超导体的推测
超导体 概念
超导体概念
超导体是指在低温条件下,电阻消失或接近零的材料。
当超导体受到外加电流或磁场时,可以产生超导电流或磁通排斥效应。
超导体的概念最早由荷兰物理学家海克·卡末林领导的研究小
组于1911年发现,并在1957年由美国物理学家J. Bardeen、L. Cooper和R. Schrieffer提出了著名的BCS理论,解释了超导
现象的机制。
超导体的主要特征是具有零电阻和完全磁场排斥效应。
在超导态下,电子通过原子晶格的正空穴形成库珀对,而不是单个电子运动。
这种库珀对的形成使得电子能够无碰撞地通过晶格,从而消除了电阻。
超导体的临界温度是指材料变为超导体的临界温度,不同的超导体材料临界温度各不相同,有些超导体的临界温度可以达到几百摄氏度。
超导体的输运性质还包括完全的磁场屏蔽效应、零电阻传导和极低的能量损耗等优点,因此在许多领域有广泛的应用,如磁共振成像、电能传输、粒子加速器和磁悬浮列车等。
然而,超导体需要在极低温度下才能实现超导态,并且通常需要极低的温度和复杂的制备工艺,限制了其实际应用范围。
因此,研究人员一直致力于开发更高临界温度的超导体材料,以便实现更广泛的应用。
对超导体的基本认识
对超导体的基本认识一.超导现象的发现超导是某些金属或合金在低温条件下出现的一种奇妙的现象。
19世纪末,低温技术获得了显著的进展,曾一向被视为“永久气体”的空气被液化了。
1877年氧气被首先液化,液化点也就是我们所说的常压下沸点是-183℃(90K)。
随后人们又液化了液化温度是-196℃的氮气。
1898年杜瓦(J.Dewar)第一次把氢气变成了液体氢,液化温度为-253℃,他并发明了盛放液化气的容器——杜瓦瓶。
最先发现这种现象的是荷兰物理学家卡麦林·昂纳斯。
1908年卡麦林·昂纳斯液化氦(-259℃)成功,从而达到一个新的低温区(4.2K以下),他在这样的低温区内测量各种纯金属的电阻率。
1911年夏天,当昂纳斯的两个研究生在做低温实验时,偶然发现某些金属在极低温环境中,金属的电阻突然消失了。
昂纳斯接着用水银做实验,发现水银在4.1K时(约相当于-269℃),出现了这种超导现象;不但纯汞,而且加入杂质后,甚至汞和锡的合金也具有这种性质。
他把这种性质称为超导电性。
他又用铅环做实验,九百安培的电流在铅环中流动不止,两年半以后仍旧毫无衰减。
1932年霍尔姆和卡茂林-昂尼斯都在实验中发现,隔着极薄一层氧化物的两块处于超导状态的金属,没有外加电压时也有电流流过。
1933年荷兰的迈斯纳和奥森菲尔德共同发现了超导体的一个极为重要的性质。
二.超导体的基本性质1、零电阻效应在超导条件下,电阻等于零是超导体的最显著的特性。
如果将一金属环放在磁场中,突然撤去磁场,在环内就会出现感生电流。
金属环具有电阻R和电感L。
由于焦耳热损耗,感生电流会逐渐衰减到零,衰减速度与L和R的比值有关,L/R的值越大,衰减越慢。
如果圆环是超导体,则电阻为零而电感不为零;因此电流会毫不衰减地维持下去。
这种“持续电流”已在多次实验中观察到。
测量超导环中持续电流变化的实验给出,样品铅的电阻率小于3.6×10-2欧姆厘米,它比铜在室温下的电阻率1.6×10-6欧姆厘米还要小4.4×1016倍。
浅谈超导体
浅谈超导体徐建强河南省卢氏县第一高级中学来源人教网由于导体的电阻,在远距离输电等方面造成较大的电能浪费;如能生产一种超导体材料,没有电阻,电流流经它时将不受任何阻力,没有热损耗,于是就能以小的功率得到大的电流,从而产生几个甚至几十个特斯拉的超强磁场,将具有很高的应用价值。
今天,这一切以成为现实。
一、超导体的基本特性1. 零电阻效应超导现象的发现是与低温技术的发展分不开的。
1906年荷兰著名低温物理学家昂纳斯(H.K.Onnes,1853—1926)首次制备出液态氮,获得4开的低温(相当于-269℃),随后又获得了1.04开的低温。
这是继1898年制备出液态氢获得14开低温之后的巨大进展。
随着低温技术的进展,科学家已注意到纯金属的电阻随温度的降低而减小的现象。
昂纳斯首先研究低温下水银电阻的变化。
l911年发现了水银的超导现象。
在4.2开附近水银电阻突然变小。
图1是水银的电阻随温度的变化情况,纵坐标是该温度下水银电阻与0℃时电阻的比值:R(T)/R(0℃)。
较精确的测量给出水银的超导转变温度(临界温度)Tc=4.153 开。
继续降温到3开时,电阻降到仅为0℃时电阻值的10-7Ω,电阻值实际已可看作零了。
图1水银的零电阻效应1912—1913年间昂纳斯又发现锡(Sn)在3.8开低温时,也有零电阻现象。
随后科学家们又发现了其他许多金属或合金在低温下都有零电阻效应。
昂纳斯首先将这种特殊的电学性质称为超导。
昂纳斯由于液氦的制备和超导现象的研究获 l913 年诺贝尔物理学奖。
2 .完全抗磁性1933年,德国物理学家迈斯纳(W.Meissner) 通过实验发现:当置于磁场中的导体通过冷却过渡到超导态时,原来进入此导体中的磁感线会一下子被完全排斥到超导体之外 (见图2),超导体内磁感应强度变为零,这表明超导体是完全抗磁体。
这个现象称为迈斯纳效应。
3 .存在临界磁场实验表明,超导态可以被外磁场所破坏,在低于Tc的任一温度T下,当外加磁场的磁感应强度B小于某一临界值Bc时。
超导体是什么以及其应用领域
超导体是什么以及其应用领域超导体是一种特殊的材料,在低温下可以表现出零电阻和完全反磁性的特性。
这种材料的独特性质使其在许多领域中得到了广泛的应用。
超导体最早被发现于1911年,当时是由荷兰物理学家海克·卡梅林·奥克斯纳发现的。
他发现一种含铅的合金在接近绝对零度时表现出了完全的电阻为零。
随后的几十年中,其他材料也被发现具有类似的特性,包括铜氧化物和铁基超导体。
超导体的特性是由一个称为“库珀对”的现象所导致的。
在超导体中,电子形成成对移动,避免了单个电子导致的电阻。
这也解释了为什么只有在低温下这种特性才会表现出来,因为热会导致这些库珀对分解。
