从算式到方程—教学设计及点评
从算式到方程教学教案分析
从算式到方程教学教案分析一、教学目标1. 让学生理解算式和方程的区别,并能正确区分它们。
2. 培养学生从实际问题中抽象出方程的能力。
3. 引导学生掌握解一元一次方程的方法,并能应用于实际问题。
二、教学内容1. 算式和方程的定义及区别。
2. 方程的解法及应用。
3. 实际问题转化为方程的过程。
三、教学重点与难点1. 教学重点:算式和方程的定义,方程的解法及应用。
2. 教学难点:实际问题转化为方程的过程,解一元一次方程的方法。
四、教学方法1. 采用讲授法,讲解算式和方程的概念及区别。
2. 采用案例分析法,引导学生从实际问题中抽象出方程。
3. 采用练习法,让学生通过解方程巩固所学知识。
五、教学过程1. 导入:通过生活中的实例,引导学生认识算式和方程。
2. 新课讲解:讲解算式和方程的定义,举例说明它们的区别。
3. 案例分析:分析实际问题,引导学生从中抽象出方程。
4. 方程解法讲解:讲解解一元一次方程的方法,并通过例题演示。
5. 课堂练习:布置练习题,让学生巩固所学知识。
6. 总结:回顾本节课所学内容,强调算式和方程的区别及解方程的方法。
7. 作业布置:布置课后作业,让学生进一步巩固所学知识。
8. 课后反思:对课堂教学进行总结,针对学生的掌握情况,调整教学策略。
六、教学评价1. 评价学生对算式和方程概念的理解程度。
2. 评价学生是否能从实际问题中抽象出方程。
3. 评价学生是否能正确解一元一次方程并应用于实际问题。
七、教学拓展1. 引导学生思考:方程在实际生活中的应用。
2. 介绍一元二次方程及其解法,为学生后续学习打下基础。
八、教学资源1. PPT课件:展示算式、方程的定义及解方程的过程。
2. 练习题:提供不同难度的练习题,巩固所学知识。
3. 实际问题案例:用于引导学生从实际问题中抽象出方程。
九、教学进度安排1. 第1-2课时:讲解算式和方程的定义及区别。
2. 第3-4课时:分析实际问题,引导学生抽象出方程。
从算式到方程—教学设计及点评
从算式到方程—教学设计及点评一、教学设计1.教学目标:(1)知识目标:了解算式和方程的概念,认识算式和方程之间的关系。
(2)能力目标:能够通过给定的算式写出相应的方程,并能够根据方程解决问题。
(3)情感目标:培养学生的数学思维能力和问题解决能力,增强他们对数学的兴趣和信心。
2.教学重点:(1)理解算式和方程的定义。
(2)掌握从算式到方程的转换方法。
(3)理解方程的意义和用途。
3.教学难点:(1)理解方程的意义和用途。
(2)掌握根据给定的算式写出方程的方法。
4.教学过程:步骤一:导入新课(1)引入问题:有一些运算式,例如:"5+2=7",你能发现其中的规律吗?(2)学生回答并解释规律:等号左边的算式和等号右边的值相等。
(3)教师引导学生总结:这种形式的式子叫做算式,其中有一个等号,左右两边相等。
步骤二:引入方程的概念(1)引导学生思考问题:如果我们把算式中的一些数用一个字母表示,如"5+x=7",这种式子叫什么?(2)学生回答并解释:这种式子叫做方程,字母代表的是一个未知数。
(3)教师解释:方程和算式的结构非常相似,只不过其中有一个未知数,我们可以通过解方程来求出未知数的值。
步骤三:从算式到方程(1)教师出示一些算式,并要求学生根据算式写出相应的方程。
(2)学生通过思考和分析,用未知数表示算式中的一些数,并写出方程。
(3)学生互相交流并对答案进行讨论。
步骤四:解决问题(1)教师给出一些实际问题,并要求学生用方程去解决问题。
(2)学生根据问题提供的信息写出方程,然后解方程求出未知数的值。
(3)学生互相交流并对答案进行讨论。
步骤五:巩固练习(1)教师出示一些练习题,让学生自己用方程来解决。
(2)学生独立完成练习,并互相交换答案进行对比。
(3)教师进行讲评,梳理学生解题思路和方法。
步骤六:总结和拓展(1)教师引导学生总结今天学习的内容:什么是方程?怎样从算式到方程?(2)教师拓展讲解方程的更复杂形式,如多项式方程、二元一次方程等。
5.1.1从算式到方程教学设计2024-2025学年人教版(2024版)初中数学七年级上册
4. 小明的年龄比小红大3岁,两人年龄之和为35岁。请问小明和小红各几岁?
5. 甲、乙两地相距120公里,一辆汽车从甲地出发,以每小时60公里的速度行驶,同时一辆自行车从乙地出发,以每小时20公里的速度相向而行。问多少时间后两车相遇?
