材料性能学

材料性能学
材料性能学

材料性能学

第一章材料单向静拉伸的力学性能

1.屈服是材料由弹性变形向弹-塑性变形过度的明显标志。

2.低碳钢单向静拉伸曲线特征及形变过程

在低碳钢的单向静拉伸试验中,整个拉伸过程中的变形可分为弹性变形、屈服变形、均匀塑性变形以及不均匀集中塑性变形4个阶段3.真应力/应变与工程应力/应变的换算

4.弹性变形的本质:构成材料的原子(离子)或分子自平衡位置产生可逆位

移的反映。

5.弹性模量的影响因素

答:键合方式和原子结构、晶体结构、化学成分、微观组织、温度、加载条件和负荷持续时间

6.滞弹性:是指材料在快速加载或卸载后,随时间的延长而产生的附加弹性应

变的性能。

7.包申格效应:金属材料经预先加载产生少量塑性变形,而后同向加载,规定残余伸长应力增加,反向加载,规定残余拉伸应力降低的现象。(包申格效应可以通过热处理来消除。)

8.弹性滞后环:在非理想弹性的情况下,由于应力和应变不同步,使加载线

与卸载线不重合而形成一封闭回线,这个封闭回线称为弹性滞后环。

9.内耗:在非理想弹性的情况下,由于应力和应变不同步,使加载线与卸载线

不重合而形成一封闭回线,这个封闭回线称为弹性滞后环。存在弹性滞后环的现象说明加载时材料吸收的变形功大于卸载时材料释放的变形功,有一部分加载变形功被材料吸收。这部分在变形过程中被材料吸收的功称为材料的内耗。

10.无机非金属材料的塑性特点

论述大多数无机非金属材料在常温下不能产生塑性形变的原因

【答案】无机非金属材料滑移系统少,不易产生塑性形变,主要原因有:(1)离子键或共价键,具有明显的方向性。

(2)同号离子相遇,斥力极大,只有个别滑移系统能满足位错运动的几何条件和静电作用条件。

(3)晶体结构愈复杂,满足这种条件就愈困难。

陶瓷材料一般呈多晶状态,而且还存在气孔、微裂纹、玻璃相等。其晶粒在空间随机分布,不同方向的晶粒,其滑移面上的剪应力差别很大。即使个别晶粒已达到临界剪应力而发生滑移,也会受到周围晶粒的制约,使滑移受到阻碍而终止,所以多晶材料更不容易产生滑移。

无机材料中不易形成位错,位错运动也很困难,当滑移面上的分剪应力尚未达到使位错以足够速度运动时,此应力已超过了微裂纹扩展所需的临界应力而使材料脆性断裂,所以无机非金属材料难以产生塑性形变。

11.屈服强度:材料抵抗起始塑性变形或产生微量塑性变形的能力。

12.抗拉强度:拉伸曲线上应力的最大值。表征最大均匀塑性变形抗力指标。

13.应变硬化及实际意义

应变硬化:材料在应力作用下进入塑性变形阶段后,随着变形量的增大,形变应力不断提高的现象。

实际意义:

14.断裂的类型

断裂的分类有很多种:

1、按照断裂前有无明显的塑性变形分为:韧性断裂、脆性断裂

2 、按晶体材料断裂时裂纹扩展的途径分为:穿晶断裂、沿晶断裂

3、按照微观断裂机理分为:解理断裂、剪切断裂(纯剪切断裂、微孔聚集型断裂)。

4、按作用力的性质和断裂面的取向分为:正断、切断。

15.韧性断口的特征三要素:纤维区、放射区、剪切唇

16.Griffith裂纹理论要点

内容:实际材料中已经存在裂纹,当平均应力还很低时,裂纹尖端的应力集中已经达到理论值,从而使裂纹快速扩展并导致脆性断裂。

当系统的弹性能与裂纹失稳扩展所需的表面能达到平衡时,即为临界状态。

格里菲斯裂纹理论从能量的角度来研究裂纹扩展的条件,这个条件是:物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。

17.脆性断裂的断裂判据:裂纹自发扩展的临界应力及其对应的裂纹半长

18.韧性:是指材料断裂前吸收塑性变形功和断裂功的能力。

19.塑性的评价指标:延伸率和断面收缩率

20.中、低碳钢光滑圆柱试样在室温下的静拉伸断裂样品断口出现明显的纤维区、放射区和剪切唇三个区域,其中纤维区的微观断口特征为韧窝,剪切唇的微观特征可看到链波花样。

21.从对材料的形变及断裂的分析可知,在晶体结构稳定的情况下,控制温度的主要参数有三个:弹性模量、裂纹尺寸和表面能。

22.材料弹性的弹性好坏指的就是材料弹性比功的大小。

23.解理断裂是一种穿晶断裂,它的基本微观特征是:解理台阶、河流

花样、舌状花样。

24.非理想弹性行为大致分为滞弹性、粘弹性、伪弹性、包申格效应。

第二章材料在其他静载下的力学性能

1.应力状态系数a越大,表示应力状态越软,材料越易产生塑性变形

和韧性断裂。

2.缺口敏感度及其影响因素

缺口敏感度越大缺口敏感性越低。

缺口尖端曲率半径越小,缺口越深、越尖锐,材料的缺口敏感性越大,材料的缺口敏感度就越低。

缺口相同,试样截面尺寸越大,缺口敏感性越大;降低温度,屈服强度明显增

高,缺口敏感性越大。

3.缺口效应

4.布氏硬度HB(HBW硬质合金球;HBS淬火钢球)

5.维氏硬度HV

第三章材料的冲击韧性及低温脆性

1.冲击吸收功:材料受到外界冲击,因自身发生变形或断裂吸收的功。

2.低温脆性

低温脆性常发生在具有体心立方或密排六方结构的金属及合金中,而在面心立方结构的金属及合金中很少发现。

第四章材料的冲击韧性

1.裂纹扩展的基本方式,分别为张开型、滑开型和撕开型,其中以张开型裂纹扩展最危险,最容易引起脆性断裂。

2.断裂KI判据及塑性区修正

无限大板

第五章材料的疲劳性能

第六章材料的磨损性能

1.磨损的基本类型及各自形貌特征

粘着磨损:机件有大小不等的结疤

磨粒磨损:摩擦面上有擦伤或明显沟槽

接触疲劳:接触表面出现许多痘状、贝壳状或不规则形状的凹坑,有的凹坑越深,底部有疲劳裂纹扩展线的痕迹。

2.磨粒磨损:是摩擦副的一方表面存在坚硬的细微凸起或在接触面存在硬质粒子时产生的磨损。

3.接触疲劳

第七章材料的高温力学性能

1.蠕变性能指标:蠕变极限、持久强度、松弛稳定性。

2.试说明高温下金属蠕变变形的机理与常温下金属塑性变形的机理有何不同?

3.如何提高蠕变的抗力

第八章材料的热学性能

1.格波(弹性波)

2.声子

3.固体热容两个定律

4.德拜模型

5.德拜温度大小取决于键的强度、材料的弹性模量、熔点。

6.二级相变

铁磁性向顺磁性转变属典型二级相变。有序-无序转变也属此类情况。

7.热分析方法:差热分析、热重法

8.热膨胀的机理

固体材料的热膨胀本质是:晶格振动中质点的非线性振动。

9.质点间结合能越强,热膨胀系数越小。

10.对于成分相同的材料,结构越致密的晶体热膨胀系数都较大,而类似于非晶态玻璃那样结构比较松散的材料,则往往有较小的热膨胀系数。

11. 包覆材料的热膨胀系数要和主体材料热膨胀系数接近,且适当小于主体材料。

【答案】原因:(1)釉的膨胀系数比坯小,烧成后的制品在冷却过程中表面釉层的收缩比坯体小,使釉层中存在压应力,均匀分布的预压应力能明显地提高脆性材料的力学强度。同时,这一压应力也抑制釉层微裂纹的发生,并阻碍其发展,因而使强度提高;(3分)