超导体的应用领域非常广泛,下面简单列举了一些:1. 超导磁体超导磁体是利用超导体制造的磁体。
这种磁体可以产生比常规磁体更强的磁场,并且溶解在液氦中不会导致热量的释放。
它们被广泛应用于核磁共振、医学成像和粒子加速器等领域。
2. 超导传输线超导体的电阻为零,使其可以制造出高效的电力传输线路。
这种传输线被用于高层建筑和城市之间大规模的电力传输。
3. 超导电动机超导电动机比传统的电动机更加高效,因为它们可以使用更强的磁场来驱动电机。
这些电动机被广泛应用于高速列车、船舶和飞机等领域。
4. 超导磁悬浮列车超导体可以用于制造磁悬浮列车的轨道。
这种列车可以在超高速下运转,并且非常节能。
5. 超导电缆超导电缆是利用超导体制造的电缆。
它们可以在大功率传输时具有更高的效率和更小的损耗。
超导体的应用领域还包括量子计算、超导量子干涉仪、量子传感器和量子密钥分发等。
这些领域还在发展中,未来还有更多可能的应用。
总之,超导体的独特性质使其在现代科技领域中得到了广泛的应用。
它们在制造高效电力传输、超高速列车、核磁共振成像和其他许多领域中都扮演着重要的角色。
随着科技的发展,我们有理由相信,超导体的应用领域还会不断扩展。
超导体的性质及其应用
超导体的性质及其应用超导体是一种特殊的物质,具有超导性质,即在超导状态下,电流能够无阻尼地流动。
超导体的发现已经有一百多年的历史,但是这一领域仍然在不断地探索和发展,因为它具有广泛的应用前景。
一、超导体的基本特性超导现象是普通金属、半导体、绝缘体在低温下发生的。
在某一温度下,金属或其他材料的电阻突然降到零,这被称为超导现象。
此时电流可以在材料内无耗散地流动。
超导体具有以下几个基本特性:1. 零电阻超导体在超导状态下的电阻是零,电流能够在材料内无阻尼地流动。
这种特性意味着超导体可以作为高效的电线和电缆使用。
通过在超导体内流动电流,我们可以将能量输送到远处的地方。
2. 磁通量量子化在超导体中,磁通量的变化是量子化的。
这意味着磁通量只能在一个固定的大小范围内变化。
这一特性使得超导体可以作为高精度的磁测量仪使用。
3. 非常低的热导率超导体的热导率非常低,这意味着在超导状态下,超导体会把电流输送到远处,而不会将能量释放为热量。
这是超导体应用于高能物理实验和医疗成像等领域的原因之一。
二、超导体的应用超导体的这些特性使得它在各种领域中具有广泛的应用前景。
以下是一些主要的应用领域:1. 超导磁体超导体可以用来制造非常强大的磁体。
这些磁体在医疗成像、核磁共振、加速器、磁悬浮列车等领域中广泛应用。
利用超导体制造的磁体比利用传统材料制造的磁体更强大,同时也能节省能源和成本。
2. 超导电缆超导体可以作为高能量输送的高效电缆使用。
利用超导体制造的电缆具有比传统电缆更高的能量传输速率,同时能够降低能量损失和线路堵塞。
3. 超导电子元器件超导体可以用来制造高速、高精度的电子元器件,如微波滤波器、量子比特、SQUID等。
这些元器件在通信、计算机、量子计算等领域中有重要的应用。
4. 超导电动机利用超导体制造的电动机比利用传统材料制造的电动机更高效、更具可靠性。
这些电动机在船舶、航空航天、高速列车等领域中有广泛的应用前景。
5. 超导材料随着超导材料的研究和制造技术的发展,超导材料的性能不断提高,同时成本也在逐步降低。
超导体是什么
超导体是什么
超导体是一种在低温下能够以零电阻电流传输的材料。
当超导体被冷却至其临
界温度以下时,材料的电阻会突然消失,电流可以无阻碍地在其中流动。
这种特殊的电性质使得超导体在许多领域有着广泛的应用。
超导体的发现历程
超导现象最早于1911年被荷兰物理学家海克·卡梅林·奥姆斯发现。
他发现在
液态氦的温度下,汞的电阻突然消失,电流可以持续流过汞而不损失能量。
这一现象被后来的研究者称为超导现象,对于科学界来说是一次重大的突破。
超导体的分类
超导体可分为低温超导体和高温超导体两种。
低温超导体是指其临界温度较低,通常需要接近绝对零度才能展现超导性质,如铅、汞等金属;而高温超导体则是指其临界温度相对较高,甚至可以达到液氮温度以下,如YBCO、BiSrCaCuO等化合物。
超导体的应用领域
超导体在科学研究和工程领域有着广泛的应用。
在磁共振成像(MRI)、粒子
加速器、磁悬浮列车等领域,超导体的零电阻特性被广泛应用,能够提高系统的效率和性能。
此外,超导体还被用于制造高灵敏度的量子比特、超导量子干涉仪等高端科技产品。
超导体的未来发展
随着对超导体研究的深入,科学家们正在不断探索新的超导材料和机制。
希望
未来可以发现更高临界温度的超导体,以实现室温超导的梦想。
超导体的发展将为能源传输、电子器件、计算机科学等领域带来巨大的变革。
超导体的奇妙性质和广泛应用使其成为科学界的热点研究领域之一。
对超导体
的研究将为未来科技的发展和人类社会带来更多惊喜和挑战。
新材料科学:超导体的研究进展
新材料科学:超导体的研究进展超导体是一种在低温下具有零电阻的材料,其研究一直是材料科学领域的热点之一。
随着科技的不断发展,人们对超导体的研究也取得了许多重要进展。
本文将介绍超导体的基本概念、研究方法以及最新的研究进展。
一、超导体的基本概念超导体是指在低温下电阻为零的材料。
这种特殊的电性质使得超导体在电力输送、磁共振成像等领域具有广泛的应用前景。
超导体的电阻为零是由于其电子在低温下形成了一种称为“库珀对”的配对态,这种配对态能够有效地抵消电子之间的散射,从而使电流能够无阻碍地通过超导体。
二、超导体的研究方法超导体的研究主要通过实验和理论两种方法进行。
实验方法包括制备超导体样品、测量其电阻和磁性等性质,以及观察其在不同温度下的超导转变。
理论方法则通过建立数学模型和计算模拟来解释超导体的物理机制和性质。
制备超导体样品是超导体研究的基础。
目前常用的制备方法包括固相反应、溶胶-凝胶法、物理气相沉积等。