解答题:
6. 解方程4x - 9 = 3x + 5。
7. 小华买了3本书和2支笔花了54元,如果一支笔5元,求一本书的价格。
- 教学视频:收集一些专业的数学教学视频,如“方程的起源”、“一元一次方程的解法”等,帮助学生更直观地理解方程。
- 数学游戏:设计或推荐一些包含方程元素的数学游戏,如“方程求解大挑战”、“数学侦探”等,提高学生的学习兴趣。
- 网络资源:选取一些教育网站上的高质量教学资源,如方程相关课件、习题库等,丰富学生的学习材料。
1. 课前自主探索
- 教师活动:
发布预习任务:通过学校教学管理系统,发布预习资料(PPT、视频、文档),明确预习目标和要求。
设计预习问题:围绕“从算式到方程”课题,设计问题,如“算式和方程有什么区别?”、“方程是如何表示未知数的?”等,引导学生自主思考。
监控预习进度:通过系统跟踪和学生的反馈,确保预习效果。
针对以上问题,我制定了以下改进措施:
1. 在课前自主探索环节,我将明确预习任务的要求,并提供具体的指导,以提高学生的预习效果。
2. 在课中强化技能环节,我将设计更有趣的小组讨论题目,并加强对小组讨论的引导和监督,以提高学生的参与度。
3. 在课后拓展应用环节,我将更加重视拓展资源的提供,并鼓励学生充分利用这些资源进行深入学习。
2. 拓展建议:
- 鼓励学生阅读数学故事书和期刊文章,了解方程的背景知识,增强数学学习的兴趣和动力。
从算式到方程:初一数学教案的教学设计与评价
从算式到方程:初一数学教案的教学设计与评价一、教学目标1.理解基本概念:算式和方程的含义及区别2.掌握解一元一次方程的方法3.应用数学知识解决实际问题二、教学重难点教学重点:方程的概念和解法教学难点:如何将实际问题转化为方程求解三、教学设计1.引入通过分析一个简单问题来引导学生了解方程这个概念。
例如:小明有10个糖果,小明想知道有多少个小朋友和他一样有10个糖果,我们该怎么表示这个问题呢?引导学生思考,最终引出方程这个概念。
2.概念讲解介绍方程的基本概念,包括未知数、系数、常数项、方程等,并将其与算式做比较,明确它们之间的区别。
3.基本例题让学生通过简单的例题来了解方程的解法,例如:解:设有x个小朋友和小明一样有10个糖果,根据题意得到方程:x+1=5解得:x=4,有4个小朋友和小明一样有10个糖果。
4.综合应用让学生通过实际问题来进行方程的求解,例如:小红的妈妈今年30岁,比小红大21岁,问小红多少岁?解:设小红的年龄为x,根据题意得到方程:x+21=30解得:x=9,小红今年9岁。
5.拓展应用让学生通过更加复杂的问题来进行方程的求解,例如:一个长方体的长比宽多3米,高为宽的2/3,长、宽、高的比为3:2:2,求长方体的体积。
解:设长方体的宽为x,则长为x+3,高为(2/3)x,根据题意得到方程:(3/2)x*(2/3)x*(2/3)x=90解得:x=3,长方体的长为6,宽为3,高为2,体积为36。
6.归纳总结让学生通过本课学习的经验,总结解方程的方法,归纳出关键步骤。
四、教学评价本课设计的教学目标明确,教学重点和难点突出,通过实例练习使学生容易理解和掌握解方程的方法。
教学过程始终围绕学生的思维方式和认知进行设计,增强了学生对解方程的兴趣,同时激发了学生的思考和创造。
五、小结本教学设计结合实际问题,通过引导学生思考,分步讲解,进行实践练习,最终让学生掌握了解方程的方法。
在实践中不断拓展应用,能够锻炼学生的思维能力和解决问题的能力,是一堂非常成功的初一数学课。
从算式到方程教学教案分析
从算式到方程教学教案分析第一章:算式与方程的概述1.1 教学目标1. 了解算式和方程的定义及基本概念。
2. 掌握算式和方程的区别与联系。
1.2 教学内容1. 算式的概念及其组成要素。
2. 方程的概念及其组成要素。
3. 算式与方程的区别与联系。
1.3 教学方法1. 采用讲授法,讲解算式和方程的基本概念。
2. 案例分析法,分析具体的算式和方程实例。
1.4 教学活动1. 引入算式和方程的定义,让学生理解基本概念。
2. 通过实例分析,让学生区分算式和方程。
第二章:算式的基本运算2.1 教学目标1. 掌握算式的基本运算方法。
2. 能够熟练进行算式运算。
2.2 教学内容1. 算式的基本运算符及其作用。
2. 算式的运算顺序及其规则。
2.3 教学方法1. 采用讲解法,讲解算式的基本运算符和运算顺序。
2. 练习法,让学生通过练习熟练掌握算式运算。
2.4 教学活动1. 讲解算式的基本运算符和运算顺序。
2. 进行算式运算练习,让学生巩固运算方法。
第三章:方程的建立与解法3.1 教学目标1. 掌握方程的建立方法。
2. 学会解一元一次方程。
3.2 教学内容1. 方程的建立方法。
2. 一元一次方程的解法。
3.3 教学方法1. 采用讲解法,讲解方程的建立和解法。
2. 练习法,让学生通过练习掌握解方程的方法。
3.4 教学活动1. 讲解方程的建立和解法。
2. 进行方程练习,让学生巩固解方程的方法。
第四章:方程的实际应用4.1 教学目标1. 能够将实际问题转化为方程。
2. 应用方程解决实际问题。
4.2 教学内容1. 实际问题转化为方程的方法。
2. 应用方程解决实际问题。
4.3 教学方法1. 采用案例分析法,讲解实际问题转化为方程的方法。
2. 练习法,让学生通过练习应用方程解决实际问题。
4.4 教学活动1. 讲解实际问题转化为方程的方法。
2. 进行实际问题练习,让学生巩固方程的应用方法。
第五章:方程的拓展与提高5.1 教学目标1. 学习一元二次方程及其解法。
从算式到方程教学设计教案
从算式到方程教学设计教案
一、教学目标
1、基本掌握从算式到方程的概念,能够把算式转化为方程,能解决
一元一次方程组;
2、能够灵活运用适当的算法解决算式转化为方程的问题,熟练掌握
解一元一次方程的方法。
二、教学重点
1、掌握从算式到方程的概念;
2、掌握从算式转化为方程的算法;
3、掌握解一元一次方程的方法。
三、教学过程
1.交流提问:本节课将学习从算式到方程的概念,在开始本节课前,
大家交流一下以前对方程的了解情况。
让学生说出他们之前对方程的认知,让孩子们了解方程的概念,让他们更加熟悉方程的概念。