(2)当釉层的膨胀系数比坯体大,则在釉层中形成张应力,对强度不利,而且过大的张应力还会使釉层龟裂。(2分)

12.热传导微观机理及热阻来源

13.固体材料的传热机理

(1)固体的导热主要是由晶格振动的格波和自由电子的运动来实现。

(2) 对于金属材料,由于有大量的自由电子存在,所以能迅速地实现热量的传递,因此金属一般都具有较大的热导率。

(3)非金属材料,晶格中自由电子极少,所以晶格振动是主要导热机构。14.格波间相互作用力越强,也就是声子间碰撞机率越大,相应的平均自由程越小,热导率也就越低。

15.玻璃比晶态材料热导率差几个数量级的原因

答:非晶态材料的热导率非常小,并且随着温度升高,热导率稍有增大,这是因为非晶态为近程有序结构,可以近似地把它看成是晶粒很小的晶体来讨论,因为它的声子平均自由程就近似为一常数,即等于n个晶格常数,而这个数值是晶体中声子平均自由程的下限,所以热导率就小。这就是玻璃的热导率比晶态材料的热导率差几个数量级的原因。

第九章材料的磁学性能

1.材料磁性的本源是材料内部电子的循轨和自旋运动。

2.抗磁性定义及来源

定义:材料被磁化后,磁化矢量与外加磁场方向相反的称为抗磁性。

来源:抗磁性来源于电子循轨运动时受外加磁场作用所产生的抗磁矩。

3.顺磁性定义及来源

定义:材料被磁化后,磁化矢量与外加磁场方向相同的称为顺磁性。

来源:顺磁性来源于原子(离子)的固有磁矩。

4.温度对顺磁性的影响

温度对顺磁性的影响很大,可以认为,顺磁物质的磁化是磁场克服原子和分子热运动的干扰,使原子磁矩排向磁场方向的结果。

5.铁磁性的定义及来源

定义:即使无外加磁场,磁矩也按同一方向整齐排列,这种性质称为铁磁性。来源:原子未被抵消的自旋磁矩和自发磁化。

6.自发磁化的定义及来源

定义:在没有外磁场的情况下,材料所发生的磁化称为自发磁化。

来源:金属内部的自发磁化是由于电子间的相互作用产生的。

7.铁磁性材料磁化的两个重要特征

8.请从能量角度解释磁畴形成过程

根据交换能最低的原则,铁磁性物质相邻原子未被抵消的自旋磁矩应同向排列,形成了自发磁化。虽然交换能使铁磁性物质中的磁矩同向排列形成一个磁畴,但同向排列的结果却形成了磁极,因而造成了很大的退磁能。这就必然要限制自旋磁矩的同向排列。若晶体分为两个反向磁畴,则可使退磁能大大降低,当形成封闭磁畴时,可使退磁能降为零,于是便出现了上下两个三角形的闭合磁畴。由于磁各向异性的作用,沿易磁化方向的磁畴较长,不易磁化方向的磁畴较短。闭合磁畴的出现,一方面使退磁能下降为零,另一方面由于闭合磁畴和基本磁畴的磁化方向不同,引起的磁致伸缩不同,因而产生一定的磁致伸缩能。这部分能量不仅与磁畴的方向有关,而且和磁畴的尺寸有关,尺寸越大,磁致伸缩所引起的尺寸变化就越不容易相互补偿,磁致伸缩能也就越高。因此,封闭式磁畴结构需要有较小的磁畴构成,弹性能才可能更低。但磁畴越小,磁畴壁面积越大,形成磁畴壁需要一定的能量。当磁畴变小使磁致伸缩能减小的数量和畴壁形成所需要的能量相等时,即达到了能量最小的稳定闭合磁畴组态。因此,磁畴的形成是受多种能量因素制约的结果。

9.磁滞回线几个参量

饱和磁感应强度Bs,饱磁场强度Hs.

10.软磁材料:磁滞回线瘦小,具有高导磁与低Hc

硬磁材料:肥大,具有高Hc、Br(剩余磁感应强度)

11.反铁磁性:与铁磁性金属相反,某些金属交换积分A<0,使相邻原子间的

自旋趋于反向平行排列,原子磁矩相互抵消,不能形成自发磁化区域。这类物质称为反铁磁性物质。

12.温度对铁磁性参数的影响

第十章材料的电学性能

1.电阻率是材料的本身参数而非电阻。

2.请用能带理论解释金属、绝缘体、半导体导电性差异。

金属导体导电机理:金属的能带结构允带内的能级未被填满,允带之间没有禁带或允带相互重叠,在外电场的作用下电子很容易从一个能级转到另一个能级上去而产生电流。

绝缘体导电机理:绝缘体的能带结构一个允带所有的能级都被电子填满,这种能带称为满带。若一个满带上面相邻的是一个较宽的禁带,由于满带中的电子没有活动的余地,即使禁带上面的能带完全是空的,在外电场的作用下电子也很难跳过禁带。也就是说,电子不能趋向于一个则有方向运动,即不能产生电流。有这种能带结构的材料是绝缘体。

半导体导电机理:半导体的能带结构与绝缘体相同,所不同的是禁带比较窄,因而电子跳过禁带不像绝缘体困难。如果存在外界作用(热、光辐射等),则价带中的电子就有能量可能跃迁到导带中去。这样,不仅在导带中出现导电电子,而且在价带中出现了电子留下的空穴。在外电场作用下,价带中的电子可以逆电场方向运动到这些空穴中,而本身又留下新的空穴,电子的迁移等于空穴顺电场方向运动,所以称这种导电为空穴导电。半导体的导电就是空带中电子导电和价带空穴导电共同作用的结果。

3.无机非金属导电机理

(1)电子式电导:载流子为电子或电子空穴的电导。

(2)离子式电导:载流子为离子或离子空位的电导。

4.超导体

(1)两个基本特性:完全导电性、完全抗磁性。

(2)三个重要性能指标:临界转变温度Tc、临界磁场Hc、临界电流密度Jc.

5.金属、半导体的电阻随温度的升高如何变化?说明原因。

答:金属的电阻随温度的升高而增大(1分),半导体的电阻随温度的升高而

减小(1分)。

对金属材料,尽管温度对有效电子数和电子平均速率几乎没有影响,然

而温度升高会使离子振动加剧,热振动振幅加大,原子的无序度增加,周期

势场的涨落也加大(2分)。这些因素都使电子运动的自由称减小,散射几率

增加而导致电阻率增大(1分)。

而对半导体当温度升高时,满带中有少量电子有可能被激发到上面的空

带中去(1分),在外电场作用下,这些电子将参与导电(1分)。同时,满带

中由于少了一些电子,在满带顶部附近出现了一些空的量子状态,满带变成

了部分占满的能带(2分),在外电场作用下,仍留在满带中的电子也能够起

导电作用(1分)。

6.三种热电效应:帖尔帖效应、汤姆逊效应、赛贝壳效应。

7.赛贝克效应实质:在于两种金属接触时会产生接触电势差。这种接触电势

差的产生原因是由于两种金属电子逸出功不同及两种金属中电子浓度不同所造成的。

8.热电偶工作原理

中间金属定律:如在两根不同的金属丝之间串联进另一种金属,只要串联金属两段的温度相同,则回路中产生的总热电势只与原有的两种金属的性质有关,而与串联入的中间金属无关。