这些方法可以制备出不同结构和成分的超导体样品,为研究超导体的性质提供了基础条件。
测量超导体的电阻和磁性是研究超导体性质的重要手段。
电阻测量可以通过四探针法、交流电阻法等方法进行,磁性测量则可以通过超导量子干涉仪、磁化率测量仪等设备进行。
这些测量手段可以帮助研究人员了解超导体的临界温度、临界电流等重要参数。
观察超导体的超导转变是研究超导体性质的关键实验。
超导转变是指超导体在低温下从正常态转变为超导态的过程。
这一过程可以通过测量超导体的电阻随温度的变化来观察。
当温度降低到超导体的临界温度以下时,电阻会突然变为零,这就是超导转变的标志。
理论方法在超导体研究中也起着重要的作用。
通过建立数学模型和计算模拟,研究人员可以揭示超导体的物理机制和性质。
目前常用的理论方法包括BCS理论、Ginzburg-Landau理论、格林函数理论等。
这些理论方法可以解释超导体的配对机制、能隙结构等重要性质。
三、超导体的研究进展近年来,超导体的研究取得了许多重要进展。
什么是超导体
什么是超导体
超导体是一类具有超凡特性的材料,它们可以用来制造极具潜力的新
型电子设备。
要了解超导体的用处,先来了解一些其基本定义和性质。
本文通过以下内容介绍超导体及其应用。
一、定义
超导体是一类低温下强磁性物质,其电导率能大大超过普通金属,以
及可进行电力传输时无损耗的物质。
由于它没有电阻性,所以当电流
穿过它时会出现非常强大的磁场,使它成为量子物理学中最有趣的物
质之一。
二、形成原理
超导体形成的原理大致可以概括为:在低温下利用费米子的二重性对
电子的多寡导致电子进化出新的物理性质。
由于费米子的二重性,电
子在其中不会分散,而是紧紧附着在一起,形成了量子一致性,然后
再继续流动,从而形成无损耗的超导电流。
三、特性
超导体有特殊的磁性特性,就是抵抗外部磁场,即使给它施加特别强
大的磁场,也不会对它产生任何影响,这叫做Meissner效应。
另外,
它也具有超传导性和超流动性,即没有电阻。
四、应用
超导体应用场景十分的广泛,目前主要应用于磁性共振成像(MRI)、脉冲磁共振成像(MRS)、核磁共振(NMR)、等离子体领域等等。
在未来,超导体将在高速计算领域和电能传输领域发挥更重要的作用。
总之,超导体具有它独特的性质,是科技领域一项非常具有潜力的材料。
深入了解超导体,能够发掘它们无穷的可能性,从而实现一系列
新奇的技术和设备。
超导体以及超导体的应用简单介绍
超导体以及超导体的应用简单介绍超导体是指在低温下,电阻降为零的一种物质。
这种特殊的电性质使得超导体具有许多独特的应用。
下面是对超导体及其应用的简要介绍。
超导体的发现可以追溯到1911年,那时荷兰物理学家海克·卡莱恩明斯和他的学生海尔斯·昂内斯发现,在将汞冷却到低温时,其电阻突然消失。
这一发现引发了对超导性质的深入研究,并且在随后的几十年里,更多的超导体材料被发现。
超导体的应用可以分为三个主要领域:电力输运、电子器件和磁共振。
在电力输运方面,超导体的主要应用是用于输电线路。
由于超导体在低温下电阻为零,可以实现电流的无损传输,因此被广泛用于电力输送。
超导电缆是将超导体材料包裹在绝热材料中制成的,可以在最小的能量损耗下实现大容量的电力输送。
此外,超导磁能储存器也是另一个重要的应用,它可以在超导体中存储巨大的磁能,并在需要时释放出来。
在电子器件方面,超导体的应用也非常广泛。
超导配电线圈是一种重要的电子器件,被用于制造超导磁体。
由于超导体具有极高的电流密度和超强的磁场产生能力,超导磁体广泛应用于核磁共振成像(MRI)、磁悬浮列车、磁聚变以及粒子加速器等领域。
此外,超导量子干涉器件也是一种重要的超导电子器件,如超导量子干涉元件和超导量子比特,它们可以用于量子计算和量子通信等领域。
超导体在磁共振成像(MRI)中也扮演着重要的角色。
MRI是一种常用的医学成像技术,通过在被检查的人体部位产生强磁场和射频脉冲,来观察人体内部结构和功能。
由于超导体可以产生强大的磁场,超导磁体被广泛应用于MRI设备中,可以提供更高的分辨率和更短的扫描时间,同时降低对患者的辐射剂量。
此外,超导体还有其他一些应用领域,如粒子加速器和超导磁浮技术。
粒子加速器利用超导体制造强大的磁场来加速粒子,以用于基础物理研究和医学放射治疗。
而超导磁浮技术则利用超导体的反磁性质,将超导磁体悬浮在磁场中,实现了磁浮列车的高速运行和磁浮轴承的无摩擦。
超导体原理
超导体原理超导体是指在低温下具有零电阻和完全排斥磁场的材料。
它的发现和研究在物理学和工程学领域中产生了广泛的影响。
超导体的原理是基于量子力学的理论,即超导体中的电子可以形成一种称为“库珀对”的电子对,它们可以在不受阻碍地移动,从而导致电阻为零。
超导体的发现超导体的发现可以追溯到1911年,当时荷兰物理学家海克·卡门林德(Heike Kamerlingh Onnes)在对汞的研究中发现了超导现象。
他发现,在将汞冷却到4.2K以下时,它的电阻突然降为零,并且磁场也被完全排斥。
这一发现引起了科学界的广泛关注,也为超导体的研究奠定了基础。
超导体的性质超导体的主要性质是其在低温下具有零电阻和完全排斥磁场。
这些性质使得超导体在许多领域中都有着广泛的应用,例如磁共振成像、医学诊断、电力传输等。
此外,超导体还具有一些其他的特性,如超导电流、超导磁通量量子等。
超导体的原理超导体的原理是基于量子力学的理论。
在超导体中,电子可以形成一种称为“库珀对”的电子对,它们可以在不受阻碍地移动,从而导致电阻为零。
库珀对是由两个电子组成的,它们的自旋相反,但动量相同。
在超导体中,当电子通过晶格时,它们会与晶格产生相互作用,这会导致电子之间形成库珀对。
这些电子对可以自由地移动,而不会受到其他电子的干扰,因此电阻为零。
超导体的应用超导体在许多领域中都有着广泛的应用。
其中一些应用包括:1. 磁共振成像磁共振成像(MRI)是一种医学成像技术,它利用超导体产生的强磁场来生成图像。