2.精讲从算式到方程的概念:老师结合部分例题,举一反三,讲解从
算式到方程的概念。
让学生熟悉从算式到方程的概念,通过演示好例子,
让学生更好地理解从算式到方程的概念,以促使他们更好地记住和使用概念。
3.练习练习:结合老师讲课的知识点,让学生认真完成练习题,让学
生运用所学知识,便于他们更好地理解从算式到方程的概念,以及从算式
转化为方程的方法,有效帮助学生学习从算式到方程。
4.要点梳理:把学生练习完后,老师需要复习答案,结合学生的实际情况,把重要的考点和重点再次仔细梳理。
从算式到方程教学设计及专家点评(获奖版)
3.1.1一元一次方程(第1课时)一、教学内容及其解析1.教学内容方程及一元一次方程的概念;根据实际问题中的相等关系,建立方程模型。
2.内容解析方程是初中数学的核心内容,是算术法到代数法思维转变的重要标志,是解决实际问题的一种重要的数学模型。
方程的出现是实践的需要,它使得实际问题中的已知数与未知数通过等式连接起来。
找出实际问题中的相等关系,并用代数式表示其中的数量关系,进而列出方程,是解决实际问题的一种方法。
解方程使问题中的未知数转化为确定的解,这种以方程为模型解决问题的思想在本章中占有重要的地位。
一元一次方程是最简单的整式方程,是后续所学其他方程的基础,后续学习的任何一个方程(组)最终都要划归为一元一次方程。
一元一次方程具备“含有一个未知数”“未知数的次数是1”“等号两边都是整式”这三个特征。
通过分析具体的实际问题的数量关系,将相等关系“翻译”成方程,进而找出所列方程的共同特点,抽象出一元一次方程的概念。
在形成概念的过程中,落实了数学抽象、数学建模这一核心素养。
基于以上分析,确定本节课的教学重点:一元一次方程概念,用方程模型解决实际问题。
二、教学目标及其解析1.教学目标(1)了解方程的概念,理解一元一次方程的概念。
(2)经历列方程的过程,感受方程作为刻画现实世界的数学模型的意义,体会由算式到方程的进步,从而体会方程思想。
2.目标解析达成(1)的目标是,学生能识别出方程,根据一元一次方程的特征准确判断一个方程是不是一元一次方程;达成(2)的目标是,学生经历从实际问题抽象出一元一次方程概念的全过程,从中体会方程模型的现实意义,逐步体会方程的优越性。
三、学生学情分析在小学阶段,学生学过用算术法和方程法解决实际问题,特别是算术法的运用更是娴熟,但是所涉及的实际问题的难度并不大,数量关系并不复杂,用算术法更容易解决。
因此如何让学生的思维从算术法过渡到方程法,有一定的困难;同时学生能从给定的式子中找出方程,但如何抽象出一元一次方程的共同特征,学生第一次接触,尽管可以借鉴第二章的单项式、多项式等概念的抽象过程,但是仍然有很大的困难;找出“相等关系”后再列出方程,这一思路与小学不同,学生不熟悉,有困难。
七年级数学上册《从算式到方程》教案、教学设计
3.突破重难点,循序渐进:针对重难点,设计梯度性的问题和练习,帮助学生逐步掌握方程求解的方法和技巧。
4.拓展思维,提升能力:通过变式练习和拓展性问题,培养学生的逻辑思维和数学思维能力,提高他们解决实际问题的能力。
5.课堂小结,巩固提升:在课堂小结环节,引导学生总结本节课所学内容,强化对方程概念和求解方法的理解,提高学生的归纳总结能力。
1.导入新课:以一个简单的实际问题的视频引入,如“小明的年龄问题”,让学生从算式的角度解决问题,进而引导学生思考如何用方程来表示这个问题。
2.探究新知:
(1)让学生回顾算式的知识,引导他们发现算式与方程的关系。
3.讲解一元一次方程的求解步骤,包括移项、合并同类项、化简等。
4.结合具体例子,让学生了解未知数在方程中的意义,以及如何求解未知数。
5.强调一元一次方程在实际问题中的应用,让学生体会数学的实用价值。
(三)学生小组讨论,500字
在学生小组讨论环节,我将:
1.将学生分成若干小组,每组选择一个实际问题进行讨论。
(2)通过小组合作,让学生尝试将实际问题转化为方程,并讨论求解方程的方法。
(3)教师引导学生总结一元一次方程的求解步骤,并强调未知数在方程中的意义。
3.实践应用:
(1)设计不同类型的实际问题,让学生独立完成方程的建立和求解。
(2)针对学生的解答,进行点评和指导,强调解题过程中的注意事项。
4.知识拓展:
(1)引入一元一次方程的复杂情境,如含括号、分数等,培养学生的思维灵活性。
(2)设计开放性问题,让学生尝试用方程解决更多实际问题,提高他们的创新意识。
从算式到方程教学设计及专家点评(获奖版)
3.1.1一元一次方程(第1课时)一、教学内容及其解析1.教学内容方程及一元一次方程的概念;根据实际问题中的相等关系,建立方程模型。
2.内容解析方程是初中数学的核心内容,是算术法到代数法思维转变的重要标志,是解决实际问题的一种重要的数学模型。
方程的出现是实践的需要,它使得实际问题中的已知数与未知数通过等式连接起来。
找出实际问题中的相等关系,并用代数式表示其中的数量关系,进而列出方程,是解决实际问题的一种方法。
解方程使问题中的未知数转化为确定的解,这种以方程为模型解决问题的思想在本章中占有重要的地位。
一元一次方程是最简单的整式方程,是后续所学其他方程的基础,后续学习的任何一个方程(组)最终都要划归为一元一次方程。
一元一次方程具备“含有一个未知数”“未知数的次数是1”“等号两边都是整式”这三个特征。
通过分析具体的实际问题的数量关系,将相等关系“翻译”成方程,进而找出所列方程的共同特点,抽象出一元一次方程的概念。
在形成概念的过程中,落实了数学抽象、数学建模这一核心素养。
基于以上分析,确定本节课的教学重点:一元一次方程概念,用方程模型解决实际问题。
二、教学目标及其解析1.教学目标(1)了解方程的概念,理解一元一次方程的概念。
(2)经历列方程的过程,感受方程作为刻画现实世界的数学模型的意义,体会由算式到方程的进步,从而体会方程思想。
2.目标解析达成(1)的目标是,学生能识别出方程,根据一元一次方程的特征准确判断一个方程是不是一元一次方程;达成(2)的目标是,学生经历从实际问题抽象出一元一次方程概念的全过程,从中体会方程模型的现实意义,逐步体会方程的优越性。
