二元一次方程组单元检测题(含答案)

合集下载

(完整版)二元一次方程组试题及答案

(完整版)二元一次方程组试题及答案

第八章二元一次方程组单元知识检测题(时间:90分钟满分:100分)一、选择题(每小题3分,共24分)1.方程2x-1y=0,3x+y=0,2x+xy=1,3x+y-2x=0,x2-x+1=0中,二元一次方程的个数是()A.1个B.2个C.3个D.4个2.二元一次方程组32325x yx y-=⎧⎨+=⎩的解是()A.3217...230122xx xxB C Dy yyy=⎧⎧===⎧⎧⎪⎪⎨⎨⎨⎨==-=⎩⎩⎪⎪=⎩⎩3.关于x,y的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2x+3y=6的解,则k的值是(• )A.k=-34B.k=34C.k=43D.k=-434.如果方程组1x yax by c+=⎧⎨+=⎩有唯一的一组解,那么a,b,c的值应当满足()A.a=1,c=1 B.a≠b C.a=b=1,c≠1 D.a=1,c≠1 5.方程3x+y=7的正整数解的个数是()A.1个B.2个C.3个D.4个6.已知x,y满足方程组45x my m+=⎧⎨-=⎩,则无论m取何值,x,y恒有关系式是()A.x+y=1 B.x+y=-1 C.x+y=9 D.x+y=97.如果│x+y-1│和2(2x+y-3)2互为相反数,那么x,y的值为()A.1122 ...2211 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨==-=-=-⎩⎩⎩⎩8.若2,117x ax byy bx by=-+=⎧⎧⎨⎨=+=⎩⎩是方程组的解,则(a+b)·(a-b)的值为()A.-353B.353C.-16 D.16二、填空题(每小题3分,共24分)9.若2x2a-5b+y a-3b=0是二元一次方程,则a=______,b=______.10.若12ab=⎧⎨=-⎩是关于a,b的二元一次方程ax+ay-b=7的一个解,则代数式x2+2xy+y2-1•的值是_________.11.写出一个解为12x y =-⎧⎨=⎩的二元一次方程组__________.12.a -b=2,a -c=12,则(b -c )3-3(b -c )+94=________. 13.已知32111x x y y ==-⎧⎧⎨⎨==⎩⎩和都是ax+by=7的解,则a=_______,b=______. 14.若2x 5a y b+4与-x 1-2b y 2a 是同类项,则b=________.15.方程mx -2y=x+5是二元一次方程时,则m________.16.方程组2332s t s t +-==4的解为________. 三、解答题17.解方程组(每小题4分,共8分)(1)257320x y x y -=⎧⎨-=⎩ 33(2)255(2)4x y x y +⎧=⎪⎨⎪-=-⎩18.已知y=3xy+x ,求代数式2322x xy y x xy y +---的值.(本小题5分)19.已知方程组256351648x y x y ax by bx ay +=--=⎧⎧⎨⎨-=-+=-⎩⎩与方程组的解相同.求(2a+b )2004的值本小题5分) 20.已知x=1是关于x 的一元一次方程ax -1=2(x -b )的解,y=1是关于y 的一元一次方程b (y -3)=2(1-a )的解.在y=ax 2+bx -3中,求当x=-3时y 值.(本小题5分)21.甲、乙两人同解方程组54ax y x by +⎧⎨=⎩ 时,甲看错了方程①中的a ,解得31x y =-⎧⎨=-⎩,乙看错了②中的b ,200620075(410x a y =⎧+-⎨=⎩试求的值.(本小题5分)22.某商场按定价销售某种电器时,每台可获利48元,•按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等.求该电器每台的进价、•定价各是多少元?(本小题6分)23.一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50•个或做桌腿300条,现有10m3木料,那么用多少立方米的木料做桌面,•多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?能配成多少张方桌.(本小题6分)24.甲、乙二人在上午8时,自A、B两地同时相向而行,上午10时相距36km,•二人继续前行,到12时又相距36km,已知甲每小时比乙多走2km,求A,B两地的距离.(•本小题6分)25.某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45•座客车每日每辆租金为220元,60座客车每日每辆租金为300元.试问:(1)春游学生共多少人?原计划租45座客车多少辆?(2)若租用同一种车,要使每位同学都有座位,怎样租车更合算?(本小题6分)答案:一、选择题1.B 解析:②④是2.C 解析:用加减法,直接相加即可消去y,求得x的值.3.B 解析:解方程组可得x=7k,y=-2k,然后把x,y代入二元一次方程2x+3y=6,即2×7k+3×(-2k)=6,解得k=34,故选B.4.B5.B 解析:正整数解为:1241 x xy y==⎧⎧⎨⎨==⎩⎩6.C 解析:由方程组消去m,得到一个关于x,y的方程,化简这个方程即可.7.C 解析:根据两个非负数互为相反数,判断两个非负数必定都是0,所以有122 2301 x y xx y y+-==⎧⎧⎨⎨+-==-⎩⎩解得8.C 解析:把x=-2,y=1代入原方程组得213 275a b ab a b-+==-⎧⎧⎨⎨-+==-⎩⎩解得,∴(a+b)(a-b)=-16.二、填空题9.-2,-1 解析:根据二元一次方程的定义可得x,y的指数都是1,•由二元一次方程定义,得2512311 a b aa b b-==-⎧⎧⎨⎨-==-⎩⎩解得.10.24 解析:把a=1,b=-2代入原方程可得x+y的值,把a=1,b=-2代入ax+ay-b=•7得x+y=5,因为x2+2xy+y2-1=(x+y)2-1,所以原式=24.11.2024x yx y+=⎧⎨-=-⎩(答案不唯一).12.278解析:由a-b=2,a-c=12可得b-c=-32,再代入(b-c)3-3(b-c)+94=278.13.2 1 解析:本题既考查了二元一次方程的解的概念又考查了二元一次方程组的解法.分别将两组解法代入二元一次方程,可得372 21171a b aa b b+==⎧⎧⎨⎨-+==⎩⎩解这个方程组得.14.-2 解析:本题涉及同类项的概念:所含字母相同,相同字母的指数也相同,• 由此可得5a=1-2b;b+4=2a,将两式联立组成方程组,解出a,b的值,分别为a=1,b=-2,•故b a=-2.15.≠116. 24434342s t s t s t +⎧=⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩解析:解方程组即可. 三、解答题17.解:(1)257320x y x y -=⎧⎨-=⎩①×3得,6x -3y=15 ③ ②-③,得x=5.将x=5代入①,得y=5,所以原方程组的解为55x y =⎧⎨=⎩. (2)原方程组变为51565104x y x y +=⎧⎨-=-⎩①-②,得y=25.将y=25代入①,得5x+15×25=6,x=0, 所以原方程组的解为025x y =⎧⎪⎨=⎪⎩. 18.解:因为y=3xy+x ,所以x -y=-3xy . 当x -y=-3xy 时,2322()32(3)332()2325x xy y x y xy xy xy x xy y x y xy xy xy +--+-+===------. 解析:首先根据已知条件得到x -y=-3xy ,再把要求的代数式化简成含有x -y 的式子,然后整体代入,使代数式中只含有xy ,约分后得解.19.解:因为两个方程组的解相同,所以解方程组25623562x y x x y y +=-=⎧⎧⎨⎨-==-⎩⎩解得 代入另两个方程得2143a b a a b b +=-=⎧⎧⎨⎨-+=-=-⎩⎩解得,∴原式=(2×1-3)2004=1. 20.解:将x=1,y=1分别代入方程得512(1)3(13)2(1)23a a b b a b ⎧=⎪-=-⎧⎪⎨⎨-=-⎩⎪=⎪⎩解方程组得 所以原式=53x 2+23x -3.当x=-3时,• 原式=53×(-3)2+23×(-3)-3=15-2-3=10. 21.解:把31x y =-⎧⎨=-⎩代入方程②,得4×(-3)=b ·(-1)-2,解得b=10.把54x y =⎧⎨=⎩ 代入方程①,得5a+5×4=15,解得a=-1,所以a 2006+20072006200710()(1)()1010b -=-+-=1+(-1)=0. 22.解:设该电器每台的进价为x 元,定价为y 元.由题意得48,162,6(0.9)9(30)210.y x x y x y x y -==⎧⎧⎨⎨-=--=⎩⎩解得. 答:•该电器每台的进价是162元,定价是210元.解析:打九折是按定价的90%销售,利润=售价-进价.23.解:设用xm 3木料做桌面,ym 3木料做桌腿.由题意,得106,450300 4.x y x x y y +==⎧⎧⎨⎨⨯==⎩⎩解得 (2)6×50=300(张).答:用6m 3木料做桌面,4m 3木料做桌腿恰好能配成方桌,能配成300张方桌.解析:问题中有两个条件:①做桌面用的木料+做桌腿用的木料=10;②4×桌面个数=桌腿个数.24.解:设A 、B 两地相距xkm ,乙每小时走ykm ,则甲每小时走(y+2)km .根据题意,•得2(2)361084(2)3617y y x x y y x y ++=-=⎧⎧⎨⎨++=+=⎩⎩解这个方程组得.答:略. 25.解:(1)设参加春游的学生共x 人,原计划租用45座客车y 辆.根据题意,得451524060(1)5y x x y x y +==⎧⎧⎨⎨-==⎩⎩解这个方程组,得 . 答:春游学生共240人,原计划租45座客车5辆.(2)租45座客车:240÷45≈5.3,所以需租6辆,租金为220×6=1320(元);租60•座客车:240÷60=4,所以需租4辆,租金为300×4=1200(元).所以租用4辆60座客车更合算.解析:租车时最后一辆不管几个人都要用一辆,所以在计算车的辆数时用“收尾法”,而不是“四舍五入”.。