超导体可以产生非常强的磁场,这使得MRI成像具有很高的分辨率和灵敏度。
2. 电力传输超导体可以用于电力传输,因为它们可以在电流流过时不产生电阻。
这意味着电力可以更有效地传输,而不会浪费能量。
此外,超导体还可以用于储存电能。
3. 磁悬浮列车磁悬浮列车(Maglev)是一种使用磁力悬浮技术的高速列车。
超导体可以用于磁悬浮列车中的磁浮系统,因为它们可以产生强大的磁场,从而使列车悬浮在轨道上。
超导体的条件
超导体的条件什么是超导体超导体是指在一定的条件下,电阻为零的物质。
当超导体被冷却到临界温度以下,电子在其中形成一个类似于“电子配对”的状态,使得电流能够在其中自由流动而不受阻碍。
这种特殊的电流行为被称为超导。
超导体的条件要实现超导现象,超导体需要满足以下几个条件:1. 低温超导体的第一个条件是低温。
一般来说,超导体的临界温度都非常低,通常在几个开尔文度以下,甚至接近绝对零度。
这是因为在较高的温度下,原子和分子的热运动会干扰电子的自由流动,从而导致电阻的产生。
2. 纯度超导体的第二个条件是高纯度。
杂质和缺陷会破坏电子之间的配对状态,从而破坏超导现象。
因此,为了实现超导,超导体需要经过精细的制备和纯化过程,以确保内部没有杂质和缺陷。
3. 电子配对超导体的第三个条件是电子之间的配对。
在超导体中,电子会形成一种称为“库珀对”的配对状态。
这种配对是由于电子之间的相互作用导致的,可以通过库珀对的形成来降低能量,并使电子能够在超导体中自由传导。
4. 电子间的相互作用超导体的第四个条件是电子之间的相互作用。
在超导体中,电子之间的相互作用起到了至关重要的作用。
这种相互作用可以通过晶格振动、电子-电子相互作用或其他机制来实现。
这种相互作用可以促进电子之间的配对,并降低电子的能量。
5. 三维结构超导体的第五个条件是三维结构。
超导体通常具有三维的晶体结构,其中电子可以在三个方向上自由传导。
这种三维结构有助于电子之间的相互作用,并促进电子的配对和超导现象的发生。
6. 有效的电子传输机制超导体的第六个条件是有效的电子传输机制。
超导体中的电子需要能够在晶格中自由传输,以实现超导现象。
因此,超导体通常具有良好的导电性和电子传输性能。
超导体的应用超导体具有许多重要的应用,包括:•超导磁体:超导体可以用于制造强大的磁体,用于医学成像、核磁共振和粒子加速器等领域。
•超导电缆:超导体可以用于制造输电线路,减少能量损耗和电力系统的负荷。
超导体知识点
超导体知识点超导体是一种在低温下表现出无电阻和完全磁通排斥现象的材料。
在超导体中,电流可以在没有任何耗散的情况下持续循环流动,这使得超导体在电磁学和能源应用等领域具有巨大的潜力。
本文将介绍超导体的基本概念、超导机制、超导材料和超导应用等方面的知识。
一、超导体的基本概念超导体是指在一定的温度下,电阻可以降至零的材料。
超导现象的发现可以追溯到1911年,在极低温下,荷兰物理学家海克·卡末林发现了汞的超导性。
此后,人们又陆续发现了其他材料也具有类似的特性。
二、超导机制超导现象的产生与电子之间的库仑相互作用密切相关。
在常规金属中,电子在受到温度和其它杂质的影响下会散射,从而产生电阻。
但在超导体中,电子可以通过与晶格振动相互作用,形成库伦对并在晶格中自由传输。
这种电子的凝聚状态使得电流可以在超导体中无阻力地流动。
三、超导材料超导材料可以分为低温超导体和高温超导体两类。
1. 低温超导体低温超导体需要在极低的温度下才能表现出超导特性。
常见的低温超导体包括铅(Pb)、汞(Hg)和锡(Sn)等。
2. 高温超导体高温超导体是指在相对较高的温度下表现出超导特性的材料。
这些材料通常包含氧化物,如铜氧化物(cuprate)、铁基超导体和镨钐铁钛基超导体等。
高温超导体的发现极大地推动了超导技术的发展,因为相对较高的工作温度使得超导体可以更方便地应用于实际生活中。
四、超导应用超导体在多个领域具有广泛的应用前景。
1. 能源传输超导体的无电阻特性使其成为输电线路的理想选择。
通过将输电线路用超导体替代传统的铜导线,可以大大减少能量损失。
2. 磁共振成像(MRI)超导体在医学领域的应用主要体现在磁共振成像技术中。
磁共振成像利用超导体产生的高强度磁场和射频脉冲,可以获得人体内部组织的高清影像,用于诊断和研究。
3. 磁悬浮交通超导体还可以应用于磁悬浮交通领域。
由于超导体可以在磁场中排斥磁通线,使得超导体制成的轨道可以与磁浮车辆产生浮力,从而实现摩擦减小、高速运行的效果。
超导体的研究现状与展望
超导体的研究现状与展望超导体(Superconductor)是指在特定温度下,在电磁场中能完全抵抗电阻的一类材料。
在超导体中,电子通过一种名为“库伦配对”的机制组成“库伦对”,从而能够在低温下行使电子对的运动,使电流在材料内的导体中被完全内部传播而无阻力。
超导体被广泛应用于医学、太空科技、电力输送等各个领域,如MRI扫描仪、磁悬浮列车,超导电缆等。
近年来,随着新材料的不断涌现,超导体的研究展现出了愈发良好的势头。
下面,就当前超导体的研究现状与展望进行探讨。
超导体研究现状目前在超导体的研究领域中,已经取得了许多的成果,如早期发现的铅和铝超导体、在-196℃左右温度下的氦超导体,以及更为接近室温下的铜基和铁基超导体。
在1986年,发现了第一个高温超导体——铜基氧化物超导体。
随后,在1994年,又发现了铁基高温超导体。
这两种高温超导体的发现具有里程碑式的意义,它们的超导温度高达77K和54K左右,远高于室温低得多的铅和铝超导体。
这意味着我们可以在相对较为容易地实现的低温下观察到超导现象。
但是,传统的铜基和铁基高温超导体中,仍存在诸多的问题,例如:它们的制备过程十分复杂且成本极高,超导材料中的内部缺陷对超导性能影响很大,超导材料的磁场受敏感性较大等。
因此,人们尝试寻找新的高温超导体,以便更加高效且可靠地制备新的超导体材料。
超导体研究展望当前,人们对超导体研究的兴趣持续上升,迫切需要各种新的超导材料解决人类实际生活中的需求。