9.热敏效应

温度增加,使电子动能增大,造成晶体中自由电子和空穴数目增加,因而使电导率升高。

10.光敏效应

机理:光电导是由于具有一定能量的光子照射到半导体时把能量传给它,在这种外来能量激发下,半导体材料产生大量的自由电子和空穴,促使电阻率急剧下降。

条件:“光子”的能量必须大于半导体禁带宽度才能产生光电导。

光电导:光的照射使某些半导体材料的电阻明显下降,这种用光的照射使电阻率下降的现象称为光电导。

11.霍尔效应:将通有电流的半导体放在均匀磁场中,设电场沿x方向,电场

强度为Ex;磁场方向和电场垂直,沿z方向,磁感应强度为Bz,则在垂直于磁场和电场的+y和-y方向将产生一个横向电场Ey,这个现象称为霍尔效应。

12.极化:介质在电场作用下产生感应电荷的现象。

13.电解质:在外电场作用下,能产生极化的物质。

14.介质极化的基本形式:电子位移极化、离子位移极化、电子松弛极化、

离子松弛极化、偶极子转向极化。

15.位移极化特点:弹性极化、瞬时完成、不消耗能量。

16.松弛极化特点:与粒子热运动有关、需要一定时间、非弹性极化、极化过

程需要一定能量。

17.介电常数:它表示电容器(两极板间)在有电介质时电容与在真空状态(无

电介质)时的电容相比较时的增长倍数。

18.介质损耗:电介质在电场作用下,在单位时间内因发热而损耗的能量称为

介质损耗。

19.介质损耗方式

电导损耗、极化损耗、电离损耗、结构损耗、宏观结构不均匀的介质损耗

20.电介质的击穿形式: 电击穿、热击穿和化学击穿。

21.电解质的击穿:电解质只能在一定的电场强度以内保持绝缘的特性,当电

场强度超过某一临界值时,电介质变为导体,这种现象称为电介质的击穿。

22.杂质原子使纯金属的电导率如何变化?说明原因

杂质原子使纯金属的电导率下降,其原因是:溶质原子溶入后,在固溶体内造成不规则的势场变化,严重影响自由电子的运动。

23. 即使是绝缘体,在电场作用下,也会产生微小电流,这种小电流称为漏导电流。

第十一章材料的光学性能

1.折射:当光线依次通过两种不同的介质时,光的行进方向发生改变,称为

折射。折射现象的实质是由于介质密度不同,光通过时,传播速度不同。

2.双折射:自然光进入非均匀介质时,一般都要分为振动方向相互垂直、传

播速度不等的两个波,分别构成两条折射光线,这种现象称为双折射。3.全反射:(光线通讯原理)

答:当光从光密介质进入光疏介质时,折射角r大于入射角I。当I为某值时,r可达到90°, 相当于光线平行于表面传播,对于更大的I值,光线

全部反射回光密介质。

4.如何提高无机材料透光性?透光性的影响因素有哪些?

影响因素:对于无机非金属材料而言,其吸收系数在可见光范围内是比较低的,在影响透光性的因素中不占主要地位。反射损失与相对折射率有关,也与表面粗糙度有关。由于无机非金属材料内含杂质气孔、晶界及微裂纹等缺陷,光线通过时会遇到一系列的阻碍,所以除纯晶体、玻璃体具有良好的透光性外,大多数材料看上去是不透明的,这主要是由于散射引起的。因此,散射系数是影响无机非金属材料透光性的主要因素,主要表现在以下几个方面:

(1)材料的缺陷:

材料中的夹杂物、掺杂、晶界等对光的折射性能与主晶相不同,因而在不均匀界面上形成相对折射率。此值越大则反射系数(在界面上的,不是指材料表面的)越大,因而散射系数变大。

(2)晶粒排列方向的影响:

对多晶无机材料说,影响透光率的主要因素在于组成材料的晶体的双折射率。(3)气孔引起的散射损失

存在于晶粒之内的以及在晶界玻璃相内的气孔、孔洞,从光学上讲构成了第二相。其折射率nl可视为1,与基体材料之n2相差较大,所以相对折射率n21=n2也较大。由此引起的反射损失、散射损失远较杂质、不等向晶粒排列等因素引起的损失为大。

提高的透光性的措施:减少材料的宏观及显微缺陷、减少气孔体积分数、减少晶界和微裂纹等。

5.在垂直入射的情况下,光在界面上的反射的多少取决于两种介质的相对折射率。

6.决定乳浊度的主要因素是第二相的颗粒尺寸、体积分数和相对折射率

7.当光从一种介质进入另一种介质时,会发生光的透过、吸收、散射、折射和反射。

材料性能学作业 (2)

1.与单晶体相比,多晶体变形有哪些特点? 多晶金属材料由于各晶粒的位向不同和晶界的存在,其塑性变形有以下特点: ① 多晶体各晶粒变形的不同时性和不均匀性 位向有利的晶粒先塑变,各晶粒处组织性能不同,要求塑变的临界切应力不同,表现为不同时性和不均匀性。 ② 各晶粒变形相互协调与制约 各晶粒塑变受塑变周围晶粒牵制,不可无限制进行下去,晶界对位错的阻碍,必须有5个以上滑移系方可协调发展。 2.金属材料的应变硬化有何实际意义? 材料的应变硬化性能,在材料的加工和应用中有十分明显的实用价值。在加工方面,利用应变硬化和塑性变形的合理配合,可使使塑性变形均匀进行,保证冷变形工艺顺利实施;另外,低碳钢切削时,容易产生粘刀现象,且表面加工质量差。如果切削加工前进行冷变形降低塑性,改善机械加工性能;在材料应用方面,应变硬化使材料具一定的抗偶然过载能力,以免薄弱处无限塑性变形;应变硬化也是一种强化金属的手段,尤其是适用不能热处理的材料。 3.一个典型拉伸试样的标距为50mm ,直径为13mm ,实验后将试样对接起来以重现断裂时的外形,试问: (1)若对接后的标距为81mm ,伸长率是多少? (2)若缩颈处最小直径为6.9mm 则断面收缩率是多少? (1) 008150100%100%62%50 K L L L δ--=?=?= (2) 2200200 44100%100%71.8%4 K K d d A A d A ππψπ--=?=?= 4.有一材料E=2×1011N/m2,γ=8N/m 。试计算在7×107N/m2的拉应力作用下,该材料中能扩展的裂纹之最小长度是多少? 即求理论断裂强度 ()11422 7222108 2.0710710s c c E a m γπσπ-???===??? 5.推导颈缩条件、颈缩时的工程应力 ()()()11,00 n n n n n F KAe F A e dF Ke dA KAne de LA L dL A dA LA AdL LdA dLdA dL dA de L A dF Ke Ade KAne de n e --==+=++=+++∴==-=?-+=?=载荷为瞬时截面积和真应变的函数 对上式全微分

材料性能学

1、低碳钢在拉伸过程中的变形阶段? 答:变形阶段:弹性变形→屈服变形→均匀塑性变形→不均匀集中塑性变形 2、高分子材料塑性变形的机理是什么? 答:高分子材料的塑性变形机理因其状态的不同而异,结晶态高分子材料的塑性变形由薄晶转变为沿应力方向排列的微纤维束的过程;非晶态高分子材料的塑性变形有两种方式,即在正应力作用下形成银纹或在切应力作用下无取向分子链局部转变为排列的纤维束3、高分子材料屈服与金属材料屈服有何不同? 答:高分子材料的屈服与金属屈服的不同:①高分子材料与金属材料有着不同的屈服现象;②高分子材料的应力-应变曲线不仅依赖于时间和温度,海依赖于其他因素;③高分子的屈服点很难给以确切的定义,通常把拉伸曲线上出现的最大应力点定义为屈服点,其对应的应变约为5%-10%,如无极大值的出现,则其应变2%处的应力为屈服点。 4、试述韧性断裂与脆性断裂的区别,为什么说脆性断裂最危险? 答:韧性断裂是材料断裂前及断裂过程中产生明显宏观的断裂过程,韧性断裂时一般裂纹扩展过程较慢,且其断口能用肉眼或放大镜观察。脆性断裂是材料断裂前基本不产生明显的宏观塑性变形,没有明显预兆,往往表现为突然发生的快速断裂过程。因而脆性断裂具有很大的危险性。 5、缺口试样的三个效应 答:①缺口能造成应力应变集中;②缺口改变了缺口前方的应力状态,使平板中材料所受的应力由原来的单向拉伸变为两向或三向拉伸;③在有缺口的条件下,由于出现了三向应力,试样的屈服应力比单向拉伸时要高,即产生了缺口强化现象,使材料的塑性得到强化。 6、如何理解塑性材料“缺口强化”现象? 答:缺口强化纯粹是由于三向应力约束了材料塑性变形所致,材料本身的δs值并未发生变化,我们不能把缺口强化看做是强化材料的一种手段。 7、试比较布氏硬度与维氏硬度试验原理的异同? 答:维氏硬度的试验原理与布氏硬度基本相似,都是根据压痕单位面积所承受的载荷来计算硬度值的。所不同的是维氏硬度试验所用的压头是两相对面夹角α为136°的金刚石四棱锥体,而布氏硬度的压头是直径为D的淬火钢球或硬质合金钢球。 8、试说明低温脆性的物理本质? 答:低温脆性的物理本质:当实验温度t

