种彩票与C种彩票各10捆;(2)A种彩票5捆,C种彩票15捆;(3)方案1:A种1捆,B种8捆,C种11捆;方案2:A种2捆,B种6捆,C种12捆;方案3:A种3捆,B 种4捆,C种13捆;方案4:A种4捆,B种2捆,C种14捆.[解析][分析](1)因为彩票有A,B,C三种不同型号,而经销商同时只购进两种,所以要将A,B,C两两组合,分三种情况:A,B;A,C;B,C,每种情况都可以根据下面两个相等关系列出方程,两种不同型号的彩票捆数之和=20,购买两种不同型号的彩票钱数之和=4500,然后根据实际含义即可确定他们的解;(2)根据上一问分别求出每一种情况的手续费,然后进行比较即可得出结果;(3)有两个等量关系:A彩票扎数+B彩票扎数+C彩票扎数=20,购买A彩票钱数+购买B彩票钱数+购买C 彩票钱数=4500;可设三个未知数,然后用含有同一个未知数的代数式去表示另外的两个未知数,再根据三个未知数都是正整数,并结合实际意义即可求出结果.[详解]解:(1)若设购进A种彩票x捆,B种彩票y捆,根据题意得:201502004500x yx y+=⎧⎨+=⎩,解得:1030xy=-⎧⎨=⎩,∵x<0,∴此种情况不合题意;若设购进A种彩票x捆,C种彩票y捆,根据题意得:201502504500x yx y+=⎧⎨+=⎩,解得:515xy=⎧⎨=⎩,若设购进B种彩票x捆,C种彩票y捆,根据题意得:202002504500x yx y+=⎧⎨+=⎩,解得:1010xy=⎧⎨=⎩,综上所述,若经销商同时购进两种不同型号的彩票,共有两种方案:即购进A种彩票5捆,C种彩票15捆或B 种彩票与C种彩票各10捆;(2)若购进A种彩票5捆,C种彩票15捆,销售完后可获手续费为:20×5+50×15=850(元);若购进B种彩票与C种彩票各10捆,销售完后可获手续费为:30×10+50×10=800(元);∴为使销售完后获得手续费最多,应选择的方案为:A种彩票5捆,C种彩票15捆;(3)设购进A种彩票m捆,B种彩票n捆,C种彩票h捆.由题意得:201502002504500m n hm n h++=⎧⎨++=⎩,解得:10210h mn m=+=-+⎧⎨⎩,∵m、n都是正整数,∴1≤m<5,∴m=1,2,3,4,所以共有4种进票方案,具体如下:方案1:A种1捆,B种8捆,C种11捆;方案2:A种2捆,B种6捆,C种12捆;方案3:A种3捆,B种4捆,C种13捆;方案4:A种4捆,B种2捆,C种14捆.[点睛]此题考查了二元一次方程组的应用,属于常考题型,正确理解题意、分三种情况求解是解第(1)小题的关键,用含有同一个未知数的代数式去表示另外的两个未知数并结合未知数的实际意义是解第(3)小题的关键.。

人教版数学七年级下册《期中检测试题》附答案解析

人教版数学七年级下册《期中检测试题》附答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共有10小题,每小题3分,共30分)1. 如图,1∠与2∠是对顶角的是( ) A. B. C. D.2. 下列计算正确的是( )A. x 6÷x 3=x 2B. 2x 3﹣x 3=2C. x 2•x 3=x 6D. (x 3)3=x 9 3. 把0.00000156用科学记数法表示为( )A. 815610⨯B. 715.610C. 1.56×10-5D. 61.5610-⨯ 4. 一个角度数是40°,那么它的余角的补角度数是( )A. 130°B. 140°C. 50°D. 90°5. 等腰三角形的两边长分别为4和9,则它的周长 ( )A. 17B. 22C. 17或22D. 216. 下列乘法中,不能运用平方差公式进行运算的是( )A. ()()x a x a +-B. ()()a b a b +--C. ()()x b x b ---D. ()()b m m b +-7. 如图,用直尺和圆规作一个角等于已知角,能得出A O B AOB '''∠=∠的依据是( )A. SASB. SSSC. ASAD. AAS 8. 在下列长度的三条线段中,能组成三角形的是( )A. 3cm ,5cm ,8cmB. 8cm ,8cm ,18cmC. 1cm , 1cm ,1cmD. 3cm ,4cm ,8cm 9. 已知a+b=﹣5,ab=﹣4,则a 2﹣ab+b 2=( )A. 29B. 37C. 21D. 3310. 某人骑车上路,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上路时间,于是就加快了车速.如图s 表示此人离家距离,t 表示时间,在下面给出的四个表示s 与t 的关系的图象中,符合以上情况的是( ) A. B. C. D.二.填空题(本大题共有8小题,每小题4分,共32分)11. 计算(-2a 2b)(3ab)=____________________.12. 对于圆的周长公式c=2πr ,其中自变量是______,因变量是______.13. 如图,在△ABC 中,∠A=40°,点D 是∠ABC 和∠ACB 角平分线的交点,则∠BDC 为________14. 一辆汽车以35千米/时的速度匀速行驶,行驶路程S (千米)与行驶时间t (时)之间的关系式为_______ 15. 如图,已知AB=AD ,那么添加下列一个条件后,能利用“SSS”判定△ABC ≌△ADC 的是_____.16. 若102m =,103n =,则210m n +=_________.17. 若226m n -=,且3m n -=,则m n +=___.18. 观察下列等式①223415-⨯=,②225429-⨯=,③2274313-⨯=,…根据上述规律,第n 个等式是________________.(用含有n 的式子表示)三、解答题19. 如图,在ΔABC 中,D 是AB 边上一点.(1)求作:∠ADE=∠ABC ,交AC 边于点E .(要求:尺规作图,不写作法,保留作图痕迹)(2)DE 与BC 位置关系是______________20. 计算:(1)022120182()2-+- (2)()()32231223a b ab a b -÷-⋅ (3)()()()2122m m m m -+-- (4)()()22a b a b +++-21. 一个角与它的补角的度数之比为1:8,求这个角的余角的度数.22. 请将下列证明过程补充完整:已知:∠1=∠E ,∠B =∠D . 求证:AB ∥CD证明:∵ ∠1=∠E ( 已知 )∴ ∥ ( )∴ ∠D +∠2=180°( ) ∵ ∠B =∠D ( 已知 )∴ ∠B + ∠2= 180°( ) ∴ AB ∥CD ( )23. 如图表示玲玲骑自行车离家的距离与时间的关系.她9点离开家,15点回到家,请根据图象回答下列问题:(1)玲玲到达离家最远的地方是什么时间?她离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)第一次休息时,她离家多远?(4)11点~12点她骑车前进了多少千米?24. 如图,AB=DE,AC=DF,点E、C在直线BF上,且BE=CF.试说明AB∥DE.25. 已知如图,A、E、F、C四点共线,BF=DE,AB=CD.(1)请你添加一个条件,使△DEC≌△BFA;(2)在(1)基础上,求证:DE∥BF.26. 如图:BD平分∠ABC,∠ABD=∠ADB,∠ABC=50°,请问:(1)∠BDC+∠C 度数是多少?并说明理由.(2)若P点是BC上的一动点(B点除外),∠BDP与∠BPD之和是一个确定的值吗?如果是,求出这个确定的值.如果不是,说明理由.27. 如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于多少?(2)请用两种不同的方法求图2中阴影部分的面积:(3)观察图2你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m-n)2,mn.(4)根据第(3)问题中的等量关系,解决如下问题:若a+b=7,ab=5,则(a-b)2的值是多少?答案与解析一、选择题(本大题共有10小题,每小题3分,共30分)1. 如图,1∠与2∠是对顶角的是( ) A. B. C. D.[答案]B[解析][分析]根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角,依次判定即可得出答案.[详解]解: A.∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角;B.∠1与∠2的两边互为反向延长线, 只有一个公共顶点,是对顶角;C.∠1与∠2有两个公共顶点,不是对顶角;D. ∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角;故选B .[点睛]本题主要考查了对顶角的定义,对顶角是相对与两个角而言,是指的两个角的一种位置关系..它是在两直线相交的前提下形成的.2. 下列计算正确的是( )A. x 6÷x 3=x 2B. 2x 3﹣x 3=2C. x 2•x 3=x 6D. (x 3)3=x 9[答案]D[解析][分析]根据同底数幂相除,底数不变指数相减;合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.[详解]A 、应x 6÷x 3=x 3,故本选项错误;B 、应为2x 3﹣x 3=x 3,故本选项错误;C 、应为x 2•x 3=x 5,故本选项错误;D 、(x 3)3=x 9,正确.[点睛]本题考查同底数幂的除法,合并同类项法则,同底数幂的乘法,幂的乘方,熟练掌握运算性质和法则是解题的关键.3. 把0.00000156用科学记数法表示为( )A. 815610⨯B. 715.610C. 1.56×10-5D. 61.5610-⨯[答案]D[解析][分析]科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.[详解]0.00000156的小数点向右移动6位得到1.56,所以0.00000156用科学记数法表示为1.56×10-6,故选D .[点睛]本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4. 一个角的度数是40°,那么它的余角的补角度数是( )A. 130°B. 140°C. 50°D. 90° [答案]A[解析][分析]若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.依此求出度数.[详解]40°角的余角是:90°−40°=50°,50°角的补角是:180°−50°=130°.故选:A.[点睛]考查余角与补角的相关计算,掌握余角与补角的定义是解题的关键.5. 等腰三角形的两边长分别为4和9,则它的周长 ( )A. 17B. 22C. 17或22D. 21 [答案]B[解析]由题意分该等腰三角形的腰长分别为4和9两种情况结合三角形三边间的关系进行讨论,然后再根据三角形的周长公式进行计算即可.详解:由题意分以下两种情况进行讨论:(1)当该等腰三角形的腰长为4时,因为4+4<9,围不成三角形,所以这种情况不成立;(2)当该等腰三角形的腰长为9时,因为4+9>9,能够围成三角形,此时该等腰三角形的周长=9+9+4=22. 综上所述,该等腰三角形的周长为22.故选B.点睛:当已知等腰三角形其中两边长,求第三边长或周长时,通常要分“已知两边分别为等腰三角形的腰长”两种情况,结合三角形三边间的关系进行讨论.6. 下列乘法中,不能运用平方差公式进行运算的是( )A. ()()x a x a +-B. ()()a b a b +--C. ()()x b x b ---D. ()()b m m b +-[答案]B[解析][分析]根据平方差公式的特点:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数解答.[详解]解:、、符合平方差公式的特点,故能运用平方差公式进行运算;、两项都互为相反数,故不能运用平方差公式进行运算.故选:.[点睛]本题主要考查了平方差公式的结构.注意两个二项式中有一项完全相同,另一项互为相反数,并且相同的项和互为相反数的项必须同时具有.7. 如图,用直尺和圆规作一个角等于已知角,能得出A O B AOB '''∠=∠的依据是( )A. SASB. SSSC. ASAD. AAS[答案]B我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS ,答案可得.[详解]解:作图的步骤:①以为圆心,任意长为半径画弧,分别交OA 、OB 于点、;②任意作一点,作射线O A '',以为圆心,OC 长为半径画弧,交O A ''于点;③以为圆心,CD 长为半径画弧,交前弧于点D ';④过点D '作射线O B ''.所以AOB ∠'''就是与AOB ∠相等的角; 在OCD ∆与△OCD ''',O C OC ''=,O D OD ''=,C D CD ''=,OCD ∴∆≅△()O C D SSS ''',AO B AOB ∴∠'''=∠,显然运用的判定方法是SSS .故选B .[点睛]本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.8. 在下列长度的三条线段中,能组成三角形的是( )A. 3cm ,5cm ,8cmB. 8cm ,8cm ,18cmC. 1cm , 1cm ,1cmD. 3cm ,4cm ,8cm[答案]C[解析][分析]根据三角形的三边关系进行判断.[详解]A 、 3+5=8 ,不能组成三角形;B 、 8+8<18,不能组成三角形;C 、 1+1>1 ,能组成三角形;D 、 3+4<8 ,不能组成三角形;故选:C .[点睛]本题考查三角形的三边关系,一般用两条较短的线段相加,如果大于最长那条就能够组成三角形. 9. 已知a+b=﹣5,ab=﹣4,则a 2﹣ab+b 2=( )A. 29B. 37C. 21D. 33 [答案]B先根据完全平方公式进行变形,再代入求出即可.[详解]∵a+b=−5,ab=−4,∴a2−ab+b2=(a+b)2−3ab=(−5)2−3×(−4)=37,故选:B.[点睛]本题考查完全平方公式,能灵活运用完全平方公式进行变形是解此题的关键.10. 某人骑车上路,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上路时间,于是就加快了车速.如图s表示此人离家的距离,t表示时间,在下面给出的四个表示s与t的关系的图象中,符合以上情况的是( )A. B. C. D.[答案]C[解析][分析]根据修车时,路程没变化,可得答案.[详解]∵停下修车时,路程没变化,观察图象,A、B、D的路程始终都在变化,故错误;C、修车是的路程没变化,故C正确;故选:C.[点睛]本题考查函数图象,观察图象是解题关键,注意修车时路程没有变化.二.填空题(本大题共有8小题,每小题4分,共32分)11. 计算(-2a2b)(3ab)=____________________.[答案]-6a3b2[解析][分析]根据单项式与单项式相乘的运算法则进行计算即可得到答案.[详解]解:(-2a2b)(3ab)=-6a3b2.故答案为-6a3b2.[点睛]本题考查单项式乘单项式,解题的关键是掌握单项式乘单项式的运算法则.12. 对于圆的周长公式c=2πr,其中自变量是______,因变量是______.[答案] (1). r (2). c[解析]试题解析:∵圆的周长随着圆的半径的变化而变化,∴对于圆的周长公式2πC r ,其中自变量是,因变量是 .故答案为,.r C13. 如图,在△ABC 中,∠A=40°,点D 是∠ABC 和∠ACB 角平分线的交点,则∠BDC 为________[答案]110°[解析][分析]由D 点是∠ABC 和∠ACB 角平分线的交点可推出∠DBC +∠DCB =70°,再利用三角形内角和定理即可求出∠BDC 的度数.[详解]解:∵D 点是∠ABC 和∠ACB 角平分线的交点,∴∠CBD =∠ABD =12∠ABC ,∠BCD =∠ACD =12∠ACB , ∵∠A=40°,∴∠ABC +∠ACB =180°−40°=140°,∴∠DBC +∠DCB =70°,∴∠BDC =180°−70°=110°,故答案为:110°.[点睛]此题主要考查学生对角平分线性质,三角形内角和定理,熟记三角形内角和定理是解决问题的关键. 14. 一辆汽车以35千米/时的速度匀速行驶,行驶路程S (千米)与行驶时间t (时)之间的关系式为_______[答案]S=35t[解析][分析]根据路程=速度×时间列出函数关系式即可.[详解]解:根据路程=速度×时间得:汽车所走的路程S (千米)与所用的时间t (时)的关系表达式为:s=35t . 故答案为:S=35t .[点睛]本题考查函数关系式,解题的关键是明确路程=速度×时间,据此表示出关系式.15. 如图,已知AB=AD ,那么添加下列一个条件后,能利用“SSS”判定△ABC ≌△ADC 的是_____.[答案]CB =CD[解析][分析]要判定△ABC ≌△ADC ,已知AB =AD ,AC 是公共边,具备了两组边对应相等,则由题意根据SSS 可添加CB =CD .[详解]已知AB =AD ,AC 是公共边,具备了两组边对应相等,则由题意根据SSS 能判定△ABC ≌△ADC ,则需添加CB =CD ,故答案为:CB =CD .[点睛]本题考查三角形全等的判定方法,解题的关键是掌握判定两个三角形全等的一般方法(SSS ). 16. 若102m =,103n =,则210m n +=_________.[答案][解析]∵10m =2,10n =3,∴10m+2n =10m •102n =2×32=18.故答案是:18.17. 若226m n -=,且3m n -=,则m n +=___.[答案]2[解析][分析]将m 2−n 2 利用平方差公式变形,将m-n=3代入计算即可求出m+n 的值.[详解]解:∵m 2-n 2=(m+n)(m-n)=6,且m-n=3,∴m+n=2.故答案为:2.[点睛]本题考查利用平方差公式因式分解,熟练掌握公式及法则是解本题的关键.18. 观察下列等式①223415-⨯=,②225429-⨯=,③2274313-⨯=,…根据上述规律,第n 个等式是________________.(用含有n 的式子表示)[答案](2n+1) −4×n=4n+1.[解析][分析]由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.[详解]由题意知, ①223415-⨯=,②225429-⨯=,③2274313-⨯=,则第④个等式为9−4×4=17,故第n 个等式为(2n+1) −4×n=4n+1左边=4n+4n+1−4n=4n+1=右边,∴(2n+1) −4×n=4n+1故答案为(2n+1) −4×n=4n+1.[点睛]此题考查规律型:数字的变化类,解题关键在于理解题意找到规律. 三、解答题19. 如图,在ΔABC 中,D 是AB 边上一点.(1)求作:∠ADE=∠ABC ,交AC 边于点E .(要求:尺规作图,不写作法,保留作图痕迹)(2)DE 与BC 的位置关系是______________[答案](1)见解析;(2)DE 平行BC.理由见解析.[解析][分析](1)由题意作∠ADE=∠ABC ,DE 与AC 边交于点E ,即可得到图形;(2)根据同位角两直线平行进行判定即可得到答案.[详解](1)作∠ADE=∠ABC ,DE 与AC 边交于点E ,如图所示:∠ADE 即为所求;(2)DE 平行BC.理由:由(1)可知∠ADE=∠ABC ,根据同位角相等,两直线平行可得DE 平行BC.[点睛]本题考查作图—基本作图和平行线的判定,解题的关键是掌握作图基本方法和平行线的判定方法. 20. 计算:(1)022120182()2-+- (2)()()32231223a b ab a b -÷-⋅ (3)()()()2122m m m m -+-- (4)()()22a b a b +++-[答案](1)1;(2)43a 7b 5;(3)-m ²+3m−2;(4)a ²+2ab+b ²-4; [解析][分析](1)直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案;(2)先算括号里面的,再根据单项式乘单项式的运算法则计算,然后合并同类项即可;(3)根据多项式乘多项式和单项式乘多项式的运算法则并合并同类项计算即可;(4)把a+b 当成一项,根据平方差公式计算,在展开合并化简即可. [详解](1)原式=1+14−14=1; (2)原式=-8a 6b 3÷(-2ab)13a ²b 3=43a 7b 5; (3)原式=m ²−m−2−2m ²+4m=-m ²+3m−2;(4)原式=(a+b)²-4=a ²+2ab+b ²-4.[点睛]本题考查了整式混合运算,熟练掌握整式的混合运算是解题的关键,计算时要注意符号的正确处理. 21. 一个角与它的补角的度数之比为1:8,求这个角的余角的度数.[答案]70°[解析]分析]设这个角是x ,表示出它的补角为(180°−x ),然后列出方程求出x ,再根据余角的定义计算即可得解.[详解]设这个角是x ,则它的补角=180°−x ,根据题意得,x ∶(180°−x)=1∶8,解得x =20°,90°−20°=70°.答:这个角的余角是70°.[点睛]本题考查了余角和补角,熟记定义并表示这个角的补角,然后列出方程是解题的关键.22. 请将下列证明过程补充完整:已知:∠1=∠E,∠B=∠D.求证:AB∥CD证明:∵∠1=∠E(已知)∴∥()∴∠D+∠2=180°()∵∠B=∠D(已知)∴∠B+ ∠2= 180° ( )∴AB∥CD()[答案]∵∠1=∠E(已知),∴AD∥BE(内错角相等,两直线平行),∴∠D+∠2=180°(两直线平行,同旁内角互补);∵∠B=∠D(已知),∴∠B+∠2=180°(等量代换)∴AB∥CD(同旁内角互补,两直线平行)[解析][分析]根据∠1=∠E可判定AD∥BE,可得∠D和∠2为同旁内角互补;结合∠B=∠D,可推得∠2和∠B也互补,从而判定AB平行于CD.[详解]证明:∵∠1=∠E(已知),∴AD∥BE(内错角相等,两直线平行),∴∠D+∠2=180°(两直线平行,同旁内角互补);∵∠B=∠D(已知),∴∠B+∠2=180°,∴AB∥CD.[点睛]本题考查了平行线的性质和平行线的判定,同学们要熟练掌握.23. 如图表示玲玲骑自行车离家的距离与时间的关系.她9点离开家,15点回到家,请根据图象回答下列问题:(1)玲玲到达离家最远的地方是什么时间?她离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)第一次休息时,她离家多远?(4)11点~12点她骑车前进了多少千米?[答案](1) 30千米;(2)10时30分,休息了半小时;(3) 17.5千米;(4) 12.5千米.[解析]试题分析:(1)(3)小题,观察图象,结合题意即可得到对应的答案;(4)观察图象可得:11点时,玲玲距家17.5km,12点时玲玲距家30km,由此可得1112点玲玲骑车前进了30-17.5=12.5(km).试题解析:(1)观察图象可得:玲玲是在12点时到达距家最远的地方的,此时她距家30km;(2)观察图象可得:玲玲10点30分开始第一次休息,休息了30分钟;(3)观察图象可得:玲玲第一次休息时,距家17.5km;(4)观察图象可得:11点时,玲玲距家17.5km,12点时玲玲距家30km,∴11点12点,玲玲骑车行驶了:30-17.5=12.5(km).点睛:解答这类题的关键有以下两点:(1)弄清图象中点的横坐标和纵坐标所代表的量的意义;(2)弄清图象中各个转折点(如图中的点C、D、E、F)的意义.24. 如图,AB=DE,AC=DF,点E、C在直线BF上,且BE=CF.试说明AB∥DE.[答案]见解析[解析][分析]证明△ABC ≌△DEF 得到∠B=∠DEF ,即可推出AB ∥DE.[详解]∵BE=CF ,∴BE+CE=CF+CE,即BC=EF ,在△ABC 和△DEF 中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,∴△ABC ≌△DEF,∴∠B=∠DEF ,∴AB ∥DE.[点睛]此题考查三角形全等的判定及性质,根据题中的已知条件证得△ABC ≌△DEF 是解题的关键. 25. 已知如图,A 、E 、F 、C 四点共线,BF=DE ,AB=CD .(1)请你添加一个条件,使△DEC ≌△BFA ;(2)在(1)的基础上,求证:DE ∥BF .[答案](1)添加的条件为:AE=CF (答案不唯一);(2)证明见解析;[解析][分析](1)添加的条件AE=CF ,因此可得AF=CE ,即可证明△DEC ≌△BFA ;(2) 由(1)知△DEC ≌△BFA ,得到∠DEC=∠BFA ,根据直线平行的判定,即可证明;[详解]解:(1)添加的条件为:AE=CF ,证明:∵AE=CF ,∴AE+EF=CF+EF ,即:AF=CE ,又∵BF=DE ,AB=CD ,∴在△DEC 和△BFA 中,AB CD BF DE AF CE =⎧⎪=⎨⎪=⎩∴△DEC ≌△BFA (SSS );(2)由(1)知△DEC ≌△BFA ,∴∠DEC=∠BFA(全等三角形对应角相等),∴DE ∥BF (内错角相等,两直线平行).[点睛]本题主要考查了三角形全等的判定以及三角形全等的性质、直线平行的·判定,掌握内错角相等两直线平行是解题的关键.26. 如图:BD 平分∠ABC ,∠ABD=∠ADB ,∠ABC=50°,请问:(1)∠BDC +∠C 度数是多少?并说明理由.(2)若P 点是BC 上的一动点(B 点除外),∠BDP 与∠BPD 之和是一个确定的值吗?如果是,求出这个确定的值.如果不是,说明理由.[答案](1)∠BDC+∠C=155°,理由见解析,(2)∠BDP 与∠BPD 之和是一个确定的值,∠BDP+∠BPD=155°,理由见解析.[解析][分析](1)由BD 平分∠ABC ,∠ABD=∠ADB ,可得出AD ∥BC ,在△BCD 中,∠DBC=25°,从而可得答案,(2)因为∠DBC 大小固定,ADB ∠的大小就固定,所以无论P 点如何移动,∠BDP 与∠BPD 之和为一定值.[详解]解:(1)∠BDC+∠C=155°. 理由如下:∵BD 平分∠ABC ,∠ABC=50°,∴∠ABD=∠CBD=25°; 又∠ABD=∠ADB=25°,∠BDC+∠C=180°-∠CBD=155°.(2)是确定的值. 理由如下:∵∠ADB=∠CBD ,∴AD∥BC,∴∠ADP+∠BPD=180°;∴∠BDP+∠BPD=180°-∠ADB=155°.[点睛]本题考查的是角平分线的性质,三角形的内角和定理,平行线的判定与性质,熟练掌握平行线的判定定理及性质和三角形内角和公式是解题的关键.27. 如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于多少?(2)请用两种不同的方法求图2中阴影部分的面积:(3)观察图2你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m-n)2,mn.(4)根据第(3)问题中的等量关系,解决如下问题:若a+b=7,ab=5,则(a-b)2的值是多少?[答案](1)m-n;(2)(m-n)(m-n)=(m-n)2,(m+n)2-4mn=(m-n)2;(3)(m+n)2-4mn=(m-n)2;(4)29[解析][分析](1)观察得到长为m,宽为n的长方形的长宽之差即为阴影部分的正方形的边长;(2)可以用大正方形的面积减去4个长方形的面积得到图2中的阴影部分的正方形面积;也可以直接利用正方形的面积公式得到;(3)利用(2)中图2中的阴影部分的正方形面积得到(m+n)2-4mn=(m-n)2;(4)根据(3)的结论得到(a-b)2=(a+b)2-4ab,然后把a+b=7,ab=5代入计算.[详解]解:(1)观察图形可得正方形的边长=m-n;(2)方法一:(m-n)(m-n)=(m-n)2 ;方法二:(m+n)2-4mn=(m-n)2 ;(3)利用(2)中的方法二可得:(m+n)2-4mn=(m-n)2 ;⨯=.(4)根据(3)的结论可得:(a-b)2=(a+b)2-4ab=27-4529[点睛]本题考查了完全平方公式与图形之间的关系,从几何的图形来解释完全平方公式的意义.解此类题目的关键是正确的分析图列,找到组成图形的各个部分,并用面积的两种求法作为相等关系列式子.。

人教版数学七年级下册《期中检测试题》(含答案)

人教版数学七年级下册《期中检测试题》(含答案)