七年级数学(下)《第八章 二元一次方程组》单元检测卷含答案

七年级数学(下)《第八章  二元一次方程组》单元检测卷含答案

七年级数学(下)《第八章二元一次方程组》单元检测卷(测试时间:90分钟满分:120分)一、选择题(共10小题,每题3分,共30分)1.如果a3x b y与-a2y b x+1是同类项,则( )A. B. C. D.2.若方程6kx﹣2y=8有一组解,则k的值等于()A. ﹣B.C.D. ﹣3.下列哪组数是二元一次方程组的解( )A. B. C. D.4.方程组的解满足方程x+y+a=0,那么a的值是( )A. 0B. -2C. 1D. -15.如图所示的两台天平保持平衡,已知每块巧克力的质量相等,且每个果冻的质量也相等,则每块巧克力和每个果冻的质量分别为( )A. 10g,40gB. 15g,35gC. 20g,30gD. 30g,20g6.甲、乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;如果乙先跑2秒,甲跑4秒就可以追上乙.设甲的速度为x米/秒,乙的速度为y米/秒,根据题意,下列选项中所列方程组正确的是( )A.5510{424x yx y y-==+B.5510{424x yx y-=-=C.5510{424x yx x y-=-=D.5105{424x yx y+=-=7.方程组的解是()A. B. C. D.8.有一个两位数,减去它各位数字之和的3倍,值为23,除以它各位数字之和商是5,余数是1,则这样的两位数()A. 不存在B. 是唯一的C. 有两个D. 有无数解9.二元一次方程中非负整数解的个数是()A. 1个B. 2个C. 3个D. 4个10.已知关于,的方程组,给出下列结论:①是方程组的一个解;②当时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x-2y=3的解;④,间的数量关系是x+y=4-a,其中正确的是()A. ②③B. ①②③C. ①③D. ①③④二、填空题(共10小题,每题3分,共30分)11.请你写出一个二元一次方程组,使它的解为,这个方程组是_________.【答案】等12.已知方程组,则__________.13.若方程组,则的值是_____.14.用加减消元法解方程组由①×2-②得 _____.15.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,那么甲种票买了____张,乙种票买了____张.16.已知{x my n==和{x ny m==是方程2x-3y=1的解,则代数式2635mn--的值为______.17.已知方程320{6320x y zx y z+-=++=,则x:y:z=________18.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y钱,可列方程组为__________________.19.若关于的二元一次方程组的解满足,则____.20.若()25210a b a b +++-+=,则()2017b a -=_______________.三、解答题(共60分)21.(8分)解方程组: (1)(2)⎪⎩⎪⎨⎧=-+=+-=+321236z -y x z y x z y x22.(5分)若x 2y 1=⎧⎨=⎩ 是二元一次方程组3ax by 52ax by 2⎧+=⎪⎨⎪-=⎩ 的解,求a 2b +的值.23.(5分)已知二元一次方程:①x +y =4;②2x -y =2;③x -2y =1.请从这三个方程中选择你喜欢的两个方程,组成一个方程组,并求出这个方程组的解.24.(8分)“种粮补贴”惠农政策的出台,大大激发了农民的种粮积极性,某粮食生产专业户去年计划生产小麦和玉米共18吨,实际生产了20吨,其中小麦超产12%,玉米超产10%.该专业户去年实际生产小麦、玉米各多少吨?(1)根据题意,甲和乙两同学分别列出了如下不完整的方程组:甲:⎪⎩⎪⎨⎧=+++=+.___101121,__%%yx y x 乙:⎩⎨⎧=+=+.____1012___,%y %x y x 根据甲、乙两位同学所列的方程组,请你分别指出未知数x ,y 表示的意义,然后在上面的横线上分别补全甲、乙两位同学所列的方程组:甲:x 表示 ,y 表示 ; 乙:x 表示 ,y 表示(2)求该专业户去年实际生产小麦、玉米各多少吨?(写出完整的解答过程,就甲或乙的思路写出一种即可)25.(8分)某铁路桥长1000m ,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min ,整列火车完全在桥上的时间共40s .求火车的速度和长度. (1)写出题目中的两个等量关系; (2)给出上述问题的完整解答过程.26.(8分)某景点的门票价格规定如下表购票人数1—50人51—100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?27.(8分)小文在甲、乙两家超市发现他看中的篮球的单价相同,书包单价也相同,一个篮球和三个书包的总费用是400元.两个篮球和一个书包的总费用也是400元.(1)求小文看中的篮球和书包单价各是多少元?(2)某一天小文上街,恰好赶上商家促销,超市甲所有商品打九折销售,超市乙全场购物满100元返30元购物券(不足100元不返券,购物券全场通用),如果他只能在同一家超市购买他看中的篮球和书包各一个,应选择哪一家超市购买更省钱?28.(10分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.参考答案(测试时间:90分钟满分:120分)一、选择题(共10小题,每题3分,共30分)1.如果a3x b y与-a2y b x+1是同类项,则( )A. B. C. D.【答案】D2.若方程6kx﹣2y=8有一组解,则k的值等于()A. ﹣B.C.D. ﹣【答案】D【解析】把代入6kx﹣2y=8得:-18k-4=8,∴k= .故选D.3.下列哪组数是二元一次方程组的解( )A. B. C. D.【答案】C【解析】,把②代入①得:x+4x=10,即x=2,把x=2代入②得:y=4,则方程组的解为.故选C.4.方程组的解满足方程x+y+a=0,那么a的值是( )A. 0B. -2C. 1D. -1【解析】,解得,所以a=-x-y=-2+3=1,故选C. 学科#网5.如图所示的两台天平保持平衡,已知每块巧克力的质量相等,且每个果冻的质量也相等,则每块巧克力和每个果冻的质量分别为( )A. 10g,40gB. 15g,35gC. 20g,30gD. 30g,20g【答案】C6.甲、乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;如果乙先跑2秒,甲跑4秒就可以追上乙.设甲的速度为x米/秒,乙的速度为y米/秒,根据题意,下列选项中所列方程组正确的是( )A.5510{424x yx y y-==+B.5510{424x yx y-=-=C.5510{424x yx x y-=-=D.5105{424x yx y+=-=【答案】A【解析】根据乙先跑10米,则甲跑5秒就可以追上乙,得方程5x-5y=10;如果乙先跑2秒,甲跑4秒就可以追上乙,得方程4x=4y+2y.联立方程组,故选A.7.方程组的解是()A. B. C. D.8.有一个两位数,减去它各位数字之和的3倍,值为23,除以它各位数字之和商是5,余数是1,则这样的两位数()A. 不存在B. 是唯一的C. 有两个D. 有无数解【答案】B【解析】设这个两位数的十位数字为x,个位上的数字为y,根据题意得:解得:,所以这个两位数为56.故选:B.9.二元一次方程中非负整数解的个数是()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】∵在方程中,当时,;当时,;当时,;当时,;∴方程的非整数解有3个.故选C.10.已知关于,的方程组,给出下列结论:①是方程组的一个解;②当时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x-2y=3的解;④,间的数量关系是x+y=4-a,其中正确的是()A. ②③B. ①②③C. ①③D. ①③④【答案】C二、填空题(共10小题,每题3分,共30分)11.