超导磁体在磁共振成像(MRI)和核磁共振(NMR)等医疗应用方面具有重要作用;超导电缆则可以降低电网的输电损耗;利用超导核磁共振(NMR)技术还可以研究医药、生命科学和新材料等领域的基础和应用研究。
与此同时,各种新材料、新技术的涌现,也为超导体的研究提供了新的可能。
例如,在2019年,美国MIT的研究团队发现了一种新的类金属体,可以在室温下实现超导性,其可能实现了从低温到室温超导的跨越。
超导体工作原理分析
超导体工作原理分析超导体是一种在低温下可以表现出零电阻和迈出电磁感应的材料。
它们呈现出这些特殊性质,是因为电子在原子晶格中以库伯对的形式成对运动,并且由于零电阻而减缓了碰撞。
本文将分析超导体的工作原理,探讨其中的关键概念和现象。
一、超导体的零电阻特性超导体的最显著特征之一是零电阻。
在超导态下,电流可以无阻抗地流过材料,且没有能量损耗。
这种现象可以通过超导体中的库伯对来解释。
在超导体的常规态下,电子之间会发生碰撞,导致电阻的存在。
然而,在低温下,超导体进入超导态,电子通过库伯对的形式形成了一种强耦合,这导致了一个神奇的现象:库伯对不会受到散射的干扰,也就是说,它们不会与缺陷或杂质发生碰撞。
由于碰撞的减少,电阻几乎为零,超导体便具有了零电阻的特性。
因此,超导体可以在电流通过时形成一个稳定的电流环,无需外加电源维持。
二、超导体的临界温度超导体只在低温下表现出超导行为。
每种超导材料都有一个特定的临界温度(Tc)值,这是一个材料进入超导态的温度。
超过临界温度,材料将返回常规电阻态。
科学家们仍然在努力寻找可以在更高温度范围内实现超导的材料。
最初的超导体材料需要极低的温度,近乎于绝对零度(-273.15℃)。
然而,随着技术的发展,高温超导体材料出现了,可以在液氮温度(-196℃)下实现超导。
理解超导体的临界温度对于其应用非常重要。
在设计和应用的过程中,我们需要根据材料的临界温度选用适合的制冷设备,以确保超导体处于超导状态。
三、超导体的磁场排斥效应除了零电阻特性,超导体还表现出磁场排斥效应,即磁场在超导体中部分或完全被排斥。
这一现象被称为迈斯纳效应。
当超导体处于超导态时,它会对磁场产生一种排斥力,这种力被称为磁场排斥力或迈斯纳力。
磁场越强,超导体对其的排斥力也越强。
这一效应被广泛应用于超导磁体和磁悬浮技术等领域。
四、超导体的类型和应用超导体根据其特性和化学成分可以分为多种类型,如经典超导体、高温超导体和铁基超导体等。
证明存在常温超导(室温超导)材料
证明存在常温超导(室温超导)材料作者:冯美良1什么是超导超导体(英文名:superconductor),又称为超导材料,指在某一温度下,电阻为零的导体。
在实验中,若导体电阻的测量值低于10的负25次方Ω,可以认为电阻为零。
超导体具有三个临界参数:临界转变温度Tc、临界磁场强度Hc、临界电流密度Jc。
当超导体同时处于三个临界条件内时,才显示出超导性。
在本文发表以前所发现的超导材料全部都是低于零度。
2超导的机理BCS理论BCS理论是以近自由电子模型为基础,以弱电子-声子相互作用为前提建立的理论。
理论的提出者是巴丁(J.Bardeen)、库珀(L.V.Cooper)、施里弗(J.R.Schrieffer)。
BCS理论认为,金属中自旋和动量相反的电子可以配对形成库珀对,库珀对在晶格当中可以无损耗的运动,形成超导电流。
对于库珀对产生的原因,BCS理论做出了如下解释:电子在晶格中移动时会吸引邻近格点上的正电荷,导致格点的局部畸变,形成一个局域的高正电荷区。
这个局域的高正电荷区会吸引自旋相反的电子,和原来的电子以一定的结合能相结合配对。
在很低的温度下,这个结合能可能高于晶格原子振动的能量,这样,电子对将不会和晶格发生能量交换,没有电阻,形成超导电流。
BCS理论很好地从微观上解释了第一类超导体存在的原因,理论的提出者巴丁、库珀、施里弗因此获得1972年诺贝尔物理学奖。
但BCS理论无法解释第二类超导体存在的原因,尤其是根据BCS理论得出的麦克米兰极限温度(超导体的临界转变温度不能高于40K),早已被第二类超导体突破。
GL理论GL理论是在朗道二级相变理论的基础上提出的唯象理论。
理论的提出者是京茨堡(Ginzburg)、朗道(Landau)。
GL理论的提出是基于以下考虑:当外界磁场强度接近超导体的临近磁场强度时,超导体的电流不服从线性规律,且超导体的零点振动能不可忽略。
GL理论的最大贡献在于预见了第二类超导体的存在。
超导体概念
超导体概念的关键概念1. 超导体的定义超导体是指在低温下具有零电阻和完全磁通排斥的材料。
当超导体处于超导态时,电流可以在其中无阻力地流动,而磁场会被完全排斥。
超导体的这些特性使其在许多领域具有重要的应用价值。
2. 超导体的临界温度超导体的临界温度是指材料转变为超导态的临界温度。
低于该温度,超导体将表现出零电阻和完全磁通排斥的特性;而高于该温度,超导体将恢复到正常导体的状态。
临界温度是超导体的一个重要参数,不同材料的临界温度差异很大。
3. 超导体的超导电流密度超导体的超导电流密度是指超导体中可以通过的最大电流密度。
超导电流密度是超导体应用中的一个重要参数,它决定了超导体在电磁场中的性能。
较高的超导电流密度意味着超导体可以承受更大的电流而不失超导性能,这对于超导电磁体等应用非常重要。
4. 超导体的能隙超导体的能隙是指在超导态下,材料中的电子存在一个能级间隔,称为能隙。
能隙是超导体电阻为零的关键原因,它使得电子在超导体中无法散射,从而实现了无阻力电流的流动。
能隙的大小与超导体的临界温度密切相关,临界温度越高,能隙越小。
5. 超导体的Meissner效应超导体的Meissner效应是指在超导体转变为超导态时,外加磁场会被完全排斥的现象。
当超导体处于超导态时,磁场会在超导体内部形成一个完全磁场自由区域,这个区域被称为Meissner区。