人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题1.下列计算正确的是( )A. x2+x2=x4B. x2•x3=x5C. x6÷x2=x3D. (2x)3=6x32.下列每个网格中均有两个图形,其中一个图形可以由另一个进行轴对称变换得到的是()A. B. C. D.3.如图,直线a、b被直线c所截,下列说法不正确的是( )A. ∠1与∠5是同位角B. ∠2与∠4是对顶角C. ∠3与∠6是同旁内角D. ∠5与∠6互为余角4.在圆周长C=2πR中,常量与变量分别是( )A. 2是常量,C、π、R是变量B. 2π是常量,C,R是变量C. C、2是常量,R是变量D. 2是常量,C、R是变量5.如图,能判定AB∥CD的条件是()A ∠1=∠3 B. ∠2=∠4C. ∠DCE=∠DD. ∠B+∠BAD=180°6.如图,在△ABC和△DCB中,∠ABC=∠DCB,要使△ABC≌△DCB,还需添加一个条件,这个条件不能是( )A. ∠A=∠DB. ∠ACB=∠DBCC. AB=DCD. AC=DB7.如图,将一个正方形分成9个全等的小正方形,连接三条线段得到∠1,∠2,∠3,则∠1+∠2+∠3的度数和等于()A. 120°B. 125°C. 130°D. 135°8.在△ABC中,AB=AC,∠BAC=45°.若AD平分∠BAC交BC于D,BE⊥AC于E,且交A于O,连接OC.则下列说法中正确的是( )①AD⊥BC;②OC平分BE;③OE=CE;④△ACD≌△BCE;⑤△OCE的周长=AC的长度A. ①②③B. ②④⑤C. ①③⑤D. ①③④⑤二.填空题9.用科学记数法表示:0.007398=_____.10.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD=___________° .11.已知△ABC是等腰三角形,它的周长为20cm,一条边长6cm,那么腰长是_____.12.如图,长方形是由若干个小长方形和小正方形组成,从面积的角度研究这个图形,可以得到一个数学等式,这个数学等式是_____.(用图中的字母表示出来)13.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么α,β,γ 三个角的数量关系是__________ .14.已知(9n)2=38,则n=_____.15.若多项式a2+2ka+1是一个完全平方式,则k的值是_____.16.若∠1与∠2有一条边在同一直线上,且另一边互相平行,∠1=50°,则∠2=_________.17.如图,已知AB∥CD,则∠A、∠C、∠P关系为_____.18.如图,等边△ABC中,BD⊥AC于点D,AD=3.5cm,点P、Q分别为AB、AD上的两个定点且BP=AQ=2cm,若在BD上有一动点E使PE+QE最短,则PE+QE的最小值为_____cm三.解答题19.计算(1)(2m+n﹣2)(2m+n+2) (2)(2+a)(2﹣a)﹣a(5b﹣a)+3a4b2+(﹣a2b)220.(1)计算:(﹣12)﹣1+(π﹣3.14)0+(﹣23)2019•(32)2018 (2)先化简,再求值:[(x ﹣2y )2+(x ﹣2y )(2y +x )]÷2x ,其中x =2,y =﹣1.21.已知()25a b +=,()23a b -=,求下列式子的值:(1)22a b +;(2)4ab .22.已知:如图,AB ∥CD ,∠B =∠D .点EF 分别在AB 、CD 上.连接AC ,分别交DE 、BF 于G 、H .求证:∠1+∠2=180°证明:∵AB ∥CD ,∴∠B =_____._____又∵∠B =∠D ,∴_____=_____.(等量代换)∴_____∥_____._____∴∠l +∠2=180°._____23.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A 地到B 地,乙驾车从B 地到A 地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙在整个过程中,甲、乙两人的距离y (千米)与甲出发的时间x (分)之间的关系如图所示(1)甲速度为______千米/分,乙的速度为______千米/分(2)当乙到达终点A 后,甲还需______分钟到达终点B(3)请通过计算回答:当甲、乙之间的距离为10千米时,甲出发了多少分钟?24.在△ABC 中,AB =AC ,点D 是射线CB 上一个动点(不与点B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE=______度.(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).答案与解析一.选择题1.下列计算正确的是( )A. x2+x2=x4B. x2•x3=x5C. x6÷x2=x3D. (2x)3=6x3[答案]B[解析][分析]直接利用积的乘方运算法则以及同底数幂的乘除运算法则分别计算得出答案.[详解]A、x2+x2=2x2,故此选项错误;B、x2•x3=x5,正确;C、x6÷x2=x4,故此选项错误;D、(2x)3=8x3,故此选项错误;故选B.[点睛]此题主要考查了积的乘方运算以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.2.下列每个网格中均有两个图形,其中一个图形可以由另一个进行轴对称变换得到的是()A B. C. D.[答案]B[解析][分析]根据轴对称的性质求解.[详解]观察选项可知,A中的两个图形可以通过平移,旋转得到,C中可以通过平移得到,D中可以通过放大或缩小得到,只有B可以通过对称得到.故选B.[点睛]本题考查了轴对称的性质,了解轴对称的性质及定义是解题的关键.3.如图,直线a、b被直线c所截,下列说法不正确的是( )A. ∠1与∠5是同位角B. ∠2与∠4是对顶角C. ∠3与∠6是同旁内角D. ∠5与∠6互为余角[答案]D[解析][分析] 根据同位角、对顶角、同旁内角以及余角的定义对各选项作出判断即可.[详解]解:A 、∠1与∠5是同位角,故本选项不符合题意;B 、∠2与∠4对顶角,故本选项不符合题意;C 、∠3与∠6是同旁内角,故本选项不符合题意.D 、∠5与∠6互为补角,故本选项符合题意.故选:D .[点睛]本题主要考查了同位角、对顶角、同旁内角的定义,解答此题的关键是确定三线八角,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.4.在圆的周长C =2πR 中,常量与变量分别是( )A. 2是常量,C 、π、R 是变量B. 2π是常量,C,R 是变量C. C 、2是常量,R 是变量D. 2是常量,C 、R 是变量[答案]B[解析][分析]根据变量常量的定义在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,可求解.[详解]在圆的周长公式中2R C π=中,C 与r 是改变的,π是不变的;所以变量是C ,R ,常量是2π.故答案选B[点睛]本题考查了变量与常量知识,属于基础题,正确理解变量与常量的概念是解题的关键.5.如图,能判定AB ∥CD 的条件是( )A. ∠1=∠3B. ∠2=∠4C. ∠DCE=∠DD. ∠B+∠BAD=180°[答案]B[解析][分析]在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.[详解]A. ∵∠1=∠3,∴AD∥BC,而不能判定AB∥CD,故A错误;B.∵∠2=∠4,∴AB∥CD,故B正确,C.∵∠DCE=∠D,∴AD∥BC,而不能判定AB∥CD,故C错误;D. ∵∠B+∠BAD=180°,∴AD∥BC,而不能判定AB∥CD,故D错误.故选:B[点睛]本题考查了平行线的判定方法,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两直线平行.6.如图,在△ABC和△DCB中,∠ABC=∠DCB,要使△ABC≌△DCB,还需添加一个条件,这个条件不能是( )A. ∠A=∠DB. ∠ACB=∠DBCC. AB=DCD. AC=DB[答案]D[解析][分析]由题意可知,∠ABC=∠DCB,BC=CB,然后利用三角形全等的判定定理逐个进行判定即可.[详解]解:由题意∠ABC=∠DCB,BC=CB∴A. ∠A=∠D,可用AAS定理判定△ABC≌△DCBB. ∠ACB=∠DBC,可用ASA定理判定△ABC≌△DCBC. AB=DC,可用SAS定理判定△ABC≌△DCBD. AC=DB,不一定能够判定两个三角形全等故选:D[点睛]本题考查三角形全等的判定,掌握判定定理灵活应用是本题的解题关键.7.如图,将一个正方形分成9个全等的小正方形,连接三条线段得到∠1,∠2,∠3,则∠1+∠2+∠3的度数和等于( )A. 120°B. 125°C. 130°D. 135°[答案]D[解析][分析] 根据全等三角形的判定定理可得出BCA BDE ∆≅∆,从而有3CAB ∠=∠,这样可得1390∠+∠=︒,根据图形可得出245∠=︒,这样即可求出123∠+∠+∠的度数.[详解]解:在ABC ∆与BDE ∆中AC DE C D CB DB =⎧⎪∠=∠⎨⎪=⎩, ()BCA BDE SAS ∴∆≅∆,3CAB ∴∠=∠,由图可知,1=90CAB ∠+∠︒,∴1390∠+∠=︒,由图可知,245∠=︒,1239045135∴∠+∠+∠=︒+︒=︒.故选:.[点睛]此题主要考查了全等三角形的判定与性质,属于数形结合的类型,解答本题需要判定BCA BDE ∆≅∆,这是解答本题关键.8.在△ABC 中,AB =AC ,∠BAC =45°.若AD 平分∠BAC 交BC 于D ,BE ⊥AC 于E ,且交A 于O ,连接OC .则下列说法中正确的是( )①AD ⊥BC ;②OC 平分BE ;③OE =CE ;④△ACD ≌△BCE ;⑤△OCE 的周长=AC 的长度A. ①②③B. ②④⑤C. ①③⑤D. ①③④⑤[答案]C[解析][分析]①正确,利用等腰三角形的三线合一即可证明;②错误,证明OB=OC>OE即可判断;③正确,证明∠ECO =∠OBA=45°即可;④错误,缺少全等的条件;⑤正确,只要证明BE=AE,OB=OC,EO=EC即可判断.[详解]解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=CD,即①正确,∴OB=OC,∵BE⊥AC,∵OC>OE,∴OB>OE,即②错误,∵∠ABC=∠ACB,∠OBC=∠OCB,BE⊥AC,∴∠ABE=∠ACO=45°,∴∠ECO=∠EOC=45°,∴OE=CE,即③正确,∵∠AEB=90°,∠ABE=45°,∴AE=EB,∴△OEC的周长=OC+OE+EC=OE+OB+EC=EB+EC=AE+EC=AC,即⑤正确,无法判断△ACD≌△BCE,故④错误,故选:C.[点睛]本题考查等腰三角形的性质,等腰直角三角形的判定和性质,线段垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二.填空题9.用科学记数法表示:0.007398=_____.[答案]3⨯7.39810-绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.[详解]解:0.007398=7.398×10﹣3.故答案为:37.39810-⨯.[点睛]本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD =___________°.[答案]70.[解析][分析]根据线段垂直平分线的性质得到DA=DC ,根据等腰三角形的性质得到∠DAC=∠C ,根据三角形内角和定理求出∠BAC 的度数,计算出结果.[详解]解:∵DE 是AC 的垂直平分线,∴DA=DC ,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC-∠DAC=70°,故答案为70.[点睛]本题考查线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.11.已知△ABC 是等腰三角形,它的周长为20cm ,一条边长6cm ,那么腰长是_____.[答案]6cm 或7cm .当腰长=6cm时,底边=20﹣6﹣6=8cm,当底边=6cm时,腰长=2062﹣=7cm,根据三角形的三边关系,即可推出腰长.[详解]解:∵等腰三角形的周长为20cm,∴当腰长=6cm时,底边=20﹣6﹣6=8cm,即6+6>8,能构成三角形,∴当底边=6cm时,腰长=2062﹣=7cm,即7+6>7,能构成三角形,∴腰长是6cm或7cm,故答案为6cm或7cm.[点睛]本题主要考查等腰三角形的性质,三角形的三边关系,关键在于分析讨论6cm为腰长还是底边长.12.如图,长方形是由若干个小长方形和小正方形组成,从面积的角度研究这个图形,可以得到一个数学等式,这个数学等式是_____.(用图中的字母表示出来)[答案](a+2b)(a+3b)=a2+5ab+6b2[解析][分析]根据图形求面积有直接求和间接求两种方法,列出等式即可.[详解]解:根据题意得:整个长方形的面积:S=(a+2b)(a+3b),同时,这个图形是由5个长是a宽是b的小长方形和6个边长是b的小正方形和一个边长是a的正方形组成的,所以面积S=a2+5ab+6b2.∴(a+2b)(a+3b)=a2+5ab+6b2.故答案为:(a+2b)(a+3b)=a2+5ab+6b2.[点睛]这道题主要考查整式的乘法的推导,难度较低,利用数形结合的方法是解题的关键.13.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么α,β,γ 三个角的数量关系是__________.[答案]γ=2α+β.[解析][分析]根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.[详解]由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故答案为γ=2α+β.[点睛]此题考查三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.14.已知(9n)2=38,则n=_____.[答案]2[解析][分析]先把9n化为32n,再根据幂的乘方的运算法则,底数不变,指数相乘,即可得出4n=8,即可求得n的值.[详解](9n)2=(32n)2=34n=38,∴4n=8,解得n =2.[点睛]此题考查幂的乘方,解题关键在于掌握运算法则.15.若多项式a 2+2ka+1是一个完全平方式,则k 的值是_____.[答案]±1[解析]分析:完全平方式有两个:222a ab b ++和222a ab b -+,根据以上内容得出221ka a =±⋅,求出即可. 详解:∵221a ka ++ 是一个完全平方式,∴2ka =±2a ⋅1, 解得:k =±1, 故答案是:±1. 点睛:考查完全平方公式,熟记公式是解题的关键.16.若∠1与∠2有一条边在同一直线上,且另一边互相平行,∠1=50°,则∠2=_________.[答案]50°或130°;[解析][分析]根据平行线的性质:两直线平行,同位角相等即可解答此题.[详解]解:如图:当α=∠2时,∠2=∠1=50°,当β=∠2时,∠β=180°−50°=130°,故答案为:50°或130°;[点睛]本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.17.如图,已知AB ∥CD ,则∠A 、∠C 、∠P 的关系为_____.[答案]∠A+∠C﹣∠P=180°[解析][详解]如图所示,作PE∥CD,∵PE∥CD,∴∠C+∠CPE=180°,又∵AB∥CD,∴PE∥AB,∴∠A=∠APE,∴∠A+∠C-∠P=180°,故答案是:∠A+∠C-∠P=180°.18.如图,等边△ABC中,BD⊥AC于点D,AD=3.5cm,点P、Q分别为AB、AD上的两个定点且BP=AQ=2cm,若在BD上有一动点E使PE+QE最短,则PE+QE的最小值为_____cm[答案]5[解析][分析]过BD作P的对称点,连接P,Q,Q与BD交于一点E,再连接PE,根据轴对称的相关性质以及两点之间线段最短可以得出此时PE+QE最小,并且等于Q,进一步利用全等三角形性质求解即可.[详解]如图,过BD作P的对称点,连接P,Q,Q与BD交于一点E,再连接PE,此时PE+QE最小.∵与P关于BD对称,∴PE=E,BP=B=2cm,∴PE+QE= Q,又∵等边△ABC中,BD⊥AC于点D,AD=3.5cm,∴AC=BC=AB=7cm,∵BP=AQ=2cm,∴QC=5cm,∵B=2cm,∴C=5cm,∴△Q C为等边三角形,∴Q=5cm.∴PE+QE=5cm.所以答案为5.[点睛]本题主要考查了利用对称求点之间距离的最小值以及等边三角形性质,熟练掌握相关概念是解题关键.三.解答题19.计算(1)(2m+n﹣2)(2m+n+2) (2)(2+a)(2﹣a)﹣a(5b﹣a)+3a4b2+(﹣a2b)2[答案](1)22++-;(2)2-5ab+4a4b2.m mn n444[解析][分析](1)根据平方差公式和完全平方公式计算即可;(2)根据整式乘法,加减运算法则进行计算即可.[详解]解:(1)(2m+n﹣2)(2m+n+2)()2m n+-=2422m mn n++-;=444(2)(2+a)(2﹣a)﹣a(5b﹣a)+ 3a4b2+(﹣a2b)2=2-a2-5ab+a2+3a4b2+ a4b2=2-5ab+4a4b2.[点睛]本题考查了整式的乘法运算和乘法公式,解题的关键是牢记平方差公式和完全平方公式,并严格按照整式乘法法则进行.20.(1)计算:(﹣12)﹣1+(π﹣3.14)0+(﹣23)2019•(32)2018 (2)先化简,再求值:[(x ﹣2y )2+(x ﹣2y )(2y +x )]÷2x ,其中x =2,y =﹣1.[答案](1)53-;(2)2x y -,4. [解析][分析](1)根据负整数指数幂,0指数幂,积的乘方逆运算计算,再进行加减运算即可;(2)先根据完全平方公式和平方差公式展开合并,再根据多项式除以单项式计算,最后代入求值即可.[详解]解:(1)(﹣12)﹣1+(π﹣3.14)0+(﹣23)2019•(32)2018 20182018223=21332⎛⎫⎛⎫⎛⎫-++-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()20182=113⎛⎫-+-⨯- ⎪⎝⎭ 2=13⎛⎫-+- ⎪⎝⎭ =53-; (2)[(x ﹣2y )2+(x ﹣2y )(2y +x )]÷2x =22224442x xy y x y x ⎡⎤-++-÷⎣⎦=2242x xy x ⎡⎤-÷⎣⎦=2x y -,当x =2,y =﹣1时,原式=()221-⨯-=4.[点睛]本题考查了负整数指数幂,0指数幂,积的乘方逆运算,整式的加减乘除混合运算及代入求值等知识,解题关键是牢记相关知识,严格按法则进行计算.21.已知()25a b +=,()23a b -=,求下列式子值:(1)22a b +;(2)4ab .[答案](1)4;(2)2;(1)直接利用完全平方公式将原式展开,进而求出22a b +的值;(2)直接利用(1)中所求,进而得出ab 的值,求出答案即可.[详解]解:(1)∵()25a b +=,()23a b -=,∴22+25a b ab +=,2232b a b a +-=,∴()2228a b +=,解得:224a b +=,(2)∵224a b +=,∴4+2ab=5,解得:ab=12, ∴4ab =14=22⨯; [点睛]本题主要考查了完全平方公式,掌握完全平方公式是解题的关键.22.已知:如图,AB ∥CD ,∠B =∠D .点EF 分别在AB 、CD 上.连接AC ,分别交DE 、BF 于G 、H .求证:∠1+∠2=180°证明:∵AB ∥CD ,∴∠B =_____._____又∵∠B =∠D ,∴_____=_____.(等量代换)∴_____∥_____._____∴∠l +∠2=180°._____[答案]见解析根据平行线的性质结合已知得到∠D=∠BFC,证明DE∥BF,利用平行线的性质得出结论.[详解]证明:∵AB∥CD,∴∠B=∠BFC.(两直线平行,内错角相等),又∵∠B=∠D,∴∠D=∠BFC.(等量代换)∴DE∥BF.(同位角相等,两直线平行),∴∠l+∠2=180°.(两直线平行,同旁内角互补).故答案为:∠BFC;两直线平行,内错角相等;∠D;∠BFC;DE;BF;同位角相等,两直线平行;两直线平行,同旁内角互补.[点睛]本题考查了平行线的判定和性质,熟练掌握平行线的性质和判定定理是解题的关键.23.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示(1)甲的速度为______千米/分,乙的速度为______千米/分(2)当乙到达终点A后,甲还需______分钟到达终点B(3)请通过计算回答:当甲、乙之间的距离为10千米时,甲出发了多少分钟?[答案](1)16,43;(2) 78;(3)283或60分钟[解析][分析](1)根据路程与时间的关系,可得甲乙的速度;(2)根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案;(3)根据题意列方程即可解答.[详解]解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,甲的速度是1÷6=16千米/分钟,由纵坐标看出AB两地的距离是16千米, 设乙的速度是x千米/分钟,由题意,得10x+16×16=16,解得x=43,即乙的速度为43米/分钟.故答案为16;43;(2)甲、乙相遇时,乙所行驶的路程:4401033⨯=(千米)相遇后乙到达A站还需1416263⎛⎫⨯÷=⎪⎝⎭(分钟),相遇后甲到达B站还需411036⎛⎫⨯÷⎪⎝⎭=80分钟,当乙到达终点A时,甲还需80-2=78分钟到达终点B.故答案为78;(3)110606÷=(分钟),设甲出发了x分钟后,甲、乙之间的距离为10千米时,根据题意得,16x+43(x-6)=16-10,解得x=283,答:甲出发了283或60分钟后,甲、乙之间的距离为10千米时.[点睛]本题考查了一次函数的应用,利用同路程与时间的关系得出甲乙的速度是解题关键.24.在△ABC中,AB=AC,点D是射线CB上的一个动点(不与点B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D 线段CB 上,且∠BAC =90°时,那么∠DCE =______度.(2)设∠BAC =α,∠DCE =β.①如图2,当点D 在线段CB 上,∠BAC ≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D 在线段CB 的延长线上,∠BAC ≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).[答案](1)90°;(2)①α+β=180°;②α=β.[解析]试题分析:(1)利用等腰三角形证明ABD ≅ACE,所以∠ECA=∠DBA,所以∠DCE =90°.(2)方法类似(1)证明△ABD ≌△ACE ,所以∠B=∠ACE ,再利用角的关系求αβ180+=︒. (3)同理方法类似(1).试题解析:解:(1) 90 度.∠DAE =∠BAC ,所以∠BAD =∠EAC,AB=AC,AD=AE ,所以ABD ≅ACE,所以∠ECA=∠DBA,所以∠ECA =90°.(2)① αβ180+=︒.理由:∵∠BAC =∠DAE ,∴∠BAC -∠DAC =∠DAE -∠DAC ,即∠BAD =∠CAE,又AB=AC ,AD=AE ,∴△ABD ≌△ACE ,∴∠B=∠ACE .∴∠B +∠ACB =∠ACE+∠ACB ,∴B ACB DCE β∠∠∠+==.∵αB ACB 180∠∠++=︒,∴αβ180+=︒.(3)补充图形如下, αβ=.。

人教版数学七年级下册期中考试试题含答案

人教版数学七年级下册期中考试试题含答案

人教版数学七年级下册期中考试试卷一、选择题:(本大题共12个小题,每小题3分,共36分)1.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()2.已知是二元一次方程组的解,则a ﹣b 的值为()A .3B .2C .1D .﹣13.下列说法正确的是()A.相等的两个角是对顶角B .和等于180度的两个角互为邻补角C .若两直线相交,则它们互相垂直D .两条直线相交所形成的四个角都相等,则这两条直线互相垂直4.下列命题中,属于真命题的是()A .两个锐角的和是锐角B .在同一平面内,如果a ⊥b ,b ⊥c ,则a ⊥cC .同位角相等D .在同一平面内,如果a//b ,b//c ,则a//c 5.如图,已知b a //,直角三角板的直角顶点在直线a 上,若︒=∠301,则2∠等于:A.︒30B.︒40C.︒50D.︒606.如图,在数轴上表示实数7的可能是:A.点PB.点QC.点MD.点N7.若点P ),(y x 在第四象限,且3||,2||==y x ,则y x +等于:A.1- B.1 C.5 D.5-8.已知⎩⎨⎧-==11y x 是方程组⎩⎨⎧=-=+21by cx cy ax 的解,则b a ,间的关系是:A.3=+b a B.1-=-b a C.0=+b a D.3-=-b a 9.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么7条直线最多有:A.28个交点B.24个交点C.21个交点D.15个交点10.下列四个数:31,3,3----π,其中最大的数是()A.3-B.3-C π- D.31-11.如右图,线段AB 经过平移得到线段CD,其中A 、B 的对应点分别是C 、D,这四个点都在格点上,若线段AB 上有一点P ),(b a ,则点P 在CD 上的对应点P'的坐标为:A.)2,4(+-b a B.)2,4(--b a C )2,4(++b a D.)2,4(-+b a 12.张小花家去年节余50000元,今年可节余95000元,并且今年收入比去年高15%,支出比去年低10%,今年的收入与支出各是多少?设去年的收入为x 元,支出为y 元,则可列方程为:A.⎩⎨⎧=++-=+95000%)101(%)151(50000y x y x B.⎩⎨⎧=--+=-95000%)101(%)151(50000y x y x C.⎩⎨⎧=+--=+95000%)101(%)151(50000y x y x D.⎩⎨⎧=+--=-95000%)101(%)151(50000y x y x 二、填空题:(本大题共6个小题,每小题3分,共18分)13.如图,要使BF AD //,则需要添加的条件是_____________(写一个即可).14.已知一个正数的两个平方根分别是62-m 和m +3,则2)(m -的值为____________.15.平面直角坐标系中,点A )7,5(-到x 轴的距离是__________.16.要把一张面值为10元的人民币换成零钱,如果现有足够的面值为2元、1元的人民币,那么有_____种换法.17.请将命题"等腰三角形的底角相等"改写为"如果……,那么……"的形式:____________________________________.18.如图,已知BE AD //,点C 是直线FG 上的动点,若在点C 的移动过程中,存在某时刻使得︒=∠︒=∠22,45DAC ACB ,则EBC ∠的度数为________.三、解答题:(本大题共7个小题,共46分)19.(本小题满分5分)计算:|21|27)4()3(322-+---+-20.(本小题满分5分)一个正方形鱼池的边长是xm ,当边长增加m 3后,这个鱼池的面积变为281m ,求x .21.(每小题4分,共计8分)按要求解下列方程组:(1)用代入法解方程组:⎩⎨⎧=-=+102322y x y x (2)用加减法解方程组:⎩⎨⎧=+=-8251153y x y x 22.(本小题满分5分)如图,已知CD AB //,C A ∠=∠.求证:BCAD //23.(本小题满分7分)甲乙两位同学在解方程组⎩⎨⎧=-=+1413y bx y ax 时,甲把字母a 看错了得到方程组的解为⎪⎩⎪⎨⎧-==472y x ;乙把字母b 看错了得到方程组的解为⎩⎨⎧-==12y x .求原方程组正确的解.24.(本小题满分8分)如图,︒=∠+∠180BCF ADE ,BE 平分ABC ∠,E ABC ∠=∠2.(1)AD 与BC 平行吗?请说明理由;(2)AB 与EF 的位置关系如何?为什么?(3)若AF 平分BAD ∠,试说明:︒=∠+∠90F E .(注:本题第(1)(2)小题在下面的解答过程的空格内填写理由或数学式;第(3)小题要写出解题过程)解:(1)BC AD //,理由如下:∵︒=∠+∠180BCF ADE (已知)︒=∠+∠180ADF ADE (平角的定义)∴=∠ADF __________(______________________)∴BC AD //(__________________________)(2)AB 与EF 的位置关系是:互相平行∵BE 平分ABC ∠(已知)∴ABE ABC ∠=∠2(角平分线定义)又∵E ABC ∠=∠2(已知)∴ABE E ∠=∠22(____________________)∴ABE E ∠=∠(____________________)∴______//_______(________________________)25.(本小题满分8分)如图平面直角坐标系内,已知点A 的坐标是)0,3(-.(1)点B 的坐标为_______,点C 的坐标为_____,=∠BAC ______;(2)求ABC ∆的面积;(3)点P 是y 轴负半轴上的一个动点,连接BP 交x 轴于点D,是否存在点P 使得ADP ∆与BDC ∆的面积相等?若存在,请直接写出点P 的坐标;若不存在,请说明理由.参考答案一.选择题题号123456789101112答案B D D D B C C A C D A B二.填空题13.︒=∠+∠180ABC A 或︒=∠+∠180DCB D 或EBF A ∠=∠或DCF D ∠=∠(任意写一个即可,不必写全)14.115.716.617.如果一个三角形是等腰三角形,那么它的两个底角相等18.︒︒6723或(第18题仅填一种情况并且正确的给2分,填了两种情况但其中有一种错误的不给分)三.解答题19.解:原式=12343-+++......................................3分=29+....................................................5分20.解:由题意得81)3(2=+x ...................................................................3分解得126-==x x 或(不合题意,舍去)..........................................4分答:该鱼池的边长x 等于m 6..........................................................5分21.解:(1)由①,得x y 22-=③..................................................1分将③代入②,得10)22(23=--x x 解这个方程,得2=x ...................................................2分将2=x 代入③,得2-=y ..........................................3分所以原方程组的解是⎩⎨⎧-==22y x ...................................................4分(2)①5⨯得,552515=-y x ③..........................................................5分②3⨯得,24615=+y x ④④-③,得3131-=y 1-=y .....................................................................6分将1-=y 代入①,得2=x ...........................................................7分所以原方程组的解是⎩⎨⎧-==12y x ....................................................8分22.证明:∵CDAB //∴︒=∠+∠180C B ....................................2分又∵C A ∠=∠................................................3分∴︒=∠+∠180A B ....................................4分∴BC AD //.................................................5分解:∵甲看错了字母a 但没有看错b∴将⎪⎩⎪⎨⎧-==472y x 代入14=-y bx 得,147(42=-⨯-b ................................2分∴3-=b ....................................................................................................3分同理可求得2=a ......................................................................................4分将3,2-==b a 代入原方程组,得⎩⎨⎧=--=+143132y x y x ......................................5分解得⎩⎨⎧=-=57y x ..............................................................................................6分∴原方程组正确的解是⎩⎨⎧=-=57y x .................................................................7分解:(1)∠BCF 同角的补角相等同位角相等,两直线平行...............................1.5分等量代换等式性质AB EF 内错角相等,两直线平行...........................4分(每空0.5分,八个空共计4分)证明:由(1)知BCAD //∴︒=∠+∠180ABC DAB ...............................................................5分∵BE 平分ABC ∠,AF 平分DAB∠∴DABBAF ABC ABE ∠=∠∠=∠21,21∴︒=︒⨯=∠+∠=∠+∠90180212121DAB ABC BAF ABE ......6分由(2)知EFAB //∴F BAF E ABE ∠=∠∠=∠,.........................................................7分∴︒=∠+∠180F E ...........................................................................8分解:(1))5,2()0,5(︒45....................................................3分(2)过点B 作x BE ⊥轴于E∵点A,B,C 的坐标分别为)0,5(),5,2(),0,3(-∴5,835==+=+=BE OC OA AC ........................................5分∴20582121=⨯⨯=⋅=∆BE AC S ABC .........................................6分(3)存在点P 使得ADP ∆与的BDC ∆的面积相等........................................7分此时点P 的坐标为)5,0(-.........................................................................8分。