付华材料性能学部分习题答案

第一章材料的弹性变形 一、填空题: 1.金属材料的力学性能是指在载荷作用下其抵抗变形或断裂 的能力。 2. 低碳钢拉伸试验的过程可以分为弹性变形、塑性变形和断裂三个阶段。 3. 线性无定形高聚物的三种力学状态是玻璃态、高弹态、粘流态,它们的基本运动单元相应是链节或侧基、链段、大分子链,它们相应是塑料、橡胶、流动树脂(胶粘剂的使用状态。 二、名词解释 1.弹性变形:去除外力,物体恢复原形状。弹性变形是可逆的 2.弹性模量: 拉伸时σ=EεE:弹性模量(杨氏模数) 切变时τ=GγG:切变模量 3.虎克定律:在弹性变形阶段,应力和应变间的关系为线性关系。 4.弹性比功 定义:材料在弹性变形过程中吸收变形功的能力,又称为弹性比能或应变比能,表示材料的弹性好坏。 。 三、简答: 1.金属材料、陶瓷、高分子弹性变形的本质。 答:金属和陶瓷材料的弹性变形主要是指其中的原子偏离平衡位置所作的微小的位移,这部分位移在撤除外力后可以恢复为0。对高分子材料弹性变形在玻璃态时主要是指键角键长的微小变化,而在高弹态则是由于分子链的构型发生变化,由链段移动引起,这时弹性变形可以很大。 2.非理想弹性的概念及种类。 答:非理想弹性是应力、应变不同时响应的弹性变形,是与时间有关的弹性变形。表现为应力应变不同步,应力和应变的关系不是单值关系。种类主要包括

滞弹性,粘弹性,伪弹性和包申格效应。 3.什么是高分子材料强度和模数的时-温等效原理? 答:高分子材料的强度和模数强烈的依赖于温度和加载速率。加载速率一定时,随温度的升高,高分子材料的会从玻璃态到高弹态再到粘流态变化,其强度和模数降低;而在温度一定时,玻璃态的高聚物又会随着加载速率的降低,加载时间的加长,同样出现从玻璃态到高弹态再到粘流态的变化,其强度和模数降低。时间和温度对材料的强度和模数起着相同作用称为时=温等效原理。 四、计算题: 气孔率对陶瓷弹性模量的影响用下式表示:E=E0 (1—+ E0为无气孔时的弹性模量;P为气孔率,适用于P≤50 %。370= E0 (1—×+×则E0= Gpa 260= (1—×P+×P2) P= 其孔隙度为%。 五、综合问答 1.不同材料(金属材料、陶瓷材料、高分子材料)的弹性模量主要受什么因素影响? 答:金属材料的弹性模量主要受键合方式、原子结构以及温度影响,也就是原子之间的相互作用力。化学成分、微观组织和加载速率对其影响不大。 陶瓷材料的弹性模量受强的离子键和共价键影响,弹性模量很大,另外,其弹性模量还和构成相的种类、粒度、分布、比例及气孔率有关,即与成型工艺密切相关。 高分子聚合物的弹性模量除了和其键和方式有关外,还与温度和时间有密切的关系(时-温等效原理)。 (综合分析的话,每一条需展开)。 第二章材料的塑性变形 一、填空题 1.金属塑性的指标主要有伸长率和断面收缩率两种。

材料性能学教学大纲

《材料性能学》课程教学大纲 一、课程基本信息 课程编码: 课程类别:必修课 适用专业:材料化学 总学时:48 学分:3 课程简介:本课程是材料化学专业主干课程之一,属专业基础课。本课程主要内容为材料物理性能,以材料通用性物理性能及共同性的内容为主。通过本课程的教学,使学生获得关于材料物理性能包括材料力学性能(受力形变、断裂与强度)、热学、光学、导电、磁学等性能及其发展和应用,重点掌握各种重要性能的原理及微观机制,性能的测定方法以及控制和改善性能的措施,各种材料结构与性能的关系,各性能之间的相互制约与变化规律。 授课教材:《材料物理性能》,吴其胜、蔡安兰、杨亚群,华东理工大学出版社,2006,10。 2、参考书目: 1.《材料性能学》,北京工业大学出版社,王从曾,2007. 1 2.《材料的物理性能》,哈尔滨工业大学出版社,邱成军等,2009.1 二、课程教育目标 通过学习材料的各种物理性能,使学生掌握以下内容:各种材料性能的各类本征参数的物理意义和单位以及这些参数在解决实际问题中所处的地位;弄清各材料性能和材料的组成、结构和构造之间的关系;掌握这些性能参数的物质规律,从而为判断材料优劣、正确选择和使用材料、改变材料性能、探索新材料、新性能、新工艺打下理论基础;为全面掌握材料的结构,对材料的原料和工艺也应有所认识,以取得分析性能的正确依据。 三、教学内容与要求 第一章:材料的力学性能 重点与难点: 重点:应力、应变、弹性变形行为、Griffith微裂纹理论,应力场强度因子和平面应变断裂韧性,提高无机材料强度改进材料韧性的途径。 难点:位错运动理论、应力场强度因子和平面应变断裂韧性。

南昌大学《材料性能学》课后答案

《工程材料力学性能》(第二版)课后答案 第一章材料单向静拉伸载荷下的力学性能 一、解释下列名词 滞弹性:在外加载荷作用下,应变落后于应力现象。 静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。 弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。 比例极限:应力—应变曲线上符合线性关系的最高应力。 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(ζP) 或屈服强度(ζS)增加;反向加载时弹性极限(ζP)或屈服强度(ζS) 降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学姓能? 答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。 三、什么是包辛格效应,如何解释,它有什么实际意义? 答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了。 包辛格效应可以用位错理论解释。第一,在原先加载变形时,位错源在滑移

材料性能学作业及答案

本学期材料性能学作业及答案 第一次作业P36-37 第一章 1名词解释 4、决定金属屈服强度的因素有哪些? 答:在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。 10、将某材料制成长50mm,直径5mm的圆柱形拉伸试样,当进行拉伸试验时塑性变形阶段的外力F与长度增量ΔL的关系为: F/N 6000 8000 10000 12000 14000 ΔL 1 2.5 4.5 7.5 11.5

求该材料的硬化系数K及应变硬化指数n。 解:已知:L0=50mm,r=2.5mm,F与ΔL如上表所示,由公式(工程应力)σ=F/A0,(工程应变)ε=ΔL/L0,A0=πr2,可计算得:A0=19.6350mm2 σ1= 305.5768,ε1=0.0200, σ2=407.4357 ,ε2=0.0500, σ3= 509.2946,ε3=0.0900, σ4= 611.1536,ε4=0.1500, σ5= 713.0125,ε5=0.2300, 又由公式(真应变)e=ln(L/L0)=ln(1+ε),(真应力)S=σ(1+ε),计算得: e1=0.0199,S1=311.6883, e2=0.0489,S2=427.8075, e3=0.0864,S3=555.1311, e4=0.1402,S4=702.8266, e5=0.2076,S5=877.0053, 又由公式S=Ke n,即lgS=lgK+nlge,可计算出K=1.2379×103,n=0.3521。 11、试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆

材料性能学预测终结版

有相关人士称本门课通过率20%,我就不信背完这些还会挂?请进行有选择有判断的阅读——★★为重点内容注:斜体为不确定答案 一.判断 1.一切物质都是磁质,都具有磁现象,只是对磁场的响应程度不同。(√) 2.材料热膨胀系数与其结构致密度有关,结构致密的固体材料具有较大的热膨胀系数。 (√) 3.热传导过程是基于声子和电子发生的。(×) 4.材料的折射率越大,其对光的反射系数越大。(√) 5.双电桥法测定材料的电阻的精度高的原因是这种方法可以用于消除接触电阻。(×) 6.光导纤维远距离传输信号的应用是基于全反射原理。(√) 7.材料低于居里温度时,自发极化为零。(×) 8.脆性断裂就是解理断裂。(×) 9.简谐振动模型适用于材料的热膨胀过程。(×) 10.材料离子的极化率越大,折射率也越大。(√) 11.材料高于居里温度时,自发极化为零。(√) 12.激光晶体是线性光学材料。(×) 13.断口有韧窝存在,那么一定是韧性断裂。(×) 14.通常磨损过程分为稳定磨损和剧烈磨损两个阶段。(×) 15.两接触物体受压力并作纯滚动时,接触应力的最大切应力产生于物体表面。(√) 16.固体材料的真线膨胀系数是一个常数。(×) 17.激光晶体可以用于改变任何强度光的频率。(×) 18.光的波长与材料散射质点的大小越接近,材料对光的散射越小。(×) 19.帕尔帖效应原理可以用于设计热电偶温度计。(×) 20.安培伏特计法测定电阻时,毫伏计的阻值与被测电阻的阻值差别越小,测定结果越准确。 (×) 21.裂纹扩展的基本形式可分为张开型、滑开型、撕开型,其中以撕开型最危险。(×) 22.通常磨损过程分为磨合、稳定磨损和剧烈磨损三个阶段。(√) 23.材料热膨胀系数与其键合状况有关,键强大的材料有较大的热膨胀系数。(×) 24.激光晶体可以用于产生新的激光频率。(√) 25.材料不均匀结构的折射率差异越大,对光的散射越弱。(×) 26.四探针法测定材料的电阻可以用于消除接触电阻。(√) 27.磁化强度是抵消被磁化铁磁物质剩磁所需的反向外磁场强度。(×) 28.应力状态软性系数越大,材料越容易产生塑性变形。(√) 29.材料的刚度是表征材料弹性变形的抗力。(√) 30.材料弹性是表征材料弹性变形的抗力。(×)

(完整版)材料性能学历年真题及答案

一、名词解释 低温脆性:材料随着温度下降,脆性增加,当其低于某一温度时,材料由韧性状态变为脆性状态,这种现象为低温脆性。 疲劳条带:每个应力周期内疲劳裂纹扩展过程中在疲劳断口上留下相互平行的沟槽状花样。 韧性:材料断裂前吸收塑性变形功和断裂功的能力。 缺口强化:缺口的存在使得其呈现屈服应力比单向拉伸时高的现象。 50%FATT:冲击试验中采用结晶区面积占整个断口面积 50%时所应的温度表征的韧脆转变温度。 破损安全:构件内部即使存在裂纹也不导致断裂的情况。 应力疲劳:疲劳寿命N>105 的高周疲劳称为低应力疲劳,又称应力疲劳。 韧脆转化温度:在一定的加载方式下,当温度冷却到某一温度或温度范围时,出现韧性断裂向脆性断裂的转变,该温度称为韧脆转化温度。 应力状态软性系数:在各种加载条件下最大切应力与最大当量正应力的比值,通常用α表示。 疲劳强度:通常指规定的应力循环周次下试件不发生疲劳破坏所承受的上限应力值。 内耗:材料在弹性范围内加载时由于一部分变形功被材料吸收,则这部份能量称为内耗。 滞弹性: 在快速加载、卸载后,随着时间的延长产生附加弹性应变的现象。 缺口敏感度:常用缺口试样的抗拉强度与等截面尺寸的光滑试样的抗拉强度的比值表征材料缺口敏感性的指标,往往又称为缺口强度比。 断裂功:裂纹产生、扩展所消耗的能量。 比强度::按单位质量计算的材料的强度,其值等于材料强度与其密度之比,是衡量材料轻质高强性能的重要指标。. 缺口效应:构件由于存在缺口(广义缺口)引起外形突变处应力急剧上升,应力分布和塑性变形行为出现变化的现象。 解理断裂:材料在拉应力的作用下原于间结合破坏,沿一定的结晶学平面(即所谓“解理面”)劈开的断裂过程。 应力集中系数:构件中最大应力与名义应力(或者平均应力)的比值,写为KT。 高周疲劳:在较低的应力水平下经过很高的循环次数后(通常N>105)试件发生的疲劳现象。 弹性比功:又称弹性应变能密度,指金属吸收变形功不发生永久变形的能力,是开始塑性变形前单位体积金属所能吸收的最大弹性变形功。 二、填空题

材料性能学重点(完整版)

第一章 1、 力—伸长曲线和应力—应变曲线,真应力—真应变曲线 在整个拉伸过程中的变形可分为弹性变形、屈服变形、均匀塑性变形及不均匀集中塑性变形4个阶段 将力—伸长曲线的纵,横坐标分别用拉伸试样的标距处的原始截面积Ao 和原始标距长度Lo 相除,则得到与力—伸长曲线形状相似的应力(σ=F/Ao )—应变(ε=ΔL/Lo )曲线 比例极限σp , 弹性极限σe , 屈服点σs , 抗拉强度σb 如果以瞬时截面积A 除其相应的拉伸力F ,则可得到瞬时的真应力S (S =F/A)。同样,当拉伸力F 有一增量dF 时,试样瞬时长度L 的基础上变为L +dL ,于是应变的微分增量应是de =dL / L ,则试棒自L 0伸长至L 后,总的应变量为: 式中的e 为真应变。于是,工程应变和真应变之间的关系为 2、 弹性模数 在应力应变关系的意义上,当应变为一个单位时,弹性模数在数值上等于弹性应力,即弹性模数是产生100%弹性变形所需的应力。在工程中弹性模数是表征材料对弹性变形的抗力,即材料的刚度,其值越大,则在相同应力下产生的弹性变形就越小。 比弹性模数是指材料的弹性模数与其单位体积质量(密度)的比值,也称为比模数或比刚度 3、 影响弹性模数的因素①键合方式和原子结构(不大)②晶体结构(较大)③ 化学成分 (间隙大于固溶)④微观组织(不大)⑤温度(很大)⑥加载条件和负荷持续时间(不大) 4、 比例极限和弹性极限 比例极限σp 是保证材料的弹性变形按正比关系变化的最大应力,即在拉伸应力-应变曲线上开始偏离直线时的应力值。 弹性极限σe 试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力值 5、 弹性比功又称为弹性比能或应变比能,用a e 表示,是材料在弹性变形过程中吸收变形功 的能力。一般可用材料弹性变形达到弹性极限时单位体积吸收的弹性变形功表示。 6、 根据材料在弹性变形过程中应力和应变的响应特点,弹性可以分为理想弹性(完全弹 性)和非理想弹性(弹性不完整性)两类。 对于理想弹性材料,在外载荷作用下,应力和应变服从虎克定律σ=M ε,并同时满足3个条件,即:应变对于应力的响应是线性的;应力和应变同相位;应变是应力的单值函数。 材料的非理想弹性行为大致可以分为滞弹性、粘弹性、伪弹性及包申格效应等类型。 00ln 0L L L dL de e L e L ===??)1ln(ln 0ε+==L L e

材料性能学作业(2)