请你写出一个二元一次方程组,使它的解为,这个方程组是_________.【答案】等【解析】∵,,∴这个方程组可以是:(答案不唯一).12.已知方程组,则__________.【答案】5【解析】,解得,所以故填5.13.若方程组,则的值是_____.【答案】24【解析】将方程组中得两个方程看作整体代入得:3(x+y)-(3x-5y)=3×7-(-3)=24.故答案为:24.学%科网14.用加减消元法解方程组由①×2-②得 _____.【答案】2x=-3.【解析】①×2﹣②得:6x+2y﹣(4x+2y)=﹣2﹣1,合并同类项得:2x=﹣3.故答案为:2x=﹣3.15.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,那么甲种票买了____张,乙种票买了____张.【答案】 20 1516.已知{x m y n ==和{ x n y m ==是方程2x -3y =1的解,则代数式2635m n --的值为______. 【答案】1【解析】将{x m y n ==和{ x n y m ==代入方程2x ﹣3y =1,得: 231{ 231m n n m -=-= ,解得: 1{ 1m n =-=-,则26263535m n ---=---=1.故答案为:1. 17.已知方程320{6320x y z x y z +-=++= ,则x :y :z=________【答案】﹣7:12:3 【解析】320{6320x y z x y z +-=++=①②,①×2+②得:12x+7y=0,12x =-7y ,所以x :y=-7:12, ①×2-②得:y-4z=0,y=4z,所以y:z=4:1=12:3, 所以x:y:z=-7:12:3, 故答案为:-7:12:3.18.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.【答案】83{74x yx y-=+=19.若关于的二元一次方程组的解满足,则____.【答案】3 【解析】,①−②×2得,y=−k −1;将y=−k −1代入②得,x=2k , ∵x+y=2, ∴2k −k −1=2, 解得k=3.故答案为:3.20.若()25210a b a b +++-+=,则()2017b a -=_______________.【答案】-1 【解析】52{{213a b a a b b +=-=-⇒-=-=-则()2017b a -=-1三、解答题(共60分)21.(8分)解方程组: (1)(2)⎪⎩⎪⎨⎧=-+=+-=+321236z -y x z y x z y x【答案】(1)⎩⎨⎧=-=124y x ;(2)⎪⎪⎩⎪⎪⎨⎧-=-==3173310z y x【解析】考点:1、一元二次方程组;2、三元一次方程组.22.(5分)若x2y1=⎧⎨=⎩是二元一次方程组3ax by52ax by2⎧+=⎪⎨⎪-=⎩的解,求a2b+的值.【答案】3 【解析】试题分析:根据方程组解的定义,将x2y1=⎧⎨=⎩代入3ax by52ax by2⎧+=⎪⎨⎪-=⎩得到关于a,b的二元一次方程组,二式相减即可求得a2b+的值.试题解析:把x2y1=⎧⎨=⎩代入方程组3ax by52ax by2⎧+=⎪⎨⎪-=⎩得:3a b5(1)2a b2(2)+=⎧⎨-=⎩,(1)-(2),得a+2b=3.考点:1.方程组的解;2.求代数式的值;3.整体思想的应用.23.(5分)已知二元一次方程:①x+y=4;②2x-y=2;③x-2y=1.请从这三个方程中选择你喜欢的两个方程,组成一个方程组,并求出这个方程组的解.【答案】22xy=⎧⎨=⎩(答案不唯一)【解析】考点:解二元一次方程组.24.(8分)“种粮补贴”惠农政策的出台,大大激发了农民的种粮积极性,某粮食生产专业户去年计划生产小麦和玉米共18吨,实际生产了20吨,其中小麦超产12%,玉米超产10%.该专业户去年实际生产小麦、玉米各多少吨?(1)根据题意,甲和乙两同学分别列出了如下不完整的方程组:甲:⎪⎩⎪⎨⎧=+++=+.___101121,__%%yx y x 乙:⎩⎨⎧=+=+.____1012___,%y %x y x 根据甲、乙两位同学所列的方程组,请你分别指出未知数x ,y 表示的意义,然后在上面的横线上分别补全甲、乙两位同学所列的方程组:甲:x 表示 ,y 表示 ; 乙:x 表示 ,y 表示(2)求该专业户去年实际生产小麦、玉米各多少吨?(写出完整的解答过程,就甲或乙的思路写出一种即可)【答案】(1)20,18;18,20-18;甲:x 表示该专业户去年实际生产小麦吨数,y 表示该专业户去年实际生产玉米吨数;乙:x表示原计划生产小麦吨数,y表示原计划生产玉米吨数;(2)小麦11.2吨,玉米8.8吨. 【解析】试题分析:小麦超产12%,玉米超产10%都是相对于计划来说的,所以不能设直接未知数,而应设原计划生考点:二元一次方程组的应用.25.(8分)某铁路桥长1000m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min,整列火车完全在桥上的时间共40s.求火车的速度和长度.(1)写出题目中的两个等量关系;(2)给出上述问题的完整解答过程.【答案】(1)火车1min行驶的路程等于桥长与火车长的和,火车40s行驶的路程等于桥长与火车长的差;(2)200米、20米/秒.【解析】试题分析:通过理解题意可知本题存在两个等量关系,即整列火车过桥通过的路程=桥长+车长,整列火车在桥上通过的路程=桥长-车长,根据这两个等量关系可列出方程组.试题解析:(1)火车1min行驶的路程等于桥长与火车长的和,火车40s行驶的路程等于桥长与火车长的差;(2)设火车的速度为xm/s,火车的长度为ym,根据题意得601000,401000.x yx y=+⎧⎨=-⎩解得20,200.xy=⎧⎨=⎩,火车的长度为200米,速度为20米/秒.考点:二元一次方程组的应用.26.(8分)某景点的门票价格规定如下表购票人数1—50人51—100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?【答案】(1)一班48名,二班55名;(2)节省302元.学……科%网【解析】考点:二元一次方程组的应用.27.(8分)小文在甲、乙两家超市发现他看中的篮球的单价相同,书包单价也相同,一个篮球和三个书包的总费用是400元.两个篮球和一个书包的总费用也是400元.(1)求小文看中的篮球和书包单价各是多少元?(2)某一天小文上街,恰好赶上商家促销,超市甲所有商品打九折销售,超市乙全场购物满100元返30元购物券(不足100元不返券,购物券全场通用),如果他只能在同一家超市购买他看中的篮球和书包各一个,应选择哪一家超市购买更省钱?【答案】(1)篮球单价为160元,书包单价为80元;(2)乙【解析】试题分析:(1)设篮球的单价为x元,书包的单价为y元,根据“一个篮球和三个书包的总费用是400元,两个篮球和一个书包的总费用也是400元”即可列方程组求解;考点:二元一次方程组的应用28.(10分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.【答案】(1)3,4;(2)有3种租车方案:方案一:A型车9辆,B型车1辆;方案二:A型车5辆,B型车4辆;方案三:A型车1辆,B型车7辆;(3)方案三,940.【解析】试题分析:(1)根据“用2辆A型车和1辆B型车载满货物一次可运货10吨;”,“用1辆A型车和2辆B 型车载满货物一次可运货11吨”,分别得出方程,组成方程组求出即可;(2)由题意得出:3a+4b=31,解此二元一次方程,求出其整数解,得到三种租车方案;(3)根据(2)中所求方案,利用A型车每辆需租金100元/次,B型车每辆需租金120元/次,分别求出租车费用即可.试题解析:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:210211x yx y+=⎧⎨+=⎩,解方程组,得:34xy=⎧⎨=⎩,故1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨;考点:1.二元一次方程组的应用;2.二元一次方程的应用.。

精选初中数学七年级下册第8章《二元一次方程组》单元检测试卷(含答案解析)

精选初中数学七年级下册第8章《二元一次方程组》单元检测试卷(含答案解析)