Meissner效应是超导体的一个重要特性,它使得超导体可以在零磁场下工作,并且对外加磁场具有很强的抗扰动能力。
6. 超导体的类型超导体可以分为Type I和Type II两种类型。
Type I超导体在外加磁场下会完全排斥磁通,而Type II超导体在一定范围内允许磁通进入。
Type II超导体具有更高的临界电流密度和更强的抗磁场能力,因此在实际应用中更为常见。
7. 超导体的应用超导体具有许多重要的应用,以下是一些常见的应用领域:7.1 超导磁体超导磁体是利用超导体的零电阻和完全磁通排斥特性制造的磁体。
常温下的超导体解读
常温下的超导体解读
常温下的超导体是指在室温下能够实现超导的材料。
早期超导体只能在极低温度下工作,例如液氮温度以下,这使得它们的应用受到了很大限制。
但是,近年来有研究人员发现一些材料在常温下也能展现出超导性质。
这些材料主要包括金属化氢、石墨、全碳纳米管等。
其中,金属化氢的超导性质最为显著,可以在负压力下实现超导。
这项发现引起了极大的轰动,许多科学家和工程师都将它视为下一代能源和储能技术的一个重要突破口。
目前,常温下的超导体仍处于研究和探索阶段,需要更加深入的理论研究和实验验证。
但是,无论结果如何,这一领域的发展都将为我们探索新的材料科学和物理学奠定基础,为人类的科技发展带来更多可能。
- 1 -。
超导的起源和初步探索
超导的起源和初步探索
超导,这个神秘的物理现象,可以追溯到一百多年前的荷兰。
在1911年,一位名叫卡梅林·昂内斯的杰出物理学家,在持续的实验中,首次发现了超导现象。
为了达到这一发现,昂内斯精心制备了极高纯度的汞,并运用当时尖端的制冷技术,将其冷却到接近绝对零度的温度。
那是一个破冰之旅,探寻着自然界中最隐藏的秘密。
在实验过程中,昂内斯通过测量汞的电阻,意外地发现,在-268.95℃的低温下,汞的电阻竟然神奇地消失了,变成了一个完美的导体。
这一发现震惊了整个科学界,人们称之为“超导”(superconductivity),而昂内斯也因此荣获了1913年的诺贝尔物理学奖。
超导的发现不仅是一个科学突破,更是对物质世界全新认知的开启。
自此以后,科学家们开始深入研究超导现象背后的机理。
在五十年代,俄罗斯科学家A.A.Abrikosov、Vitaly Lazarevich Ginzburg和英国科学家Anthony Leggett提出了超导热力学理论。
他们认为,超导是一种量子体系中的热力学相变,就像冰在热的作用下化成水,水再热就会蒸发变成蒸汽一样。
这个理论为我们深入理解超导现象提供了重要的框架。
然而,超导现象的奥秘远未被完全揭示。
在探寻其背后更深层次机理的道路上,科学家们一直在努力。
随着研究的深入,我们对于超导现象的理解也在不断深化。
如今,超导材料已经在许多领域展现出巨大的应用潜力,如超导磁悬浮、超导电力传输等。
未来,随着科技的进步,我们有望利用超导材料解决更多现实问题,推动社会的进步与发展。
超导体 原理
超导体原理超导体原理超导体是指在低温度下,材料对电流表现出零电阻和磁通完全抵消的现象。
这种材料叫做超导体。
超导体的原理是在低温下通过减少材料表现出的热运动和振动,从而使电子和原子在晶格间的相互作用更强,电子能量更低,进而达到导电零电阻的状态。
超导体在物理学中的发现是一个伟大的突破,它由荷兰物理学家海克·卡马林克在1911年得出。
随着时间的推移,许多人都在此领域做出了重要的贡献,例如德国物理学家鲁道夫•贝利,美国物理学家理查德•费曼,日本物理学家井上修等等。
同时,超导技术已经被广泛应用于医疗、能源、电子科技以及信息科学等不同领域。
那么,超导体原理是什么呢?首先,我们需要了解几个关键的概念:电阻、电流和磁通。
电阻是电流通过导体时遇到的阻碍,电流是电子在导体内移动而产生的运动,磁通是指通过一个牢固的介质时产生的磁场。
原理就在于材料的电子在超导时波动减少到了极限,而来自外部的磁通会遭到强烈的抵制,那么通常需要超过一定的磁场强度,这个强度被称为超导临界态。
当电子在这种超导状态时,它们形成了一种类似于惯性的状态,不会停止运动仅仅是由于缺乏导致电子运动的一些力。
如何突破这个界限呢?超导是一种物理现象,它是通过在特定的材料中降低运动摩擦和摩擦所产生的碰撞的温度极低,这样就可以在材料内的电子之间产生一定程度的量子力的相互影响,而这种力具有导电性能,从而使电子越来越容易在材料内传递。
这使得材料内的电子能够形成某种“团结”形成零阻力导电。
具体来说,超导体的原理就是通过降低材料内电子运动的能量(例如将材料冷却到低温),从而减少材料内电子的摩擦、碰撞和散布,同时也能增加电子和原子的相互作用力,使电子能够稳定地在导体中流动,从而减少电阻和能源消耗。
这是一种特殊的量子态,因此只有在极低温度下才能表现出高超导性能,这就为制造超导器件带来了一定的实际难度。
总而言之,超导体原理是通过材料内电子间的强相互作用,在低温状态下使得电子处于商品超导状态,进而导致零电阻和强磁场抵消的独特现象。
超导体的基本原理及应用
超导体的基本原理及应用超导体是一种在一定的条件下能够表现出完全的电阻为零的性质的材料,这种材料可以产生强大的磁场,并且能够有效地传输电能。
超导体的基本原理是由于材料内部的电子在低温条件下,能够在材料内部形成一种超导状态,这种状态下,电子会形成电子对,从而减少电子自身的散射,使得电子能够更好地在材料内部传导,从而表现出完全的电阻为零的性质。
超导体已经得到了广泛的研究和应用,包括在磁共振成像、能量传输和量子计算等方面。
超导体的基本原理超导体的基本原理是由于材料内部的电子在低温条件下,能够形成一个电子对,从而产生一种超导状态,这种状态下,电子能够更好地在材料内部传导,从而表现出完全的电阻为零的性质。
这种超导状态下的电子受到的阻力非常小,因此能够产生非常强大的磁场。
超导材料通常需要在非常低的温度下才能表现出超导特性,例如常用的银(Tc=0.94K),铜(Tc=1.02K),镉(Tc=0.56K),铅(Tc=7.18K)等材料,需要在液氦的温度(4K)以下才能表现出超导特性。