人教版数学七年级下册期中考试卷4套(含答案解析))

人教版数学七年级下册期中考试卷4套(含答案解析))

人教版数学七年级下册期中测试卷一、选择题(每题3分,共30分)1.4的算术平方根是()A.±2 B. 2 C.±2 D.22.在平面直角坐标系中,点A(-2,a)位于x轴的上方,则a的值可以是() A.0 B.-1 C. 3 D.±33.下列实数:3,0,12,-2,0.35,其中最小的实数是()A.3 B.0 C.- 2 D.0.354.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上.若∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.60°(第4题)(第6题)(第7题)(第8题)(第9题) 5.下列命题中,假命题是()A.若A(a,b)在x轴上,则B(b,a)在y轴上B.如果直线a,b,c满足a∥b,b∥c,那么a∥cC.两直线平行,同旁内角互补D.相等的两个角是对顶角6.如图是围棋棋盘的一部分,将它放置在某个平面直角坐标系中,若白棋②的坐标为(-3,-1),白棋④的坐标为(-2,-5),则黑棋①的坐标为() A.(-1,-4) B.(1,-4) C.(3,1) D.(-3,-1) 7.如图,数轴上有A,B,C,D四点,根据图中各点的位置,所表示的数与5-11最接近的点是()A.A B.B C.C D.D8.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,三角形ABC经过平移后得到三角形A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6) B.(-2.8,-3.6)C.(3.8,2.6) D.(-3.8,-2.6)9.如图,将长方形纸片ABCD沿BD折叠,得到三角形BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20°B.30°C.35°D.55°10.如图,下列命题:(第10题)①若∠1=∠2,则∠D=∠4;②若∠C=∠D,则∠4=∠C;③若∠A=∠F,则∠1=∠2;④若∠1=∠2,∠C=∠D,则∠A=∠F;⑤若∠C=∠D,∠A=∠F,则∠1=∠2.其中正确的个数为()A.1 B.2 C.3 D.4二、填空题(每题3分,共24分)11.在实数:8,0,364,1.010 010 001,4.2·1·,π,247中,无理数有________个.12.将点A(-2,-3)向右平移3个单位长度得到点B,则点B在第________象限.13.命题“平行于同一条直线的两条直线互相平行”的题设是_______________________________________________________________,结论是______________________.14.如图,直线a∥b,AC⊥AB,∠1=60°,则∠2的度数是________.(第14题)(第18题)15.若(2a+3)2+b-2=0,则a b=________.16.已知点M(3,2)与点N(x,y)在同一条垂直于x轴的直线上,且点N到x轴的距离为5,那么点N的坐标是______________.17.用“*”表示一种新运算:对于任意正实数a,b,都有a*b=b+1.例如8*9=9+1=4,那么15*196=________,m*(m*16)=________.18.将杨辉三角中的每一个数都换成分数,得到一个如图所示的分数三角形,称为莱布尼茨三角形.若用有序实数对(m,n)表示第m行,从左到右第n个数,如(4,3)表示分数112,则(9,2)表示的分数是________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.计算:(1)16+38-(-5)2;(2)(-2)3+|1-2|×(-1)2 021-3125.20.如图,已知EF∥AD,∠1=∠2.求证:∠DGA+∠BAC=180°.请将下列证明过程填写完整:(第20题) 证明:∵EF∥AD(已知),∴∠2=________(________________________________).又∵∠1=∠2(已知),∴∠1=∠3(________________).∴AB∥________(________________________________).∴∠DGA+∠BAC=180°(________________________________).21.如图,直线AB与CD相交于点O,EO⊥CD于点O,OF平分∠AOD,且∠BOE=50°.求∠COF的度数.(第21题)22.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,已知三角形ABC的顶点都在格点上,在建立平面直角坐标系后,A的坐标为(2,-4),B 的坐标为(5,-4),C的坐标为(4,-1).(1)画出三角形ABC;(2)求三角形ABC的面积;(3)若把三角形ABC向上平移2个单位长度,再向左平移4个单位长度得到三角形A′B′C′,在图中画出三角形A′B′C′,并写出B′的坐标.(第22题)23.如图,在四边形ABCD中,∠D=100°,CA平分∠BCD,且∠ACB=40°,∠BAC=70°.(第23题)(1)AD与BC平行吗?试写出推理过程.(2)若点E在线段BA的延长线上,求∠DAC和∠EAD的度数.24.观察等式:3+32=332,2+23=4×23,5+54=554,….(1)请用含n(n≥3,且n为整数)的式子表示出上述等式的规律________________;(2)按上述规律,若10+ab=10a9,则a+b=________;(3)仿照上面内容,另编一个等式,验证你在(1)中得到的规律.25.如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(a,0),点C的坐标为(0,b),且a,b满足a-4+|b-6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O-C-B-A-O的线路移动.(第25题) (1)a=________,b=________,点B的坐标为__________;(2)当点P移动4 s时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.答案一、1.D 2.C 3.C 4.C 5.D 6.B7.D8.A9.A点拨:∵∠1=35°,CD∥AB,∠C=90°,∴∠ABD=35°,∠DBC=55°.由折叠可得∠DBC′=∠DBC=55°,∴∠2=∠DBC′-∠DBA=55°-35°=20°.10.C点拨:①因为∠1=∠3,所以若∠1=∠2,则∠3=∠2,则DB∥EC,则∠D=∠4,故①正确;②由∠C=∠D,并不能得到DF∥AC,则不能得到∠4=∠C,故②错误;③若∠A=∠F,则DF∥AC,并不能得到DB∥EC,则不能得到∠1=∠2,故③错误;④因为∠1=∠3,所以若∠1=∠2,则∠3=∠2,所以DB∥EC,所以∠4=∠D,又∠C=∠D,则∠4=∠C,所以DF∥AC,所以∠A=∠F,故④正确;⑤若∠A=∠F,则DF∥AC,所以∠4=∠C,又∠C=∠D,则∠4=∠D,所以DB∥EC,所以∠3=∠2,又∠1=∠3,则∠1=∠2,故⑤正确.所以正确的有3个.故选C.二、11.212.四13.两条直线平行于同一条直线;这两条直线平行14.30°15.3216.(3,5)或(3,-5)17.15;5+118.172点拨:观察题图可得以下规律:是第几行就有几个分数;每行每个分数的分子都是1;每行第一个分数的分母为行数,第n(n为大于1的整数)行的第二个分数的分母为n(n-1).故(9,2)表示的分数为19×8=172.三、19.解:(1)原式=4+2-5=1;(2)原式=-8+(2-1)×(-1)-5=-8+1-2-5=-12- 2.20.∠3;两直线平行,同位角相等;等量代换;DG;内错角相等,两直线平行;两直线平行,同旁内角互补 21.解:∵EO ⊥CD ,∴∠DOE =90°.∴∠BOD =∠DOE -∠BOE =90°-50°=40°. ∴∠AOC =∠BOD =40°, ∠AOD =140°. 又∵OF 平分∠AOD , ∴∠AOF =12∠AOD =70°.∴∠COF =∠AOC +∠AOF =40°+70°=110°. 22.解:(1)如图所示.(第22题)(2)S 三角形ABC =12×3×3=92. (3)如图,B ′(1,-2).23.解:(1)AD ∥BC .推理过程如下:∵CA 平分∠BCD ,∠ACB =40°, ∴∠BCD =2∠ACB =80°. ∵∠D =100°, ∴∠D +∠BCD =180°. ∴AD ∥BC .(2)由(1)知AD ∥BC , ∴∠DAC =∠ACB =40°. ∵∠BAC =70°,∴∠DAB =∠DAC +∠BAC =40°+70°=110°. ∴∠EAD =180°-∠DAB =180°-110°=70°.24.解:(1)n+nn-1=n nn-1(2)10+9(3)11+1110=111110.(答案不唯一)25.解:(1)4;6;(4,6)(2)∵点P从原点出发,以每秒2个单位长度的速度沿着O-C-B-A-O的线路移动,OA=4,OC=6,∴当点P移动4 s时,点P在线段CB上,离点C的距离为4×2-6=2.∴点P的坐标是(2,6).(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况:第一种情况,当点P在线段OC上时,点P移动的时间是5÷2=2.5(s);第二种情况,当点P在线段BA上时,点P移动的时间是(6+4+1)÷2=5.5(s).故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5 s或5.5 s.人教版数学七年级下册期中试卷一、选择题1.下列各数中,是无理数的为()A. B.3.14 C.D.﹣2.9的算术平方根是()A.±3 B.3 C.D.3.的相反数是()A.﹣B.C.﹣D.4.点P(﹣3,2)位于()A.第一象限B.第二象限C.第三象限D.第四象限5.下列图中,∠1和∠2是对顶角的是()A.B.C.D.6.如图,点A、B、C、D在直线n上,且PC⊥n,则图中点P到直线n的距离是线段()的长度.A.PA B.PB C.PC D.PD7.如图,直线l截两平行直线a,b,则下列式子不一定成立的是()A.∠1=∠5 B.∠2=∠4 C.∠3=∠5 D.∠5=∠28.如图,CO⊥AB,点O为垂足,则下列说法不一定成立的是()A.∠1与∠2相等B.∠AOD与∠2互补C.∠AOC与∠BOC相等D.∠1与∠2互余9.已知∠A,∠B互余,∠A比∠B大30度.设∠A,∠B的度数分别为x°、y°,下列方程组中符合题意的是()A.B.C.D.10.如果电影票上的“5排2号”记作(5,2),那么(4,1)表示()A.4排5号B.5排4号C.1排4号D.4排1号11.已知点A(a,b)在第一象限,那么点B(﹣b,﹣a)在()A.第一象限B.第二象限C.第三象限D.第四象限12.下列命题中:①有理数是有限小数;②有限小数是有理数;③无理数都是无限小数;④无限小数都是无理数.正确的是()A.①②B.①③C.②③D.③④13.比较﹣π与﹣3.14的大小是()A.﹣π=﹣3.14 B.﹣π>﹣3.14 C.﹣π<﹣3.14 D.无法比较14.方程3x﹣2y=7的解是()A.B.C.D.15.下列各式中,没有意义的是()A.B.C.D.﹣二、解答题16.计算:(1)++|π﹣3|;(2)()2+3﹣6.17.解答题(1)解方程组;(2)填出括号里的理由.已知:∠1+∠2=180°,求证:a∥b.证明:∵∠1=∠3,∠1+∠2=180°∴∠3+∠2=180°∴a∥b.18.如图,△AOB在平面直角坐标系中,A(1,4),B(3,1),D(5,1);(1)求△AOB的面积;(2)将△AOB平移得到△CDE,使点O与点D对应,画出△CDE,并写出点C 和点E的坐标.19.如图,已知AB∥CD,点D在BE上,且BE平分∠ABC,∠CDE=150°,求∠C的度数.20.列方程(或方程组)解应用题:在学校举行的一次数学竞赛中,某班小勇同学得了88分,赛制规定:试题一共20小题,答对一题得5分,答错或不答一题倒扣1分,请问小勇在竞赛中答对几道题?21.如图,已知:∠A=∠1,∠2+∠3=180°,∠BDE=70°,(1)AB与DF平行吗?说明理由;(2)求∠ACB的度数.22.已知=3,=4﹣b,求a+b的平方根.23.某厂决定投入一定的资金用于改善该厂生产、生活条件,投入的资金用于两个方面:第一方面是提升职工待遇;第二方面是改善该厂生产设施.2014年投入的总资金为t万元,其中用于第一方面的资金是第二方面的两倍.2015年第一、第二方面资金都有不同程度的增长,两方面资金增长的百分数之和为70%,投入的总资金比2014年增长了40%,(1)用含t的代数式分别表示2014年用于两个方面的资金;(2)分别求第一第二方面增长的百分数.24.将长方形OABC的顶点O与直角坐标系的原点重合,点A,C分别在X轴,Y轴上,点B(a,b),且a,b满足+(b+6)2=0.(1)求点B的坐标;(2)若点P从点B出发,以1单位/秒的速度向C点运动(不超过C点),同时点Q从C点出发以2单位/秒的速度向原点运动(不超过原点),试探讨四边形AQCP的面积在运动中是否会发生变化?求其值,若变化,求变化范围.(3)若过O点的直线OD交长方形的边于点D,且直线OD把长方形的周长分为3:5两部分,求点D的坐标;(4)若H(0,﹣1),点P(m,﹣3)在第三象限内运动,则是否存在点P使四边形HBCP的面积等于△AHB的面积,若存在,求P点坐标,不存在,说明理由.参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分)1.下列各数中,是无理数的为()A. B.3.14 C.D.﹣【考点】26:无理数.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、是无限不循环小数,故A正确;B、是有限小数,故B错误;C、是有限小数,故C错误;D、是无限循环小数,故D错误;故选:A.【点评】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.9的算术平方根是()A.±3 B.3 C.D.【考点】22:算术平方根.【分析】根据开方运算,可得算术平方根.【解答】解:9的算术平方根是3,故选:B.【点评】本题考查了算术平方根,注意一个正数只有一个算术平方根.3.的相反数是()A.﹣B.C.﹣D.【考点】28:实数的性质.【专题】11 :计算题.【分析】由于互为相反数的两个数和为0,由此即可求解.【解答】解:∵+(﹣)=0,∴的相反数是﹣.故选A.【点评】此题主要考查了求无理数的相反数,无理数的相反数和有理数的相反数的意义相同,无理数的相反数是各地中考的重要考点.4.点P(﹣3,2)位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】根据平面直角坐标系中各个象限的点的坐标的符号特点可知:点P(﹣3,2)位于第二象限.【解答】解:因为点P(﹣3,2)的横坐标为负,纵坐标为正,所以其在第二象限,故选B.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.下列图中,∠1和∠2是对顶角的是()A.B.C.D.【考点】J2:对顶角、邻补角.【分析】根据对顶角的两边互为反向延长线对各图形分析判断后进行解答.【解答】解:根据对顶角的定义:A中∠1和∠2不是对顶角;B中∠1和∠2不是对顶角;C中∠1和∠2不是对顶角;D中∠1和∠2是对顶角;故选:D【点评】本题考查了对顶角的定义,对正确识图有一定要求.6.如图,点A、B、C、D在直线n上,且PC⊥n,则图中点P到直线n的距离是线段()的长度.A.PA B.PB C.PC D.PD【考点】J5:点到直线的距离.【分析】根据“从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离”,即可解答.【解答】解:∵PC⊥n,∴点P到直线n的距离是线段PC的长度,故选:C.【点评】此题主要考查了点到直线的距离,解决本题的关键是熟记从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.7.如图,直线l截两平行直线a,b,则下列式子不一定成立的是()A.∠1=∠5 B.∠2=∠4 C.∠3=∠5 D.∠5=∠2【考点】JA:平行线的性质;J2:对顶角、邻补角.【分析】根据平行线的性质,同位角相等、内错角相等、同旁内角互补及对顶角相等即可解答.【解答】解:A、已知a∥b,∠1和∠5为同位角,由两直线平行,同位角相等可知,∠1=∠5,故正确;B、∠2和∠4是内错角,由两直线平行,内错角相等可知,∠2=∠4,故正确;C、∠3和∠5为对顶角,由对顶角相等可知,∠3=∠5,故正确;D、∵a∥b,∴∠2+∠3=180°,∵∠5=∠3,∴∠2+∠5=180°,故错误.故选D.【点评】本题主要考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.8.如图,CO⊥AB,点O为垂足,则下列说法不一定成立的是()A.∠1与∠2相等B.∠AOD与∠2互补C.∠AOC与∠BOC相等D.∠1与∠2互余【考点】J3:垂线;IL:余角和补角.【分析】根据垂直的定义、互补的定义、互余的定义一一判断即可解决问题.【解答】解:∵OC⊥AB,∴∠AOC=∠COB=90°,故C正确,∵∠AOD+∠DOB=180°,∴∠AOD与∠DOB互补,故B正确,∵∠1+∠2=∠COB=90°,∴∠1与∠2互余,故D正确,故选A【点评】本题考查互余、互补、垂线等知识,解题的关键是熟练应用这些知识解决问题,属于中考常考题型.9.已知∠A,∠B互余,∠A比∠B大30度.设∠A,∠B的度数分别为x°、y°,下列方程组中符合题意的是()A.B.C.D.【考点】IL:余角和补角;99:由实际问题抽象出二元一次方程组.【分析】考查角度与方程组的综合应用,∠A与∠B的度数用未知量表示,然后列出方程.【解答】解:∠A比∠B大30°,则有x=y+30,∠A,∠B互余,则有x+y=90.故选C.【点评】运用已知条件,列出方程组.10.如果电影票上的“5排2号”记作(5,2),那么(4,1)表示()A.4排5号B.5排4号C.1排4号D.4排1号【考点】D3:坐标确定位置.【分析】根据所给数对第一个表示排数,第二个表示号可得:(4,1)表示4排1号.【解答】解:(4,1)表示4排1号,故选:D.【点评】此题主要考查了坐标确定位置,关键是理解所给的数对所表示的意义.11.已知点A(a,b)在第一象限,那么点B(﹣b,﹣a)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】根据第一象限内点的横坐标与纵坐标都是正数判断出a、b,再根据各象限内点的坐标特征解答.【解答】解:∵点A(a,b)在第一象限,∴a>0,b>0,∴﹣b<0,﹣a<0,∴点B(﹣b,﹣a)在第三象限.故选C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.下列命题中:①有理数是有限小数;②有限小数是有理数;③无理数都是无限小数;④无限小数都是无理数.正确的是()A.①②B.①③C.②③D.③④【考点】27:实数.【分析】①②根据有理数的即可判定;③④根据无理数的定义即可判定.【解答】解:①有理数不一定是有限小数,整数也是有理数,故说法错误,②有限小数是有理数,故说法正确;③无理数都是无限小数,故说法正确;④无限小数都不一定是无理数,其中无限循环小数为有理数,故说法错误.故选C.【点评】本题考查了实数的分类,重点是掌握有理数和无理数的定义.13.比较﹣π与﹣3.14的大小是()A.﹣π=﹣3.14 B.﹣π>﹣3.14 C.﹣π<﹣3.14 D.无法比较【考点】2A:实数大小比较.【分析】根据两个负数比较大小,绝对值大的反而小即可得出答案.【解答】解:∵π>3.14,∴﹣π<﹣3.14;故选C.【点评】此题主要考查了实数的大小比较,掌握两个负数比较大小,绝对值大的反而小解答此题的关键.14.方程3x﹣2y=7的解是()A.B.C.D.【考点】92:二元一次方程的解.【分析】将x、y的值分别代入原方程,左右相等即可得.【解答】解:A、当时,3x﹣2y=7,此选项正确;B、当时,3x﹣2y=1,此选项错误;C、当时,3x﹣2y=﹣1,此选项错误;D、当时,3x﹣2y=﹣7,此选项错误;故选:A.【点评】本题主要考查二元一次方程的解,掌握二元一次方程的解得定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解是关键.15.下列各式中,没有意义的是()A.B.C.D.﹣【考点】72:二次根式有意义的条件;24:立方根.【分析】根据二次根式有意义的条件和立方根的概念进行判断即可.【解答】解:∵x2≥0,∴有意义;有意义;∵4<,∴4﹣<0,∴无意义;﹣有意义,故选:C.【点评】本题考查的是二次根式有意义的条件,立方根的概念,掌握二次根式中的被开方数必须是非负数是解题的关键.二、解答下列各题16.(8分)计算:(1)++|π﹣3|;(2)()2+3﹣6.【考点】2C:实数的运算.【专题】11 :计算题;511:实数.【分析】(1)原式利用二次根式性质,立方根定义,以及绝对值的代数意义化简,计算即可得到结果;(2)原式利用二次根式性质化简,合并即可得到结果.【解答】解:(1)原式=﹣2+5+π﹣3=π;(2)原式=3﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.(8分)解答题(1)解方程组;(2)填出括号里的理由.已知:∠1+∠2=180°,求证:a∥b.证明:∵∠1=∠3(对顶角相等),∠1+∠2=180°(已知)∴∠3+∠2=180°(等量代换)∴a∥b(同旁内角互补,两直线平行).【考点】98:解二元一次方程组;J9:平行线的判定.【分析】(1)方程组利用加减消元法求出解即可;(2)由对顶角相等及已知角互补,等量代换得到同旁内角互补,利用同旁内角互补两直线平行即可得证.【解答】解:(1),①+②×3得:10x=0,即x=0,把x=0代入①得:y=2,则方程组的解为;(2)证明:∵∠1=∠3(对顶角相等),∠1+∠2=180°(已知),∴∠3+∠2=180°(等量代换),∴a∥b(同旁内角互补,两直线平行),故答案为:(对顶角相等);(已知);(等量代换);(同旁内角互补,两直线平行)【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(6分)如图,△AOB在平面直角坐标系中,A(1,4),B(3,1),D (5,1);(1)求△AOB的面积;(2)将△AOB平移得到△CDE,使点O与点D对应,画出△CDE,并写出点C 和点E的坐标.【考点】Q4:作图﹣平移变换.【分析】(1)直接利用△AOB所在矩形面积减去周围三角形面积进而得出答案;(2)直接利用平移的性质得出对应点位置,进而得出已知点坐标即可.【解答】解:(1)如图所示:△AOB的面积:3×4﹣×1×4﹣﹣=12﹣2﹣1.5﹣3=5.5;(2)如图所示:C(6,5),E(8,2).【点评】此题主要考查了平移变换以及三角形面积求法,正确得出平移后对应点位置是解题关键.19.(6分)如图,已知AB∥CD,点D在BE上,且BE平分∠ABC,∠CDE=150°,求∠C的度数.【考点】JA:平行线的性质.【分析】先利用邻补角可计算出∠BDC=30°,再利用平行线的性质得∠ABD=∠BDC=30°,接着根据角平分线定义得∠CBD=∠ABD=30°,然后根据三角形内角和计算∠C的度数.【解答】解:∵∠CDE=150°,∴∠BDC=180°﹣150°=30°,∵AB∥CD,∴∠ABD=∠BDC=30°,∵BE平分∠ABC,∴∠CBD=∠ABD=30°,∴∠C=180°﹣∠BDC﹣∠CBD=180°﹣30°﹣30°=120°.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.20.(6分)列方程(或方程组)解应用题:在学校举行的一次数学竞赛中,某班小勇同学得了88分,赛制规定:试题一共20小题,答对一题得5分,答错或不答一题倒扣1分,请问小勇在竞赛中答对几道题?【考点】9A:二元一次方程组的应用;8A:一元一次方程的应用.【分析】根据题意可以列出相应的一元一次方程,从而可以解答本题.【解答】解:设小勇在竞赛中答对x道题,5x﹣(20﹣x)×1=88解得,x=18即小勇在竞赛中答对18道题.【点评】本题考查一元一次方程的应用,解题的关键是明确题意,找出所求问题需要的条件.21.(8分)如图,已知:∠A=∠1,∠2+∠3=180°,∠BDE=70°,(1)AB与DF平行吗?说明理由;(2)求∠ACB的度数.【考点】JB:平行线的判定与性质.【分析】(1)根据已知条件得到∠BEC=∠3,由平行线的判定定理即可得到结论.(2)由平行线的性质得到∠BED=∠1,等量代换得到∠BED=∠A,推出DE∥AC,根据平行线的性质即可得到结论.【解答】解:(1)AB与DF平行,理由:∵∠2+∠BEC=180°,∵∠2+∠3=180°,∴∠BEC=∠3,∴AB∥DF;(2)∵AB∥DF,∴∠BED=∠1,∵∠A=∠1,∴∠BED=∠A,∴DE∥AC,∴∠ACB=∠BDE=70°.【点评】本题考查了平行线的性质和判定,熟练掌握平行线的判定和性质是解题的关键.22.(10分)已知=3,=4﹣b,求a+b的平方根.【考点】24:立方根;21:平方根.【分析】先根据平方根、立方根的定义得到关于a、b的一元一次方程,解方程组即可求出a、b的值,进而得到a+b的平方根.【解答】解:由题意有:2a+1=9,解得a=4,4﹣b=﹣1,解得b=5,或4﹣b=0,解得b=4,或4﹣b=1,解得b=3,则a+b的平方根为±3或±2或±.【点评】本题考查了平方根、立方根的定义.如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.如果一个数x的立方等于a,那么这个数x就叫做a的立方根.23.(11分)某厂决定投入一定的资金用于改善该厂生产、生活条件,投入的资金用于两个方面:第一方面是提升职工待遇;第二方面是改善该厂生产设施.2014年投入的总资金为t万元,其中用于第一方面的资金是第二方面的两倍.2015年第一、第二方面资金都有不同程度的增长,两方面资金增长的百分数之和为70%,投入的总资金比2014年增长了40%,(1)用含t的代数式分别表示2014年用于两个方面的资金;(2)分别求第一第二方面增长的百分数.【考点】9A:二元一次方程组的应用.【分析】(1)设2014年用于第二方面的资金为a万元,则用于第一方面的资金为2a万元,根据“2014年投入的总资金为t万元”得出a=可得答案;(2)设第一方面的增长率为x,第二方面的增长率为y,根据“两方面资金增长的百分数之和为70%,投入的总资金比2014年增长了40%”列方程组求解可得.【解答】解:(1)设2014年用于第二方面的资金为a万元,则用于第一方面的资金为2a万元,则a+2a=t,∴a=,答:2014年用于第一方面的资金为万元,用于第二方面的资金为万元;(2)设第一方面的增长率为x,第二方面的增长率为y,根据题意得:,解得:,答:第一方面的增长率为50%,第二方面的增长率为20%.【点评】本题主要考查一元一次方程和二元一次方程组的应用,理解题意找到题目蕴含的相等关系是解题的关键.24.(12分)将长方形OABC的顶点O与直角坐标系的原点重合,点A,C分别在X轴,Y轴上,点B(a,b),且a,b满足+(b+6)2=0.(1)求点B的坐标;(2)若点P从点B出发,以1单位/秒的速度向C点运动(不超过C点),同时点Q从C点出发以2单位/秒的速度向原点运动(不超过原点),试探讨四边形AQCP的面积在运动中是否会发生变化?求其值,若变化,求变化范围.(3)若过O点的直线OD交长方形的边于点D,且直线OD把长方形的周长分为3:5两部分,求点D的坐标;(4)若H(0,﹣1),点P(m,﹣3)在第三象限内运动,则是否存在点P使四边形HBCP的面积等于△AHB的面积,若存在,求P点坐标,不存在,说明理由.【考点】LO:四边形综合题.【分析】(1)根据非负数的性质列式求出得到a ﹣3=0,b +6=0,然后解方程求出a 与b 的值,再写出B 点坐标;(2)设运动的时间为t ,则BP=t ,CQ=2t (0≤t ≤3),则可根据三角形面积公式和S 四边形AQCP =S 矩形ABCO ﹣S △AOQ ﹣S △APB 计算得到S 四边形AQCP =9,即四边形AQCP 的面积在运动中不发生变化;(3)分类讨论:当点D 在AB 上,如图1,设D (3,n ),则AD=﹣n ,BD=6+n ,根据题意得(3﹣n ):(6+n +3+6)=3:5,然后解方程求出n 即可得到D 点坐标;当点D 在BC 上,如图2,设D (m ,﹣6),则CD=m ,BD=3﹣m ,根据题意得(6+m ):(3﹣m +3+6)=3:5,然后解方程求出n 即可得到D 点坐标;(4)根据四边形HBCP 的面积等于△AHB 的面积得到×5×|m |+×5×3=×6×3,然后解方程可得到满足条件的m 的值,从而得到P 点坐标.【解答】解:(1)∵+(b +6)2=0, ∴a ﹣3=0,b +6=0,∴a=3,b=﹣6,∴B 点坐标为(3,﹣6);(2)四边形AQCP 的面积在运动中不会发生变化.如图1,设运动的时间为t ,则BP=t ,CQ=2t (0≤t ≤3),S 四边形AQCP =S 矩形ABCO ﹣S △AOQ ﹣S △APB=3×6﹣×3×(6﹣2t )﹣×6×t=9;(3)当点D 在AB 上,如图3,设D (3,n ),则AD=﹣n ,BD=6+n , ∵直线OD 把长方形的周长分为3:5两部分,∴(3﹣n ):(6+n +3+6)=3:5,解得n=﹣,∴D 点坐标为(3,﹣); 当点D 在BC 上,如图2,设D (m ,﹣6),则CD=m ,BD=3﹣m , ∵直线OD 把长方形的周长分为3:5两部分,∴(6+m ):(3﹣m +3+6)=3:5,解得m=,∴D点坐标为(,﹣6),综上所述,D点坐标为(3,﹣)或(,﹣6);(4)存在.如图4,∵四边形HBCP的面积等于△AHB的面积,∴×5×|m|+×5×3=×6×3,而m<0,∴m=﹣,∴P点坐标为(﹣,﹣3).【点评】本题考查了坐标与图形性质:利用点的坐标特征计算线段的长和判断线段与坐标轴的位置关系.也考查了三角形的面积公式.人教版数学七年级下册期中试卷一、选择题1.在下列各数:3.1415926、、0.2、、、、中无理数的个数是()A.2 B.3 C.4 D.52.下列各式中,正确的是()A.±=±B.±=C.±=±D.=±3.若|3﹣a|+=0,则a+b的值是()A.2 B.1 C.0 D.﹣14.估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间5.已知下列命题:①若a>0,b>0,则a+b>0;②若a≠b,则a2≠b2;③两点之间,线段最短;④同位角相等,两直线平行.其中真命题的个数是()A.1个B.2个C.3个D.4个6.同桌读了:“子非鱼焉知鱼之乐乎?”后,兴高采烈地利用电脑画出了几幅鱼的图案,请问:由图中所示的图案通过平移后得到的图案是()A.B.C.D.7.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A.右转80°B.左转80°C.右转100°D.左转100°8.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是()A.(﹣3,4) B.(3,4)C.(﹣4,3) D.(4,3)9.在平面直角坐标系中,将点B(﹣3,2)向右平移5个单位长度,再向下平移3个单位长度后与点A(x,y)重合,则点A的坐标是()A.(2,5)B.(﹣8,5) C.(﹣8,﹣1)D.(2,﹣1)10.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2)B.(﹣3,2) C.(3,﹣2) D.(﹣3,﹣2)11.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为()A.(﹣4,0) B.(6,0)C.(﹣4,0)或(6,0)D.无法确定12.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°13.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°14.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()A.110°B.120°C.140°D.150°二、填空题15.把命题“同角的余角相等”改写成“如果…那么…”的形式.16.3﹣的相反数是,绝对值是.17.若一个正数的平方根是2a﹣3与5﹣a,则这个正数是.18.点P(2a,1﹣3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为4,则点P的坐标是.19.直线m外有一定点A,A到直线m的距离是7cm,B是直线m上的任意一点,则线段AB的长度:AB7cm.(填>或者<或者=或者≤或者≥).20.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为米.三、解答题(共60分)21.(10分)(1)计算:(﹣2)2×+||+×(﹣1)2016(2)解方程:3(x﹣2)2=27.22.(10分)完成下面推理过程:如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB 的理由:∵DE∥BC(已知)∴∠ADE=()∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=()∠ABE=()∴∠ADF=∠ABE∴∥()∴∠FDE=∠DEB.()23.(10分)如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2),(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移1个单位长度,再向上平移2个单位长度,得到△A′B′C′,画出△A′B′C′(3)写出三个顶点坐标A′(、)、B′(、)、C′、)(4)求△ABC的面积.24.(10分)如图,在A、B两处之间要修一条笔直的公路,从A地测得公路走向是北偏东46°,A、B两地同时开工,若干天后公路准确接通.(1)B地修公路的走向是南偏西多少度?(2)若公路AB长12千米,另一条公路BC长6千米,且BC的走向是北偏西44°,试求A到公路BC的距离?。