人教版七年级数学下册 第八章 二元一次方程组 单元综合测试卷(1)一、选择题(本大题共10小题,,共30分)1.下列方程组中,是二元一次方程组的是( )A.⎩⎨⎧=-=+53262z y y xB.⎪⎩⎪⎨⎧=-=+1221y x y xC.⎩⎨⎧==+34y y xD.⎩⎨⎧==+34xy y x 2.已知方程组⎩⎨⎧-=+=-4272y x y x 的解是( ) A .⎩⎨⎧=-=23y x B .⎩⎨⎧-==32y x C .⎩⎨⎧==51y x D .⎩⎨⎧-==20y x 3.⎩⎨⎧==72y x 是方程ax -3y=2的一个解,则a 为( )A.8B.223C.-223 D.-219 4.若0)23(22=++-y x ,则y x )1(+的值是( )A. ﹣1B. ﹣2C. ﹣3D. 23 5.如果2x-7y=8,那么用含y 的代数式表示x 正确的是( )A .827x y -=B .287x y +=C .872y x +=D .872y x -= 6.已知是方程组的解,则a+b+c 的值是( )A .3B .2C .1D .无法确定 7.已知方程组54{ 58x y x y +=+=,则x ﹣y 的值为( ) A. 2 B. ﹣1 C. 12 D. ﹣48.如图,宽为50的大长方形图案由10个完全相同的小长方形拼成,其中一个小长方形的面积为( )A. 400B. 500C. 600D. 40009.成渝路内江至成都全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇.相遇时,小汽车比小客车多行驶20千米.设小汽车和客车的平均速度分别为x 千米/小时和y 千米/小时,则下列方程组正确的是( )A.207717066x y x y +=+=⎧⎪⎨⎪⎩B.207717066x y x y -=+=⎧⎪⎨⎪⎩C.207717066x y x y +=-=⎧⎪⎨⎪⎩D.7717066772066x y x y +=-=⎧⎪⎪⎨⎪⎪⎩10.某次知识竞赛共出了25道题,评分标准如下:答对1题加4分;答错1题扣1分,不答记0分,已知李刚不答的题比答错的题多2题,他的总分为74分,则他答对了( )A .19题B .18题C .20题D .21题二、填空题(本大题共8小题,共24分)11.二元一次方程4x +y =11的所有自然数解是______ .12.已知,则x 与y 的关系式为______ .13.三元一次方程组的解是______ . 14.如果1032162312=--+--b a b a y x 是一个二元一次方程,那么数a =___, b =__。

二元一次方程组单元检测试题(典型题含答案)

二元一次方程组单元检测试题(典型题含答案)

二元一次方程组单元检测试题(典型题)一、选择题(每题3分,共30分)1.下列方程组中是二元一次方程组的为()A. x2+3y=43x-5y=1)B. xy=1x+2y=8)C. a-b=31a)-3b=4D. a+3b=47a-9b=5)2.已知x=2m,y=3m)是二元一次方程2x+y=14的解,则m的值是() A.2 B.-2 C.3 D.-33.已知a+2b=4,3a+2b=8,),则a+b等于()A.3 B. 83C.2 D.14.以方程组y=-x+2,y=x-1)的解为坐标的点(x,y)在平面直角坐标系中位于() A.第一象限B.第二象限C.第三象限D.第四象限5.一副三角尺按如图所示的方式摆放,且∠1比∠2大50°,若设∠1=x°,∠2=y°,则可得到的方程组为()A. x=y-50x+y=180)B. x=y+50x+y=180)C. x=y-50x+y=90)D. x=y+50x+y=90)(第5题) (第9题)6.若方程组mx-ny=1,nx+my=8)的解是x=2,y=1,),则m,n的值分别是() A.2,1 B.2,3 C.1,8 D.无法确定7.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有租住方案()A.5种B.4种C.3种D.2种8.甲、乙两人分别从相距40 km的两地同时出发,若同向而行,则5 h后,快者追上慢者;若相向而行,则2 h后,两人相遇,那么快者速度和慢者速度(单位:km/h)分别是()A.14和6 B.24和16 C.28和12 D.30和109.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则下列是此二元一次方程组的是()A. x+y-2=03x-2y-1=0)B. 2x-y-1=03x-2y-1=0)C. 2x-y-1=03x+2y-5=0)D. x+y-2=02x-y-1=0) 10.某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都恰好花完的条件下,有购买方案()A.1种B.2种C.3种D.4种二、填空题(每题3分,共24分)11.在方程3x-14y=5中,用含x的代数式表示y为____________.12.用加减消元法解方程组3x+y=-1,①4x+2y=1,②)由①×2-②得____________.13.方程组x+2y=5,3x-2y=7)的解是________.14.若方程2x2a+b-4+4y3a-2b-3=1是关于x,y的二元一次方程,则a=________,b=________.15.王老师把几本《数学大世界》给学生们阅读.若每人3本,则剩下3本;若每人5本,则有一位同学分不到书看,只够平均分给其他几位同学.总共有________位同学,________本书.16.已知|2x+y-3|+x-3y-5=0,则8x-2y=________.17.某地区为了进一步缓解交通拥堵问题,决定修建一条长为6 km的公路,如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120范围内,且具有一次函数的关系,如下表所示.x 50 60 90 120y 40 38 32 26则y关于x的函数表达式为_____________(写出自变量x的取值范围).18.如图,长方形相框的外框的长是外框的宽的1.5倍,内框的长是内框的宽的2倍,外框与内框之间的宽度度为3.设长方形相框的外框的长为x,外框的宽为y,则可列方程组为______________.(第18题)三、解答题(19,20题每题8分,其余每题10分,共66分)19.解下列方程组:(1) 3x-y=7,①5x+2y=8;②) (2) x+y-2z=5,①2x-y+z=4,②2x+y-3z=10.③20.若等式(2x-4)2+y-\f(12))=0中的x,y满足方程组mx+4y=8,5x+16y=n,),求2m2-n+14mn的值.21.某市准备用灯笼美化红旗路,需用A,B两种不同类型的灯笼200个,且B灯笼的个数是A灯笼的23.(1)求A,B两种灯笼各需多少个;(2)已知A,B两种灯笼的单价分别为40元、60元,则这次美化工程购置灯笼需多少费用?22.如图,在3×3的方格内,填写了一些代数式与数.若图中各行、各列和各对角线上的三个数之和都相等,求x,y的值.(第22题)23.某厂接受生产一批农具的任务,按计划的天数生产,若平均每天生产20件,到时将比订货任务少100件;若平均每天生产23件,则可提前1天完成.问:这批农具的订货任务是多少?原计划几天完成?24.已知直线l1:y1=2x+3与直线l2:y2=kx-1交于点A,点A的横坐标为-1,且直线l1与x轴交于点B,与y轴交于点D,直线l2与y轴交于点C.(1)求出点A的坐标及直线l2对应的函数表达式;(2)连接BC,求S△ABC.(第24题)25.某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元;(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你写出y与x的函数表达式.参考答案一、1.D 2.A 3.A 4.A 5.D 6.B7.C8.A9.D10.B二、11.y=12x-2012.2x=-313. x=3y=1)14.2;115.4;1516.3217.y=-15x+50(30≤x≤120)18.1.5,62(6). x yx y⎧⎨⎩=-=-三、19.解:(1)由①,得y=3x-7.③把③代入②,得5x+6x-14=8,解得x=2.把x=2代入③,得y=-1.所以原方程组的解为x=2,y=-1.).(2)①+②,得3x-z=9.④②+③,得4x-2z=14.⑤将④⑤联立组成方程组为394214.x zx z⎧⎨⎩-=,-=解得x=2,z=-3.).将x=2,z=-3代入①,得2+y-2×(-3)=5.解得y=-3.所以原方程组的解为x=2,y=-3,z=-3..20.解:依题意得240,19.2xy⎧⎪⎨⎪⎩-=-=解得x=2,12)..将x=2,12).代入方程组48, 516. mx yx y n ⎧⎨⎩+=+=得228,108.mn⎧⎨⎩+=+=解得m=3,n=18.).所以原式=272.21.解:(1)设需A种灯笼x个,B种灯笼y个.根据题意,得200,2.3x yx⎧⎪⎨⎪⎩+=y=解得x=120,y=80.).答:A 种灯笼需120个,B 种灯笼需80个. (2)120×40+80×60=9 600(元).答:这次美化工程购置灯笼需9 600元.22.解:根据对角线、最下边一行、最右边一列上的三个数之和相等,可得方程组为735543,73543.x x ⎧⎨⎩-+=++y -+y =++y 解得x =-2,y =3.).23.解:设这批农具的订货任务是x 件,原计划y 天完成.根据题意,得10020,23(1).x x ⎧⎨⎩-=y =y -解得x =920,y =41.).答:这批农具的订货任务是920件,原计划41天完成.24.解:(1)将x =-1代入y 1=2x +3,得y 1=1,所以A (-1,1).将点A (-1,1)的坐标代入y 2=kx -1,得k =-2.所以y 2=-2x -1. (2)当y 1=0时,x =-32, 所以B \a\vs4\al\co1(-\f(32),0). 当x =0时,y 1=3,y 2=-1, 所以D (0,3),C (0,-1).所以S △ABC =S △BCD -S △ACD =12×32×4-12×1×4=1.25.解:(1)设每件甲种玩具的进价是m 元,每件乙种玩具的进价是n 元.由题意得53231,23141.mn mn ⎧⎨⎩+=+=解得m =30,n =27.).答:每件甲种玩具的进价是30元,每件乙种玩具的进价是27元. (2)当0<x ≤20时,y =30x ;当x >20时,y =20×30+(x -20)×30×0.7=21x +180.。