材料性能学作业(2) -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1.与单晶体相比,多晶体变形有哪些特点? 多晶金属材料由于各晶粒的位向不同和晶界的存在,其塑性变形有以下特点: ① 多晶体各晶粒变形的不同时性和不均匀性 位向有利的晶粒先塑变,各晶粒处组织性能不同,要求塑变的临界切应力不同,表现为不同时性和不均匀性。 ② 各晶粒变形相互协调与制约 各晶粒塑变受塑变周围晶粒牵制,不可无限制进行下去,晶界对位错的阻碍,必须有5个以上滑移系方可协调发展。 2.金属材料的应变硬化有何实际意义? 材料的应变硬化性能,在材料的加工和应用中有十分明显的实用价值。在加工方面,利用应变硬化和塑性变形的合理配合,可使使塑性变形均匀进行,保证冷变形工艺顺利实施;另外,低碳钢切削时,容易产生粘刀现象,且表面加工质量差。如果切削加工前进行冷变形降低塑性,改善机械加工性能;在材料应用方面,应变硬化使材料具一定的抗偶然过载能力,以免薄弱处无限塑性变形;应变硬化也是一种强化金属的手段,尤其是适用不能热处理的材料。 3.一个典型拉伸试样的标距为50mm ,直径为13mm ,实验后将试样对接起来以重现断裂时的外形,试问: (1)若对接后的标距为81mm ,伸长率是多少? (2)若缩颈处最小直径为6.9mm 则断面收缩率是多少? (1) 008150100%100%62%50 K L L L δ--=?=?= (2) 2200200 44100%100%71.8%4 K K d d A A d A ππψπ--=?=?= (3) 4.有一材料E=2×1011N/m2,γ=8N/m 。试计算在7×107N/m2的拉应力作用下,该材料中能扩展的裂纹之最小长度是多少? (4) 即求理论断裂强度 ()114227222108 2.0710710s c c E a m γπσπ-???===??? 5.推导颈缩条件、颈缩时的工程应力

湖南大学材料性能学作业+习题标准答案

湖南大学材料性能学作业+习题标准答案

————————————————————————————————作者:————————————————————————————————日期:

第二章作业题 1应力状态软性系数:按“最大切应力理论”计算的最大切应力与按“相当最大正应力理论”计算的最大正应力的比值。 2缺口效应:截面的急剧变化产生缺口,在静载荷作用下,缺口截面上的应力状态将发生变化,产生缺口效应,影响金属材料的 力学性能。 3 布氏硬度:用一定直径的硬质合金球做压头,施以一定的试 验力,将其压入试样表面,经规定保持时间后卸除,试样表面残留 压痕。HBW通过压痕平均直径求得。 4 洛氏硬度:洛氏硬度以测量压痕深度标识材料的硬度。HR= (k-h)/0.002. 二、脆性材料的抗压强度 扭转屈服点 缺口试样的抗拉强度 NSR:缺口敏感度,为缺口试样的抗拉强度与等截面尺寸光滑试样的抗拉强度的比值。 HBS:用钢球材料的球压头表示洛氏硬度。 HRC:用金刚石圆锥压头表示的洛氏硬度。 三、试综合比较单向拉伸、压缩、弯曲及扭转试验的特点和应用范围 1单向拉伸 特点:温度、应力状态和加载速率是确定的,且常用标准的光滑圆柱试样进行试验。 应用范围:一般是用于那些塑性变形抗力与切断强度较低的所谓塑性材料试验。 2压缩试验 特点:单向压缩试验的应力状态系数=2,比拉伸,弯曲,扭转的应力状态都软,拉伸时塑性很好的材料在压缩时只发生压缩变形而不会断裂。 应用范围:拉伸时呈脆性的金属材料的力学性能测定。如果产生明显屈服,还可以测定压缩屈服点。 3弯曲试验 特点:试样形状简单,操作方便,弯曲试样应力分布不均匀,表面最大,中心为零。可较灵敏的反映材料表面缺陷。 应用范围:对于承受弯曲载荷的机件,测定其力学性能。 4扭转试验 特点:1扭转的应力状态软性系数=0.8,比拉伸时大,易于显示金属的塑性行为。2圆柱形试样扭转时,整个长度上塑性变形是均匀的,没有颈缩现象,所以能实现大塑性变形量下的试验。3能较敏感的反映出金属表面缺陷及硬化层的性能。4扭转时试样中的最大正应力与最大切应力在数值上大体相等,而生产上所使用的大部分金属材料的正断强度大于切断强度,所以,扭转试验是测定这些材料切断最可靠的办法。 应用范围:研究金属在热加工条件下的流变性能与断裂性能,评定材料的热压力加工性;研究或检验工件热处理的表面质量和各种表面强化工艺的效果。 四、缺口拉伸时应力分布有何特点

材料性能学复习重点

第一章 证明题 显然,真应力总是大于工程应力,真应变总是小于工程应变。 缩颈的条件: 产生缩颈的载荷为 影响材料弹性模数的因素: 1、键合方式和原子结构: a 、以共价健、离子键、金属键结合的材料有较高的弹性模量。 b 、以分子键结合的材料,弹性模量较低。 ()εσσσ+=?+==?== =10000000L L L L L A A A F A F S AL L A ()ε+====??1ln ln 00l l l dl de e l l e n e nde de A dA l dl de e nde A dA de e F n dA A F e de nKAe A dA Ke A de KAne dA Ke dF KAe F Ke S SA F n n n n n n ==+--===+=?+=+?=+====-000001()()n n n b n e b b b b n b b n b b b b n n b b e n K e Kn e e A A A A e A A Kn A Kn A S A F Kn Ke S b ??? ??===========---σσσ0000ln

c、原子结构:a)非过渡金属(b)过渡族金属:原子半径较小,且d层电子引起较大的原子间结合力,弹性模数较高。且当d层电子等于6时,E有最大值 2、晶体结构: a、单晶体材料,由于在不同的方向上原子排列的密度不同,故呈各向异性。 b、多晶体材料,E为各晶粒的统计平均值,伪各向同性。 c、非晶态材料弹性模量各向同性。 3、化学成分:(引起原子间距或键合方式的变化) (1)纯金属主要取决于原子间的相互作用力。 (2)固溶体合金:主要取决于溶剂元素的性质和晶体结构,弹性模量变化不大 (3)两相合金:与第二相的性质、数量、尺寸及分布状态有关。 (4)高分子:填料对E影响很大。 4.微观组织: 金属:微观组织对弹性模量的影响较小晶粒大小对E无影响; 陶瓷:工程陶瓷弹性模数与相的种类、粒度、分布、比例、气孔率等有关。其中,气孔率的影响较大。 复合材料:增强相为颗粒状,弹性模数随增强相体积分数的增高而增大 5、温度:a、温度升高,原子振动加剧,体积膨胀,原子间距增大,结合力减弱,材料的弹性模量降低。如碳钢,每升高100℃,E值下降3~5%(软化) b、当温度变化引起材料的固态相变时,弹性模数显著变化。如碳钢的奥氏体、马氏体相变。 6、加载条件和负荷持续时间: a、加载方式(多向应力),加载速率和负荷持续时间对金属、陶瓷类材料的弹性模数几乎没有影响。陶瓷材料的压缩弹性模数高于拉伸弹性模数(与金属不同)。 b、高分子聚合物,随负荷时间的延长,E值逐渐下降(松弛)。 滞弹性:材料在快速加载或卸载后,随时间的延长而产生附加弹性变形的性能。即应变与应力不同步(相位),应变滞后。 粘弹性:是指材料在外力作用下变形机理,既表现出粘性流体又表现出弹性固体两者的特性,弹性和粘性两种变形机理同时存在(时间效应)。特征:应变对应力的响应不是瞬时完成的,应变与应力的关系与时间有关,但卸载后,应变恢复,无残余变形。 伪弹性:是指在一定的温度条件下,当应力达到一定水平后,金属或合金将产生应力诱发马氏体相变,从而产生大幅度的弹性变形的现象。