人教版七年级下册数学期中测试卷【含答案】

人教版七年级下册数学期中测试卷【含答案】

人教版七年级下册数学期中测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 有理数的乘法法则中,两数相乘,同号得什么?A. 正数B. 负数C. 0D. 无法确定3. 在直角坐标系中,点(3, -2)位于哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 下列哪个式子是整式?A. 3x + 2yB. 2/xC. √xD. 1/(x+1)5. 若a > b,则下列哪个不等式成立?A. a 3 > b 3B. a/2 > b/2C. -a < -bD. a + b < 0二、判断题(每题1分,共5分)1. 任何一个正整数都可以分解为几个质数的乘积。

()2. 负数的平方根是正数。

()3. 两条直线平行,则它们的斜率相等。

()4. 任何两个有理数都可以进行加、减、乘、除运算。

()5. 一元二次方程的解可以是两个相同的实数。

()三、填空题(每题1分,共5分)1. 2的平方根是______。

2. 若a > 0,b < 0,则a与b的乘积是______。

3. 一元二次方程ax^2 + bx + c = 0的判别式是______。

4. 两条平行线的斜率分别是2和-2,则它们的距离是______。

5. 在直角坐标系中,点(0, 0)到点(3, 4)的距离是______。

四、简答题(每题2分,共10分)1. 简述质数的定义。

2. 解释有理数的乘法法则。

3. 什么是一元二次方程?给出一个例子。

4. 简述两点之间的距离公式。

5. 解释直线的斜率是什么。

五、应用题(每题2分,共10分)1. 解方程:2x + 3 = 15。

2. 计算下列表达式的值:(-3) (-2) + 4/2。

3. 若直线的斜率为2,且经过点(1, 3),求该直线的方程。

4. 计算点(2, -1)到直线y = 2x + 3的距离。

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试卷一、单选题1.下列图形中,1∠与2∠互为邻补角的是()A .B .C .D .2.下列各数中22,,0.27π,有理数有()A .2个B .3个C .4个D .5个3.如图所示,因为AB ⊥l ,BC ⊥l ,B 为垂足,所以AB 和BC 重合,其理由是()A .两点确定一条直线B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .过一点能作一条垂线D .垂线段最短4.在平面坐标系中,线段CF 是由线段AB 平移得到的;点(1,4)A -的对应点为(4,1)C ,则点(,)B a b 的对应点F 的坐标为()A .()3,3a b +-B .()5,3a b +-C .()5,3a b --D .()3,5a b ++5.已知点P 的坐标为()2,32a a ++,且点P 在y 轴上,则点P 坐标为()A .(0,4)P -B .(0,4)P C .(0,2)P -D .(0,6)P -6.已知下列命题:①相等的角是对顶角;②在同一平面内,若//a b ,//b c ,则//a c ;③同旁内角互补;④互为邻补角的两个角的角平分线互相垂直.其中,是真命题的有()A .0个B .1个C .2个D .3个7.若平面直角坐标系内的点M 在第二象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为()A .()2,1B .()2,1-C .()2,1-D .()1,2-8)A .3±B .3C .3-D .9.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A .45°B .60°C .75°D .82.5°10.如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA 、CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F ,∠F 的度数为()A .120°B .135°C .150°D .不能确定11.实数,a b||a b +)A .2a -B .2b -C .2a b +D .2a b-12.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为()A .()2019,0B .()2019,1C .()2019,2D .()2020,0二、填空题13.将命题“两直线平行,同位角相等”写成“如果…,那么…”的形式是________14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是()()--,那么“帅”的坐标是__________3,1,3,115.若一个数的立方根就是它本身,则这个数是________.16.若a ba b的值为____________<,且,a b17.如图,把一张平行四边形纸片ABCD沿BD对折,使点C落在点E处,BE与AD相交于点O,若∠DBC=15°,则∠BOD=______________.==,现对72进行如下操18.任何实数a,可用[]a表示不超过a的最大整数,如[4]4,[3]3作:72第一次8]=;第二次[8]2=;第三次[2]1=;这样对72只需进行3次操作后变为1,在进行这样3次操作后变为1的所有正整数中,最大的是___19.如图,直线a和b被直线c所截,∠1=110°,当∠2=_____时,直线a b成立三、解答题20.(1-2|x-=-(2)解方程:()3112521.(1)如图这是某市部分简图,为了确定各建筑物的位置:①请你以火车站为原点建立平面直角坐标系②写出体育场、宾馆的坐标;③图书馆的坐标为()-4,-3,请在图中标出图书馆的位置;(2)已知M=是3m +的算术平方根,N=n-2的立方根,试求M-N 的值;22.如图在平面直角坐标系中,已知(1,1)P ,过点P 分别向,x y 轴作垂线,垂足分别是,A B ;(1)点Q 在直线AP 上且与点P 的距离为2,则点Q 的坐标为__________(2)平移三角形ABP ,若顶点P 平移后的对应点(4,3)P ',画出平移后的三角形'''A B P .23.如图,//,AB CD EFG ∆的顶点,F G 分别落在直线,AB CD 上,CE 交AB 于点,H GE 平分FGD ∠,若90,20EFG EFH ︒︒∠=∠=,求EHB ∠的度数.24.如图,在平面直角坐标系中,,A B 坐标分别是(0,),(,)A a B b a ,且,a b 满足()23|5|0a b -+-=,现同时将点,A B 分别向下平移3个单位,再向左平移1个单位,分别得到点,A B 的对应点,C D ,连接,,AC BD AB .(1)求点,C D 的坐标及四边形ACDB 的面积ACDB S ;(2)在y 轴上是否存在一点M ,连接,MC MD ,使13MCD ACDB S S ∆=?若存在这样的点,求出点M 的坐标,若不存在,试说明理由.25.学着说理由:如图∠B =∠C ,AB ∥EF ,试说明:∠BGF =∠C证明:∵∠B =∠C ()∴AB ∥CD ()又∵AB ∥EF ()∴EF ∥CD ()∴∠BGF =∠C ()26.如图,EF ⊥BC 于点F ,∠1=∠2,DG ∥BA ,若∠2=40°,则∠BDG 是多少度?参考答案1.D2.C3.B4.B5.A6.C7.B8.D9.C10.B11.A【详解】解:0,,a b a b <<>0,a b ∴+<||a b a a b b+=+++()a a b b=--++a a b b=---+2.a =-故选A .12.C【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3,当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .13.如果两条直线是平行线,那么同位角相等.【解析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】“两直线平行,同位角相等”的条件是:“两直线平行”,结论为:“同位角相等”,∴写成“如果…,那么…”的形式为:“如果两条直线是平行线,那么同位角相等”,故答案为如果两条直线是平行线,那么同位角相等.14.()1,3--【解析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“帅”的坐标.【详解】解:建立平面直角坐标系,如图,“帅”的坐标为(-1,-3),故答案为:(-1,-3).15.±1,0【详解】∵13=1,(-1)3=-1,03=0,∴1的立方根是1,-1的立方根是-1,0的立方根是0,∴一个数的立方根就是它本身,则这个数是±1,0.故答案为±1,0.16.-1【详解】解:364049,<<67,∴6,7,a b ∴==1,a b ∴-=-故答案为: 1.-17.150︒【详解】如图,∵在平行四边形ABCD 中,AD ∥BC ,∴∠ODB=∠DBC=15°.又由折叠的性质知,∠EBD=∠CBD=15°,即∠OBD=15°,∴在△OBD 中,∠BOD=180°−∠OBD−∠ODB=150°,18.255【详解】解:9,3,1,⎡===⎣13,3,1,⎡===⎣15,3,1,===16,4,2,1,⎡⎡====⎣⎣需要进行4次操作后变为1,即只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.19.70°【分析】根据平行的判定,要使直线a b 成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.【详解】解:要使直线a b 成立,则∠2=∠3(同位角相等,两直线平行),∵∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2=∠3=70°,故答案为:70°.20.(1)10(2)4x =-【详解】(1)原式=9(3)22+-++-10=(2)解:15x -=-4x =-21.(1)①见解析;②体育馆()4,3-;宾馆()2,2;③见解析;(2)2【详解】(1)①平面直角坐标系如图;②体育馆()4,3-;宾馆()2,2,③图书馆的位置见上图.(2)422433m m n -=⎧⎨-+=⎩ 63m n =⎧∴⎨=⎩3,1M N ∴==2M N ∴-=22.(1)12(1,1),(1,3)Q Q -;(2)见解析【详解】解:(1)∵点Q 在直线AP 上且与点P 的距离为2,AP ⊥x 轴,P (1,1),∴点Q 的坐标为(1,-1)或(1,3),故答案为:(1,-1)或(1,3);(2)如图所示,'(1,1),(4,3).P P ∴平移方式为先向右平移3个单位长度,再向上平移2个单位长度,按相同方式把,A B 作同样的平移得到''.A B ,顺次连接''',,A B P 得到三角形A′B′P′即为所求.【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.55︒【详解】解:90,20EFG EFH ︒︒∠=∠= 70BFG ︒∴∠=//AB CD ,70FGC BFG ︒∴∠=∠=,110FGD ︒∴∠=因为GE 平分FGD ∠,55FGH ︒∴∠=,180705555FHG ︒︒︒∴∠=--=︒55EHB FHG ︒∴∠=∠=24.(1)(1,0),(4,0),C D -15.ACDB S =(2)在y 轴上存在点(0,2)M ,或(0,2)M -使13MCD ABDC S S ∆=【详解】解:(1)依题意得:3050a b -=⎧⎨-=⎩解得:35a b =⎧⎨=⎩(0,3),(5,3)A B ∴,将点,A B 分别向下平移3个单位,再向左平移1个单位,(1,0),(4,0),C D ∴-5315.ACDB S CD OA =∙=⨯=(2)假设在y 轴上存在点(0,)M y ,使13MCD ABDCS S ∆=11553MCD S ∆∴==,1552y ∴⨯⨯=,2y ∴=±,(0,2)M ∴或(0,2)-所以在y 轴上存在点(0,)M y ,使13MCD ABDC S S ∆=.25.【详解】证明:∵∠B =∠C (已知),∴AB ∥CD (内错角相等,两直线平行),又∵AB ∥EF (已知),∴EF ∥CD (平行于同一直线的两直线平行),∴∠BGF =∠C (两直线平行,同位角相等).26.130°【详解】解:∵∠1=∠2,∴EF∥AD,∵EF⊥BC,∴AD⊥BC,即∠ADB=90°,又∵DG∥BA,∠2=40°,∴∠ADG=∠2=40°,∴∠BDG=∠ADG+∠ADB=130°.。

人教版七年级数学下册期中考试卷(完整)

人教版七年级数学下册期中考试卷(完整)

人教版七年级数学下册期中考试卷(完整) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是( )A .2019B .-2019C .12019D .12019- 2.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于( ).A .35°B .70°C .110°D .145°3.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=4.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A .(2,3)B .(-2,-3)C .(-3,2)D .(3,-2)5.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2 C .m <3 D .m <3且m ≠26.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒8.如图,将长方形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C '处,折痕为EF ,若∠ABE =25°,则∠EFC '的度数为( )A .122.5°B .130°C .135°D .140°9.估计10+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间10.如图,////OP QR ST 下列各式中正确的是( )A .123180∠+∠+∠=B .12390∠+∠-∠=C .12390∠-∠+∠=D .231180∠+∠-∠=二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.2.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是__________dm.3.如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F=________.4.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为______cm.5.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A,B两岛的视角∠ACB=________.6.一个角是70°39′,则它的余角的度数是________.三、解答题(本大题共6小题,共72分)1.解下列方程(组):(1)321126x x-+-=(2)2.已知关于x的不等式21122m mxx->-.(1)当m=1时,求该不等式的非负整数解;(2)m取何值时,该不等式有解,并求出其解集.3.如图,在平面直角坐标系中,已知点A(0,4),B(8,0),C(8,6)三点.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,1),且四边形ABOP的面积是△ABC的面积的两倍;求满足条件的P点的坐标.4.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.5.某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?6.某车间的甲、乙两名工人分别同时生产同种零件,他们一天生产零件y(个)与生产时间t(小时)的关系如图所示.(1)根据图象回答:①甲、乙中,谁先完成一天的生产任务;在生产过程中,谁因机器故障停止生产多少小时;②当t等于多少时,甲、乙所生产的零件个数相等;(2)谁在哪一段时间内的生产速度最快?求该段时间内,他每小时生产零件的个数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、C5、D6、C7、B8、A9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、7或-12、253、15°4、225、70°6、19°21′.三、解答题(本大题共6小题,共72分)1、(1)x=16;(2)13383 xy⎧=⎪⎪⎨⎪=⎪⎩2、(1)0,1;(2)当m≠-1时,不等式有解;当m> -1时,原不等式的解集为x<2;当m< -1时,原不等式的解集为x>2.3、(1)24;(2)P(﹣16,1)4、(1)4,6,(4,6);(2)点P在线段CB上,点P的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒.5、(1)50;(2)0.32;72(3)3606、(1) ①甲,甲,3小时;②3和193; (2) 甲在5~7时的生产速度最快,每小时生产零件15个.。

人教版数学七年级下册期中测试卷及答案

人教版数学七年级下册期中测试卷及答案

人教版数学七年级下册期中测试题一、填空题(每题3分,共30分)l、已知∠a的对顶角是81°,则∠a=______.2、把“等角的补角相等”写成“如果…,那么…”的形式_________________________________.3、在平面直角坐标系中,点P(-4,5)到x轴的距离为______,到y轴的距离为________.4、若等腰三角形的边长分别为3和6,则它的周长为________.5、如果P(m+3,2m+4)在y轴上,那么点P的坐标是________.6、如果一个等腰三角形的外角为100°,则它的底角为________..7、一个长方形的三个顶点坐标为(―1,―1),(―1,2)(3,―1),则第四个顶点的坐标是______________.8、将点P(-3,4)先向下平移3个单位,再向左平移2个单位后得到点Q,则点Q的坐标是_____________.9、武夷中学运动场需铺设草皮,现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮,请你帮助工人师傅选择两种草皮来铺设足球场,可供选择的两种组合是.10、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2010个球止,共有实心球_____________个。

”二、选择题(每题3分,共30分)11、在同一平面内,两直线可能的位置关系是()A.相交B.平行C.相交或平行D.相交、平行或垂直12、如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是().(A)120°(B)130°(C)140°(D)150°13、在△ABC中,已知∠A:∠B:∠C=1:2:3则△ABC是().A、锐角三角形B、直角三角形C、钝角三角形D以上都不对54D3E21CBA14、如果∠A 和∠B 的两边分别平行,那么∠A 和∠B 的关系是().A.相等B.互余或互补C.互补D.相等或互补15、如右图,下列能判定AB ∥CD 的条件有()个.(1)︒=∠+∠180BCD B ;(2)21∠=∠;(3)43∠=∠;(4)5∠=∠B .A.1B.2C.3D.4第15题图16、下列说法:①三角形的高、中线、角平分线都是线段;②内错角相等;③坐标平面内的点与有序数对是一一对应;④因为∠1=∠2,∠2=∠3,所以∠1=∠3。