第五章 二元一次方程组 单元检测题(含答案)

第五章 二元一次方程组 单元检测题(含答案)

第五章二元一次方程检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.下列说法中正确的是( )A .二元一次方程3x -2y =5的解为有限个B .方程 3x +2y =7的解x ,y 为自然数的有无数对C .方程组⎩⎪⎨⎪⎧x -y =0,x +y =0的解为0D .方程组各个方程的公共解叫做这个方程组的解2.(2014·泰安)方程5x +2y =-9与下列方程构成的方程组的解为⎩⎪⎨⎪⎧x =-2,y =12的是( )A .x +2y =1B .3x +2y =-8C .5x +4y =-3D .3x -4y =-83.以方程组⎩⎪⎨⎪⎧y =-x +2,y =x -1的解为坐标的点(x ,y )在平面直角坐标系中位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.已知∠A ,∠B 互余,∠A 比∠B 大30°.设∠A ,∠B 的度数分别为x °,y °,下列方程组中符合题意的是( )A.⎩⎪⎨⎪⎧x +y =180x =y -30B.⎩⎪⎨⎪⎧x =-2x =y +30C.⎩⎪⎨⎪⎧x +y =90x =y +30D.⎩⎪⎨⎪⎧x +y =90x =y -30 5.已知⎩⎪⎨⎪⎧x =2k ,y =-3k是二元一次方程2x -y =14的解,则k 的值是( )A .2B .-2C .3D .-36.若方程组⎩⎪⎨⎪⎧mx -ny =1,nx +my =8的解是⎩⎨⎧x =2,y =1,则m ,n 的值分别是( ) A .2,1 B .2,3 C .1,8 D .无法确定7.五一期间,人民商场女装部推出“全部服装八折”、男装部推出“全部服装八五折”的优惠活动,某顾客在女装部购买了原价为x 元、男装部购买了原价为y 元的服装各一套,优惠前需付700元,而他实际付款580元,则可列方程组为( )A.⎩⎪⎨⎪⎧x +y =5800.8x +0.85y =700B.⎩⎪⎨⎪⎧x +y =7000.85x +0.8y =580C.⎩⎪⎨⎪⎧x +y =7000.8x +0.85y =120D.⎩⎪⎨⎪⎧x +y =7000.8x +0.85y =5808.一批房间,若每间住1人,有10人无处住;若每间住3人,则有10间无人住,则这批房间数为( )A .20B .12C .15D .109.(2014·成都)已知函数y =12x +m 与y =2x -n 的图象如图所示,则方程组⎩⎪⎨⎪⎧x -2y =-2m ,2x -y =n 的解是( )A.⎩⎪⎨⎪⎧x =2y =2B.⎩⎪⎨⎪⎧x =1y =2C.⎩⎪⎨⎪⎧x =-2y =-2D.⎩⎪⎨⎪⎧x =2y =110.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则下列是此二元一次方程组的是( )A.⎩⎪⎨⎪⎧x -y -2=03x -2y -1=0B.⎩⎪⎨⎪⎧2x -y -1=03x -2y -1=0C.⎩⎪⎨⎪⎧2x -y -1=03x +2y -5=0D.⎩⎪⎨⎪⎧x +y -2=02x -y -1=0 二、填空题(每小题3分,共18分)11.已知二元一次方程2x -3y =1,若x =3,则y =____;若y =1,则x =____. 12.(2014·荆门)若-2x m -n y 2与3x 4y 2m +n 是同类项,则m -3n 的立方根是____.13.王老师把几本《数学大世界》让学生们阅读.若每人3本则剩下3本.若每人5本,则有一位同学分不到书看.总共有____位同学,____本书.14.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载,有____种租车方案.15.(2014·东营)如果实数x ,y 是方程组⎩⎪⎨⎪⎧x +3y =0,2x +3y =3的解,那么代数式(xy x +y +2)÷1x +y 的值是____.16.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%,求甲、乙两种商品原来的单价.现设甲商品原来的单价为x 元,乙商品原来的单价为y 元,根据题意可列方程组为____. 三、解答题(共72分)17.(8分)(1)⎩⎪⎨⎪⎧x -y =8,3x +y =12;(2)⎩⎪⎨⎪⎧3x +2y =5x +2,x +y =-3.18.(7分)若等式(2x -4)2+|y -12|=0中的x ,y 满足方程组⎩⎨⎧mx +4y =8,5x +16y =n ,求2m 2-n +14mn 的值.19.(7分)已知|x+2y-9|+(3x-y+1)2=0,求x·y的平方根.20.(7分)为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4本笔记本和2支钢笔,则需86元;如果买3本笔记本和1支钢笔,则需57元.求购买每本笔记本和每支钢笔分别需要多少元?21.(8分)直线a与直线y=2x+1的交点的横坐标是2,与直线y=-x+2的交点的纵坐标是1,求直线a对应的表达式.22.(8分)(2014·吉林)如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度为28 cm,演员踩在高跷上时,头顶距离地面的高度为224 cm.设演员的身高为x cm,高跷的长度为y cm,求x,y的值.23.(8分)已知直线l1:y1=2x+3与直线l2:y2=kx-1交于点A,点A横坐标为-1,且直线l1与x轴交于点B,与y轴交于点D,直线l2与y轴交于点C.(1)求出点A坐标及直线l2的表达式;(2)连接BC,求出S△ABC.24.(9分)某镇水库的可用水量为12 000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只能够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?25.(10分)(2014·黔东南)某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式.参考答案一、选择题(每小题3分,共30分) 1.下列说法中正确的是( D )A .二元一次方程3x -2y =5的解为有限个B .方程 3x +2y =7的解x ,y 为自然数的有无数对C .方程组⎩⎪⎨⎪⎧x -y =0,x +y =0的解为0D .方程组各个方程的公共解叫做这个方程组的解2.(2014·泰安)方程5x +2y =-9与下列方程构成的方程组的解为⎩⎪⎨⎪⎧x =-2,y =12的是( D )A .x +2y =1B .3x +2y =-8C .5x +4y =-3D .3x -4y =-83.以方程组⎩⎪⎨⎪⎧y =-x +2,y =x -1的解为坐标的点(x ,y )在平面直角坐标系中位于( A )A .第一象限B .第二象限C .第三象限D .第四象限4.已知∠A ,∠B 互余,∠A 比∠B 大30°.设∠A ,∠B 的度数分别为x °,y °,下列方程组中符合题意的是( C )A.⎩⎪⎨⎪⎧x +y =180x =y -30B.⎩⎪⎨⎪⎧x =-2x =y +30C.⎩⎪⎨⎪⎧x +y =90x =y +30D.⎩⎪⎨⎪⎧x +y =90x =y -30 5.已知⎩⎪⎨⎪⎧x =2k ,y =-3k是二元一次方程2x -y =14的解,则k 的值是( A )A .2B .-2C .3D .-36.若方程组⎩⎪⎨⎪⎧mx -ny =1,nx +my =8的解是⎩⎨⎧x =2,y =1,则m ,n 的值分别是( B ) A .2,1 B .2,3 C .1,8 D .无法确定7.五一期间,人民商场女装部推出“全部服装八折”、男装部推出“全部服装八五折”的优惠活动,某顾客在女装部购买了原价为x 元、男装部购买了原价为y 元的服装各一套,优惠前需付700元,而他实际付款580元,则可列方程组为( D )A.⎩⎪⎨⎪⎧x +y =5800.8x +0.85y =700B.⎩⎪⎨⎪⎧x +y =7000.85x +0.8y =580C.⎩⎪⎨⎪⎧x +y =7000.8x +0.85y =120D.⎩⎪⎨⎪⎧x +y =7000.8x +0.85y =5808.一批房间,若每间住1人,有10人无处住;若每间住3人,则有10间无人住,则这批房间数为( A )A .20B .12C .15D .109.(2014·成都)已知函数y =12x +m 与y =2x -n 的图象如图所示,则方程组⎩⎪⎨⎪⎧x -2y =-2m ,2x -y =n 的解是( A )A.⎩⎪⎨⎪⎧x =2y =2B.⎩⎪⎨⎪⎧x =1y =2C.⎩⎪⎨⎪⎧x =-2y =-2D.⎩⎪⎨⎪⎧x =2y =110.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则下列是此二元一次方程组的是( D )A.⎩⎪⎨⎪⎧x -y -2=03x -2y -1=0B.⎩⎪⎨⎪⎧2x -y -1=03x -2y -1=0C.⎩⎪⎨⎪⎧2x -y -1=03x +2y -5=0D.⎩⎪⎨⎪⎧x +y -2=02x -y -1=0 二、填空题(每小题3分,共18分)11.已知二元一次方程2x -3y =1,若x =3,则y =__53__;若y =1,则x =__2__.12.(2014·荆门)若-2x m -n y 2与3x 4y 2m +n 是同类项,则m -3n 的立方根是__2__.13.王老师把几本《数学大世界》让学生们阅读.若每人3本则剩下3本.若每人5本,则有一位同学分不到书看.总共有__4__位同学,__15__本书.14.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载,有__2__种租车方案.15.(2014·东营)如果实数x ,y 是方程组⎩⎪⎨⎪⎧x +3y =0,2x +3y =3的解,那么代数式(xy x +y +2)÷1x +y 的值是__1__.16.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%,求甲、乙两种商品原来的单价.现设甲商品原来的单价为x 元,乙商品原来的单价为y 元,根据题意可列方程组为__⎩⎨⎧x +y =100,0.9x +1.4y =100×1.2__.三、解答题(共72分)17.(8分)(1)⎩⎪⎨⎪⎧x -y =8,3x +y =12;(2)⎩⎪⎨⎪⎧3x +2y =5x +2,x +y =-3.解:⎩⎨⎧x =5y =-3 解:⎩⎨⎧x =-2y =-118.(7分)若等式(2x -4)2+|y -12|=0中的x ,y 满足方程组⎩⎨⎧mx +4y =8,5x +16y =n ,求2m 2-n +14mn 的值.解:依题意得⎩⎪⎨⎪⎧2x -4=0y -12=0,∴⎩⎪⎨⎪⎧x =2y =12,将⎩⎪⎨⎪⎧x =2y =12代入方程组得⎩⎨⎧m =3n =18,∴原式=27219.(7分)已知|x +2y -9|+(3x -y +1)2=0,求x ·y 的平方根.解:由非负数的性质得:⎩⎨⎧x +2y -9=0,①3x -y +1=0.②由①得x =9-2y ③,将③代入②得3(9-2y )-y +1=0,解得y =4,把y =4代入③得x =1.所以x·y =4,则x·y 的平方根是±220.(7分)为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4本笔记本和2支钢笔,则需86元;如果买3本笔记本和1支钢笔,则需57元.求购买每本笔记本和每支钢笔分别需要多少元?解:设买每本笔记本x 元,每支钢笔y 元,则依题意可列方程组⎩⎨⎧4x +2y =86,3x +y =57,解得⎩⎨⎧x =14,y =15.∴买每本笔记本14元,每支钢笔15元21.(8分)直线a 与直线y =2x +1的交点的横坐标是2,与直线y =-x +2的交点的纵坐标是1,求直线a 对应的表达式.解:设直线a 的表达式为:y =kx +b.由x =2代入y =2x +1求得y =5,即直线a 上的一个点的坐标是(2,5);由y =1代入y =-x +2求得x =1,即直线a 上的另一个点的坐标是(1,1).将点(2,5),(1,1)代入y =kx +b 中,得⎩⎨⎧k +b =1,2k +b =5.解得⎩⎨⎧k =4,b =-3.所以直线a对应的表达式为:y =4x -322.(8分)(2014·吉林)如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度为28 cm ,演员踩在高跷上时,头顶距离地面的高度为224 cm .设演员的身高为x cm ,高跷的长度为y cm ,求x ,y 的值.解:依题意得方程组⎩⎨⎧x =2y ,x +y =224+28.解得⎩⎨⎧x =168,y =84.∴x 的值为168,y 的值为8623.(8分)已知直线l 1:y 1=2x +3与直线l 2:y 2=kx -1交于点A ,点A 横坐标为-1,且直线l 1与x 轴交于点B ,与y 轴交于点D ,直线l 2与y 轴交于点C .(1)求出点A 坐标及直线l 2的表达式;(2)连接BC ,求出S △ABC .解:(1)A (-1,1),l 2:y 2=-2x -1 (2)S △ABC =S △BCD -S △ACD =124.(9分)某镇水库的可用水量为12 000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只能够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?解:(1)设年降水量为x 万立方米,每人每年平均用水量为y 立方米,由题意,得⎩⎨⎧12000+20x =16×20y ,12000+15x =20×15y.解得⎩⎨⎧x =200,y =50.答:年降水量为200万立方米,每人年平均用水量为50立方米 (2)设该城镇居民年平均用水量为z 立方米才能实现目标,由题意,得12000+25×200=20×25z ,解得z =34.则50-34=16(立方米).答:该城镇居民人均每年需要节约16立方米的水才能实现目标25.(10分)(2014·黔东南)某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y 元,请你求出y 与x 的函数关系式.解:(1)设每件甲种玩具的进价是x 元,每件乙种玩具的进价是y 元,由题意得⎩⎨⎧5x +3y =2312x +3y =141,解得⎩⎨⎧x =30y =27,答:每件甲种玩具的进价是30元,每件乙种玩具的进价是27元 (2)当0<x ≤20时,y =30x ;当x>20时,y =20×30+(x -20)×30×0.7=21x +180。