在低温条件下,电子对不断地在材料内部移动,形成了一个不可逆的电流环,这种电流环会产生一个相应的磁场,这种磁场可以通过放置一个外部磁体来寻找。
超导体的应用超导体已经得到了广泛的应用,在磁共振成像、能量传输和量子计算等方面都有重要的应用。
1. 磁共振成像磁共振成像是一种通过扫描方法来获取人体内部结构的医学技术。
在这种技术中,利用一个非常强大的磁场来对人体内部的水分子进行定向,然后利用射频来观察这些水分子的旋转。
这种技术需要使用超导体来产生强大的磁场,以便能够对人体内部进行精确定位。
2. 能量传输超导体的完全电阻为零的性质可以让电流在其内部传输变得非常有效率。
因此,超导体可以用来进行能量传输,例如用于输电线路中。
利用超导体可以使得电能的传输损失减少到最低,从而提高电能的传输效率。
3. 量子计算超导体可以用于量子计算,这是一种比传统计算机更快更强大的计算机。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有关超导体的几项推测为什么超导在火焰加热时,能够浮在火焰之上,就像《阿凡达》中演得那样。
有实图可见高中物理选修3——5①假设有一超导体做成的机器,在条件适合的情况下,它或许可以永动,②假设,有一单质金属超导体则它发生光电效应时,逸出功几乎为零。
但符合爱因斯坦光电效应方程。
③合适电压,与磁场组成的复合场里,超导体会很容易且产生大量的等离子体。
.超导体的两大特性:电阻为零,磁感应强度为零。
超导体超导是指导电材料在温度接近绝对零度的时候,物体分子热运动下材料的电阻趋近于0的性质;“超导体”是指能进行超导传输的导电材料。
零电阻和抗磁性是超导体的两个重要特性。
人类最初发现物体的超导现象是在1911年。
当时荷兰科学家卡·翁纳斯等人发现,某些材料在极低的温度下,其电阻完全消失,呈超导状态。
使超导体电阻为零的温度,叫超导临界温度。
分享简介超导材料,又称为超导体(superconductor)。
当某导体在一温度下,可使电阻为零而称之。
零电阻和抗磁性是超导体的两个重要特性。
发展史1911年1911年,荷兰科学家卡末林—昂内斯(Heike Kamerlingh-Onnes)用液氦冷却汞,当温度下降到4.2K(﹣268.95℃)时,水银的电阻完全消失,这种现象称为超导电性,此温度称为临界温度。
根据临界温度的不同,超导材料可以被分为:高温超导材料和低温超导材料。
1933年1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,这种现象称为抗磁性。
超导现象1973年1973年,发现超导合金――铌锗合金,其临界超导温度为23.2K(﹣249.95℃),这一记录保持了近13年。
1986年1986年,设在瑞士苏黎世的美国IBM公司的研究中心报道了一种氧化物(镧钡铜氧化物)具有35K(﹣240.15)的高温超导性。
此后,科学家们几乎每隔几天,就有新的研究成果出现。
1986年,美国贝尔实验室研究的超导材料,其临界超导温度达到40K(﹣235.15℃)液氢的“温度壁垒”(40K)被跨越。
1987年1987年,美国华裔科学家朱经武以及中国科学家赵忠贤相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K(﹣185.15℃)以上,液氮的“温度壁垒”(77K)也被突破了。
1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K(﹣150.15℃)。
从1986-1987年的短短一年多的时间里,临界超导温度提高了近100K。
来自德国、法国和俄罗斯的科学家利用中子散射技术,在高温超导体的一个成员单铜氧层Tl2Ba2CuO6+δ中观察到了所谓的磁共振模式,进一步证实了这种模式在高温超导体中存在的一般性。
该发现有助于对铜氧化物超导体机制的研究。
高温超导体具有更高的超导转变温度(通常高于氮气液化的温度),有利于超导现象在工业界的广泛利用。
高温超导体的发现迄今已有16年,而对其不同于常规超导体的许多特点及其微观机制的研究,却仍处于相当“初级”的阶段。
这一点不仅反映在没有一个单一的理论能够完全描述和解释高温超导体的特性,更反映在缺乏统一的、在各个不同体系上普遍存在的“本征”实验现象。
本期Science所报道的结果意味着中子散射领域里一个长期存在的困惑很有可能得到解决。
超导体原料早在1991年,法国物理学家利用中子散射技术在双铜氧层YBa2Cu3O6+δ超导体单晶中发现了一个微弱的磁性信号。
随后的实验证明,这种信号仅在超导体处于超导状态时才显著增强并被称为磁共振模式。
这个发现表明电子的自旋以某种合作的方式产生一种集体的有序运动,而这是常规超导体所不具有的。
这种集体运动有可能参与了电子的配对,并对超导机制负责,其作用类似于常规超导体内引起电子配对的晶格振动。
但是,在另一个超导体La2-xSrxCuO4+δ(单铜氧层)中,却无法观察到同样的现象。
这使物理学家怀疑这种磁共振模式并非铜氧化物超导体的普遍现象。
1999年,在Bi2Sr2CaCu2O8+δ单晶上也观察到了这种磁共振信号。
但由于Bi2Sr2CaCu2O8+δ与YBa2Cu3O6+δ一样,也具有双铜氧层结构,关于磁共振模式是双铜氧层的特殊表征还是“普遍”现象的困惑并未得到彻底解决。
理想的候选者应该是典型的高温超导晶体,结构尽可能简单,只具有单铜氧层。
困难在于,由于中子与物质的相互作用很弱,只有足够大的晶体才可能进行中子散射实验。
随着中子散射技术的成熟,对晶体尺寸的要求已降低到0.1cm微量级。
晶体生长技术的进步,也使Tl2Ba2CuO6+δ单晶体的尺寸进入毫米量级,而它正是一个理想的候选者。