人教版七年级下册数学期中考试试题含答案

人教版七年级下册数学期中考试试题含答案

人教版七年级下册数学期中考试试卷一、单选题1.下列各组图形可以通过平移互相得到的是()A .B .C .D .2.实数4的算术平方根是()A B .2C .2±D .163.下列数据能确定物体具体位置的是()A .息州大道北侧B .好运花园2号楼C .东经103︒,北纬30°D .南偏西55︒4.如图,90ACB ∠=︒,CD AB ⊥,垂足为D ,则点B 到直线CD 的距离是指()A .线段BC 的长度B .线段CD 的长度C .线段BE 的长度D .线段BD 的长度5.如图,1234//,//l l l l ,若170∠=︒,则2∠的度数为()A .100︒B .110︒C .120︒D .130︒6.点()3,5A -在平面直角坐标系中所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限7.如图,在下列给出的条件中,能判定//DF AB 的是()A .∠4=∠3B .∠1=∠AC .∠1=∠4D .∠4+∠2=180°8.在平面直角坐标系中,点M 在第四象限,且点M 到x 轴、y 轴的距离分别为6,4,则点M 的坐标为()A .()4,6-B .()4,6-C .()6,4-D .()6,4-9.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺,设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是()A . 4.5112y x y x =+⎧⎪⎨=+⎪⎩B . 4.5112y x y x =+⎧⎪⎨=-⎪⎩C . 4.5112y xy x =-⎧⎪⎨=+⎪⎩D . 4.5112y x y x =-⎧⎪⎨=-⎪⎩10.如图,在平面直角坐标系上有点()1,0A ,点A 第一次向左跳动至()11,1A -,第二次向右跳动至()22,1A ,第三次向左跳动至()32,2A -,第四次向右跳动至()43,2A …依照此规律跳动下去,点A 第124次跳动至124A 的坐标为()A .()63,62B .()62,63C .()62,62-D .()124,123二、填空题11.请写出一个大于1且小于2的无理数:___.12.请把“36的平方根是正负6”翻译成数学式子表示出来:____________________________.13.已知方程2x ﹣3y =6,用含x 的式子表示x ,则y =_____.14.如图,已知//AB DE ,75ABC ∠=︒,160CDE ∠=︒,则BCD ∠的度数为______________.15.定义“在四边形ABCD 中,若AB ∥CD ,且AD ∥BC ,则四边形ABCD 叫做平行四边形.”若一个平行四边形的三个顶点的坐标分别是(0,0),(3,0),(1,3),则第四个顶点的坐标是__.三、解答题16.如图,直线AB 与CD 相交于点O ,EO CD ⊥于点O ,OF 平分AOD ∠,且50BOE ∠=︒,求DOF ∠的度数.17.如图,直线CD 与直线AB 相交于点C ,点P为两直线外一点.(1)根据下列要求画图:①过点P 作//PQ CD ,交AB 于点Q ;②过点P 作PR CD ⊥,垂足为R .(2)若120DCB ∠=︒,则PQC ∠是多少度?请说明理由.(3)连接PC ,比较PC 和PR 的大小,并说明理由.18.解方程组:(1)1{322x y x y =+-=;(2)()()5962{1243x y x y -=-+-=19.如果一个正数a 的两个不相同的平方根是22x -和63x -.求:(1)x 和这个正数a 的值;(2)173a +的立方根.20.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个整数的立方是59319,求这个整数.华罗庚脱口而出:39.邻座的乘客十分惊奇,忙问计算的奥妙.你知道华罗庚是怎样迅速准确地计算出来的吗?请按照下面的问题试一试:(1)由3101000=,31001000000=(2)由59319的个位上的数是9(3)如果划去59319后面的三位319得到数59,而3327=,3464=,的十位上的数是几吗?(4)已知19683,110592都是整数的立方,请你按照上述方法确定它们的立方根.21.如图,在每个小正方形边长均为1的方格纸中,ABC ∆的顶点都在方格纸格点上,点A 的坐标是()2,1-,点B 的坐标是()6,1-.(1)请你在方格中建立直角坐标系,并写出C 点的坐标;(2)将ABC ∆向左平移2格,再向上平移3格,请在图中画出平移后的A B C ∆''';(3)在图中能使PBC ABC S S ∆∆=的格点P 有多少个(点P 异于点A ),写出符合条件的P 点坐标.22.完成下面推理过程.如图,已知://AB EF ,EQ 交CD 于点Q ,EP 交AB 于点P ,且EP EQ ⊥,90EQC APE ∠+∠=︒,求证://AB CD .证明:∵//AB EF ,(已知)∴APE PEF ∠=∠.(_________________________________)∵EP EQ ⊥,∴PEQ ∠=_________︒,(垂直的定义)即90QEF PEF ∠+∠=︒.∴90QEF APE ∠+∠=︒.∵90EQC APE ∠+∠=︒,∴EQC ∠=___________,(同角的余角相等)∴//EF CD ,(______________________)又∵//AB EF ,∴//AB CD .(______________________)23.如图,在平面直角坐标系中,(),0A a ,(),3B b ,()4,0C ,满足()260a b a b ++-+=,线段AB 交y 轴于点F .(1)分别求出A ,B 两点的坐标;(2)求点F 的坐标;(3)在坐标轴上是否存在点P ,使ABP ∆的面积和ABC ∆的面积相等,若存在,求出点P 的坐标,若不存在,请说明理由.参考答案1.C 【详解】试题解析:观察图形可知图案C 通过平移后可以得到.故选C .点睛:图形的平移只改变图形的位置,而不改变图形的形状和大小,易混淆图形的平移与旋转或翻转,而误选A 、B 、D .2.B 【分析】根据算术平方根的定义,求一个非负数a 的算术平方根,也就是求一个非负数x ,使得x 2=a ,则x 就是a 的算术平方根,特别地,规定0的算术平方根是0.【详解】解:∵22=4,∴4的算术平方根是2.故选B.【点睛】本题主要考查了算术平方根的定义,解题的关键在于能够掌握一个非负数的算术平方根具有非负性.3.C【分析】在平面中,要用两个数据才能表示一个点的位置.【详解】解:东经103o,北纬30o能确定物体的具体位置,故选:C.【点睛】此题主要考查了确定物体具体位置,要明确,一个有序数对才能确定一个点的位置.4.D【分析】直线外一点到直线的垂线段的长度,叫做点到直线的距离,根据点到直线的距离的定义解答即可.【详解】解:∵BD⊥CD于D,∴点B到直线CD的距离是指线段BD的长度.故选:D.【点睛】本题考查了点到直线的距离的定义,点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.5.B【分析】利用平行线的性质即可求解.【详解】如图,∵34//l l ,∴∠1+∠3=180º,∵∠1=70º,∴∴∠3=180º-70º=110º,∵12l l //,∴∠2=∠3=110º,故选:B .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答的关键.6.B 【分析】根据坐标的特点即可求解.【详解】点()3,5A -在平面直角坐标系中所在的象限是第二象限故选B .【点睛】此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点.7.C 【分析】可以从直线DF 、AB 的截线所组成的“三线八角”图形入手进行判断.【详解】解:A 、∵∠4=∠3,∴DE ∥AC ,不符合题意;B 、∵∠1=∠A ,∴DE ∥AC ,不符合题意;C 、∵∠1=∠3,∴DF ∥AB ,符合题意;D 、∵∠4+∠2=180°,∴DE ∥AC ,不符合题意;故选:C.【点睛】此题考查平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.8.A【分析】已知点M在第四象限内,那么横坐标大于0,纵坐标小于0,进而根据到坐标轴的距离判断坐标.【详解】解:因为点M在第四象限,所以其横、纵坐标分别为正数、负数,又因为点M到x轴的距离为6,到y轴的距离为4,所以点M的坐标为(4,6)-.故选:A.【点睛】本题主要考查了点在第四象限时点的坐标的符号,解题的关键是点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.9.B【分析】根据题意可以列出相应的二元一次方程组,从而本题得以解决.【详解】用一根绳子去量一根长木,绳子还剩余4.5尺,则 4.5y x=+,将绳子对折再量长木,长木还剩余1尺,则11 2y x=-,∴4.5 11 2y xy x=+⎧⎪⎨=-⎪⎩,故选B.【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.10.A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第124次跳动至点的坐标是(63,62).故选:A.【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.11.【分析】由于所求无理数大于1且小于2,两数平方得大于2小于4,所以可选其中的任意一个数开平方即可.【详解】π-等,大于1且小于2 2(答案不唯一).考点:1.开放型;2.估算无理数的大小.12.=±6【分析】根据平方根的定义即可得到答案.【详解】解:“36的平方根是正负6”用数学式子表示为:6±故答案为:6±.【点睛】本题主要考查了平方根的定义,解决本题的关键是熟记平方根的定义.13.263x-【分析】将x看做已知数求出y即可.【详解】解:2x﹣3y=6,得到y=263x-.故答案为:26 3 x-【点睛】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.14.55︒【分析】延长ED与BC相交于点F,根据两直线平行,内错角相等可得∠BFD=∠ABC,再根据邻补角的定义分别求出∠CDF和∠CFD,然后根据三角形的内角和定理列式计算即可得解.【详解】解:如图,延长ED与BC相交于点F,∵AB∥DE,∴∠BFD=∠ABC=75°,∴∠CFD=180°﹣75°=105°,∴∠CDF=180°﹣∠CDE=180°﹣160°=20°,在△CDF中,∠BCD=180°﹣∠CDF﹣∠CFD=180°﹣20°﹣105°=55°.故答案为:55°.【点睛】本题考查了平行线的性质,邻补角的定义,是基础题,熟记性质并准确识图是解题的关键.15.(4,3)或(-2,3)或(2,-3).【分析】根据题意画出平面直角坐标系,然后描出(0,0)、(3,0)、(1,3)的位置,再找第四个顶点坐标.【详解】解:如图所示,∴第4个顶点的坐标为(4,3)或(-2,3)或(2,-3).故答案为:(4,3)或(-2,3)或(2,-3).【点睛】此题主要考查了平行四边形的性质及坐标与图形的性质,解题关键是要分情况讨论,难易程度适中.16.70【分析】利用垂直定义可得∠COE=90°,进而可得∠COB的度数,再利用对顶角相等可得∠AOD,再利用角平分线定义可得答案.【详解】解:∵EO⊥CD于点O,∵∠BOE =50°,∴∠COB =90°+50°=140°,∴∠AOD =140°,∵OF 平分∠AOD ,∴∠FOD =12∠AOD =70°,【点睛】此题主要考查了垂直的性质和角平分线的性质,关键是理清图中角之间的和差关系.17.(1)见解析;(2)60PQC ∠=︒,见解析;(3)PR 小于PC ,见解析【分析】(1)①根据同位角相等两直线平行作点P 作PQ ∥CD ;②再利用直角三角板,一条直角边与CD 重合,沿CD 平移,是另一直角边过P ,再画垂线即可;(2)根据两直线平行内角互补可得答案.(3)根据垂线段最短可比较PC 和PR 的大小.【详解】(1)如图所示.(2)60PQC ∠=︒.理由如下:∵CD ∥PQ ,∴∠DCQ +∠PQC =180°,∵∠DCB =120°,∴∠PQC =60°.(3)PR 小于PC ,理由:垂线段最短.【点睛】此题主要考查了复杂作图,平行线的性质和判定以及垂线线段最短等知识,关键是掌握同位角相等两直线平行,据两直线平行内角互补.18.(1)01x y =⎧⎨=-⎩;(2)18{412x y =-=-【详解】试题分析:(1)把第二个方程代入第一个方程,利用代入消元法其解即可;(2)方程组整理后,利用加减消元法求出解即可.试题解析:(1)1322x y x y =+⎧⎨-=⎩①②;把①代入②得,3(y+1)-2y=2,解得y=−1,把y=−1代入①得,x=−1+1=0,所以,原方程组的解是01x y =⎧⎨=-⎩;(2)方程组整理得:56333428x y x y -=⎧⎨-=⎩①②,①×2−②×3得:x=−18,把x=−18代入②得:y=1236-,则方程组的解为181236x y =-⎧⎪⎨=-⎪⎩.19.(1)4x =,36a =;(2)5.【分析】(1)根据平方根的性质列出算式22630x x -+-=,解方程后求出x 的值,再代入22x -即可求出a 的值;(2)求出173a +的值,根据立方根的概念求出答案.【详解】解:(1)∵一个正数a 的两个不相同的平方根是22x -和63x -,∴22630x x -+-=.∴4x =.∴222426x -=⨯-=.∴36a =.(2)∵36a =,∴173********a +=+⨯=.∵125的立方根为5,∴173a +的立方根为5.【点睛】本题考查了平方根和立方根的概念,熟练掌握平方根的性质和立方根的概念是解题的关键.20.(1)两位数;(2)9;(3)3;(4)27,48【分析】(1)根据59319大于1000而小于1000000,即可确定59319的立方根是2位数;(2)根据一个数的立方的个位数就是这个数的个位数的立方的个位数,据此即可确定;(3)根据数的立方的计算方法即可确定;(4)根据(1)(2)(3)即可得到答案.【详解】解:(1)∵1000<59319<1000000,∴10100,(2)只有个位数是9的立方数的个位数依然是9,9;(3)∵27<59<64,∴34,3.(4)经过分析可得,19683的立方根是两位数,19683的立方根的个位数字是7,十位数字是2,故19683的立方根是27;同理可得,110592的立方根是48.【点睛】本题主要考查了立方根以及数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键.21.(1)画图见解析,()8,3;(2)见解析;(3)4个;()3,1,()4,3,()5,5,()6,7【分析】(1)根据点A 、点B 的坐标解答;(2)找出点A 、点B 、点C 的对应点,然后用线段连接;(3)根据两平行线间的距离相等求解.【详解】(1)建直角坐标系如图,C 点坐标()8,3.(2)如图所示,A B C ''' 即为所求;(3)如图所示,有4个,坐标分别为()3,1,()4,3,()5,5,()6,7.【点睛】本题考查作图-平移变换,平面直角坐标系,坐标与图形的性质,三角形的面积,以及两平行线间的距离等知识,解题的关键是理解题意,灵活运用所学知识解决问题.22.两直线平行,内错角相等;90;QEF ∠;内错角相等,两直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行【分析】根据平行线的性质得到∠APE =∠PEF ,根据余角的性质得到∠EQC =∠QEF 根据平行线的判定定理即可得到结论.【详解】证明:∵AB ∥EF∴∠APE =∠PEF (两直线平行,内错角相等)∵EP ⊥EQ∴∠PEQ =90°(垂直的定义)即∠QEF +∠PEF =90°∴90QEF APE ∠+∠=︒.∵90EQC APE ∠+∠=︒,∴∠EQC =∠QEF∴EF ∥CD (内错角相等,两直线平行)又∵//AB EF ,∴AB ∥CD (如果两条直线都与第三条直线平行,那么这两条直线也互相平行),【点睛】本题考查了平行线的判定和性质,垂直的定义,熟练掌握平行线的判定和性质是解题的关键.23.(1)()30A -,,()3,3B ;(2)30,2⎛⎫ ⎪⎝⎭;(3)存在,()0,5或()0,2-或()10,0-或()4,0【分析】(1)根据()260a b a b ++-+=结合平方和绝对值的非负性即可计算得到答案;(2)连接OB ,设F 的坐标为(0,t )根据AOF 的面积BOF +△的面积AOB =△的面积进行计算求解即可;(3)先根据前面的已知条件求出ABC 的面积,再根据ABP △的面积APF =△的面积BPF +△的面积进行计算求解即可.【详解】(1)∵()260a b a b ++-+=,()20a b +≥,06a b -+≥∴060a b a b +=⎧⎨-+=⎩∴解得33a b =-⎧⎨=⎩.∴A 的坐标为(-3,0),B 的坐标为(3,3)(2)连接OB ,设F 的坐标为(0,t )∵AOF BOF AOBS S += S ∴1113333222t t ⋅⋅+⋅⋅=⋅⋅.解得32t =.∴点F 的坐标为(0,32).(3)存在.ABC 的面积1217322=⨯⨯=.当P 点在y 轴上时,设P 点的坐标为(0,y ),∵ABP APF BPFS S S =+△△△∴1313213322222y y ⋅-⋅+⋅-⋅=.解得5y =或2y =-.∴此时点P 的坐标为(0,5)或(0,-2)当P 点在x 轴上时,设P 点坐标为(x ,0),则1213322x ⋅+⋅=.解得10x =-或4x =.∴此时点P 的坐标为(-10,0)或(4,0).综上所述,满足条件的点P 的坐标为(0,5)或(0,-2)或(-10,0)或(4,0).【点睛】本题主要考查了坐标系与几何相结合的综合应用,解题的关键在于能够找到几个三角形面积之间的关系.。

人教版数学七年级下学期《期中测试题》有答案

人教版数学七年级下学期《期中测试题》有答案

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题1.1x =是下列哪个方程的解( )A. 241x -=B. 122x =C. 325x +=D. 4263x x -=- 2.在数轴上表示不等式x -1<0解集,正确的是()A. B. C. D. 3.已知关于x 的方程2x a 50--=的解是x 2=-,则a 的值为A. 1B.C. 9D. 9-4.已知关于x 的不等式(a ﹣2)x >1的解集为x <12a -,则a 的取值范围( ) A. a >2 B. a ≥2 C. a <2 D. a ≤25.长为300米的春游队伍,以2米/秒的速度向东行进.在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为4米/秒.则往返共用的时间为( )A. 200sB. 205sC. 210sD. 215s 6.已知x >y ,m ≠0,则下列说法中,正确的是( )A. m +x >m +yB. m ﹣x >m ﹣yC. mx >myD. m 2x ≥m 2y 7.若关于方程0a x -=有两个解,0b x -=只有一个解,0c x -=无解,则、、的关系是( ).A. a b c <<B. a c b <<C. b c a <<D. c b a << 8.若A =3x 2+5x +2,B =4x 2+5x +2,则A 与B 的大小关系是( )A. A >BB. A <BC. A ≥BD. A ≤B 9.我们知道方程组23193426x y x y +=⎧⎨+=⎩的解是25x y =⎧⎨=⎩.现给出另一个方程组2(25)3(3)193(25)4(3)26x y x y +++=⎧⎨+++=⎩它的解是( ) A 1.52x y =-⎧⎨=⎩B. 1.52x y =⎧⎨=-⎩C. 1.52x y =-⎧⎨=-⎩D. 1.52x y =⎧⎨=⎩ 10.若不等式组7331x x x m+>-⎧⎨-<⎩的解集为x <5,则m 的取值范围为( )A. m <4B. m≤4C. m≥4D. m >4 11.若方程组34526x y k x y k -=-⎧⎨+=⎩的解中2019x y +=,则等于( ) A. 2018 B. 2019 C. 2020 D. 202112.小杨在商店购买了a 件甲种商品,b 件乙种商品,共用213元,已知甲种商品每件5元,乙种商品每件19元,那么a +b 的最大值是( )A. 37B. 27C. 23D. 20二.填空题13.将方程2x ﹣3y =5变形为用x 的代数式表示y 的形式是_____.14.不等式1123x x --<的非负整数解是_____. 15.三元一次方程组598x y y z z x +=⎧⎪+=⎨⎪+=⎩的解是______ .16.解关于x ,y 方程组()()()1328511m x n y n x my ⎧+-+=⎪⎨-+=⎪⎩①②可以用①×2+②,消去未知数x ;也可以用①+②×5消去未知数y .则m =_____,n =_____.17.不等式组﹣1≤345x +<2的所有整数解的和是_____. 18.按下面程序计算,若开始输入的值为正数,最后输出的结果为656,则满足条件所有的值是___.19.已知235345x y x y z x +++==,则x :y :z =_____. 20.若关于x 的不等式组01321x m x ->⎧⎨-≥⎩的所有整数解的和是15,则m 的取值范围是_____. 21.已知a ,b 为定值,关于x 的方程2136kx a x bk ++=-,无论k 为何值,它的解总是1,则a +b =__. 22.如图,将一个正方形分割成11个大小不同的正方形,记图中最大正方形的周长是1C ,最小正方形的周长是2C ,则12C C =_____.三.解答题23.解方程:123134x x-+=-.24.解不等式组,并把解集在数轴上表示出来,()() 533121132x xx x⎧+>+⎪⎨++->⎪⎩.25.已知方程组5457ax yx y+=⎧⎨+=⎩与方程组3151x yx by-=⎧⎨+=⎩的解相同,求a、b的值.26.某幼儿园把一筐桔子分给若干个小朋友,若每人3只,那么还剩59只,若每人5只,那么最后一个小朋友分到桔子,但不足4只,试求这筐桔子共有多少只?27.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?28.学校篮球比赛,初一(1)班和初一(2)班到自选超市去买某种品牌的纯净水,自选超市对某种品牌的纯净水按以下方式销售:购买不超过30瓶,按零售价每瓶3元计算;购买超过30瓶但不超过50瓶,享受零售价的八折优惠;购买超过50瓶,享受零售价的六折优惠,一班一次性购买了纯净水70瓶,二班分两天共购买了纯净水70瓶(第一天购买数量多于第二天)两班共付出了309元.(1)一班比二班少付多少元?(2)二班第一天、第二天分别购买了纯净水多少瓶?29.已知关于x,y的方程满足方程组321 21x y mx y m+=+⎧⎨+=-⎩.(1)若x﹣y=2,求m的值;(2)若x,y,m均为非负数,求m的取值范围,并化简式子|m﹣3|+|m﹣4|;(3)在(2)的条件下求s=2x﹣3y+m的最小值及最大值.30.宜宾某商店决定购进A.B两种纪念品.购进A种纪念品7件,B种纪念品2件和购进A种纪念品5件,B 种纪念品6件均需80元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品资金不少于750元,但不超过764元,那么该商店共有几种进货方案?(3)已知商家出售一件A种纪念品可获利a元,出售一件B种纪念品可获利(5﹣a)元,试问在(2)的条件下,商家采用哪种方案可获利最多?(商家出售的纪念品均不低于成本价)答案与解析一.选择题1.1x =是下列哪个方程的解( )A. 241x -=B. 122x =C. 325x +=D. 4263x x -=- [答案]C[解析][分析]将1x =代入各选项,能令方程两边相等的即为正确答案.[详解]解:当1x =,A. 24121-⨯=-≠,故错误;B. 111222⨯=≠,故错误;C. 3125⨯+=,故正确;D. 41226133⨯-=≠⨯-=,故错误.故选:C.[点睛]本题考查方程的解,理解掌握方程的解的定义是关键.2.在数轴上表示不等式x -1<0的解集,正确的是()A. B. C.D.[答案]B[解析][详解]解:x -1<0的解集为x <1,它在数轴上表示正确的是B .故选B .3.已知关于x 的方程2x a 50--=的解是x 2=-,则a 的值为A. 1B.C. 9D. 9- [答案]D[解析]试题分析:将x 2=-代入方程得4a 50---=,解得:a 9=-.故选D .4.已知关于x 的不等式(a ﹣2)x >1的解集为x <12a -,则a 的取值范围( )A. a >2B. a ≥2C. a <2D. a ≤2 [答案]C[解析]分析]根据题意所求出的不等式·的解集,分式要有意义,分母不能为0[详解]∵不等式(a﹣2)x>1的解集为x<12a,∴a﹣2<0,∴a的取值范围为:a<2.故选C.[点睛]此题考查分式有无意义的条件,难度不大5.长为300米的春游队伍,以2米/秒的速度向东行进.在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为4米/秒.则往返共用的时间为()A. 200sB. 205sC. 210sD. 215s[答案]A[解析][分析]利用当甲从排尾到排头和通讯员再从排头返回排尾这两类,分别建立一元一次方程计算得结论.[详解]解:设甲从排尾到排头用了x(s),再从排头到排尾用了y(s).∵队伍长300米,以2m/s的速度前进,而通讯员以4m/s的速度前进,∴当甲从排尾到排头时,4x=300+2x,解得x=150(s).当甲再从排头返回排尾时,4y=300−2y,解得y=50(s).因此甲往返共用的时间为200s.故选A.[点睛]本题考查了一元一次方程的应用和分类讨论思想.6.已知x>y,m≠0,则下列说法中,正确的是( )A. m+x>m+yB. m﹣x>m﹣yC. mx>myD. m2x≥m2y[答案]A[解析][分析]根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变进行解答即可.[详解]解:A、∵x>y,∴m+x>m+y,故A正确;B、∵x>y,∴m﹣x<m﹣y,故B错误;C、∵x>y,当m>0,则mx>my,故C错误;D、∵x>y,m≠0,∴m2x>m2y,故D错误;[点睛]本题考查了不等式的基本性质,(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变,(2)不等式两边乘(或除以)同一个正数,不等号的方向不变,(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.7.若关于的方程0a x -=有两个解,0b x -=只有一个解,0c x -=无解,则、、的关系是( ).A. a b c <<B. a c b <<C. b c a <<D. c b a <<[答案]D[解析][分析]比较a 、b 、c 的大小,只有从给出已知条件中,算出其值,比较它们的大小,就会迎刃而解了.[详解]∵0a x -=有两个解,∴a >0; ∵0b x -=只有一个解,∴b=0; ∵0c x -=无解,∴c <0;从而可知,c b a <<.故选D.[点睛]本题主要考查的是含有绝对值符号的一元一次方程的拓展计算题,要充分利用已知条件.难易适中. 8.若A =3x 2+5x +2,B =4x 2+5x +2,则A 与B 的大小关系是( )A. A >BB. A <BC. A ≥BD. A ≤B [答案]D[解析][分析]将A 与B 代入A-B 中,根据差的正负即可对于A 与B 大小做出判断.[详解]解:∵A =3x 2+5x +2,B =4x 2+5x +2,∴A-B=3x 2+5x +2-(4x 2+5x +2)=-3x 2+5x +2-4x 2-5x -2=- x 2≤0,故选:D .[点睛]本题考查了整式的加减,熟练掌握运算法则是解本题的关键.9.我们知道方程组23193426x y x y +=⎧⎨+=⎩的解是25x y =⎧⎨=⎩.现给出另一个方程组2(25)3(3)193(25)4(3)26x y x y +++=⎧⎨+++=⎩它的解是( )A 1.52x y =-⎧⎨=⎩ B. 1.52x y =⎧⎨=-⎩ C. 1.52x y =-⎧⎨=-⎩ D. 1.52x y =⎧⎨=⎩ [答案]A[解析][分析]仿照已知方程组的解确定出所求方程组的解即可.[详解]∵方程组23193426x y x y +=⎧⎨+=⎩的解是25x y =⎧⎨=⎩∴2(25)3(3)193(25)4(3)26x y x y +++=⎧⎨+++=⎩的解为25235x y +=⎧⎨+=⎩∴ 1.52x y =-⎧⎨=⎩故选:A[点睛]本题是仿照已知方程组的解,求复杂方程组的解,不需要解方程,只需将25x +和3y 看成整体,即可简便求解.10.若不等式组7331x x x m +>-⎧⎨-<⎩的解集为x <5,则m 的取值范围为( ) A. m <4B. m≤4C. m≥4D. m >4 [答案]C[解析][分析]先求出每个不等式的解集,根据已知得出关于m 的不等式,求出不等式的解集即可.[详解]解:7331x x x m +>-⎧⎨-<⎩①②∵解不等式①得:x<5,解不等式②得:x<m+1,又∵不等式组7331x xx m+>-⎧⎨-<⎩的解集为x<5,∴m+1≥5,解得:m≥4,故选:C.[点睛]本题考查了解一元一次不等式组和解一元一次不等式,能得出关于m的不等式是解此题的关键.11.若方程组34526x y kx y k-=-⎧⎨+=⎩的解中2019x y+=,则等于( )A. 2018B. 2019C. 2020D. 2021[答案]C[解析][分析]将方程组的两个方程相加,可得x+y=k−1,再根据x+y=2019,即可得到k−1=2019,进而求出k的值.[详解]解:34526x y kx y k-=-⎧⎨+=⎩①②,①+②得,5x+5y=5k−5,即:x+y=k−1,∵x+y=2019,∴k−1=2019,∴k=2020,故选:C.[点睛]本题考查二元一次方程组的解法,整体代入是求值的常用方法.12.小杨在商店购买了a件甲种商品,b件乙种商品,共用213元,已知甲种商品每件5元,乙种商品每件19元,那么a+b的最大值是( )A. 37B. 27C. 23D. 20[答案]A[解析][分析]根据题意得出关于a和b的二元一次方程,然后用b表示出a,继而用b表示出a+b,然后可以利用函数的思想得出a+b取得最值的条件,即能得出答案.[详解]解:由题意得,5a+19b=213,∴213195ba-=,∴213192131455b ba b b--+=+=,∵a+b是关于b的一次函数且a+b随b的增大而减小,∴当b最小时,a+b取最大值,又∵a,b是正整数,∴当b=2时,a+b的最大值=37.故选:A.[点睛]本题考查二元一次不定方程的应用,技巧性较强,解答本题的关键是函数思想的应用,同学们要注意掌握这种解题思想,它会在以后的解题中经常用到.二.填空题13.将方程2x﹣3y=5变形为用x的代数式表示y的形式是_____.[答案]y=25 3 x-[解析][分析]要把方程2x-3y=5变形为用x的代数式表示y的形式,需要把含有y的项移到等号一边,其他的项移到另一边,然后合并同类项、系数化1就可用含x的式子表示y的形式:y=25 3x-.[详解]解:移项得:-3y=5-2x系数化1得y=253x-.:y=253x-.故答案为y=25 3x-.[点睛]本题考查方程的基本运算技能:移项、合并同类项、系数化为1等.14.不等式1123x x--<的非负整数解是_____.[答案]0、1、2、3[解析][分析]先去分母,再去括号,移项,合并同类项,求出x的取值范围,然后即可得出答案. [详解]解:原不等式可化为, 3x-2(x-1)<6,去括号得,3x-2x+2<6,移项得, x<6-2,合并同类项得:x<4,所以该不等式组的非负整数解为:x=0、1、2、3.[点睛]本题考查了一元一次不等式的整数解,属于基础题,掌握解不等式的方法,求出不等式的解集是解答本题的关键.15.三元一次方程组598x yy zz x+=⎧⎪+=⎨⎪+=⎩的解是______.[答案]x2 y3 z6=⎧⎪=⎨⎪=⎩[解析]分析:将方程组三个方程相加求出x+y+z的值,进而将每一个方程代入即可求出x,y,z的值.详解:598x yy zz x+=⎧⎪+=⎨⎪+=⎩①②③,①+②+③得:2(x+y+z)=22,即x+y+z=11④, 将①代入④得:z=6,将②代入④得:x=2,将③代入④得:y=3,则方程组的解为236xyz=⎧⎪=⎨⎪=⎩.故答案为236 xyz=⎧⎪=⎨⎪=⎩.点睛:本题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.16.解关于x,y方程组()()()1328511m x n yn x my⎧+-+=⎪⎨-+=⎪⎩①②可以用①×2+②,消去未知数x;也可以用①+②×5消去未知数y.则m=_____,n=_____.[答案](1). ﹣23 (2). ﹣39 [解析][分析]根据已知得出关于m、n的方程组,求出方程组的解即可.[详解]解:∵解关于x,y方程组()()()1328511m x n yn x my⎧+-+=⎪⎨-+=⎪⎩①②可以用①×2+②,消去未知数x;也可以用①+②×5消去未知数y,∴()()()21503250m nn m⎧++-⎪⎨-++⎪⎩==,即27 532m nm n--⎧⎨-⎩==,解得:m=-23,n=-39,故答案为:-23,-39.[点睛]本题考查了解二元一次方程组,能得出关于m、n的方程组是解此题的关键.17.不等式组﹣1≤345x+<2的所有整数解的和是_____.[答案]﹣5.[解析][分析]先解不等式组得到它的解集是-3≤x<2,再找出此范围内的整数,然后求这些整数的和即可.[详解]解:-5≤3x+4<10,-9≤3x<6,所以-3≤x<2,所以不等式组的整数解为-3,-2,-1,0,1,它们的和为-5.故答案为-5.[点睛]本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.18.按下面程序计算,若开始输入值为正数,最后输出的结果为656,则满足条件所有的值是___.[答案]131或26或5或45.[解析][分析]利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.[详解]用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是45,∴满足条件所有x的值是131或26或5或45.故答案为131或26或5或45.[点睛]此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.19.已知235345x y x y z x+++==,则x:y:z=_____.[答案]1:1:0.[解析][分析]设x+2y=3a,则x+3y=4a,z+5x=5a,求出y=a, x=a,z=0,即可得到x:y:z=a:a:0=1:1:0. [详解]设x+2y=3a,则x+3y=4a,z+5x=5a,∵x+2y=3a,x+3y=4a,∴组成方程组2334x y a x y a+=⎧⎨+=⎩,解得x ay a=⎧⎨=⎩,将x=a代入z+5x=5a中得z=0, ∴x:y:z=a:a:0=1:1:0,故答案为:1:1:0.[点睛]此题考查二元一次方程组的解法,设未知数分别表示方程中的字母的值是解题的关键,由此在进行比值时即可将所设未知数消去求出答案.20.若关于x 的不等式组01321x m x ->⎧⎨-≥⎩的所有整数解的和是15,则m 的取值范围是_____. [答案]3≤m <4或﹣4≤m <﹣3[解析][分析]解不等式组得出解集,根据整数解的和为15,可以确定整数解必含6,5,4这三个数,再根据解集确定m 的取值范围.[详解]解:解不等式组01321x m x ->⎧⎨-≥⎩,得:m <x≤6, ∵所有整数解的和是15,15=6+5+4∴不等式组的整数解为①6,5,4,或②6,5,4,3,2,1,0,-1,-2,-3∴3≤m <4或-4≤m <-3;故答案为: 3≤m <4或﹣4≤m <﹣3[点睛]考查一元一次不等式组的解集、整数解,根据整数解和解集确定待定字母的取值范围,在确定的过程中,不等号的选择应认真细心,切实选择正确.21.已知a ,b 为定值,关于x 方程2136kx a x bk ++=-,无论k 为何值,它的解总是1,则a +b =__. [答案]0.[解析][分析]先把方程化简,然后把x=1代入化简后的方程,因为无论k 为何值时,它的根总是1,就可求出a 、b 的值.[详解]解:2136kx a x bk ++=- ()()262kx a x bk +=-+其中x=1,()242b k a +=-无论k 为何值对方程无影响,所以20,2b b +==-所以420,2a a -==所以0a b +=[点睛]本题考查了一元一次方程的解,化解方程得出关系式是解题的关键.22.如图,将一个正方形分割成11个大小不同的正方形,记图中最大正方形的周长是1C ,最小正方形的周长是2C ,则12C C =_____.[答案]432[解析][分析]如图(见解析),设,AB x BC y ==,根据正方形的定义可得最小正方形的边长为1411x y -,而且x 和y 满足等式:8101411y x x y -=-,再根据正方形的周长公式12,C C 即可得.[详解]如图,设,AB x BC y ==,最大正方形标记为0号,被分割成的11个正方形标记为1-11号,其中最小正方形标记为11号,各个正方形的边长求解过程如下:0号:1号+2号得x y +5号:1号-2号得y x -3号:2号-5号得()2x y x x y --=-4号:0号-2号-3号得(2)22x y x x y y x +---=-7号:3号-4号得2(22)43x y y x x y ---=-6号:4号-7号得22(43)56y x x y y x ---=-10号:0号-1号得9号:0号-4号-6号-10号得(22)(56)86x y y x y x x x y +-----=-8号:10号-9号得(86)67x x y y x --=-11号:6号-7号得56(43)810y x x y y x ---=-或9号-6号得86(56)1411x y y x x y ---=-因此x 和y 满足等式:8101411y x x y -=-整理得:1924x y =所以最大正方形(0号)的周长143 4()6C x y y=+=最小正方形(11号)的周长21 4(1411)3C x y y=-=则1243 2CC=.[点睛]本题考查了用代数式表示几何图形的周长,设定未知数,利用正方形的性质将最大正方形的周长和最小正方形的周长求出是解题关键.三.解答题23.解方程:123134x x-+=-.[答案]x=1 5[解析][分析]方程去分母,去括号,移项合并,将x系数化为1,即可求出解.[详解]去分母,得4(1﹣2x)=12﹣3(x+3).去括号,得4﹣8x=12﹣3x﹣9.移项、合并同类项,得﹣5x=﹣1.系数化为1,得x=15.[点睛]此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.24.解不等式组,并把解集在数轴上表示出来,()() 533121132x xx x⎧+>+⎪⎨++->⎪⎩.[答案]﹣6<x<﹣5,数轴表示见解析根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.[详解]()() 5331211?32x xx x⎧+>+⎪⎨++->⎪⎩①②,由①得:x>﹣6;由②得:x<﹣5,∴不等式组的解集为﹣6<x<﹣5,表示在数轴上,如图所示:[点睛]本题主要考查对解一元一次不等式,解一元一次不等式组,不等式的性质,在数轴上表示不等式的解集等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集并把不等式组的解集在数轴上表示出来是解此题的关键.25.已知方程组5457ax yx y+=⎧⎨+=⎩与方程组3151x yx by-=⎧⎨+=⎩的解相同,求a、b的值.[答案]a=﹣6,b=﹣2[解析][分析]联立不含a与b的方程组成方程组,求出方程组的解得到x与y的值,代入剩下的方程求出a与b的值即可.[详解]联立得:5731x yx y+=⎧⎨-=⎩①②,①+②得:8x=8,即x=1, 把x=1代入②得:y=2,把x=1,y=2代入得:104 521ab+=⎧⎨+=⎩,解得:a=﹣6,b=﹣2.[点睛]此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.26.某幼儿园把一筐桔子分给若干个小朋友,若每人3只,那么还剩59只,若每人5只,那么最后一个小朋友分到桔子,但不足4只,试求这筐桔子共有多少只?[答案]这筐桔子共有152个“不足4只”意思是最后一个小朋友分得的桔子数在0和4之间,把相关数值代入计算即可.[详解]设幼儿园共有x名小朋友,则桔子的个数为(3x+59)个,由“最后一个小朋友分到桔子,但不足4个”可得不等式组0<(3x+59)﹣5(x﹣1)<4,解得30<x<32,∴x=31,∴有桔子3x+59=3×31+59=152(个).答:这筐桔子共有152个.[点睛]考查一元一次不等式组的应用,得到最后一个小朋友分得的桔子数的关系式是解决本题的关键.27.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?[答案]25人加工大齿轮,60人加工小齿轮[解析][分析]设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,根据加工大齿轮人数+加工小齿轮人数=85和加工的大齿轮总数:加工的小齿轮总数=2:3列出方程组求解即可.[详解]解:设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,根据题意得:8516:102:3 x yx y+=⎧⎨=⎩,解得:2560 xy=⎧⎨=⎩.答:需安排25名工人加工大齿轮,安排60名工人加工小齿轮.[点睛]本题考查了二元一次方程组的实际应用—产品配套问题,关键是能根据2个大齿轮和3个小齿轮配成一套找出相等关系,据此正确列出方程.28.学校篮球比赛,初一(1)班和初一(2)班到自选超市去买某种品牌的纯净水,自选超市对某种品牌的纯净水按以下方式销售:购买不超过30瓶,按零售价每瓶3元计算;购买超过30瓶但不超过50瓶,享受零售价的八折优惠;购买超过50瓶,享受零售价的六折优惠,一班一次性购买了纯净水70瓶,二班分两天共购买了纯净水70瓶(第一天购买数量多于第二天)两班共付出了309元.(1)一班比二班少付多少元?(2)二班第一天、第二天分别购买了纯净水多少瓶?[答案](1)57元;(2)第一天买了45瓶,第二天买了25瓶[解析][分析](1)由题意知道一班享受六折优惠,根据总价=单价×数量,可以求出一班的花费,由两个班的总花费,则可以求出二班的花费,两者相减即可得出结论.(2)先设第一天购买了x瓶,则得出第二天购买(70-x)瓶,由第一天多于第二天,有三种可能:①两天均是超过30瓶但不超过50瓶,享受八折优惠;②第一天超过50瓶,享受六折优惠,第二天不超过30瓶,不享受优惠;③第一天超过30瓶但不超过50瓶,享受八折优惠,第二天不超过30瓶,不享受优惠.根据三种情况,总价=单价×数量,列出方程求解即可.[详解]解:(1)∵一班一次性购买了纯净水70瓶,∴享受六折优惠,即一班付出:70×3×60%=126元,∵两班共付出了309元,∴二班付出了:309-126=183元,∴一班比二班少付多:183-126=57元.答:一班比二班少付57元.(2)设第一天购买了x瓶,则得出第二天购买(70-x)瓶,①两天均是超过30瓶但不超过50瓶,享受八折优惠,列出方程得:[x+(70-x)]×3×80%=183元,此方程无解.②第一天超过50瓶,享受六折优惠,第二天不超过30瓶,不享受优惠,列出方程得:x×3×60%+(70-x)×3=183,求解得出x=22.5,不是整数,不符合题意,故舍去.③第一天超过30瓶但不超过50瓶,享受八折优惠,第二天不超过30瓶,不享受优惠,列出方程得:x×3×80%+(70-x)×3=183,解得:x=45,即70-45=25.答:第一天购买45瓶,第二天购买25瓶.[点睛]本题考查了一元一次方程的运用.要注意此题中的情况不止一种,分情况讨论.29.已知关于x,y的方程满足方程组321 21x y mx y m+=+⎧⎨+=-⎩.(1)若x﹣y=2,求m的值;(2)若x,y,m均为非负数,求m的取值范围,并化简式子|m﹣3|+|m﹣4|;(3)在(2)的条件下求s=2x﹣3y+m的最小值及最大值.[答案](1)m=5;(2)2m﹣7;(3)s的最小值为﹣3,最大值为9[解析][分析](1)把m看做已知数表示出方程组的解,得到x与y,代入x-y=2求出m的值即可;(2)根据x,y为非负数求出m的范围,判断出绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果;(3)把表示出的x与y代入s,利用一次函数性质求出最大值与最小值即可.[详解](1)321 21?x y mx y m+=+⎧⎨+=-⎩①②,①﹣②×2得:﹣x=﹣m+3,即x=m﹣3,把x=m﹣3代入②得:2m﹣6+y=m﹣1,即y=﹣m+5,把x=m﹣3,y=﹣m+5代入x﹣y=2中,得:m﹣3+m﹣5=2,即m=5;(2)由题意得:3050 mm-≥⎧⎨-+⎩,解得:3≤m≤5,当3≤m≤4时,m﹣3≥0,m﹣4≤0,则原式=m﹣3+4﹣m=1;当4<m≤5m﹣3≥0,m﹣4≥0,则原式=m﹣3+m﹣4=2m﹣7;(3)根据题意得:s=2m﹣6+3m﹣15+m=6m﹣21,∵3≤m≤5,∴当m=3时,s=﹣3;m=5时,s=9,则s的最小值为﹣3,最大值为9.[点睛]此题考查了二元一次方程组的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.30.宜宾某商店决定购进A.B两种纪念品.购进A种纪念品7件,B种纪念品2件和购进A种纪念品5件,B 种纪念品6件均需80元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于750元,但不超过764元,那么该商店共有几种进货方案?(3)已知商家出售一件A种纪念品可获利a元,出售一件B种纪念品可获利(5﹣a)元,试问在(2)的条件下,商家采用哪种方案可获利最多?(商家出售的纪念品均不低于成本价)[答案](1)A种纪念品每件需10元、B种纪念品每件需5元;(2)有三种方案;(3)当a=2.5时,三种方案获利相同;当0≤a<2.5时,方案一获利最多;当2.5<a≤5时,方案三获利最多[解析][分析](1)设购进A种纪念品每件需x元、B种纪念品每件需y元,根据题意得关于x和y的二元一次方程组,解得x 和y的值即可;(2)设购进A种纪念品t件,则购进B种纪念品(100﹣t)件,由题意得关于t的不等式,解得t的范围,再由t为正整数,可得t的值,从而方案数可得;(3)分别写出三种方案关于a的利润函数,根据一次函数的性质可得答案.[详解]解:(1)设购进A种纪念品每件需x元、B种纪念品每件需y元,根据题意得:7280 5680 x yx y+=⎧⎨+=⎩解得:105 xy=⎧⎨=⎩答:购进A种纪念品每件需10元、B种纪念品每件需5元;(2)设购进A种纪念品t件,则购进B种纪念品(100﹣t)件, 由题意得:750≤5t+500≤764解得264 505t∵t为正整数∴t=50,51,52∴有三种方案.第一种方案:购进A种纪念品50件,B种纪念品50件;第二种方案:购进A种纪念品51件,B种纪念品50件;第三种方案:购进A种纪念品52件,B种纪念品48件;(3)第一种方案商家可获利:w=50a+50(5﹣a)=250(元);第二种方案商家可获利:w=51a+49(5﹣a)=245+2a(元);第三种方案商家可获利:w=52a+48(5﹣a)=240+4a(元).当a=2.5时,三种方案获利相同;当0≤a<2.5时,方案一获利最多;当2.5<a≤5时,方案三获利最多.[点睛]本题考查了二元一次方程组、一元一次不等式及一次函数在实际问题中应用,理清题中的数量关系是解题的关键.。