人教版七年级数学下册第八章《二元一次方程组》单元检测卷 (附答案)

人教版七年级数学下册第八章《二元一次方程组》单元检测卷 (附答案)
12.(黄石中考)一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表所示,现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销互动:购买三个及三个以上可一次性返现金4元,则购买盒子所需要最少费用为_______元.
型号
A
B
单个盒子容量(升)
2
3
单价(元)
5
6
三、解答题(共60分)
2.若 ,则ab=()
A.-10B.-40C.10D.40
【答案】A
【解析】
【分析】联立已知两方程求出a与b的值,即可求出ab的值.
【详解】解:联立得:
解得
∴ab=-10.
故选A.
3.若-2amb4与5an+2b2m+n可以合并成一项,则mn的值是( )
A.0B. C.1D.2
【答案】C
【解析】
【分析】根据-2amb4与5an+2b2m+n可以合并成一项,可得同类项,根据同类项的定义,可得m、n的值,根据乘方,可得答案.
18.阅读下列材料:
问题:某饭店工作人员第一次买了13只鸡、5只鸭、9只鹅共用了925元.第二次买了2只鸡、4只鸭、3只鹅共用了320元,试问第三次买了鸡、鸭、鹅各一只共需多少元?(假定三次购买鸡、鸭、鹅的单价不变)
解:设鸡、鸭、鹅的单价分别为x,y,z元.依题意,得

上述方程组可变形为 ,
设x+y+z=a,2x+z=b,上述方程组可化 : ,
13.解方程组:
(1)
(2)
14.已知 是关于x,y的二元一次方程3x=y+a的解,求a(a-1)的值.
15.已知关于x,y 方程组 与 有相同的解,求a,b的值.