三、学生学情分析在小学阶段,学生学过用算术法和方程法解决实际问题,特别是算术法的运用更是娴熟,但是所涉及的实际问题的难度并不大,数量关系并不复杂,用算术法更容易解决。
因此如何让学生的思维从算术法过渡到方程法,有一定的困难;同时学生能从给定的式子中找出方程,但如何抽象出一元一次方程的共同特征,学生第一次接触,尽管可以借鉴第二章的单项式、多项式等概念的抽象过程,但是仍然有很大的困难;找出“相等关系”后再列出方程,这一思路与小学不同,学生不熟悉,有困难。
从算式到方程教研活动(3篇)
第1篇一、活动背景数学是一门逻辑严谨、抽象思维的学科,从算式到方程的学习过程是学生数学思维从具体到抽象、从数量关系到关系式的转变。
为了提高学生对方程的理解和应用能力,本教研活动旨在探讨如何引导学生从算式到方程的过渡,提升学生的数学思维能力。
二、活动目标1. 使教师了解从算式到方程的教学策略,提高教学效果。
2. 培养学生的抽象思维能力,提高学生的数学素养。
3. 促进教师之间的交流与合作,共同探讨数学教学中的问题。
三、活动内容1. 算式与方程的关系(1)算式与方程的区别与联系算式是数学表达式的基本形式,用于表示数量关系。
方程则是含有未知数的等式,它表示未知数与已知数之间的数量关系。
算式是方程的基础,方程是算式的升华。
(2)算式到方程的过渡策略教师在教学过程中,应注重引导学生从算式到方程的过渡,具体策略如下:a. 从具体的实例出发,让学生感受未知数的存在。
b. 通过实际问题引入方程,让学生体会方程的应用价值。
c. 利用图形、表格等直观工具,帮助学生理解方程的意义。
2. 方程的教学方法(1)概念教学教师在讲解方程的概念时,要注重引导学生从算式到方程的思维转变,让学生理解方程的本质。
(2)解题教学教师在解题教学中,要注重培养学生的逻辑思维能力和运算能力,让学生掌握方程的解法。
(3)应用教学教师在应用教学中,要注重引导学生将方程应用于实际问题,提高学生的数学素养。
3. 案例分析(1)案例一:一元一次方程的应用问题:小明有10个苹果,给了小红5个,还剩几个?分析:这是一个一元一次方程的应用问题。
设小明原来有x个苹果,根据题意可列出方程x - 5 = 10。
解方程得到x = 15,即小明原来有15个苹果。
(2)案例二:二元一次方程组的应用问题:小明和小红一共有15元,如果小明买2元一支的铅笔,小红买3元一支的铅笔,他们各买几支?分析:这是一个二元一次方程组的应用问题。
设小明买了x支铅笔,小红买了y支铅笔,根据题意可列出方程组:2x + 3y = 15x + y = 15解方程组得到x = 6,y = 9,即小明买了6支铅笔,小红买了9支铅笔。
七年级数学《从算式到方程》教案设计
七年级数学《从算式到方程》教案设计一、教学目标1.知识与技能:(1)回顾算式的定义和运算法则,提高学生的基本计算能力,包括加减乘除;(2)引导学生从算式到方程的转变,理解方程的概念,并掌握一元一次方程的解法;(3)了解方程在实际问题中的应用。
2.过程与方法:(1)通过课堂讲解、板书演示和实践运算等方式,帮助学生掌握方程解法的基本思路和方法;(2)通过引导学生自主探究、小组合作等方式,激发学生学习数学的兴趣;(3)通过思考问题、讨论解法等方式,培养学生的逻辑思维和分析问题的能力。
3.情感态度与价值观:(1)激发学生学习数学的热情,培养学生对数学的兴趣和好奇心;(2)培养学生批判思维和创新思维,提高学生的学习能力和综合素质;(3)通过深入分析实例问题,培养学生将课程所学知识应用于实际问题的能力和价值观。
二、教学内容与安排第一部分:算式回顾(20分钟)1.算式的定义和运算法则;2.算式的加减乘除的运算规律;3.算式的练习。
第二部分:从算式到方程(40分钟)1.方程的定义和分类;2.一元一次方程的概念和解法;3.实际问题转化为方程的方法。
第三部分:实例讲解与练习(50分钟)1.实例问题分析与解法讲解;2.练习与答疑。
三、教学方法1.讲授法教师通过讲授法,向学生传授方程的基本概念和解法。
讲解过程中,教师应当注意举例和引导学生思考问题。
2.实例分析法通过实际的问题分析和解法讲解,激发学生学习数学的兴趣和好奇心,让学生更好地理解方程的应用。
3.小组讨论法按照能力分组,让学生在小组内进行探究式学习,互相讨论和交流,并通过互帮互助的方式,提高学生的学习能力和综合素质。
四、教学重点1.理解方程的概念和基本性质;2.掌握一元一次方程的基本解法;3.将实际问题转化为方程的能力。
五、课堂延伸1.学生可根据所学知识应用于实际问题,如小学数学奥数竞赛、中考智力类题目等。
2.学生掌握方程的基本解法后,可以进行更高级别的数学学科的学习,如高中数学等。
【教案】从算式到方程+教学设计+2024-2025学年人教版数学七年级上册
教学设计课题从算式到方程课型新授课☑复习课□ 试卷讲评课□ 其它课□教学内容分析本节课是第三章一元一次方程的第一小节,起始课。
本节课中学生体验从算式到方程是数学的一大进步,同时建立:实际问题通过设未知数,找到能量关系的方法转化为数学方程的数学模型。
通过实际问题转化为方程的思考过程进一步体验这一数学模型。
为本章后面学习用一元一次方程解决实际问题奠定基础。
一元一次方程的定义是本章的基础,通过一元一次方程与其他方程的对比,找到一元一次方程的核心特征,进而总结出一元一次方程的定义。
学情分析在小学阶段,用算术方法解应用题是数学课中的重要内容,也有关于方程的最初级的内容.本小节先通过一个具体的行程问题,引导学生尝试如何用算术方法解决它,然后再逐步引导学生通过列出含未知数的式子表示有关的量,并进一步依据问题中的相等关系列出含未知数的等式﹣一方程。