科学家把300个毫米量级的Tl2B a2CuO6+δ单晶以同一标准按晶体学取向排列在一起,构成一个“人造”单晶,“提前”达到了中子散射的要求。
经过近两个月散射谱的搜集与反复验证,终于以确凿的实验数据显示在这样一个近乎理想的高温超导单晶上也存在磁共振模式。
这一结果说明磁共振模式是高温超导的一个普遍现象。
而La2-xSrxCuO4+δ体系上磁共振模式的缺席只是“普遍”现象的例外,这可能与其结构的特殊性有关。
关于磁共振模式及其与电子间相互作用的理论和实验研究一直是高温超导领域的热点之一,上述结果将引起许多物理学家的关注与兴趣。
20世纪80年代是超导电性的探索与研究的黄金年代。
1981年合成了有机超导体,1986年缪勒和柏诺兹发现了一种成分为钡、镧、铜、氧的陶瓷性金属氧化物LaBaCuO4,其临界温度约为35K。
由于陶瓷性金属氧化物通常是绝缘物质,因此这个发现的意义非常重大,缪勒和柏诺兹因此而荣获了1987年度诺贝尔物理学奖。
1987年在超导材料的探索中又有新的突破,美国休斯顿大学物理学家朱经武小组与中国科学院物理研究所赵忠贤等人先后研制成临界温度约为90K的超导材料YBCO(钇钡铜氧)。
1988年1988年初日本研制成临界温度达110K的Bi-Sr-Ca-Cu-O超导体。
至此,人类终于实现了液氮温区超导体的梦想,实现了科学史上的重大突破。
这类超导体由于其临界温度在液氮温度(77K)以上,因此被称为高温超导体。
自从高温超导材料发现以后,一阵超导热席卷了全球。
科学家还发现铊系化合物超导材料的临界温度可达125K(﹣150.15℃)汞系化合物超导材料的临界温度则高达135K。
如果将汞置于高压条件下,其临界温度将能达到难以置信的164K。
1997年1997年,研究人员发现,金铟合金在接近绝对零度时既是超导体同时也是磁体。
1999年科学家发现钌铜化合物在45K(﹣230.15℃)时具有超导电性。
由于该化合物独特的晶体结构,它在计算机数据存储中的应用潜力将是非常巨大的。
2007年自2007年12月开始,中国科学院物理研究所的陈根富博士已投入到镧氧铁砷非掺杂单晶体的制备中。
2007年2月18日,日本东京工业大学的细野秀雄教授和他的合作者在《美国化学会志》上发表了一篇两页的文章,指出氟掺杂镧氧铁砷化合物在零下247.15℃时即具有超导电性。
在长期研究中保持着跨界关注习惯的陈根富和王楠林研究员立即捕捉到了这一消息的价值,王楠林小组迅速转向制作掺杂样品,他们在一周内实现了超导并测量了基本物理性质。
几乎与此同时,物理所闻海虎研究组通过在镧氧铁砷材料中用二价金属锶替换三价的镧,发现有临界温度为零下248.15℃以上的超导电性。
2008年2008年3月25日和3月26日,中国科学技术大学陈仙辉组和物理所王楠林组分别独立发现临界温度超过零下233.15℃的超导体,突破麦克米兰极限,证实为非传统超导。
2008年3月29日,中国科学院院士、物理所研究员赵忠贤领导的小组通过氟掺杂的镨氧铁砷化合物的超导临界温度可达零下221.15℃,4月初该小组又发现无氟缺氧钐氧铁砷化合物在压力环境下合成超导临界温度可进一步提升至零下218.15℃。
电流实验为了证实(超导体)电阻为零,科学家将一个铅制的圆环,放入温度低于Tc=7.2K的空间,利用电磁感应使环内激发起感应电流。
结果发现,环内电流能持续下去,从1954年3月16日始,到1956年9月5日止,在两年半的时间内的电流一直没有衰减,这说明圆环内的电能没有损失,当温度升到高于Tc时,圆环由超导状态变正常态,材料的电阻骤然增大,感应电流立刻消失,这就是著名的昂尼斯持久电流实验。
技术及发明技术发现1911年,荷兰莱顿大学的卡茂林-昂尼斯意外地发现,将汞冷却到-268.98℃时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡茂林-昂尼斯称之为超导态。
卡茂林由于他的这一发现获得了1913年诺贝尔奖。
这一发现引起了世界范围内的震动。
在他之后,人们开始把处于超导状态的导体称之为“超导体”。
超导体的直流电阻率在一定的低温下突然消失,被称作零电阻效应。
导体没有了电阻,电流流经超导体时就不发生热损耗,电流可以毫无阻力地在导线中流大的电流,从而产生超强磁场。
超导磁流体推进船1933年,荷兰的迈斯纳和奥森菲尔德共同发现了超导体的另一个极为重要的性质,当金属处在超导状态时,这一超导体内的磁感应强度为零,却把原来存在于体内的磁场排挤出去。
对单晶锡球进行实验发现:锡球过渡到超导态时,锡球周围的磁场突然发生变化,磁力线似乎一下子被排斥到超导体之外去了,人们将这种现象称之为“迈斯纳效应”。
后来人们还做过这样一个实验:在一个浅平的锡盘中,放入一个体积很小但磁性很强的永久磁体,然后把温度降低,使锡盘出现超导性,这时可以看到,小磁铁竟然离开锡盘表面,慢慢地飘起,悬空不动。
迈斯纳效应有着重要的意义,它可以用来判别物质是否具有超导性。
为了使超导材料有实用性,人们开始了探索高温超导的历程,从1911年至1986年,超导温度由水银的4.2K提高到23.22K(绝对零度代号为K = -273℃)。
86年1月发现钡镧铜氧化物超导温度是30K,12月30日,又将这一纪录刷新为40.2K,87年1月升至43K,不久又升至46K和53K,2月15日发现了98K超导体,很快又发现了14℃下存在超导迹象,高温超导体取得了巨大突破,使超导技术走向大规模应用。
超导材料和超导技术有着广阔的应用前景。
超导现象中的迈斯纳效应使人们可以到用此原理制造超导列车和超导船,由于这些交通工具将在无摩擦状态下运行,这将大大提高它们的速度和安静性能。
超导列车已于70年代成功地进行了载人可行性试验,1987年开始,日本开始试运行,但经常出现失效现象,出现这种现象可能是由于高速行驶产生的颠簸造成的。
超导船已于1992年1月27日下水试航,目前尚未进入实用化阶段。
利用超导材料制造交通工具在技术上还存在一定的障碍,但它势必会引发交通工具革命的一次浪潮。