新人教版初中数学七年级下册第8章《二元一次方程组》单元测试卷(含答案解析)

新人教版初中数学七年级下册第8章《二元一次方程组》单元测试卷(含答案解析)

人教版数学七年级下册同步单元复习卷: 第8章 二元一次方程组一、填空题(本大题共8小题,共32分)1.写出一个解为12x y =-⎧⎨=⎩的二元一次方程组__________.2.方程mx -2y=x+5是二元一次方程时,则m________.3.若2x 2a-5b +y a -3b =0是二元一次方程,则a=______,b=______. 4.若12a b =⎧⎨=-⎩是关于a ,b 的二元一次方程ax+ay -b=7的一个解,则代数式(x+y )2-1•的值是_________5.若2x 5a y b+4与-x 1-2b y 2a 是同类项,则b=________. 6.已知都是ax+by=7的解,则a=_______,b=______.7.甲队有x 人,乙队有y 人,若从甲队调出10人到乙队,则甲队人数是乙队人数的一半,可列方程为______________.8.在等式y =kx +b 中,当x =1时,y =1;当x =2时,y =4,则k =__________,b =__________.二、选择题(本大题共8小题,每小题4分,共32分。

)9.表示二元一次方程组的是( )A 、⎩⎨⎧=+=+;5,3x z y xB 、⎩⎨⎧==+;4,52y y xC 、⎩⎨⎧==+;2,3xy y xD 、⎩⎨⎧+=-+=222,11xy x x y x 10.已知2 x b +5y 3a 与-4 x 2a y 2-4b 是同类项,则b a 的值为( )A .2B .-2C .1D .-1 11.若关于x 、y 的方程组⎩⎨⎧=-=+k y x k y x 73的解满足方程2x +3y =6,那么k 的值为( ) A .-23 B .23 C .-32 D .-23 12.如图所示,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ).A .400 cm 2B .500 cm 2C .600 cm 2D .4 000 cm 213.方程82=+y x 的正整数解的个数是( )A 、4B 、3C 、2D 、114.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =m ,x -y =4m 的解为3x +2y =14的一个解,那么m 的值为( ). A .1 B .-1 C .2 D .-215.六年前,A 的年龄是B 的年龄的3倍,现在A 的年龄是B 的年龄的2倍,A 现在的年龄是( ).A .12岁B .18岁C .24岁D .30岁16.已知下列方程组:(1)⎩⎨⎧-==23y y x ,(2)⎩⎨⎧=-=+423z y y x ,(3)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,(4)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,其中属于二元一次方程组的个数为( )A .1B .2C .3D .4三、解答题(本大题共6小题,共36分)17.(1)⎩⎨⎧=+=-5253y x y x (2) ⎩⎨⎧=--=523x y x y(3)⎩⎨⎧=+=-152y x y x (4)⎩⎨⎧+==-1302y x y x(5)⎩⎨⎧-=+=-14329m n n m (6)⎩⎨⎧=+-=-q p q p 45133218.若12x y =⎧⎨=⎩是关于x ,y 的二元一次方程3x -y +a=0的一个解,求a 的值.19.小华不小心将墨水溅在同桌小丽的作业本上,结果二元一次方程组31122x yx y+=⎧⎨+=-⎩中第一个方程y的系数和第二个方程x的系数看不到了,现在已知小丽的结果是12xy=⎧⎨=⎩,你能由此求出原来的方程组吗?20.某纸品加工厂为了制作甲、乙两种无盖的长方体小盒,利用边角余料裁出正方形和长方形两种硬纸片,长方形的宽和正方形的边长相等,现将150张正方形硬纸片和300张长方形硬纸片全部用来制作这两种小盒,可以制作甲、乙两种小盒各多少个人教版七年级下册第8章二元一次方程组综合素质检测卷(解析版)人教版七年级下册第八章二元一次方程组单元检测题综合素质检测卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。

第四章二元一次方程组单元检测(含答案)-

第四章二元一次方程组单元检测(含答案)-

第四章二元一次方程组单元检测一、选择题(每小题有且只有一个正确的答案:每小题3分,共30分)1.下列方程中,是二元一次方程组的是()A.111213 542...1133412(2)332x x yx y x y xyyB C Dxy x yy x yyx⎧⎧+=-=⎪⎪+=-+=⎧⎧⎪⎪⎨⎨⎨⎨=-=⎩⎩⎪⎪-=--=⎪⎪⎩⎩2.方程组251x yx y-=⎧⎨+=⎩的解是()A.3022...1111 x x x xB C Dy y y y===-=⎧⎧⎧⎧⎨⎨⎨⎨====-⎩⎩⎩⎩3.21xy=⎧⎨=⎩是方程ax-y=3的解,则a的值是()A.4 B.3 C.2 D.14.若x a-b-2y a+b-2=11是二元一次方程,那么a,b的值分别为() A.0,1 B.2,1 C.1,0 D.2,35.已知方程组42ax byax by-=⎧⎨+=⎩的解为21xy=⎧⎨=⎩,则2a-3b的值为()A.6 B.4 C.-4 D.-66.小刘同学用10元钱购买两种不同的贺卡共8张,单价分别是1元与2元,设1元的贺卡为x张,2元的贺卡为y张,那么x,y所适合的一个方程组是()A.108810...210228210 8210x yyx y x yxB C Dx y x yx y x y⎧⎧+=+=+=+=⎧⎧⎪⎪⎨⎨⎨⎨+=+=⎩⎩⎪⎪+=+=⎩⎩7.下列方程中,与方程3x+4y=-1有公共解32xy=-⎧⎨=⎩的方程是()A.x+y=2 B.2x-y=8 C.x+4y=5 D.4x-y-10=0 8.二元一次方程2x+y=7的正数解有()A.一组 B.二组 C.三组 D.四组9.解方程组278ax bycx y+=⎧⎨-=⎩时,一学生把c看错而得到22xy=-⎧⎨=⎩,而正确的解是32xy=⎧⎨=-⎩,那么a,b,c的值应是( •)A.不能确定 B.a=4,b=5,c=-2C.a,b不能确定,c=-2 D.a=4,b=7,c=210.《九章算术》是我国东汉初年编订的一部数学经典著作.•在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图(1)、图(2).图中各行从左到右列出的算筹数分别表示未知数x,y系数与相应的常数项,把图(1)所示的算筹图用我们现在所熟悉的方程组形式表述出来就是3219423x yx y+=⎧⎨+=⎩类似地,图(2)所示的算筹图我们可以表述为()(1) (2)A.211211321926... 432743224234327 x y x y x y x yB C Dx y x y x y x y+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨+=+=+=+=⎩⎩⎩⎩二、填空题(每题3分,共30分)11.请写出一个以12xy=⎧⎨=-⎩为解的二元一次方程组__________________________________⎧⎨⎩.12.已知二元一次方程x=35y+4,用含x的代数式表示y________.13.若│x-y+2│与(x+y-1)2互为相反数,则x=______,y=______.14.已知3a x-1b y+1与-12a2-y b x是同类项,则x-y-1=______.15.已知12xy=⎧⎨=-⎩,2xy=⎧⎨=⎩都是方程ax-by=1的解,则a=______,b=_______.16.用加减消元法解方程组31422x yx y+=-⎧⎨+=⎩,由①×2-②得_________.17.某自然村共135人参加挖渠劳动,其中挖土人数是运土人数的3倍少1人,问挖土和运土各多少人?根据题意列出了方程组3531x yy x+=⎧⎨=-⎩,其中x表示______;y_______.18.今年某省荔枝又喜获丰收.目前市场价格稳定,荔枝种植户普遍获利.据估计,今年全省荔枝总产量为50000吨,销售收入为61000万元,•已知“妃子笑”品种售价1.5万元/吨,其他品种平均售价为0.8万元/吨,求“妃子笑”和其他品种荔枝产量各为______________吨.如果设“妃子笑”荔枝产量为x吨,其他产品荔枝产量为y吨,•那么可列出方程组为_________________ _________________⎧⎨⎩.19.当x=2时,代数式ax3+bx+1的值为6;那么当x=-2时,这个代数式的值是_____.20.某车间每天能生产甲种零件300个,或者乙种零件500个,或者丙种零件600个,甲、乙、丙三种零件各一个配一套.现在要用63天使产品成套,•那么生产甲种零件应当用_______天,生产乙种零件应当用______天,生产丙种零件应当用_______天.三、解答题(共16分)21.(每题5分)解下列方程组:(1)2435(2)21624 y x x yx y x y=+=⎧⎧⎨⎨+=-=⎩⎩22.(6分)已知2517x mx nyy mx ny=+=⎧⎧⎨⎨=--=⎩⎩是方程组的解,求m,n的值.四、列二元一次方程组解应用题(共24分)23.某停车场的收费标准如下:中型汽车的停车费为6元/辆,•小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?24.2004年12月,印度洋周边地区因地震引发了海啸,这是世界性的灾难,因为海啸的速度是惊人的!它的速度是一般人步行速度的100倍,一般人步行速度的25•倍与海啸速度的和为1000千米/小时,问一般人步行速度是多少?海啸的速度是多少?25.为了保护学生的视力,课桌的高度都是按一定的比例配套设计的.研究表示:假设课桌的高度为ycm,椅子的高度(含靠背)为xcm,则y与x之间应存在y=kx+b•的关系.下(1)试确定y与x(2)当椅子的高度为43cm时,桌子的高度是多少呢?答案:1.D 2.D 3.C 4.B 5.A 6.D 7.C 8.C 9.B 10.A11.略 12.5203x-13.-12,3214.2 15.12,1416.2x=-4 17.运土人数,挖土人数18.1.50.8610005000x yx y+=⎧⎨+=⎩19.-4 20.30,18,•15 •21.(1)42(2)81 x xy y==⎧⎧⎨⎨==-⎩⎩22.m=3,n=1 23.中型汽车15辆,小型汽车35辆24.步行速度8千米/小时,海啸速度800千米/小时25.(1)y=1.6x+11 (2)79.8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年下学期初中二年级数学
第七章检测题
分数统计表(考生不要填写)
一、
选择(本大题共12小题,每小题3分,共36分,每个小题只有一个选项是正
确的,将正确答案的选项符号填在括号里,多选、错选或不选均为零分)。