这样安排的目的不仅在于突出方程的根本特征,引出方程的定义,而且要使学生认识到方程是比算术式子更有力的数学工具,字母(未知数)可以列入方程并参与运算,从而给解决问题带来更大的便利,从算术方法到代数方法是数学的进步.算式表示的是用算术方法进行计算的程序,算式中只能含有已知数而不能含有未知数,这是列算式时必须遵守的规则.列方程依据问题中的数量关系,特别是相等关系,它打破了列算式时只能使用已知数的限制,方程中可以含有相关的已知数和未知数,未知数在被解出之前以字母形式进入表示相等关系的式子,这是代数方法对于算术方法的新改革.正因有了如此的新突破,所以一般地说列方程要比列算式考虑起来更直接、更自然,因而有更多优越性.本小节中引出了方程、一元一次方程、方程的解以及解方程等基本概念,并且对于"分析实际问题中的数量关系,设未知数,利用相等关系列出方程"的过程进行了归纳.这对后续内容的展开具有重要的基础作用.学习目标1、经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型,认识从算式到方程是数学的进步。
人教版七年级数学上册从算式到方程教学设计
七年级的学生在数学学习上,已经具备了一定的算术基础和简单的代数知识。他们对算式的理解和运算能力较为熟练,但对于方程这一概念还相对陌生。因此,在进行“从算式到方程”的教学过程中,需要关注以下学情:
1.学生在认知上需要完成从具体的数字运算到抽象的字母表示的过渡。他们对未知数的概念和运用尚需加强,教学中应注重引导学生理解未知数在方程中的作用。
4.课后作业:布置与本节课相关的课后作业,要求学生课后复习,巩固所学知识。
五、作业布置
为了巩固学生对一元一次方程的理解和应用,以及提高他们的解题能力,特布置以下作业:
1.必做题:
-请学生完成课本第23页的练习题1、2、3,这些题目涵盖了本节课所学的方程的基本概念和解法,旨在帮助学生巩固基础知识。
-从生活中选取一个实际问题,建立一元一次方程模型,并求解。要求学生将问题解决的过程和结果写下来,以培养他们学以致用的能力。
3.精讲多练,掌握解法
-教师通过例题讲解,示范解一元一次方程的方法,强调移项、合并同类项等关Байду номын сангаас步骤。
-设计不同层次的练习题,让学生反复练习,巩固所学解法。
4.合作交流,解决问题
-组织学生进行小组合作,共同解决实际问题,培养团队协作能力和沟通能力。
-鼓励学生分享解题思路,相互学习,共同提高。
5.反思总结,提升认知
2.学生在思维方式上,需要从直观的算术思维向逻辑推理的代数思维转变。教学中,应注重培养学生的逻辑推理能力和抽象思维能力。
3.学生在实际问题解决中,可能存在将问题转化为数学方程的困难。因此,教学中应注重引导学生学会从实际问题中提炼出数学关系,建立方程模型。
4.部分学生对数学学习存在恐惧心理,容易在学习方程过程中产生挫败感。教学中,教师要关注学生的情感态度,鼓励他们克服困难,增强自信心。
初中数学《从算式到方程》教案设计范文
初中数学《从算式到方程》教案设计范文一、教学目标1.知识与技能:a)理解方程的概念,掌握方程的书写方法。
b)学会从实际问题中抽象出方程,解决实际问题。
c)掌握方程的解法,包括一元一次方程和简单的一元二次方程。
2.过程与方法:a)通过观察、分析、归纳,培养学生的逻辑思维能力。
b)通过小组讨论,培养学生的合作能力。
3.情感态度与价值观:a)培养学生对数学的兴趣,增强学习的积极性。
b)培养学生独立解决问题的能力,提高自信心。
二、教学重点与难点1.教学重点:a)方程的概念及其书写方法。
b)方程的解法。
2.教学难点:a)从实际问题中抽象出方程。
b)方程的解法,尤其是二次方程。
三、教学过程1.导入a)引导学生回顾算式的概念,如加法、减法、乘法、除法等。
b)提问:算式与方程有什么区别?2.知识讲解a)介绍方程的定义:含有未知数的等式。
b)举例说明方程的书写方法,如2x+3=7。
c)讲解方程的解法,如一元一次方程、一元二次方程等。
3.实例分析a)分析教材中的实例,如“小明的年龄是妈妈的1/3,妈妈的年龄是多少?”b)引导学生从实际问题中抽象出方程,如设妈妈的年龄为x,则小明的年龄为1/3x。
c)指导学生用方程解决问题。
4.练习与讨论a)让学生独立完成教材中的练习题,如“已知一个数的平方减去这个数等于2,求这个数。
”b)组织学生进行小组讨论,交流解题过程和心得。
b)提问:方程在实际生活中有哪些应用?c)拓展:介绍二元一次方程、三元一次方程等。
6.作业布置a)布置教材中的课后习题,如一元一次方程、一元二次方程的练习题。
b)鼓励学生从生活中发现方程的应用,记录下来并与同学分享。
四、教学反思1.课堂效果:a)观察学生在课堂上的反应,了解他们对方程的理解程度。
b)反思教学过程中的不足,如讲解是否清晰、例题是否典型等。
2.学生反馈:a)收集学生的反馈意见,了解他们对课堂内容的掌握程度。
b)根据反馈调整教学方法,提高教学效果。
从算式到方程教学设计及反思
从算式到方程教学设计及反思第一篇:从算式到方程教学设计及反思第二章、一元一次方程: 2.1 从算式到方程教学目标:1.了解什么是方程,什么是一元一次方程;2.通过“列算式”和“列方程”解决问题的方法,感受方程是应用广泛的数学工具;3.初步学会分析实际问题中的数量关系,利用其中的相等关系列出方程,渗透建立方程模型的思想;4.经历从生活中发现数学和应用数学解决实际问题的过程,树立多种方法解决问题的创新意识,品尝成功的喜悦,增强用数学的意识,激发学习数学的热情。
教学重点:1.了解什么是方程、一元一次方程;2.分析实际问题中的数量关系,利用其中的相等关系列出方程。
教学难点:分析实际问题中的数量关系,利用其中的相等关系列出方程。
教学过程:一、游戏激趣同学们,大家小时候一定都说过儿歌吧?那么这一首儿歌你一定说过(屏幕出示):1只青蛙1张嘴,2只眼睛4条腿,扑通一声跳下水;……。
现在,我们就来“比一比,说儿歌”(屏幕出示)。
要求是:以这样的速度说(师说一段),不能说错或停顿,如果停顿或者说错了就立即停止。
规则是:每一大组各派一名代表,看谁说得又快又好;第一大组,谁来?其他同学可听仔细了。
(进行比赛)我们知道,这是一首永远也说不完的儿歌,你能不能想个方法用一句话把这首儿歌说完呢(屏幕出示)?(根据学生回答,说出“x只青蛙x张嘴,2x只眼睛4x条腿,x声扑通跳下水”)(屏幕出示)这样,我们用字母x代替了具体的数,就用一句话代表了所有情况,使问题变得方便、简捷。