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试卷一、单选题1.在平面直角坐标系中,点P(2,-9)所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限2.若一个数的算术平方根是8,则这个数的立方根是A.2±B.4±C.2D.43.在方格纸上画出的小旗图案如图所示,若用(﹣2,1)表示A点,(﹣2,5)表示B点,那么C点的位置可表示为A.(3,5)B.(5,3)C.(1,3)D.(1,2)4.在实数0.01 、1π、0.202020、13中,属于无理数的有()个.A.1个B.2个C.3个D.4个5.如图所示的车标,可以看作由平移得到的是A.B.C.D.6.如图,下列说法正确的是A.∠1和∠4是同位角B.∠1和∠4是内错角C.∠1和∠A是内错角D.∠3和∠4是同位角7.如图,OB⊥OD,OC⊥OA,∠BOC=32°,那么∠AOD等于A .148°B .132°C .128°D .90°8.下列计算正确的是()A 11-=-B 2(3)3-=-C 42=±D 31182-=-9.在平面直角坐标系中,点A (﹣3,5)向右平移4个单位,再向下平移2个单位后的点的坐标是()A .(﹣3,3)B .(﹣3,7)C .(1,3)D .(﹣7,3)10.下列命题:其中正确的命题有()个①相等的角是对顶角;②一个数的立方根等于它本身,这个数是1;③无理数包括正无理数、零和负无理数④同一平面,如果两条直线都与同一条直线垂直,那么这两条直线互相平行.A .1B .2C .3D .4二、填空题11.如图,从点P 向直线l 所画的4条线段中,线段__最短,理由是__.1237的相反数是_____,2﹣3|=_____.13.将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为_________________________________________________.14.已知点(82,1)P m m -+在y 轴上,则点P 的坐标为_________.15512-______12,3__________3(填“>”“=”或“<”)16.如图,a ∥b ,点M ,N 分别在直线a 、b 上,P 为两平行线间一点,则∠1+∠2+∠3=_____.17.请将下列题目的证明过程补充完整:如图,F 是BC 上一点,FG ⊥AC 于点G ,H 是AB 上一点,HE ⊥AC 于点E ,∠1=∠2,求证:DE ∥BC .证明:连接EF .∵FG ⊥AC ,HE ⊥AC ,∴∠FGC =∠HEC =90°.∴FG ∥().∴∠3=∠().又∵∠1=∠2,∴=∠2+∠4,即∠=∠EFC .∴DE ∥BC ().三、解答题:18.计算:(1)(-1)2438-5︱(2)()3311227(89-⨯--19.求下列各式中的x.(1)x 2﹣9=0(2)127(x -1)3=120.如图,在直角坐标系中,已知A (﹣1,4),B (﹣2,1),C (﹣4,1),将ABC 向右平移3个单位再向下平移2个单位得到111A B C △,点A 、B 、C 的对应点分别是点A 1、B 1、C 1.(1)画出111A B C △;(2)直接写出点A 1、B 1、C 1的坐标;(3)直接写出111A B C △的面积.21.将下列各数填入相应的集合中.23-,2π-,7.5,102-,0.1010010001,233-,2-,0,2.181181118...正数{}...;负分数{}...;正有理数集合{}...;无理数集合{}....22.请阅读下列材料:一般的,如果一个正数x 的平方等于a ,即x 2=a ,那么正数x 就叫做a 的算术平分根,记作x ==),如239=,3就叫做9的算术平方根.(1=________=________=________;(2)观察(1这三个数之间存在什么关系?________________________(3)由(2=________(0a ≥,0b ≥);(4)根据(3=________=________=________(写最终结果)23.(1)如果点P(x 2-4,y +1)是坐标原点,求代数式2x +y 的值.(2)已知某正数的两个平方根分别是a ﹣3和2a+15,b 的立方根是﹣2.求a+b+4的立方根.24.如图,直线AB ,CD 相交于点O ,OM ⊥AB .(1)∠AOC 的邻补角为(写出一个即可);(2)若∠1=∠2,判断ON 与CD 的位置关系,并说明理由;(3)若∠1=14∠BOC ,求∠MOD 的度数.25.如图,AF 的延长线与BC 的延长线交于点E ,AD//BE ,∠1=∠2=30°,∠3=∠4=80°.(1)求∠CAE 的度数;(2)求证:AB//DC .26.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A ,点C 分别在x 轴,y 轴上,点B 坐标为(4,6),点P 从点O 出发,以每秒2个单位长度的速度沿O→C→B 方向运动,到点B 停止.设点P 运动的时间为t (秒).(1)点A 的坐标为;(2)当t=1秒时,点P 的坐标;(3)当点P 在OC 上运动,请直接写出点P 的坐标(用含有t 的式子表示);(4)在移动过程中,当点P到y轴的距离为1个单位长度时,求t的值.参考答案1.D【分析】根据各象限内点的坐标特征解答.【详解】解:∵2>0,-9<0∴点P(2,-9)所在的象限是第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决本题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.D【解析】【分析】根据算术平方根的定义先求得这个数,再求这个数的立方根即可.【详解】8 ,∴这个数是64,.故选D【点睛】本题考查立方根的定义,掌握立方根的概念及求一个数的立方根的方法是本题的解题关键.一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根.平方根:如果一个数的平方等于a,那么这个数就叫a的平方根,其中属于非负数的平方根称之为算术平方根.立方根:如果一个数的立方等于a,那么这个数叫做a的立方根.3.C【解析】【分析】根据A点的坐标确定坐标系原点位置,然后画出坐标,进而可得答案.【详解】解:如图所示:C点的位置可表示为(1,3),故选:C.【点睛】此题主要考查了坐标确定点的位置,关键是正确确定坐标系原点位置.4.B【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数即可.【详解】解:在实数0.01 、1π、0.202020、13中,无理数有:1π共2个.故选:B .【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.5.B【解析】【分析】根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解.【详解】解:A 、不能经过平移得到的,故不符合题意;B 、可以经过平移得到的,故符合题意;C 、不能经过平移得到的,故不符合题意;D 、不能经过平移得到的,故不符合题意;故选B .【点睛】本题主要考查了图形的平移,解题的关键在于能够熟练掌握图形平移的概念.6.A【解析】【分析】根据同位角、内错角的定义,结合图形逐项判断即可.【详解】解:A 、∠1和∠4是同位角,故本选项正确;B 、∠1和∠4是同位角,故本选项错误;C 、∠1和∠A 不是内错角,故本选项错误;D 、∠3和∠4是同旁内角,故本选项错误;故选:A .【点睛】本题考查了同位角、内错角和同旁内角的定义,属于基本题型,熟知基本概念是解题关键.7.A【解析】【分析】由OB⊥OD,OC⊥OA可得∠AOC=∠BOD=90°,再结合∠BOC=32°可得∠AOB的度数,从而求得结果.【详解】解:∵OB⊥OD,OC⊥OA∴∠AOC=∠BOD=90°∵∠BOC=32°∴∠AOB=58°∴∠AOD=148°故选A.【点睛】本题属于基础应用题,只需学生熟练掌握角的和差关系,即可完成.8.D【解析】【分析】根据算术平方根、立方根的定义逐项判断即可得.【详解】A0,没有意义,此项错误;B3==,此项错误;C2=,此项错误;D1,此项正确;2-故选:D.【点睛】本题考查了算术平方根、立方根,熟练掌握算术平方根、立方根是解题关键.9.C【解析】【分析】根据平移的方法结合平移中点的坐标变换规律:横坐标右移加,左移减;纵坐标上移加,下移减,即可求出平移后点的坐标.【详解】解:将点A(﹣3,5)向右平移4个单位,再向下平移2个单位后的点的坐标是(1,3).故选:C.【点睛】本题主要考查了坐标与图形变化-平移,解题的关键是掌握平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10.A【解析】【分析】根据对顶角和立方根的定义、无理数的分类以及公理进行判断即可得到答案.【详解】解:①对顶角相等,但相等的角不一定是对顶角,所以该命题错误,故不符合题意;②0、1和-1的立方根都等于它本身,所以该命题错误,故不符合题意;③无理数包括正无理数和负无理数,0是有理数,所以该命题错误,故不符合题意;④同一平面,如果两条直线都与同一条直线垂直,那么这两条直线互相平行,所以该命题正确,故符合题意;∴正确的命题有1个.故选:A.【点睛】本题考查了命题与定理:命题写成“如果...,那么...”的形式,这时“如果”后面接的部分是题设,“那么”后面接的部分是结论.命题的“真假”是就命题的内容而言,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11.PB从直线外一点,到直线上各点所连的线段中,垂线段最短【解析】【分析】根据“从直线外一点,到直线上各点所连的线段中,垂线段最短”,进行判断即可.解:根据“垂线段最短”可知,PB最短,理由是从直线外一点,到直线上各点所连的线段中,垂线段最短,故答案为:PB,从直线外一点,到直线上各点所连的线段中,垂线段最短.【点睛】本题考查的是“直线外一点与直线上各点所连的线段中,垂线段最短”,掌握这个基本事实是解题的关键.12.33【解析】【分析】根据相反数和绝对值的性质求解即可.【详解】的相反数是33=故答案为:3.【点睛】本题主要考查了相反数和绝对值,熟知相反数和绝对值的定义是解题的关键.13.如果两条直线平行于同一条直线,那么这两条直线平行【解析】【分析】命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【详解】命题可以改写为:如果两条直线平行于同一条直线,那么这两条直线平行.故答案为:如果两条直线平行于同一条直线,那么这两条直线平行【点睛】任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别塞在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.14.(0,5)【分析】根据点在坐标轴上的坐标特点,先求出m ,再求坐标.【详解】解:由点()821P m m -+,在y 轴上,则82=0m -,解得=4m ,+1=4+1=5m ,则P 的坐标为(0,5).故答案为:(0,5).【点睛】本题考查点在坐标轴上的特点,其关键是掌握:在x 轴上的点,纵坐标为0;在y 轴上的点,横坐标为0.15.><【解析】【分析】2,再求出12-的范围,最后得出答案即可;由912<,<得到3<即可.【详解】解:∵5>4,1>1,>12,又∵912<<∴3<故答案为:>,<.本题考查了估算无理数的大小和实数的大小比较,能选择适当的方法比较两个实数的大小是解此题的关键.16.360°##360度【解析】【分析】过点P作PA∥a,可得PA∥b,从而得到∠3+∠MPA=180°,∠1+∠NPA=180°,即可求解.【详解】解:如图,过点P作PA∥a,∵a∥b,∴PA∥b,∴∠3+∠MPA=180°,∠1+∠NPA=180°,∴∠1+∠2+∠3=180°+180°=360°.故答案为:360°【点睛】本题主要考查了平行线的性质和判定,熟练掌握平行线的性质和判定定理是解题的关键.17.见解析【解析】【分析】要证明DE∥FC,可证明∠DEF=∠EFC,由于∠1=∠2,可证明∠3=∠4,需证明EH∥FG,可通过垂直的性质得到.【详解】证明:连接EF∵FG⊥AC,HE⊥AC,∴∠FGC=∠HEC=90°.∴FG∥HE(同位角相等,两直线平行).∴∠3=∠4(两直线平行,内错角相等).又∵∠1=∠2,∴∠1+∠3=∠2+∠4.即∠DEF =∠EFC∴DE ∥BC (内错角相等,两直线平行).故答案为:HE ,同位角相等,两直线平行;4,两直线平行,内错角相等;∠1+∠3;DEF ;内错角相等,两直线平行.【点睛】本题考查了平行线的性质和判定,掌握平行线的性质和判定并学会分析是解决本题的关键.18.(1)0(2)-2【解析】【分析】(1)先分别求出-1的平方、4的算术平方根、-8的立方根和-5的绝对值,然后根据有理数的加减混合运算计算,即可求得结果;(2)先分别求出-2的立方、-27的立方根和19的算术平方根,然后根据根据有理数的四则混合运算顺序,先算乘法,后算减法,即可求得结果.(1)解:原式1225=++-0=;(2)解:原式()118383⎛⎫=-⨯--⨯- ⎪⎝⎭11=--2=-【点睛】本题主要考查了实数的混合运算,解题的关键是熟练掌握求一个数的平方、立方、算术平方根、立方根、绝对值等运算以及实数的混合运算顺序:同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减,有括号的先算括号里面的.19.(1)3x=±(2)x=4【解析】【分析】(1)把原方程整理成29x=,开平方即可求出x的值;(2))把x-1看成一个整体,把原方程整理成(x-1)3=27,开立方即可求得x-1=3,进一步计算可求出x的值.(1)解:x2﹣9=0,移项得:29x=,等式两边同时开平方得:3x=±;(2)解:127(x-1)3=1,等式两边同时乘以27得:(x-1)3=27,等式两边同时开立方得:x-1=3,∴x=4.【点睛】本题主要考查了利用平方根和立方根解方程,解题的关键是熟记平方根和立方根的定义:①一般地,如果一个数x的平方等于a,即x2=a,那么这个数x叫做a的平方根(也叫二次方根);一般地,如果一个数x的立方等于a,即x3=a,那么这个数x叫做a的立方根(也叫做三次方根).20.(1)见解析;(2)A1(2,2),B1(1,﹣1),C1(﹣1,﹣1);(3)3.【解析】【分析】(1)直接利用平移的性质得出对应点位置,画出图形即可;(2)利用(1)中图形,利用平移的性质得出对应点坐标;(3)利用三角形面积公式可得出答案.【详解】解:(1)如图所示:111A B C △,即为所求;(2)由平移的性质结合图形可得:A 1(2,2),B 1(1,﹣1),C 1(﹣1,﹣1);(3)111A B C △的面积为:12×2×3=3.【点睛】本题考查的是平移的性质,图形与坐标,三角形面积的计算,掌握以上知识是解题的关键.21.见解析【解析】【分析】分别利用正数、负分数、正有理数、无理数的定义分析即可求出答案.【详解】解:正数{}7.50.10100100012.181181118...,,;负分数22333⎧⎫--⎨⎬⎩⎭,;正有理数集合{}7.50.1010010001,;无理数集合 2.181181118...2π⎧⎫-⎨⎬⎩⎭,.【点睛】此题主要考查了实数的有关定义,正确区分相关定义是解题关键.22.(1)2,5,10;(2(3;(4)4,23,12【解析】【分析】(1)根据算术平方根的定义直接计算即可;(2)由(1(3)由(20,b0)= ;(4)由得出的计算公式进行计算即可得到各式的结果.【详解】(110===(2)观察(1(3)由(20,b0)=(4)根据(3)计算:4=,23===;.故答案为:2,5,10=4,23,12.【点睛】本题考查了算术平方根,开方运算是解题关键,注意一个正数有两个平方根,只有一个算术平方根.23.(1)3或-5;(2)-2【解析】【分析】(1)根据原点的横坐标、纵坐标为零,可得x、y的值,根据代数式求值,可得答案;(2)直接利用平方根、立方根的定义计算得出答案.【详解】(1)解:由题意,得x2-4=0,y+1=0,解得x=2或x=-2,y=-1.当x=2时,2x+y=2×2+(-1)=3,当x=-2时,2x+y=2×(-2)+(-1)=-5.∴2x+y=3或-5;(2)解:∵正数的两个平方根分别是a-3和2a+15,∴(a-3)+(2a+15)=0,解得:a=-4,∵b的立方根是-2,∴b=-8,∴a+b+4=-4+(-8)+4=-8,∴-8的立方根是-2,∴a+b+4的立方根是-2.【点睛】此题主要考查了直角坐标系上点的坐标特征及立方根和平方根,正确掌握相关定义是解题关键.24.(1)∠BOC,∠AOD;(2)ON⊥CD.证明见解析;(3)150°.【解析】【分析】(1)利用直线CD或直线AB直接写∠AOC的邻补角,(2)根据垂直定义可得∠AOM=90°,进而可得∠1+∠AOC=90°,再利用等量代换可得到∠2+∠AOC=90°,从而可得答案;(3)根据垂直定义和条件可得∠1=30°,再根据邻补角定义可得∠MOD的度数.【详解】解:(1)∠AOC+∠BOC=180°,故答案为:∠BOC.(答案不唯一)(2)结论:ON⊥CD.证明:∵OM⊥AB,∴∠1+∠AOC=90°.又∵∠1=∠2,∴∠NOC=∠2+∠AOC=90°,∴ON⊥CD.(3)∵∠1=14∠BOC,∴∠BOC=4∠1.∵∠BOC-∠1=∠MOB=90°,∴∠1=30°,∴∠MOD=180°-∠1=150°.【点睛】本题考查的是邻补角的定义及性质,角的和差计算,垂线的定义及性质,掌握以上知识是解题关键.25.(1)∠CAE=50°;(2)见解析.【解析】【分析】(1)根据平行线的性质定理即可得到结论;(2)根据平行线判定定理即可得到结论.【详解】解:(1)∵AD//BE,∴∠CAD=∠3,∵∠2+∠CAE=∠CAD,∠3=80°,∴∠2+∠CAE=80°,∵∠2=30°,∴∠CAE=50°;(2)证明:∵∠2+∠CAE=∠CAD=∠3,∠1=∠2,∠3=∠4,∴∠1+∠CAE=∠4,即∠BAE=∠4,∴AB//DC.【点睛】本题考查了平行线的判定和性质定理,熟练掌握平行线的判定和性质定理是解题的关键.26.(1)(4,0);(2)(0,2);(3)(0,2t);(4)t=3.5.【解析】【分析】(1)利用长方形的性质及B 的坐标与A 的位置可得答案,(2)利用1t =求解OP ,结合P 的位置直接得到答案,(3)当点P 在OC 上运动,根据OP 的长度,结合P 的位置直接得到答案,(4)当点P 到y 轴的距离为1个单位长度时,此时P 在CB 上,由运动路程求解t 即可.【详解】解:(1) 长方形OABC ,B 坐标为(4,6),(4,0),A ∴故答案为:(4,0).(2)当1t =时,122,OP =⨯=此时P 在y 轴上,(0,2)P ∴,故答案为:(0,2);(3)当点P 在OC 上运动,22,OP t t ∴=⨯=(0,2)P t ∴(4)当点P 到y 轴的距离为1个单位长度时,此时P 在CB 上,P ∴的运动路程1617,OC CP AB =+=+=+=27,t ∴=3.5.t ∴=【点睛】本题考查了坐标与图形的性质,利用了矩形的性质,路程、时间、速度的关系,利用两点间的距离得出方程是解题关键.。