1. 下列方程是二元一次方程的是( )
A. 12
=+x x B. 0132=-+y x C.0=-+z y x D. 011
=++
y
x 2.表示二元一次方程组的是( ) A 、⎩⎨
⎧=+=+;5,3x z y x B 、⎩⎨⎧==+;4,52y y x C 、⎩⎨⎧==+;2,3xy y x D 、⎩⎨⎧+=-+=2
22,11x
y x x y x 3. 方程82=+y x 的正整数解的个数是( )
A 、4
B 、3
C 、2
D 、1 4. 方程组⎩⎨
⎧=-=-8
235
2y x y x ,消去y 后得到的方程是( )
A 、01043=--x x
B 、8543=+-x x
C 、8)25(23=--x x
D 、81043=+-x x 5. 方程2x -
1
y
=0,3x+y=0,2x+xy=1,3x+y -2x=0,x 2-x+1=0中,二元一次方程的个数是( )
A .1个
B .2个
C .3个
D .4个
6. 关于x ,y 的二元一次方程组59x y k
x y k +=⎧⎨
-=⎩
的解也是二元一次方程2x+3y=6的解,则k
的值是( ).
A .k=-
34 B .k=34 C .k=43 D .k=-43
7. 如果│x+y -1│和2(2x+y -3)2互为相反数,那么x ,y 的值为( )
A .1122
(2211)
x x x x B C D y y y y ==-==-⎧⎧⎧⎧⎨



==-=-=-⎩⎩⎩⎩ 8. 二元一次方程5a -11b=21 ( )
A .有且只有一解
B .有无数解
C .无解
D .有且只有两解 9. 若23815m n x y -+-=是关于x y 、的二元一次方程,则m n +=( )
A.1-
B.2
C.1
D.2-
10. 以11x y =⎧⎨=-⎩
为解的二元一次方程组是( )
A .01x y x y +=⎧⎨
-=⎩ B .01
x y x y +=⎧⎨-=-⎩ C .02x y x y +=⎧⎨-=⎩ D .0
2x y x y +=⎧⎨-=-⎩
11. 已知代数式
13
12
a x y -与23
b a b x y -+-是同类项,那么a 、b 的值分别是( ) A.2
1
a b =⎧⎨
=-⎩
B.2
1
a b =⎧⎨
=⎩
C.2
1
a b =-⎧⎨
=-⎩
D.2
1
a b =-⎧⎨
=⎩
12. 若方程组⎩⎨
⎧=+=-81my nx ny mx 的解是⎩
⎨⎧==12
y x ,则m 、n 的值分别是( )
A. m=2,n=1
B. m=2,n=3
C. m=1,n=8
D. 无法确定
二、填空。

(本大题共6小题,每小题3分,共18分)
13. 已知二元一次方程132=-y x 中,若3=x 时,=y ;若1=y 时,则
=x 。

14. 由方程0623=--y x 可得到用x 表示y 的式子是
15. 一船顺水航行45千米需要3小时,逆水航行65千米需要5小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,则可列方程组为 (提示:船在顺流水中速度为船在静水得速度加水速,逆流则为静水船速减水速) 16. a 的相反数是2b -1,b 的相反数是3a+1,则a 2+b 2=_________.
17. 如图,点O 在直线AB 上,OC 为射线,
1∠比2∠ C
A
B
1 2 O
的3倍少︒10,设1∠,2∠的度数分别为x ,y ,那么下列求出这两个角的度数的方程是 ________________________
18. “十一黄金周”期间,几位同学一起去郊外游玩。

男同学都背着红色的旅行包,女同学都背着黄色的旅行包。

其中一位男同学说,我看到红色旅行包个数是黄色旅行包个数的1.5倍。

另一位女同学说,我看到红色旅行包个数是黄色旅行包个数的2倍。

如果这两位同学说的都对,那么女同学的人数是( )
三、解答题(本大题共7小题,共63分+3分卷面分,要求写出必要的演算求解过程)。

19.解方程(每题5分,共20分)。

(1).⎩⎨⎧=+=-)2(523)1(82y x y x (2).⎪⎩⎪
⎨⎧=-+=+.
11)1(2,231
y x y x
(3).⎩⎨⎧=-=+-6430524m n n m (4).⎪⎪⎩⎪⎪⎨⎧=--=-323
113
121y x y x
20. (8分)初一级学生去某处旅游,如果每辆汽车坐45人,那么有15个学生没
有座位;如果每辆汽车坐60人,那么空出1辆汽车。

问一工多少名学生、多少辆汽车。

21. (11分)某高校共有5个大餐厅和2个小餐厅,经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.
(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;
(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.
22.(8分)某校去年一年级男生比女生多80人,今年女生增加20%,男生减少25%,结果女生又比男生多30人,求去年一年级男生、女生各多少人.
23.(8分)一两位数, 十位数字和个位数字的和为15, 把原两位数的十位数字与个位数字的位置调换得新两位数比原两位数少27, 求原两位数..
24.(8分)甲、乙两人同解方程组
515
42
ax y
x by
+=


=-

时,甲看错了方程①中的a,解
试求a2018 +(—
10
b
)2017

3
1
x
y
=-


=-

,乙看错了②中的b,解得
的值。

高新区徂徕镇第一中学李振
2017-2018学年下学期初中二年级数学
第七章检测题答案
一、选择题(每题3分)。

BDBDB BCBCC AB
二、填空。

(每题3分)
13. 5/3 14.y=1.5x-3 15.
16. 1 17. x=3y-10 18. 6
x+y=180
三.解答题。

(本答题包括卷面书写3分)
19.解方程(每题5分共20分)
20.解:设总共有x辆车,有y个学生,根据提议列方程:
解得x=5,y=240
答:共有5辆车,240个学生。

(列对每个方程3分,解对一个1分,设未知数不规范或不写扣1分,共8分)21.解:设有x个大餐厅,y个小餐厅,列方程得:
x+2y=1680
2x+y=2280
解得x=960,y=360
5X960+2X360=5520<5300.
答:一个大餐厅容纳960人,一个小餐厅容纳360人,七个餐厅同时开放不能容纳全校学生。

(列方程每个3分,解方程每个1分,第二问3分,共11分)
22.解:设男生有x 人,女生y 人,列方程得: x-y=80
(1+20%)x-(1-25%)y=30
解得:x=280,y=200
答:男生有280人,女生有200人。

(列方程每个3分,解方程每个1分,共8分) 23.解:设十位数字是x ,个位数字是y ,根据题意: x+y=15
10x+y=10y+x+27
解得x=9,y=6
答:原两位数是96.
(列方程每个3分,解方程每个1分,共8分)
24.解:将x=-3,y=-1代入4x=by-2, 得到-3x4=-b-2, 解得b=10,
将x=5,y=4代入ax+5y=15, 得到5a+5x4=15, 解得a=-1,
(-1)
2018
+(-
10
10)2017
=1-1=0
(代入x 、y 解出b 得3分,解出a 得3分,a 、b 代入所求代数式1分,算对得0得1分,共8分)。

相关文档
最新文档