二、创设情境,引入课题1、同学们都挺喜欢吃巧克力吧!假如你妈妈从县城买了42颗你最喜欢吃的巧克力,你准备怎么处理呢?好东西要与好朋友分享,对吧?如果你和你的好朋友一人一半,你分得多少呢?我们也不能忘了孝敬长辈,假如分给奶奶的是分给你的2倍,那么你分了多少颗?如果还要分给爷爷,且分给奶奶的不变,还是你的2倍,分给爷爷的比分给你的1.5倍少3个。
此时你又分得多少颗?(让学生自己回答出两种解法——代数方法和算术方法)2、刚才解决这个问题时,两位同学一人用了列算式的方法,一人用了列方程的方法(屏幕出示)。
从算式到方程教学教案分析
从算式到方程教学教案分析一、教学目标1. 让学生理解算式和方程的概念,并掌握它们之间的区别与联系。
2. 培养学生运用数学知识解决实际问题的能力。
3. 培养学生合作交流、归纳总结的能力。
二、教学内容1. 算式:数与数之间的运算关系。
2. 方程:含有未知数的等式。
3. 算式与方程的区别与联系。
三、教学重点与难点1. 教学重点:算式和方程的概念及它们之间的区别与联系。
2. 教学难点:方程的解法及运用。
四、教学方法1. 采用情境教学法,激发学生的学习兴趣。
2. 运用直观演示法,帮助学生理解算式和方程。
3. 采用分组讨论法,培养学生合作交流的能力。
4. 运用引导发现法,引导学生总结算式和方程的区别与联系。
五、教学过程1. 导入:通过生活情境,引导学生发现数学问题,激发学习兴趣。
2. 新课导入:介绍算式和方程的概念,讲解它们之间的区别与联系。
3. 实例分析:分析一些具体的算式和方程,让学生更好地理解概念。
4. 课堂练习:设计一些练习题,让学生巩固所学知识。
5. 分组讨论:让学生分组讨论,总结算式和方程的区别与联系。
6. 课堂小结:总结本节课所学内容,强调重点和难点。
7. 课后作业:布置一些作业,让学生进一步巩固所学知识。
六、方程的解法1. 教学目标让学生掌握解一元一次方程的基本方法。
培养学生运用方程解决实际问题的能力。
2. 教学内容一元一次方程的定义。
解一元一次方程的方法:代入法、移项法、消元法。
3. 教学重点与难点教学重点:一元一次方程的解法。
教学难点:解方程时的运算技巧。
4. 教学方法采用案例分析法,让学生通过具体例子学习解方程。
运用小组合作法,培养学生相互帮助、共同解决问题的能力。
5. 教学过程导入:通过问题情境,引入一元一次方程的概念。
新课导入:讲解一元一次方程的定义和解法。
实例演示:展示解一元一次方程的具体步骤。
练习巩固:设计练习题,让学生独立解一元一次方程。
分组讨论:让学生分组讨论解方程的策略和技巧。
数学人教版(2024版)七年级初一上册 5.1.1 从算式到方程 教学教案 教学设计01
第五章一元一次方程5.1.1 从算式到方程【学习目标】1.让学生在掌握算式和简单方程的基础上,过渡到一元一次方程的学习;2.理解方程的意义,会根据实际情境列方程;3.掌握方程的解的概念,会判断方程的解;4.掌握一元一次方程的概念,会判断所给方程是否为一元一次方程.【学习重难点】重点:掌握一元一次方程的概念.难点:从实际问题中寻找等量关系,进而列出方程.【教学内容】新知探究1:方程的概念甲、乙两支登山队沿同一条路线同时向一山峰进发,甲队从距大本营1km的一号营地出发,每小时行进1.2km;乙队从距大本营3km的二号营地出发,每小时行进0.8km,多长时间后,甲队在途中追上乙队?你会用算术方法解决这个问题吗?列算式试试.甲、乙两队相距km,甲、乙两队的速度差是km/h,所以甲队追上乙队需要h.下面,我们引入一种新的方法来解决这个问题.思考:在这个问题中,已知:甲乙两队的行进速度及甲乙两队到大本营的距离.未知:行进的时间和路程.如果设两队的行进时间为x h,根据“路程=速度×时间”,甲队和乙队行进路程可以分别表示为1.2x km和0.8x km.甲队距大本营的路程:(1.2x+1)km乙队距大本营的路程:(0.8x+3)km想一想,甲队追上乙队时,他们距大本营的路程之间有什么关系?甲队追上乙队时,他们距大本营的路程相等.比较:列算式和列方程用算术方法解题时,列出的算式只含有已知数,对于较复杂的问题,列算式比较困难;而方程是根据问题中的等量关系列出的等式,其中既含有已知数,又含有用字母表示的未知数,解决问题比较方便.问题探究问题1 用买12个大水杯的钱,可以买16个小水杯,大水杯的单价比小水杯的单价多5元,两种水杯的单价各是多少元?思考:本题的等量关系是什么?设大水杯的单价为x元,那么小水杯的单价为(x-5)元.根据“单价×数量=总价”,可以列方程12x = 16(x-5).由这个含有未知数x的等式可以求出大水杯的单价,进而可以求出小水杯的单价.思考:若将小水杯的单价设为x元?你会列方程吗?设小水杯的单价为x元,那么大水杯的单价为元.根据“单价×数量=总价”,可以列方程12(x+5)=16x.由这个含有未知数x的等式可以求出小水杯的单价,进而可以求出大水杯的单价.问题2 下图是一枚长方形的庆祝中国共产党成立100周年纪念币,其面积是4 000mm2,长和宽的比为8:5(即宽是长的58). 这枚纪念币的长和宽分别是多少毫米?如果设这枚纪念币的长为x mm,则纪念币的宽可以表示为58x mm,依据长方形的面积公式,面积可以表示为58x2 mm.已知纪念币面积为4 000mm2,所以58x2 =4 000.由这个含有未知数x的等式可以求出这枚纪念币的长,进而可以求出纪念币的宽.像这样,先设出字母表示未知数,然后根据问题中的相等关系,列出一个含有未知数的等式,这样的等式叫作方程.注意:方程必须满足两个条件:(1)是等式;(2)化简后含有未知数. 二者缺一不可.考点解析例下列式子中,是方程的有()①8+2=10;② 3x+y=10;③x-1;④1x - 1y=1;⑤x >3;⑥x=1;⑦a2-1=0;⑧b2 ≠-1.A.4个B.5个C.6个D.7个注意:方程一定是等式,但等式不一定是方程.巩固练习1.下列各式中,是方程的是( )A.4-5=-1B.x+3y-1C.s+2t= -5D.a-6<32.下列各式中,不是方程的是.(填序号)①3x+1=4;②x2+2x+1=0;③ 4-3=1;④ |x|-1=0;⑤3x+1;⑥1a=a+1. ⑦x>0.3. 判断下列各式哪些是方程?是的标记“√”,不是的标记“×”.