材料性能学复习题

绪论 1、简答题 什么是材料的性能?包括哪些方面? 解:材料的性能是指材料在给定外界条件下所表现出的可定量测量的行为表现。包括○1力学性能(拉、压、、扭、弯、硬、磨、韧、疲)○2物理性能(热、光、电、磁)○3化学性能(老化、腐蚀)。 第一章单向静载下力学性能 1、名词解释: 解: 弹性变形:材料受载后产生变形,卸载后这部分变形消逝,材料恢复到原来的状态的性质。 塑性变形:微观结构的相邻部分产生永久性位移,并不引起材料破裂的现象。 弹性极限:弹性变形过度到弹-塑性变形(屈服变形)时的应力。 弹性比功:弹性变形过程中吸收变形功的能力。 包申格效应:材料预先加载产生少量塑性变形,卸载后再同向加载,规定残余应力(弹性极限或屈服强度)增加;反向加载,规定残余应力降低的现象。 弹性模量:工程上被称为材料的刚度,表征材料对弹性变形的抗力。实质是产生100%弹性变形所需的应力。 滞弹性:快速加载或卸载后,材料随时间的延长而产生的附加弹性应变的性能。 内耗:加载时材料吸收的变形功大于卸载是材料释放的变形功,即有部分变形功倍材料吸收,这部分被吸收的功称为材料的内耗。 韧性:材料断裂前吸收塑性变形功和断裂功的能力。 超塑性:在一定条件下,呈现非常大的伸长率(约1000%)而不发生缩颈和断裂的现象。 韧窝:微孔聚集形断裂后的微观断口。 2、简答 1) 材料的弹性模量有那些影响因素?为什么说它是结构不敏感指标? 解:○1键合方式和原子结构,共价键、金属键、离子键E高,分子键E低原子半径大,E 小,反之亦然。○2晶体结构,单晶材料在弹性模量在不同取向上呈各向异性,沿密排面E大,多晶材料为各晶粒的统计平均值;非晶材料各向E同性。○3化学成分,○4微观组织○5温度,温度升高,E下降○6加载条件、负载时间。对金属、陶瓷类材料的E 没有影响。高聚物的E随负载时间延长而降低,发生松弛。 2) 金属材料应变硬化的概念和实际意义。 解:材料进入塑性变形阶段后,随着变形量增大,形变应力不断提高的现象称为应变硬化。 意义○1加工方面,是金属进行均匀的塑性变形,保证冷变形工艺的顺利实施。○2应用方面,是金属机件具有一定的抗偶然过载能力,保证机件使用安全。○3对不能进行热

材料性能学

材料性能学 01 材料在单轴静张力下的力学性能 1. 解释: 开裂:开裂是高分子材料在变形过程中产生的一种缺陷。由于它的低密度和高反射光能力,它看起来是银色的,所以被命名为。裂纹发生在聚合物材料的弱结构或缺陷中。 超塑性:在一定条件下,材料表现出非常大的延伸率(约1000%)而不出现颈缩和断裂,称为超塑性。晶界滑动产生的应变占总应变的比例一般在50% ~ 70%之间,说明晶界滑动在超塑性变形中起主要作用。脆性断裂:材料在断裂前基本不产生明显的宏观塑性变形,无明显征兆。它常以突然的快速断裂过程出现,具有极大的危险性。 韧性断裂:在断裂前和断裂过程中发生明显宏观塑性变形的断裂过程。在韧性断裂中,裂纹扩展过程一般比较缓慢,消耗了大量的塑性变形能量。 解理断裂:在正应力作用下,原子间键合键的破坏导致沿特定晶面的脆性穿晶断裂称为解理断裂。(解理台阶、河纹、舌纹是解理断裂的基本微观特征。) 剪切断裂:剪切断裂是材料在剪切应力作用下沿滑移面滑动分离而引起的断裂。微孔骨料断裂是韧性断裂的一种常见模式。宏观断口表面通常为深灰色、纤维状,微观断口特征形态为断口表面分布着大量韧窝。

2. 为什么脆性断裂是最危险的? 应力的类型,塑性变形的程度,有无前体以及裂纹扩展的速度。3.断裂强力机C和抗拉强力机B有什么区别? 如果在断裂前没有发生塑性变形,或者塑性变形很小,没有出现颈缩,发生脆性断裂,则参数C =参数B。如果在断裂前出现颈缩,则参数C和参数B不相等。 4. 格里菲斯的公式的范围是什么,什么时候需要修改? 格里菲斯公式仅适用于有微裂纹的脆性固体,如玻璃、无机晶体材料和超高强度钢。对于许多工程结构材料,如结构钢和高分子材料,裂纹尖端会发生较大的塑性变形,消耗大量的塑性变形功。因此,必须对格里菲斯公式进行修正。 02 材料单向静拉伸的力学性能 1、应力状态软性系数; τmax和σmax的比值称为,用α表示。α越大,最大切应力分量越大,表示应力状态越软,材料越易于产生塑性变形。反之,α越小,表示应力状态越硬,则材料越容易产生脆性断裂 2、如何理解塑性材料的“缺口强化”现象? 在有缺口条件下,由于出现了三向应力,试样的屈服应力比单向拉伸时要高,即产生了所谓缺口“强化”现象。我们不能把“缺口强化”看作是强化材料的一种手段,因缺口“强化”纯粹是由于三向应力约束了材料塑性变形所致。此时材料本身的σs值并未发生变化。

材料性能学名词解释

一、名词解释 第一章力学 1.真实应变一根长度为L 的杆,在单向拉应力作用下被拉长到L ,则ε = ,为真实应变。 2.名义应变一根长度为L 的杆,在单向拉应力作用下被拉长到L ,则ε=L –L /L =△L/L , ε为名义应变。 3.弹性模量材料在阶段,其和应变成线性关系(即符合),其称为弹性模量。对各向同性体为一常数。是原子间结合强度的 一个标志。 4.弹性柔顺系数弹性体在单位应力下所发生的应变,是弹性体柔性的千种量度。S =-μ/E ,其下标十位数为应变方向,个位 数为所受应力的方向。 5.材料的蠕变对粘弹性体施加恒定应力σ时,其应变随时间而增加。 6.材料的弛豫对粘弹性体施加恒定应变ε时,则应力将随时间而减小。

7.位错增殖系数 n个位错通过试样边界时引起位错增殖,使通过边界的位错数增加到nc个,c即为位错增殖系数。 8.滞弹性一些非晶体,有时甚至多晶体在比较小的应力时可以同时表现出弹性和粘性。 9.粘弹性无机固体和金属的与时间有关的弹性,即弹性形变的产生与消除需要有限时间。 10.粘性系数(粘度) 单位接触面积、单位速度梯度下两层液体间的内摩擦力。单位Pa·S. 是流体抵抗流动的量度。 11.脆性断裂构件未经明显的变形而发生的断裂。断裂时材料几乎没有发生过塑性变形。在外力作用下,任意一个结构单 元上主应力面的拉应力足够大超过材料的临界拉应力值时,会产生裂纹或缺陷的扩展,导致脆性断裂。与此同时,外力引起的平均剪应力尚小于临界值,不足以产生明显的塑性变形或粘性流动。 12.裂纹亚临界生长裂纹在使用应力下,随时间的推移而缓慢扩展。其结果是裂纹尺寸逐渐加大,一旦达到临界尺寸就会 失稳扩展而破坏。 13.材料的理论结合强度根据Orowan提出的原子间约束力随原子间的距离x的变化曲线(正弦曲线),得到σ=σ×sin2 πx/λ,σ为理论结合强度。单位面积的原子平面分开所作的功应等于产生两个单位面积的新表面所需的表面能,材料才能断裂,根据公式得出σ = Eγ/a 。理论结合强度只与弹性模量、表面能和晶格距离等材料常数有关。

(整理)南昌大学材料性能学重点 材料电学性能.