人教版七年级下册数学期中测试卷【含答案】

人教版七年级下册数学期中测试卷【含答案】

人教版七年级下册数学期中测试卷【含答案】专业课原理概述部分一、选择题1. 下列哪一个数是负数?()A. -5B. 0C. 3D. 82. 如果 a > b,那么下列哪一个表达式是正确的?()A. a b > 0B. a + b > 0C. a b > 0D. a / b > 03. 下列哪一个数是偶数?()A. 21B. 34C. 47D. 504. 下列哪一个数是质数?()A. 12B. 17C. 20D. 275. 下列哪一个数是无理数?()A. √9B. √16C. √25D. √2二、判断题1. 整数包括正整数、负整数和零。

()2. 两个负数相乘的结果是正数。

()3. 两个奇数相加的结果是偶数。

()4. 两个偶数相乘的结果是偶数。

()5. 两个质数相加的结果一定是质数。

()三、填空题1. 最大的负整数是______。

2. 两个质数相乘的结果至少有______个因数。

3. 如果 a 是正数,那么 -a 是______。

4. 两个奇数相乘的结果是______。

5. 两个负数相除的结果是______。

四、简答题1. 请解释什么是质数。

2. 请解释什么是无理数。

3. 请解释什么是因数。

4. 请解释什么是偶数。

5. 请解释什么是负数。

五、应用题1. 计算下列各题的值:a. 3 + (-5)b. -2 4c. 15 / (-3)d. (-8) ^ 2e. √(-9)2. 判断下列各题的正误,并解释原因:a. 两个负数相加的结果是正数。

b. 两个偶数相乘的结果是奇数。

c. 两个质数相加的结果一定是质数。

d. 两个无理数相乘的结果是有理数。

e. 两个负数相除的结果是正数。

六、分析题1. 请分析并解释为什么两个质数相乘的结果至少有4个因数。

2. 请分析并解释为什么负数的平方是正数。

七、实践操作题1. 请用纸和剪刀剪出一个正方形,并计算其面积。

2. 请用计算器计算下列各题的值,并解释计算过程:a. 7 + (-9)b. -3 6c. 20 / (-5)d. (-4) ^ 3e. √36八、专业设计题1. 设计一个面积为24平方米的长方形花园,并计算其周长。

2024年 人教版七年级下册数学期中测试(含评分标准)

2024年 人教版七年级下册数学期中测试(含评分标准)

2023—2024学年度下学期期中测试七年级数学试卷命题学校: 考试时间:120分钟 总分:120分 一、选择题(本大题共12小题,每小题3分,共36分)1.某同学读了《庄子》中的“子非鱼,安知鱼之乐”后,兴高采烈地利用电脑画出了几幅鲸鱼的图案,由图中所示的图案通过平移后得到的图案是( )2.如图,直线a,b 相交于点O,如果∠1+∠2=60°,那么∠3=( )A.150°B.120°C.60°D.30°3.已知点(1,4)A m m −+在y 轴上,则m 的值为( ) A .4−B .1−C .1D .44.下列各式中,正确的是( ) A .255=±B .164±=C .311=±D .2(5)5−=5.一把直尺和一个含30︒,60︒角的三角板如图所示摆放,直尺一边与三角板的两直角边分别交于F ,A 两点,另一边与三角板的两直角边分别交于D ,E 两点,且50CED ∠=︒,那么BAF ∠的大小为( )A .10︒B .20︒C .30︒D .40︒6.把点(,2)A m m +先向左平移2个单位长度,在向上平移3个单位长度得到点B ,点B 正好落在x 轴上,则点B 的坐标为( ) A .(5,0)−B .(7,0)−C .(4,0)D .(3,0)7.若4m +与2m −是同一个正数的两个平方根,则m 的值为( )A .3B .3−C .1D .1−8.下列命题为真命题的是( ) A .同旁内角互补 B .若22a b =,则a b =C .在同一平面内,垂直同一条直线的两条直线互相平行D .如果一个整数能被3整除,那么这个数也能被6整除9.如图所示,点E 在BA 的延长线上,点F 在BC 的延长线上,则下列条件中能判定AB ∥CD 的是( )A .∠1=∠2B .∠DAE =∠BC .∠D +∠BCD =180°D .∠3=∠410.已知点(1,0)A ,(0,2)B ,点P 在x 轴上,且PAB ∆的面积为5,则点P 的坐标是( ) A .(4,0)− B .(6,0) C .(4,0)−或(6,0)D .(0,12)或(0,8)11.如图,直线l 1∥l 2,直线l 3与l 1,l 2分别交于A,B 两点,过点A 作AC ⊥l 2,垂足为C,若 ∠1=52°,则∠2的度数是( )A.32°B.38°C.48°D.52°12.如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点1(1,1)A ;把点1A 向上平移2个单位,再向左平移2个单位,得到点2(1,3)A −;把点2A 向下平移3个单位,再向左平移3个单位,得到点3(4,0)A −;把点3A 向下平移4个单位,再向右平移4个单位,得到点4(0,4)A −,⋯;按此做法进行下去,则点2023A 的坐标为( )A.(2024,0)−B .(2022,0)−C .(0,2024)−D .(0,2022)−二、填空题。

人教版七年级下册数学期中考试试题含答案

人教版七年级下册数学期中考试试题含答案

人教版七年级下册数学期中考试试卷一、单选题1.下列车标,可看作图案的某一部分经过平移所形成的是()A.B.C.D.2.下列说法中正确的是()A.36的平方根是6B.8的立方根是2CD.9的算术平方根是-3的平方根是23.如图,立定跳远比赛时,小明从点A起跳落在沙坑内P处.若AP=2.3米,则这次小明跳远成绩A.小于2.3米B.等于2.3米C.大于2.3米D.不能确定4.若点P在x轴上方,y轴的左侧,到每条坐标轴的距离都是6,则点P的坐标为() A.(6,6)B.(﹣6,6)C.(﹣6,﹣6)D.(6,﹣6) 5.如图,下列条件:①∠1=∠2;②∠3=∠4;③∠B=∠5;④∠1+∠ACE=180°其中,能判定AD∥BE的条件有()A.4个B.3个C.2个D.1个6.下列各组数中,两个数互为相反数的是()A .-2B .-2与12-C .-2D .|-2|与27.如图,已知AD ⊥BC 于D ,DE ∥AB ,若∠B=48°,则∠ADE 的度数为()A .32°B .42°C .48°D .52°8.在平面直角坐标系中,点A(1,2)平移后的坐标是A′(-3,3),按照同样的规律平移其他点,则符合这种要求的变换是()A .(3,2)→(4,-2)B .(-1,0)→(-5,-4)C .(2,5)→(-1,5)D .(1,5)→(-3,6)9.如图,在数轴上表示2C ,B ,点C 是AB 的中点,则点A 表示的数是()A .B .C .D二、填空题10.如图,将正整数按下图所示规律排列下去,若用有序数对(n ,m)表示n 排从左到右第m 个数.如(4,3)表示9,则(11,3)表示()A .56B .57C .58D .5911.9的算术平方根是.12.在平面直角坐标系中,点P(﹣1,2)向右平移3个单位长度再向上平移1个单位长度得到的点的坐标是_____.13.如图,直线l ∥m ,将含有45°角的三角形板ABC 的直角顶点C 放在直线m 上,若∠1=30°,则∠2=______.14.如图,//AB CD ,CF 交AB 于点E ,AEC ∠与C ∠互余,则CEB ∠是__________度.15.===,…,根据你发现=、b 为正整数)=_______.16.如图,将长方形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C′处,折痕为EF ,若∠AEB=70°,那么∠BFC′的度数为______度.三、解答题1718.求未知数:(1)9(x-3)2=64.(2)(2x-1)3=-8. 19.已知一个数的平方根是±(a+4),算术平方根为2a﹣1,求这个数.20.中国象棋中的马颇有骑士风度,自古有“马踏八方”之说,如图(1),按中国象棋中“马”的行棋规则,图中的马下一步有A、B、C、D、E、F、G、H八种不同选择,它的走法就象一步从“日”字形长方形的对角线的一个端点到另一个端点,不能多也不能少.要将图(2)中的马走到指定的位置P处,即从(四,6)走到(六,4),现提供一种走法:(四,6)→(六,5)→(四,4)→(五,2)→(六,4).(1)下面是提供的另一走法,请你填上其中所缺的一步:(四,6)→(五,8)→(七,7)→____→(六,4);(2)请你再给出另一种走法(只要与前面的两种走法不完全相同即可,步数限定4步以内),①画图:把“马”行走的路线端点,从出发点到目标点先后依次用线段连接;②仿照题(1)表述,写出你所画图①的走法是:_____________.21.已知:如图,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,请判断AB与EF的位置关系,并说明理由.解:,理由如下:∵AB∥CD,∴∠B=∠BCD,()∵∠B=70°,∴∠BCD=70°,()∵∠BCE=20°,∴∠ECD=50°,∵∠CEF=130°,∴+=180°,∴EF∥,()∴AB∥EF.()22.如图,∠1=80°,∠2=100°∠C=∠D.(1)判断AC与DF的位置关系,并说明理由;(2)若∠C比∠A大20°,求∠F的度数.23.如图,已知∠ABC.点D为∠ABC的内部一点,请你再画一个∠DEF,使DE∥AB,EF∥BC,且DE交BC边与点P(1)操作:画出满足题意的图形.(2)探究:根据所画图形猜想∠ABC与∠DEF有怎样的数量关系?并说明理由.24.阅读下面的文字,解答问题.的小数部分我们不可能完全地写出来,﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,的整数部分是1,用这个数减去其整数部分,差就是小数部分.请解答下列问题:(1)的整数部分和小数部分;(2)已知:,其中x是整数,且0<y<1,请你求出(x﹣y)的相反数.25.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.参考答案1.D【解析】【分析】根据平移的性质:不改变图形的形状和大小,不可旋转与翻转,依次判断即可.【详解】可看作图案的某一部分经过平移所形成的是D选项所示图形,故选D.【点睛】此题主要考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而导致错选.2.B【解析】【分析】根据立方根、平方根和算术平方根的定义判断即可.【详解】A、36的平方根是6±,错误;B、8的立方根是2,正确;C的平方根是D、9的算术平方根是3,错误,故选B.【点睛】本题考查了平方根与立方根,熟练掌握它们的定义以及求解方法是解题的关键. 3.A【解析】【分析】直接利用垂线段最短即可得出小明的跳远成绩.【详解】如图,过点P作PE⊥AC,垂足为E,∴PE<PA,∵PA=2.3米,∴这次小明跳远成绩小于2.3米,故选A.【点睛】本题考查了垂线段最短的性质,熟悉测量跳远成绩的方法是解题的关键.4.B【解析】【分析】根据点到直线的距离和各象限内点的坐标特征进行解答即可.【详解】解:∵点P在x轴上方,y轴的左侧,∴点P是第二象限内的点,∵点P到每条坐标轴的距离都是6,∴点P的坐标为(﹣6,6).故选B.【点睛】本题考查了各象限内的点的坐标特征及点的坐标的几何意义,熟练掌握平面直角坐标系中各个象限的点的坐标的符号特点是解此类题的关键.5.C【解析】【分析】根据平行线的判定方法逐一进行分析判断即可.【详解】①∠1=∠2,内错角相等,两直线平行,则能判定AD∥BE;②∠3=∠4,内错角相等,两直线平行,能判定AB∥CD,但不能判定AD//BE,故不符合题意;③∠B=∠5,同位角相等,两直线平行,则能判定AB∥CD,但不能判定AD//BE,故不符合题意;④∠1+∠ACE=180°,同旁内角互补,两直线平行,则能判定AD∥BE,所以满足条件的有2个,故选C.【点睛】本题考查了两直线平行的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行,并要分清给出的角所截的是哪两条直线.6.C【解析】【分析】根据立方根的定义、算术平方根的定义以及绝对值的性质结合相反数的定义逐一进行分析即可得答案.【详解】A,两数相等,不能互为相反数,故选项错误;B、-2与12-互为倒数,故选项错误;C=2与-2互为相反数,故选项正确;D、|-2|=2,两数相等,不能互为相反数,故选项错误,故选C.【点睛】本题考查了立方根、算术平方根、绝对值的化简、相反数等知识,熟练掌握相反数的定义是解本题的关键.7.B【解析】【分析】根据平行线的性质和两角互余解答即可.【详解】解:∵DE∥AB,∴∠EDC=∠B=48°,∵AD⊥BC,∴∠ADE=90°﹣48°=42°,故选B.【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质是解决问题的关键.8.D【解析】由点A(1,2)平移后的坐标是A′(-3,3),得出平移前后点的坐标变化规律为横坐标减去4,纵坐标加上1,再将各选项逐一检验即可.【详解】解:∵点A(1,2)平移后的坐标是A′(-3,3),∴平移前后点的坐标变化规律为横坐标减去4,纵坐标加上1,∴选项D符合要求.故选D.【点睛】本题考查了坐标与图形变化-平移,根据点P与P′的坐标,得出平移前后点的坐标变化规律是解题的关键.9.A【解析】【分析】先求出线段BC的长度,然后利用中点的性质即可解答.【详解】∵表示2的对应点分别为C,B,∴-2,∵点C是AB的中点,∴AC=BC=-2,∵OA=OC-AC,∴-2)=4-∴点A表示的数是故选A.本题考查了实数与数轴,线段的和差,准确识图,熟练掌握相关知识是解题的关键. 10.58【解析】【分析】从图中可以发观,第n排的最后的数为:12n(n+1),据此规律进行求解即可.【详解】从图中可以发观,第n排的最后的数为:12n(n+1),∵第10排最后的数为:12×10×(10+1)=55,∴(11,3)表示第11排第3个数,则第11排第3个数为55+3=58,故选C.【点睛】本题考查了规律型——数字的变化类,找到第n排的最后的数的表达式是解题的关键.11.3.【解析】【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】∵239 ,∴9算术平方根为3.故答案为3.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.12.(2,3).【解析】将点P的横坐标加3,纵坐标加1即可求解.【详解】点P(﹣1,2)向右平移3个单位长度再向上平移1个单位得到的点的坐标是(﹣1+3,2+1),即(2,3).故答案为(2,3).【点睛】本题考查了坐标与图形的变化,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.13.15°【解析】【分析】先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,即可求得∠4的度数,又由△ABC是含有45°角的三角板,即可求得∠3的度数,继而求得∠2的度数.【详解】如图,过点B作BD∥l.∵直线l∥m,∴BD∥l∥m,∴∠4=∠1=30°.∵∠ABC=45°,∴∠3=∠ABC﹣∠4=45°﹣30°=15°,∴∠2=∠3=15°.故答案为15°.【点睛】本题考查了平行线的性质.解题时注意辅助线的作法,注意掌握两直线平行,内错角相等定理的应用.14.135【解析】【分析】根据//AB CD 知AEC ∠=C AEC ∠∠,又与C ∠互余,故AEC ∠=C ∠=45°,再跟邻补角的性质即可求出CEB ∠的度数.【详解】∵//AB CD∴AEC ∠=C ,∠又AEC ∠与C ∠互余,∴AEC ∠=C ∠=45°,∴CEB ∠=180°-AEC ∠=135°.【点睛】此题主要考查平行线的性质,解题的关键是熟知余角与补角的定义.15.4【解析】【分析】从①②③三个式子中,我们可以发现计算出的等号后面的系数为等号前面的根号里的整数加分数的分子,根号里的还是原来的分数,据此求出a 、b 的值即可求得答案.【详解】===,…,∴用含n (1n =+,=∴a=8-1=7,b=a+2=9,=4,故答案为4.【点睛】本题考查了本题考查了规律型——数字的变化类,找到变化的规律是解题的关键.16.70°.【解析】【分析】由AD//BC可以求得∠EBF的度数,由折叠的性质知:∠EBC′、∠BC′F都是直角,继而可求得∠FBC′的度数,在Rt△BC′F中利用直角三角形两锐角互余即可求得答案.【详解】∵AD//BC,∴∠EBF=∠AEB=70°,由折叠的性质知,∠EBC′=∠D=90°,∠BC′F=∠C=90°,∴∠FBC′=∠EBC′-∠EBF=90°-70°=20°,在Rt△B C′F中,∠BC′F=90°,∴∠BFC′=90°-∠FBC′=70°,故答案为70.【点睛】本题考查了折叠的性质,涉及了平行线的性质,直角三角形两锐角互余的性质等知识,准确识图,熟练掌握和灵活运用相关知识是解题的关键.17.【解析】=-++=试题解析:原式331 1.故答案为1.18.(1)x=173,或x=13;(2)x=-12.【解析】【分析】(1)利用平方根的定义进行求解即可;(2)利用立方根的定义进行求解即可.【详解】(1)(x-3)2=649,则x-3=±83,即x=173或x=13;(2)(2x-1)3=-8,2x-1=-2,∴x=-12.【点睛】本题考查了利用平方根定义以及立方根定义解方程,熟练掌握相关定义是解题的关键.19.这个数是81.【解析】【分析】根据平方根与算术平方根的定义即可列出式子进行求解.【详解】∵一个数的平方根是±(a+4),算术平方根为2a ﹣1,∴a+4=2a ﹣1或-(a+4)=2a-1,解得:a=5或a=-1,由于2a ﹣1≥0,∴a=-1舍去.∴a=5∴这个数的平方根为±9,这个数是81.【点睛】此题主要考查平方根与算术平方根的定义,解题的关键是熟知平方根与算术平方根的联系. 20.(1)(五,6)或(八,5);(2)①画图见解析;(答案不唯一)②(四,6)(二,5)→(三,3)→(四,5)→(六,4)(答案不唯一).【解析】【分析】(1)根据点的坐标移动按照从“日”字形长方形的对角线的一个端点到另一个端点,观察图形即可得知从(七,7)到(六,4)中间所缺的一步;(2)①此题只需根据点的坐标移动按照从“日”字形长方形的对角线的一个端点到另一个端点,不能多也不能少”来确定行走路线即可(答案不唯一);②根据①的线路写出走法即可.【详解】(1)观察图形,结合“马”的行棋规则可得缺失的一步是(五,6)或(八,5),故答案为(五,6)或(八,5);(2)①如图所示(答案不唯一);(2)图示的走法为:(四,6)(二,5)→(三,3)→(四,5)→(六,4),故答案为(四,6)(二,5)→(三,3)→(四,5)→(六,4).【点睛】本题考查了坐标确定位置,体现了规律性,需要灵活求解.21.AB∥EF,两直线平行,内错角相等;等量代换,∠E,∠DCE,CD,同旁内角互补,两直线平行;平行于同一直线的两条直线互相平行.【解析】【分析】依据平行线的性质,即可得到∠BCD=70°,进而得出∠E+∠DCE=180°,进而得到EF∥CD,进而得到AB∥EF.【详解】AB∥EF,理由如下:∵AB∥CD,∴∠B=∠BCD,(两直线平行,内错角相等)∵∠B=70°,∴∠BCD=70°,(等量代换)∵∠BCE=20°,∴∠ECD=50°,∵∠CEF=130°,∴∠E+∠DCE=180°,∴EF∥CD,(同旁内角互补,两直线平行)∴AB∥EF.(平行于同一直线的两条直线互相平行)【点睛】本题考查平行线的性质和判定,解题的关键是熟练掌握平行线的判定和性质.22.(1)AC∥DF,理由见解析;(2)40°.【解析】【分析】(1)根据平行线的性质得出∠ABD=∠C,求出∠D=∠ABD,根据平行线的判定得出AC∥DF;(2)根据平行线的性质和三角形内角和解答即可;【详解】解:(1)AC∥DF,理由如下:∵∠1=80°,∠2=100°,∴∠1+∠2=180°,∴BD∥CE,∴∠ABD=∠C,∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF;(2)∵AC∥DF,∴∠A=∠F,∠ABD=∠D,∵∠C=∠D,∠1=80°,∴∠A+∠ABD=180°﹣80°=100°,即∠A+∠C=100°,∵∠C比∠A大20°,∴∠A=40°,∴∠F=40°.【点睛】本题考查了平行线的性质和判定的应用,能综合运用定理进行推理是解此题的关键.23.见解析【解析】【分析】先根据题意画出图形,再根据平行线的性质进行解答即可.【详解】∠ABC与∠DEF的数量关系是相等或互补,理由如下:①如图,∵DE∥AB,∴∠ABC=∠DPC,又∵EF∥BC,∴∠DEF=∠DPC,∴∠ABC=∠DEF;②如图,因为DE∥AB,∴∠ABC+∠DPB=180°,又∵EF∥BC,∴∠DEF=∠DPB.∴∠ABC+∠DEF=180°.【点睛】本题考查了平行线的性质,根据题意画出图形是解答此题的关键,解答此题时要注意分两种情况讨论,否则会造成漏解.24.(1)3,【解析】【分析】(1)根据阅读材料知,1+2的整数部分,然后再去求其小数部分即可;(2)x-y的相反数即可.【详解】(1)∵1<2,∴3<4,+2的整数部分是1+2=3,+2﹣1;(2)∵2<3,∴12<<13,∴12,﹣2,即x=12,2,∴x﹣y=12﹣(2)=12=14则x﹣y14.【点睛】本题主要考查了无理数的大小.解题关键是确定无理数的整数部分即可解决问题.25.(1)证明见解析;(2)证明见解析;(3)45°【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°-∠3=90°-2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK=12∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.【详解】(1)解:如图1,∵∠1与∠2互补,∴∠1+∠2=180°.又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)证明:如图2,由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP=12(∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH;(3)解:∠HPQ的大小不发生变化,理由如下:如图3,∵∠1=∠2,∴∠3=2∠2.又∵GH⊥EG,∴∠4=90°-∠3=90°-2∠2.∴∠EPK=180°-∠4=90°+2∠2.∵PQ平分∠EPK,∴∠QPK=12∠EPK=45°+∠2.∴∠HPQ=∠QPK-∠2=45°,∴∠HPQ的大小不发生变化,一直是45°.【点睛】本题考查了平行线的判定与性质.解题过程中,注意“数形结合”数学思想的运用.。