(1) 5x+3y-6x=37 ( ) (2) 4x-7 ( )(3) 5x ≥ 3 ( ) (4) 1+2=3 ( )(5) 6x2+x-2=0 ( ) (6) -7x- m=11 ( )注意:(1)方程中的未知数可以用字母x表示,也可以用其他字母表示,如y、z等.(2)方程中未知数的个数可以是一个,也可以是两个或两个以上,如x+y=12等.总结归纳用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只含有已知数,不含未知数;而方程是根据问题中的相等关系列出的等式,其中既含有已知数,也含有用字母表示的未知数,这为解决许多问题带来了方便.通过今后的学习,你会逐步认识到:从算式到方程是数学的一大进步.新知探究2:列方程典例解析例1 根据下列问题,设未知数并列出方程:(1) 某校女生占全体学生数的52%,比男生多80人,这所学校有多少名学生?思考:本题的等量关系是什么?解:设这所学校的学生数为x,那么女生数为0.52x,男生数为(1-0.52)x,根据“女生比男生多80人”,列得方程0.52x - (1-0.52)x = 80.(2) 如图,一块正方形绿地沿某一方向加宽5m,扩大后的绿地面积是500m2,求正方形绿地的边长.解:设正方形绿地的边长为x m,依据扩大后的绿地面积= 500m2女生人数-男生人数=80.列得方程x(x+5)=500→x2+5x=500.巩固练习1.《算法统宗》是我国古代数学著作,其中记载了一道数学问题,大意如下:用绳子测水井深度,若将绳子折成三等份,则井外余绳4尺;若将绳子折成四等份,则井外余绳1尺.问绳长和井深各多少尺?设井深为x尺,则可列方程为.解析:根据将绳三折测之,绳多四尺,则绳长为:3(x+4);根据绳四折测之,绳多一尺,则绳长为:4(x+1).故3(x+4)=4(x+1).2.甲、乙两人分别从相距30千米的A,B两地骑车相向而行,甲骑车的速度是10千米/时,乙骑车的速度是8千米/时,甲先出发25分钟后,乙骑车出发,问乙出发后多少小时两人相遇?(只列方程)莉莉:设乙出发后x小时两人相遇,列出的方程为25×10+8x+10x=30.请问莉莉列出的方程正确吗?如果不正确,请说明理由并列出正确的方程.解:莉莉列出的方程不正确.理由:列方程时未统一单位.正确方程:设乙出发后x小时两人相遇,等量关系为:甲的路程+乙的路程=30千米依×10+10x+8x=30.题意得2560总结提升归纳分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法. 这个过程可以表示如下:列方程的基本思路:(1)理解题意,弄清已知是什么,未知是什么;(2)找出题目中的相等关系;(3)根据相等关系列方程。
初中七年级上册数学《从算式到方程》教案
初中七年级上册数学《从算式到方程》教案一、教学目标1. 知识与技能:(1)了解算式和方程的基本概念和区别。
(2)能够通过变形将一个算式转化为一个简单的方程。
(3)能够解一元一次方程。
2. 过程与方法:(1)通过例题引导学生掌握解方程的基本方法和思路。
(2)通过练习和讨论,提高学生解题的能力和思考的技巧。
3. 情感态度与价值观:(1)培养学生的数学兴趣和好奇心,增强解题信心。
(2)感受数学知识在实际问题中的应用。
二、教学重难点1. 教学重点:(1)算式和方程的基本概念和区别。
(2)一元一次方程的解法。
2. 教学难点:(1)如何将一个算式转化为一个简单的方程。
(2)如何处理含分数、含括号的方程。
三、教学过程(一)导入新知识教师通过简单的口算练习,引导学生回顾和复习初中六年级以前的知识,然后向学生展示下面的算式和方程:1、7+5=122、x+5=123、3x=15请学生思考这三个式子的区别,解释算式和方程的概念。
(二)讲授新课1. 解释算式和方程的概念算式是由数和符号组成的式子,其结果是唯一的。
例如7+5=12就是一个算式,它的结果是12。
方程是一个表示两个量相等的式子,其中含有一个未知量(通常用字母表示这个未知量)。
例如x+5=12就是一个方程,它表示x加上5的结果等于12。
2. 利用等式变形将算式转化为方程将一个算式转化为一个方程的方法有很多种,其中最常见的就是等式变形。
例如,将7x-20=5x+20转化为方程,可以按照下面的步骤来操作:a. 将5x移项,得到7x-5x=20+20,即2x=40。
b. 将2x除以2,得到x=20。
注意:化简方程时要注意符号的变化,如负数的移项和分配律的运用。
3. 解一元一次方程下面以一个简单的例子来说明解一元一次方程的方法:例:解方程2x+3=7+5xa. 将变量移到一边,常数移到另一边,得到2x-5x=7-3,即-3x=4。
b. 将方程两边都除以-3,得到x=-4/3。
七年级数学《从算式到方程(1)》教案
二、学习新知
1.引导学生把题中的数量用表格形式反映题意:
路程(km)
速度(km/h)
时间(h)
卡车
x
60
客车
x
70
2.学生回顾方程的概念,探讨、列出方程,并说出列得方程的依据.
3.讨论列出方程表示的意义,并对比算术方法,体会列方程解决问题与列算式解决问题的优越性.
(3)公园购回一批风景树,其中桂花树占总数的,樟树比桂花树的棵数多,杉树比前两种树木的棵数和还多12棵,求这批树木总共多少棵?
三、初步应用
1.例1:课本P79例1.
列出方程后教师说明:“4x”表示4与x的积,当乘数中有字母时,通常省略乘号“×”,并把数字乘数写在字母乘数的前面.
四、课时小结
1.本节课我们学了什么知识?
4.反思:这个问题中除了A、B两地的路程是一个未知量,还有没有其它的量是未知的?如果还有其它的量是未知的,能否用字母(或未知数y)表示这个未知量,列出与前面不同的方程呢?学生分组讨论.
5.将题中的已知量和未知量用表格列出:
路程(km)
速度(km/h)
时间(h)
卡车
60
y
客车
70
y-1
6.探讨:①列出关于y的方程;②解释这个方程表示的实际意义(或列出这个方程的依据);③如何求题目问题:A、B之间的路程.
教学难点
从实际问题中寻找相等关系。
知识(教材)梳理:
1.从算术方法到代数方法.