第二章材料电学性能 内容概要:本章介绍金属的导电机理,以及影响金属导电的因素,导电率的测量方法及其它材料的电学性质。 具体内容和学时安排如下: 第一节导电性能及本质 要求学生掌握导电的三大理论:经典电子理论;电子的量子理论;能带理论。这三大理论的成功或不足点。理解自由电子、能级和能带、周期性势场、能带密度、K空间的概念。 第二节金属导电性能影响因素 理解温度、相变、应力和热处理(淬火和退火)对材料导电性能的影响。 第三节合金的导电性能 理解固溶体和化合物的导电性 第四节电阻率的测量 电阻率的测量方法有单电桥法;双电桥法;电子四探针法。重点要求掌握单电桥法。第五节电阻分析应用 根据电阻率与温度的线性关系,可来研究材料的相变,材料的组织结构变化。 第六节超导电性 掌握超导的两大性能:完全导电性和完全抗磁性。掌握超导态转变为正常态的三个条件:临界温度;临界电流;临界磁场。超导的本质-BCS理论。 第七节材料的热电性能 了解三大热电现象:第一热导效应、第二热电效应、第三热电效应。 第八节半导体导电性的敏感效应 了解半导体能带结构特点;半导体导电有本征导电和杂质导电;实现导电的条件。 第九节介电极化与介电性能 掌握电介质极化机理和介电常数的本质 第十节电介质的介电损耗 了解电介质的能量损耗。 (共12个学时) 第一节导电性能及本质

材料的电学性能是指材料的导电性能,与材料的结构、组织、成分等因素有关。 一、电阻与导电的概念 R=U/I R 不仅与材料的性质有关,还与材料的几何形状有关 。 S L R ρ= L 与材料的长度,s与材料的横截面积,ρ为电阻率,单位为 m Ω? ρ σ1 = 值越小,a 值越大。 ρ 值愈小,σ值愈大。 纯金属:e 为10-8~10-7 合金: 10-7~10-5 半导体:10-3~10 9 绝缘体:﹥10 9 导电性能最好的金属是银、铜、金,其电阻率分别为1.5×10-8Ω?m 、1.73×10-8Ω?m 、等 二、导电机理及能带理论 关于材料的导电机理有三大理论:经典电子理论;电子的量子理论;能带理论。 1 金属及半导体的导电机理 1〉经典电子理论 经典电子理论认为(以Drude 和Lorentz 为代表):在金属晶体中,离子构成晶格点阵,并形成一个均匀的电场,价电子是完全自由的,称为自由电子,它们弥散分布于整个点阵之中,就像气体分子充满整个容器一样,因此称为“电子气”。它们的运动遵循经典气体分子的运动规律,自由电子之间以及自由电子与正离子之间仅仅是机械碰撞而已。在没有外加电场时,金属中的自由电子沿各个方向的运动几率相同,因此不产生电流。当对金属施加外电场,自由电子沿电场方向加速运动,从而产生电流。在自由电子定向运动时,要与正离子发生碰撞,使电子受阻,这就是电阻。 设电子两次碰撞之间所经历的时间为τ 2* 2n e m τσ*= m*为电子的有效质量(考虑了晶体场对电子的相互作用) τ为电子在两次碰撞之间的时间间隔,τ为时间自由程. v 为电子运动的平均速度。 在T=0K 时,电子不受到散射.p=0.σ→∞。理想晶体。 T ≠0K 时,晶体的阵热振动或经典电子理论成功计算了电导率以及电导率与热导率的关系;但经典电子理论不能解释以下几种现象:电子的长平均自由程;材料导电性能差异;金属电子比热小。 2〉量子自由电子理论 量子自由电子理论认为:金属中正离子形成的电场是均匀的,价电子与离子间没有相互作用,且为整个金属所有,可以在整个金属中自由运动。但这一理论认为:金属中每个原子的内层电子基本保持单个原子时的能量状态,而所有的价电子却按量子规律具有不同的能量状态,即具有不同的能级。 量子电子理论认为:电子具有波粒二象性。运动着的电子作为物质波,其频率与电子的运动速

材料性能学重点(完整版)教学提纲

材料性能学重点(完整 版)

第一章 1、 力—伸长曲线和应力—应变曲线,真应力—真应变曲线 在整个拉伸过程中的变形可分为弹性变形、屈服变形、均匀塑性变形及不均匀集 中塑性变形4个阶段 将力—伸长曲线的纵,横坐标分别用拉伸试样的标距处的原始截面积Ao 和原始标 距长度Lo 相除,则得到与力—伸长曲线形状相似的应力(σ=F/Ao )—应变(ε=ΔL/Lo )曲线 比例极限σp , 弹性极限σe , 屈服点σs , 抗拉强度σb 如果以瞬时截面积A 除其相应的拉伸力F ,则可得到瞬时的真应力S (S =F/A)。 同样,当拉伸力F 有一增量dF 时,试样瞬时长度L 的基础上变为L +dL ,于是应变的微分增量应是de =dL / L ,则试棒自L 0伸长至L 后,总的应变量为: 式中的e 为真应变。于是,工程应变和真应变之间的关系为 2、 弹性模数 在应力应变关系的意义上,当应变为一个单位时,弹性模数在数值上等于弹性应力,即弹性模数是产生100%弹性变形所需的应力。在工程中弹性模数是表征材料对弹性变形的抗力,即材料的刚度,其值越大,则在相同应力下产生的弹性变形就越小。 比弹性模数是指材料的弹性模数与其单位体积质量(密度)的比值,也称为比模数或比刚度 3、 影响弹性模数的因素①键合方式和原子结构(不大)②晶体结构(较大)③ 化学成分 (间隙大于固溶)④微观组织(不大)⑤温度(很大)⑥加载条件和负荷持续时间(不大) 4、 比例极限和弹性极限 比例极限σp 是保证材料的弹性变形按正比关系变化的最大应力,即在拉伸应力- 应变曲线上开始偏离直线时的应力值。 弹性极限σe 试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全 弹性恢复的最高应力值 5、 弹性比功又称为弹性比能或应变比能,用a e 表示,是材料在弹性变形过程中吸收变形 功的能力。一般可用材料弹性变形达到弹性极限时单位体积吸收的弹性变形功表示。 6、 根据材料在弹性变形过程中应力和应变的响应特点,弹性可以分为理想弹性(完全弹 性)和非理想弹性(弹性不完整性)两类。 对于理想弹性材料,在外载荷作用下,应力和应变服从虎克定律σ=M ε,并同时满足3个条件,即:应变对于应力的响应是线性的;应力和应变同相位;应变是应力的单值函数。 材料的非理想弹性行为大致可以分为滞弹性、粘弹性、伪弹性及包申格效应等类型。 00ln 0L L L dL de e L e L ===??)1ln(ln ε+==L L e

材料性能学名词解释

名词解释 第一章: 弹性比功:材料在弹性变形过程中吸收变形功的能力。 包申格效应:是指金属材料经预先加载产生少量塑性变形,而后再同向加载,规定残余伸长应力增加,反向加载,规定残余伸长应力降低的现象。 滞弹性:是材料在加速加载或者卸载后,随时间的延长而产生的附加应变的性能,是应变落后于应力的现象。 粘弹性:是指材料在外力的作用下,弹性和粘性两种变形机理同时存在的力学行为。 内耗:在非理想弹性变形过程中,一部分被材料所吸收的加载变形功。 塑性:材料断裂前产生塑性变形的能力。 韧性:是材料力学性能,是指材料断裂前吸取塑性变形攻和断裂功的能力。 银纹:是高分子材料在变形过程中产生的一种缺陷,由于它密度低,对光线反射高为银色。 超塑性:材料在一定条件下呈现非常大的伸长率(约1000%) AHA12GAGGAGAGGAFFFFAFAF

而不发生缩颈和断裂的现象。 脆性断裂:是材料断裂前基本不产生明显的宏观塑性变形,没有明显预兆,而是突然发生的快速断裂过程。 韧性断裂:是指材料断裂前及断裂过程中产生明显宏观塑性变形的断裂过程。 解理断裂:在正应力作用下,由于原子间结合键的破坏引起的沿特定晶面发生的脆性穿晶断裂。 剪切断裂:是材料在切应力作用下沿滑移面滑移分离而造成的断裂。 河流花样:两相互平行但出于不同高度上的解理裂纹,通过次生解理或撕裂的方式相互连接形成台阶,同号台阶相遇变汇合长大,异号台阶相遇则相互抵消。当台阶足够高时,便形成河流花样。 解理台阶:不能高度解理面之间存在的台阶 韧窝:新的微孔在变形带内形核、长大、聚集,当其与已产生的裂纹连接时,裂纹便向前扩展形成纤维区,纤维区所在平面垂直于拉伸应力方向,纤维区的微观断口特征为韧窝。 AHA12GAGGAGAGGAFFFFAFAF

相关文档
最新文档