人教版七年级下册数学期中考试试题附答案

人教版七年级下册数学期中考试试题附答案

人教版七年级下册数学期中考试试卷一、单选题1.通过平移,可将图(1)中的福娃“欢欢”移动到图()A .B .C .D .2.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的一组对边上,如果∠1=25°,那么∠2的度数是()A .30°B .25°C .20°D .15°3.下列式子错误的是().A .2=±B 1=±C .3=-D 32=4.下列命题中,是真命题的是()A .无限小数都是无理数B .9的立方根是3C .坐标轴上的点不属于任何象限D .非负数都有两个平方根5.若点N 到x 轴的距离是1,到y 轴的距离是2,则点N 的坐标是()A .(1,2)B .(2,1)C .(1,2),(1,-2),(-1,2),(-1,-2)D .(2,1),(2,-1),(-2,1),(-2,-1)6227,π,3.14159,)2,0.1414414441…中,无理数有()个.A .2个B .3个C .4个D .5个7.在实数范围内,下列判断正确的是()A .若m n =,则m=nB .若22a b >,则a >bC 2=,则a=b D =a=b8.在平面直角坐标系中,已知点A (﹣4,﹣1)和B (﹣1,4),平移线段AB 得到线段A 1B 1,使平移后点A 1的坐标为(2,2),则平移后点B 1坐标是()A .(﹣3,1)B .(﹣3,7)C .(1,1)D .(5,7)9.如图,下列能判定//AB CD 的条件有()个.(1)180B BCD ∠+∠=︒;(2)12∠=∠;(3)34∠=∠;(4)5B ∠=∠.A .1B .2C .3D .410.如图所示,AB ∥CD ,∠DEF=120°,则∠B 的度数为()A .120°B .60°C .150°D .30°二、填空题11.已知AB //x 轴,A (﹣2,4),AB =5,则B 点坐标为_____.12.如图,将长为5cm ,宽为3cm 的长方形ABCD 先向右平移2cm ,再向下平移1cm ,得到长方形A B C D '''',则阴影部分的面积为________2cm .13.在平面直角坐标系中,已知点A (﹣4,0),B (0,3),对△AOB 连续作图所示的旋转变换,依次得到三角形(1),(2),(3),(4)…,那么第(2013)个三角形的直角顶点坐标是______14.若25x+y,其中x是整数,且0<y<1,写出x﹣y的相反数______.15.将如图左侧所示的6个大小、形状完全相同的小长方形放置在右侧的大长方形中,所标尺寸如图所示(单位:cm),则图中含有阴影部分的总面积为_____cm216.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为_____.三、解答题17.计算:31128222.18.根据如表回答下列问题x23.123.223.323.423.523.623.723.823.9 x2533.61538.24542.89547.56552.25556.96561.69566.44571.21(1)566.44的平方根是;(2561≈;(保留一位小数)(3)满足23.6n<23.7的整数n有个.19.如图,在平面直角坐标系中,平行四边形ABDC 的顶点A 、B 的坐标分别为(﹣1,0),(3,0),OC .(1)求点D 的坐标;(2)求平行四边形ABDC 的面积.20.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,OF ⊥CD ,若∠BOC 比∠DOE 大75o .求∠AOD 和∠EOF 的度数.21.已知等式y =ax 2+bx +c ,且当x =1时,y =2;当x =﹣1时,y =6;当x =0时,y =3,求a ,b ,c 的值.22.已知在平面直角坐标系中有三点()2,1A -、()3,1B 、()2,3.C 请回答如下问题:()1如图,在坐标系内描出点A 、B 、C 的位置,求出以A 、B 、C 三点为顶点的三角形的面积;()2在y轴上否存在点P,使以A、B、P三点为顶点的三角形的面积为10,若存在,请直接写出点P的坐标;若不存在,请说明理由.23.如图,∠ENC+∠CMG=180°,AB//C D.(1)请判断∠2与∠3是否相等,请说明理由.(2)若∠A=∠1+70°,∠ACB=42°,求∠B的度数.24.如图,已知△ABC在平面直角坐标系中的位置如图所示,(1)写出△ABC三个顶点的坐标;(2)求出△ABC的面积;(3)在图中画出把△ABC先向左平移5个单位,再向上平移2个单位后所得的△A′B′C′,并写出各顶点坐标.25.在平面直角坐标系中,点A(a,b)是第四象限内一点,AB⊥y轴于B,且B(0,b)=12是y轴负半轴上一点,b2=16,S△ACB(1)求点A和点B的坐标;(2)如图1,点D为线段OA(端点除外)上某一点,过点D作AO垂线交x轴于E,交直线AB于F,∠EOD、∠AFD的平分线相交于N,求∠ONF的度数;(3)如图2,若点D为线段OA(端点除外)上某一点,当点D在线段上运动时,过点D 作直线EF交x轴正半轴于E,交直线AB于F,∠EOD,∠AFD的平分线相交于点N.若记∠ODF=α,请用α的式子表示∠ONF的大小.参考答案1.B【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【详解】解:A、属于图形旋转所得到,故不符合;B、图形形状大小没有改变,符合平移性质,故符合;C、属于图形旋转所得到,故不符合;D、属于图形旋转所得到,故不符合.故选:B.【点睛】本题考查图形的平移变换.图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.2.C【分析】由a与b平行,得到一对内错角相等,即∠1=∠3,根据等腰直角三角形的性质得到∠2+∠3=45°,根据∠1的度数即可确定出∠2的度数.【详解】解:∵a∥b,∴∠1=∠3,∵∠2+∠3=45°,∴∠2=45°﹣∠3=45°﹣∠1=20°.故选C.【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握两直线平行,内错角相等. 3.B【分析】根据算术平方根和平方根的定义求解即可.【详解】A.2=±,故该选项正确,不符合题意;B.1=,故该选项错误,符合题意;C.3=-,故该选项正确,不符合题意;D.3=,故该选项正确,不符合题意;2故选B.【点睛】本题考查算术平方根和平方根的定义,熟练掌握相关定义是解答本题的关键.4.C【分析】利用无理数的定义、立方根和平方根的意义、点的象限分布分别判断后即可确定正确的选项.【详解】解:A、无限不循环小数是无理数,故原命题是假命题,不符合题意;B、9C、坐标轴上的点不属于任何象限,故原命题是真命题,符合题意;D、非负数中的0只有一个平方根,故原命题是假命题,不符合题意;故选:C.【点睛】考查了命题与定理的知识,解题的关键是了解无理数的定义、立方根和平方根的意义,难度不大.5.D【分析】根据到x轴的距离得到纵坐标的可能值,到y轴的距离得到横坐标的可能值,进行组合即可.【详解】∵点N到x轴的距离是1,到y轴的距离是2,∴点N的纵坐标为1或﹣1,横坐标为2或﹣2,∴点N的坐标是(2,1),(2,﹣1),(﹣2,1),(﹣2,﹣1).故选D.【点睛】本题涉及到的知识点为:点到x轴的距离为点的纵坐标的绝对值;点到y轴的距离为点的横坐标的绝对值;易错点是得到所有组合点的坐标.6.B【分析】先把式子进行化简,再根据无理数的概念判断即可.【详解】=4,2=3,,227-,π,3.14159,2,0.1414414441…,π,0.1414414441…共3个,故选:B .【点睛】此题考查的是二次根式的性质与化简,掌握无理数概念是解决此题关键.7.D 【分析】根据实数的基本性质,逐个分析即可.【详解】A 、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B 、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C 、两个数可能互为相反数,如a=-3,b=3,故选项错误;D 、根据立方根的定义,显然这两个数相等,故选项正确.故选:D .【点睛】考核知识点:实数的性质.理解算术平方根和立方根性质是关键.8.D 【分析】各对应点之间的关系是横坐标加6,纵坐标加3,那么让点B 的横坐标加6,纵坐标加3即为平移后点B 1的坐标.【详解】由A (﹣4,﹣1)平移后的点A 1的坐标为(2,2),可得坐标的变化规律可知:各对应点之间的关系是横坐标加6,纵坐标加3,∴点B 1的横坐标为﹣1+6=5;纵坐标为4+3=7;即平移后点B 1的坐标是为(5,7).故选:D.【点睛】考核知识点:平移与坐标.熟记坐标变化规律是关键.9.C【分析】根据平行线的判定定理分别进行判断即可.【详解】解:当∠B+∠BCD=180°,AB∥CD,符合题意;当∠1=∠2时,AD∥BC,不符合题意;当∠3=∠4时,AB∥CD,符合题意;当∠B=∠5时,AB∥CD,符合题意.综上,符合题意的有3个,故选:C.【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.10.B【解析】试题分析:由对顶角相等得∠CEB=∠DEF=120°,由AB∥CD可以得到∠B=180°﹣∠CEB,从而求出∠B.∴∠B=180°﹣∠CEB=60°.故选B.考点:平行线的性质.11.(﹣7,4)或(3,4)【分析】由AB平行于x轴可知,A、B两点纵坐标相等,再根据线段AB的长为5,B点可能在A点的左边或右边,分别求B点坐标.【详解】解:∵AB//x轴,A(﹣2,4),∴A、B两点纵坐标相等,都是4,又∵线段AB的长为5,∴当B点在A点左边时,B的坐标为(﹣7,4),当B点在A点右边时,B的坐标为(3,4).故答案为:(﹣7,4)或(3,4).【点睛】本题考查了与坐标轴平行的平行线上点的坐标特点及分类讨论的解题思想,根据B点位置不确定得出两种情况,此题易出现漏解.12.6【分析】利用平移的性质求出阴影部分矩形的长,宽即可解决问题.【详解】解:由题意,阴影部分是矩形,长为5-2=3(cm),宽为3-1=2(cm),∴阴影部分的面积=2×3=6(cm2),故答案为6.【点睛】本题考查平移的性质,矩形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.13.(8052,0).【分析】观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可.【详解】解:∵点A(﹣4,0),B(0,3),∴OA=4,OB=3,∴AB5,12,0;∴第(3)个三角形的直角顶点的坐标是()观察图形不难发现,每3个三角形为一个循环组依次循环,∴一次循环横坐标增加12,∵2013÷3=671∴第(2013)个三角形是第671组的第三个直角三角形,其直角顶点与第671组的第三个直角三角形顶点重合,∴第(2013)个三角形的直角顶点的坐标是()67112,0⨯即()8052,0.故答案为:()8052,0.【点睛】本题考查了坐标与图形变化-旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组依次循环是解题的关键.146.【分析】根据题意确定出x 与y ,即可求出所求.【详解】解:∵23,∴4<5,∵2x +y ,且0<y <1,x 是整数,∴x =4,y 2,∴x −y =4−2)=∴x −y 6-,6.【点睛】此题考查了估算无理数的大小,以及实数的性质,熟练掌握运算法则是解本题的关键.15.17【分析】设小长方形的长为x cm ,宽为y cm ,根据长方形的对边相等,可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再利用阴影部分的面积=大长方形的面积﹣6×小长方形的面积,即可求出结论.【详解】解:设小长方形的长为xcm ,宽为ycm ,依题意得:4223x y x y yy x y++=++⎧⎨+=+⎩,解得:52 xy=⎧⎨=⎩,∴图中含有阴影部分的总面积=(x+y+4)×(x+y)﹣6xy=(5+2+4)×(5+2)﹣6×5×2=17.故答案为:17.【点睛】本题主要考查了二元一次方程组的实际应用,解题的关键在于能够准确找到x与y的等量关系.16.50°【分析】∠1和∠3互余,即可求出∠3的度数,根据平行线的性质:两直线平行,同位角相等可求∠2的度数.【详解】∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.【点睛】本题主要考查平行线的基本性质,熟练掌握基础知识是解题关键.17【分析】根据绝对值的代数意义,立方根的意义以及二次根式的乘法法则计算即可.【详解】解:原式1221=+-+.【点睛】本题考查了绝对值的代数意义,立方根的意义以及二次根式的乘法法则,熟练掌握相关概念机及运算法则是解决本题的关键.;(2)-23.7;(3)518.(1)23.8【分析】(1)根据表格给的对照表即可求出;(2)根据表格给的对照表即可求出;(3)由表格找到23.62=556.96,23.72=561.69,列出不等式556.96<n<561.69,找出整数n=557,558,559,560,561的5个值即可.【详解】(1)由表中数据可得:566.44的平方根是:±23.8;故答案为:±23.8;(2)∵23.72=561.69,≈23.7,﹣23.7,故答案为:﹣23.7;(3)∵23.62=556.96,23.72=561.69,556.96<n<561.69,n=557,558,559,560,561,∴满足23.623.7的整数n有5个,故答案为:5.【点睛】本题考查平方根与平方对照表的实数运算应用,掌握利用对照表求平方根得方法.19.(1)点D(4);(2).【分析】(1)由平行四边形的性质可得AB∥CD,AB=DC=4,可求解;(2)由平行四边形的面积公式可求解.【详解】解:∵OC A(﹣1,0),点B(3,0),∴点C(0),AB=4,∵四边形ABDC是平行四边形,∴AB∥CD,AB=DC=4,∴点D(4);(2)平行四边形ABDC的面积=AB×OC=.【点睛】本题主要考查了坐标与图形,平行四边形的性质,两点之间的距离,解题的关键在于能够熟练掌握相关知识进行求解.20.∠AOD=110°,∠EOF=55°【分析】设∠BOD=2x,利用角平分线的∠BOE=x;由∠BOC比∠DOE大75°可求∠BOC=∠DOE+75°=x+75°.根据题意列出方程x+75°+2x=180°,得出x=35°,求出∠BOD=70°,即可求出∠AOD=180°-70°=110°,由FO⊥CD,可求∠BOF=90°-∠BOD=20°,可求∠EOF=∠FOB+∠BOE=55°.【详解】解:设∠BOD=2x,∵OE平分∠BOD,∴∠DOE=∠EOB=1BOD2 =x,∵∠BOC=∠DOE+75°=x+75°.∴x+75°+2x=180°,解得:x=35°,∴∠BOD=2×35°=70°,∴∠AOD=180°-∠BOD=180°-70°=110°,∵FO⊥CD,∴∠BOF=90°-∠BOD=90°-70°=20°,∴∠EOF=∠FOB+∠BOE=20°+35°=55°.【点睛】本题考查了角平分线、垂线、邻补角,一元一次方程等知识;弄清各个角之间的数量关系是解题的关键.21.a=1,b=﹣2,c=3.【分析】把x与y的值代入等式中计算即可求出所求.【详解】解:根据题意得:263a b ca b cc++=⎧⎪-+=⎨⎪=⎩①②③,①﹣②得:2b=﹣4,解得:b=﹣2,把b=﹣2,c=3代入①得:a=1,则a=1,b=﹣2,c=3.【点睛】此题考查了解三元一次方程组,熟练掌握运算法则是解本题的关键.22.(1)图见详解,5;(2)存在;P点的坐标为(0,5)或(0,-3).【分析】(1)由题意根据点的坐标,直接描点以及根据点的坐标可知,AB∥x轴,且AB=3-(-2)=5,点C到线段AB的距离3-1=2,根据三角形面积公式求解;(2)根据题意可知因为AB=5,要求△ABP的面积为10,只要P点到AB的距离为4即可,又P点在y轴上,满足题意的P点有两个.【详解】解:(1)描点如图;依题意,得AB∥x轴,且AB=3-(-2)=5,∴15252ABC S =⨯⨯= ;(2)存在;∵AB=5,S △ABP =10,∴P 点到AB 的距离为4,又点P 在y 轴上,∴P 点的坐标为(0,5)或(0,-3).【点睛】本题考查点的坐标的表示方法,熟练掌握并能根据点的坐标表示三角形的底和高以及求三角形的面积.23.(1)相等,证明见解析;(2)34゜【分析】(1)根据平行线的性质与判定,对顶角相等判断即可;(2)根据平行线的性质和已知条件求解即可.【详解】(1)相等,理由如下:∠ENC +∠CMG =180°,CMG FMN∠=∠180ENC FMN ∴∠+∠=︒//FG ED∴3BFG∴∠=∠//AB CDQ 2BFG ∴∠=∠23∴∠=∠(2)//AB CDQ 180A ACD \Ð+Ð=°1ACD ACB∠=∠+∠ ∠A =∠1+70°1701180ACB ∴∠+︒+∠+∠=︒又∠ACB =42°即217042180∠+︒+︒=︒134∴∠=︒【点睛】本题考查了平行线的性质和判定,对等角相等,熟练平行线的与判定是解题的关键.24.(1)A(4,3)、B(3,1)、C(1,2);(2)△ABC的面积为52;(3)如图所示,见解析;△A′B′C′即为所求,A′(﹣1,5)、B′(﹣2,3)、C′(﹣4,4).【分析】(1)由△ABC在平面直角坐标系中的位置可得答案;(2)利用割补法求解可得答案;(3)将三个顶点分别向左平移5个单位,再向上平移2个单位得到对应点,继而首尾顺次连接即可得.【详解】解:(1)A(4,3)、B(3,1)、C(1,2);(2)△ABC的面积为2×3﹣12×1×2×2﹣12×1×3=52;(3)如图所示,△A′B′C′即为所求,由图知A′(﹣1,5)、B′(﹣2,3)、C′(﹣4,4).【点睛】考核知识点:平移.理解平移和坐标的关系是关键.25.(1)A的坐标为(6,﹣4),B(0,﹣4);(2)45°;(3)1 2α【分析】(1)先确定B的坐标,再利用S△AOB的面积求出AB,即可求出点A的坐标;(2)过点N作NM∥x轴,平行线的性质及角平分线的性质可得出∠MNO=∠NOC=1 2∠EOD,∠MNF=∠NFA=12∠AFD,利用三角形的内角和,即可得出∠ONF的度数;(3)过点N作NM∥x轴,平行线的性质及角平分线的性质可得出∠MNO=∠NOC=1 2∠EOD,∠MNF=∠NFA=12∠AFD,利用三角形外角性质,即可得出∠ONF的度数.【详解】解:(1)∵b2=16,∴b=±4,∵B(0,b)是y轴负半轴上一点,∴B(0,﹣4),∵AB⊥y轴,S△AOB=12,∴12AB•BO=12,即12•AB×4=12,解得AB=6,∴A的坐标为(6,﹣4),(2)如图1,过点N作NM∥x轴,∵NM∥x,∴∠MNO=∠NOC,∵ON是∠EOD的角平分线,∴∠MNO=∠NOC=12∠EOD,又∵MN∥AB,∴∠MNF=∠NFA,∵FN是∠AFD的角平分线,∴∠MNF=∠NFA=12∠AFD,∵AB∥x轴,∴∠OED=∠AFD,∵ED⊥OA,∴∠EOD+∠AFD=90°,∴∠ONF=∠MNO+∠MNF=12(∠EOD+∠AFD)=12×90°=45°.(3)如图2,过点N作NM∥x轴,∵NM∥x,∴∠MNO=∠NOC,∵ON是∠EOD的角平分线,∴∠MNO=∠NOC=12∠EOD,又∵MN∥AB,∴∠MNF=∠NFA,∵FN是∠AFD的角平分线,∴∠MNF=∠NFA=12∠AFD,∵AB∥x轴,∴∠OED=∠AFD,∵∠ODF=∠EOD+∠AFD=α,∴∠ONF=∠MNO+∠MNF=12(∠EOD+∠AFD)=12α.【点睛】本题属于三角形综合题,主要考查了坐标与图形性质,三角形的面积,三角形内角和定理和三角形的外角性质等知识,灵活运用以上性质定理是解题的关键.21。

人教版七年级数学下册期中考试卷及答案【完整版】

人教版七年级数学下册期中考试卷及答案【完整版】

人教版七年级数学下册期中考试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为( ) A .12B .7+7C .12或7+7D .以上都不对2.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2>B .x 3>C .3x 2<D .x 3<3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A .9B .8C .5D .44.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( ) A .120元B .100元C .80元D .60元5.如图,过A 点的一次函数的图象与正比例函数y=2x 的图象相交于点B ,则这个一次函数的解析式是( )A .y=2x+3B .y=x ﹣3C .y=2x ﹣3D .y=﹣x+36.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x /kg 0 1 2 3 4 5 y /cm 1010.51111.51212.5下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是因变量B .弹簧不挂重物时的长度为0 cmC .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为13.5 cm 7.把1a a-根号外的因式移入根号内的结果是( ) A .a -B .a --C .aD .a -8.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( ) A .8B .6C .2D .09.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为( )A .50°B .70°C .75°D .80°二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a1-,4.则a的取值范围是________.2.如图,将长方形纸片ABCD的∠C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部的点E处,若FH平分∠BFE,则∠GFH的度数是________.3.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________4.如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则a的取值范围是_________.5.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是______________.6.将一副三角板如图放置,若20AOD∠=,则BOC∠的大小为________.三、解答题(本大题共6小题,共72分)1.解方程:(1)3(2x﹣1)=15 (2)711 32x x-+-=2.已知关于x的不等式组5x13(x-1),13x8-x2a22+>⎧⎪⎨≤+⎪⎩恰有两个整数解,求实数a的取值范围.3.如图①,已知AD∥BC,∠B=∠D=120°.(1)请问:AB与CD平行吗?为什么?(2)若点E、F在线段CD上,且满足AC平分∠BAE,AF平分∠DAE,如图②,求∠FAC的度数.(3)若点E在直线CD上,且满足∠EAC=12∠BAC,求∠ACD:∠AED的值(请自己画出正确图形,并解答).4.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点0;求证:(1)DBC ECB∆≅∆(2)OB OC=5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)他们的对话内容,求小明和爸爸的骑行速度,(2)一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、C5、D6、B7、B8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)<<1、1a42、90°3、135°4、a≤2.5、±46、160°三、解答题(本大题共6小题,共72分)1、(1)x=3;(2)x=-23.2、-4≤a<-3.3、(1)平行,理由略;(2)∠FAC =30°;(3)∠ACD:∠AED=2:3或2:1.4、(1)略;(2)略.5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)小明骑行速度为200m/分钟,爸爸骑行速度为400m/分钟;(2)爸爸第一次追上小明后,在第二次相遇前,再经过14分或74钟,小明和爸爸相距50m.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级(下)数学期中测试题
(时间:100分钟 满分100分)
一、 选择题(本大题12小题,每小题2分,共24分)
1.下列各组长度的线段能构成三角形的是( )
A. 1.5cm 3.9cm 2.3cm
B. 3.5cm 7.1cm 3.6cm
C. 6cm 1cm 6cm
D. 4cm 10cm 4cm
2.在平面坐标系中,点(-5,-8)是由下面的哪点沿x 轴负方向平移3个单位得到的( )
A. (-2,-8)
B. (-5,-5)
C. (-8,-5)
D. (-5,-11)
3.如图所示,AB ∥CD ,AC ⊥BC ,则图中与∠CAB 互余的角的个数是( )
A. 1个
B. 2个
C. 3个
D. 4个 4.如图所示,下列给出的条件中,不能判定AB ∥DF 的是( )
A.∠A +∠2=180°
B.∠A =∠3
C.∠1=∠4
D.∠1=∠A
5.直角坐标系中,点P (x ,y )在第三象限,且P 到x 轴和y 轴的距离分别为3、7,则点P 的坐标为( )
A. (-3,-7)
B. (-7,-3)
C. (3,7)
D. (7,3)
6.课间操时,小华、小军、小刚的位置如图所示,小华对小刚说:如果我的位置用 (0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示为( )
A.(5,4)
B. (4,5)
C. (3,4)
D. (4,3)
7.如图所示,△ABC 为直角三角形且直角顶点与坐标原点重合,斜边AB 与x 轴、y 轴相交,点A 和点B 到原点的距离相等.当按图所示平移后,斜边A ′B ′与x 轴、y 轴的交点分别为点F 和点E ,则( )
A.点E 、F 到原点的距离仍相等
B.点E 到原点的距离比点F 到了原点的距离大
C.点E 到原点的距离比点F 到原点的距离小
D.无法确定
第3题图
D C B A 第4题图43
21F E
D C A
第6题图
8. A 、B 是同一坐标轴上的两个点,点A 的坐标是(-2,0),A 与B 的距离是5,则点B 的坐标是( )
A.(3,0)
B.(-7,0)
C.(3,0)或(-7,0)
D.(-3,0)或(7,0)
9.如图,把一张三角形纸片沿DE 折叠,当点A 落在四边形BCDE 的内部时,∠A 、∠
1,∠2之间的关系是( )
A.∠A =∠1+∠2
B. 2∠A =∠1+∠2
C. 3∠A =2∠1+∠2
D. 3∠A =2(∠1+∠2) 10.下列各度数能成为某多边形的内角和的是( ) A.430° B. 4343° C. 4320° D. 4360° 11.下列正多边形组合中,能够镶嵌平面的正多边形组合是( )
A.正六边形和正三角形
B.正方形和正十边形
C.正方形和正六边形
D.正五边形和正六边形
12.下列说法:①从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;
②在平面上,过任意一点可以画一条直线垂直于已知直线;③平面直角坐标系中(2,3)与(3,2)表示两个不同的点;④如果两个点的纵坐标相同,则过这两点的直线平行于x 轴;⑤三角形的任意一个外角等于两个内角之和;⑥三角形的中线、角平分线、高线都是线段.其中说法正确的个数有( )
A. 3个
B. 4个
C. 5个
D. 6个
二、 填空题(本大题共8小题,每小题3分,共24分)
13.如图所示,已知直线AB 、CD 相交于点O ,OA 平分∠EOC ,∠EOC =60°,
则∠BOD = . 14.如图所示,直线AB ⊥CD 于O ,直线EF 过O 点,∠1=32°,
则∠2= ,∠FOB = .
15.命题“在同一平面内,不平行的两条直线必定相交”的题设是
结论是 .
16.已知点P (a +2,a -4)在y 轴上,则点P 的坐标为 .
17.将点(-2,3)向左平移1个单位长度,再向下平移2个单位长度得到点Q ,则点Q 的坐标为 .
18.如图,将边长为1的等边三角形OAP 沿x 轴正方向连续翻转2011次,点P 依次
落在点P 1,P 2,P 3,…,P 2011的位置,则点P 2011的横坐标为 .
19. 已知等腰三角形的周长为17cm ,其中一边比另一边的2倍多1,则这个三角形的
三边长分别为 .
20.五边形ABCDE 中,∠A =∠B =∠C ,且∠D 的外角为78°,∠D 的外角与∠E

第9题图
A
第14题图21O F E D C B A
余,则∠B 的度数是 .
三、作图题(本大题共分2小题,每小题3分,共6分)
21.如图所示,P 是直线AB 上一点,Q 是线段CD 上一点,按下列次序画图:
⑴连接P 、Q ;⑵取线段PQ 的中点G ,过点G 画线段PQ 的垂线交直线AB 于点H ; ⑶过点H 画线段CD 的垂线HE ,垂足为点E.
22.如图所示,是一个小正方形边长为1的6×6的网格,请你在网格中画出一个面积为
3的三角形.
四、解答题(本大题共46分)
23.(本小题10分)如图所示,在长方形ABCD 中,AB =8cm ,BC =4cm ,试问将长方
形ABCD 沿着AB 的方向平移多少才能使平移后的长方形与原来的长方形ABCD 重叠部分的面积为20cm 2?
24.(本小题7分)如图,已知点D 在AB 上,DF ∥BC ,BF 平分∠ABC ,DE 平分∠ADF. 求证:DE ∥BF.
第21题图
P B
A 第22题图第23题图D C
B A 第24题图
21F
E D C B A
25.(本小题7分)如图所示,已知在平面坐标系中S △ABC =24,OA =OB ,BC =12, 求△ABC 的三个顶点的坐标.
26.(本小题8分)如图,在△ABC 中,AB =BC ,中线AD 将这个三角形的周长分成15
和12两部分,求△ABC 的三边长.
27.(本小题6分)如图,已知CD 是△ABC 中AB 边上的中线.
⑴请你作出△ADC 中AD 边上的高;
⑵若△ABC 的面积为40,求△ADC 的面积;
⑶若△ADC 的面积为14,且AD 边上的高为4,求AB 的长.
28.(本小题8分)如图,一块三角形优良品种试验田,现引进四种不同的种子进行对
比试验,需要将这块田地分成面积相等的四块,请你设计出四种划分方案供选择,画图说明.
第26题图
D C B
A 第
27题图D C B A 第28题图
参考答案:
一、1.C ;2.A ;3.C ;4.D ;5.B ;6.D ;7.A ;8.C ;9.B ;10.C ;11.A ;12.A ;
二、13. 30°;14. 58°、122°;15.在同一平面内,两条直线不平行,这两条直线必相交.
16.(0,-6);17.(-3,1);18. 2011;19.7cm,7cm 和3cm ;20. 142°;
三、21.略;22.略; 四、23.设沿AB 方向平移xcm ,则A /B /=(8-x )cm
根据题意得 4(8-x )=20 解得 x =3
所以 沿AB 方向平移3cm 后的长方形和原来的 长方形重叠部分的面积为20cm 2.
24.略;25.略;
26.设AB 的长为x ,则AB +BD =32 x 若32
x =15,解X =10,此时三角形边长 为10,10,7 若32x =12,解x =8,此时三角形边长为8,8,11.
27.略.
28.如图,
208-x x 第23题图D /
C /B /A /
D C B A D C B
A 28题图。

相关文档
最新文档