2.如何寻找问题中的相等关系,列出方程,了解方程的概念.
教法设计与学法指导
探索式教学法
以题代纲,梳理知识-----变式训练,查漏补缺-----综合训练,总结规律-----测试练习,提高效率。
5.1.1 从算式到方程(第二课时)-教案
分课时教学设计
边=4×(20−5)=60,方程左、右两边的值相等,所以x=20是方程3x=4(x−5)的解。
思考1:x=60是方程5
8
x2=4000的解吗?x=80呢?
解:当x=60时,方程5
8x2=4000的左边= 5
8
×
602=2250,右边=4000,方程左、右两边的值不相等,所以x=60不是方程
5
8
x2=4000的解;
当x=80时,方程5
8x2=4000的左边= 5
8
×
802=4000,右边=4000,方程左、右两边的值相等,所以x=80是方程5
8
x2=4000
的解。
说一说:如何检验某个值是不是方程的解?
预设:
思考2:观察方程
1.2x+1=0.8x+3,3x=4(x−5),0.52x− (1−0.52)x=80。
它们有什么共同特征?
预设:①只含有一个未知数;(一元)
②未知数的指数都是1;(一次)
③含未知数的式子都是整式(整式方程)
归纳:一般地,如果方程中只含有一个未知数(元),且含有未知数的式子都是整式,未知数的次数都是1,这样的方程叫作一元一次方程。
溯源:用“元”表示未知数,源于我国宋元时期的“天术”.天元术指的是用“天元”表示未知数,进而列出方程.现存的使用天元术的最早著作是这一时期我国数学家李冶(1192—1279)于1248年所著的《测圆海镜》,书中的“立天元一”相当于现在
活动意图说明:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章一元一次方程《从算式到方程——一元一次方程》教学设计贵州省贵阳市观山湖区会展城第一中学李菁一、教学内容和内容解析:1、内容方程及一元一次方程的概念,根据问题中的数量关系,设未知数建立方程。
2、内容解析方程是初等代数学的核心内容,是解决实际问题的一种重要的数学模型。
方程的出现是从算术方法发展到代数方法的一个重要标志。
方程随着实践的需要而产生,它是具备了“含有未知数”特征的等式,它使得实际问题中的已知数与未知数通过等式连接起来,这种以方程为工具解决问题的思想即“方程思想”,它在本章中占主要地位。
一元一次方程虽然是最简单的代数方程。
但是解任何一个代数方程(组)最终都要化归为一元一次方程。
一元一次方程是具备了“含有一个未知数,未知数的次数是一次”两个特征的整式方程(即等号两边都是整式的方程),所以注重概念的实质,承上启下为后续的课程教学做好铺垫。
根据以上对教材地位和作用的分析,结合课标对本节课的要求,我将本节课的重点确定为:1. 认识方程及一元一次方程的相关概念;2. 寻找实际问题中数量之间的相等关系,建立方程模型的思想。
二、教学目标和目标解析:1、目标(1)了解方程及一元一次方程的概念;(2)经历实际问题抽象为方程问题的过程,感受方程作为刻画现实世界的数学模型的意义;(3)体会由算式到方程是数学的一大进步,进而体会方程思想。
2、目标解析目标(1)达成的标志是:通过观察和学习明确方程是含有未知数的等式,通过对多种实际问题的分析,类比、归纳,总结出一元一次方程的概念;目标(2)达成的标志是:学生通过对行程方案一、二、三问题的解析,学会在实际问题中寻找相等的数量关系,根据数量关系会建立方程模型;目标(3)达成的标志是:学生通过尝试用算式和方程两种方法解决,从而认识到方程的优越性;感受方程是解决问题的有力工具,并在不断重复运用的过程中感受方程思想,体会由算式到方程是数学的一大进步。
同时,通过对多种实际问题的分析,培养学生克服困难的意志品质;体验在生活中学数学、用数学的价值,感受学习数学的乐趣。
三、学生学情分析:在小学阶段,学生已经习惯了用算术的方法解决实际问题,而对于如何设未知数,如何寻找相等关系,如何用含有未知数的式子表示相等关系,虽然已经有所接触,但是还不够熟练,从算术方法过渡到代数方法的思维转变还有一定困难。
本节课就是在此基础上更加系统的学习方程和一元一次方程的概念,同时引用学生现实生活的情景教学,会极大的调动学生积极性并愿意配合,逐步去体会方程在解决问题中的优势,从而更重视到对方程的学习。
在教学过程中,要有丰富的实际背景问题,因为把实际问题抽象为数学方程是有一定难度的,当学生感到困难时,我们教师要及时帮助学生有针对性的解疑答惑,或通过提问启发教学、合作学习、互帮互助等学习方式寻找分析实际问题中数量之间的相等关系,突出方程是刻画现实世界的一种有效的数学模型,解决从而培养渗透建立方程模型的思想,也做好从算术思维过渡到代数思维的准备。
本节课的教学难点:1.如何从算术思维过渡到代数思维的转变;2.渗透建立方程模型的思想。
四、教学策略分析:本节课主要采用新课标所倡导的教学模式:“问题情境—建立数学模型—解释—应用与拓展”,并采用启发式、引导式教学方法为主,讲解式教学方法为辅,注重体现以学生为主体的教学方法.老师通过提出问题,激发学生求知的欲望,引导他们解决问题,并掌握解决问题的规律和方法;学法上将引导学生进行自主探究,让他们亲身经历知识的产生、发展、形成的认知过程.通过观察、比较、思考、探索、交流、应用等活动,在潜移默化中领会学习方法,使学生从看中学、讲中学、做中学的教育理念展开,在教学过程中做了以下微调:(1)借助阅兵式的图片激发起学生激动的爱国热情,渗透爱国主义教育,立德树人;(2)利用国庆假期出游的不同设计方案引入,自然的让学生从简单的行程情境中感受算方法解决问题的特点;(3)借助方案一的速度、时间即可求出路程,变式到方案二中的每段路程与全程的关系,感受行程问题难度的深入,让学生感受算式的不容易,然后再逐步引导学生列出含未知数的式子表示有关的量,并进一步依据相等关系列出含未知数的等式——方程。
目的是突出从算术思维过渡到代数思维的必要性,这样安排的目的是突出方程的根本特性,引出方程的定义,并使学生认识到从算数方法到代数方法是数学的一大进步;(4)方案三来源于教材前置内容的改编,在方案三中再次从一个具体行程问题情境中着重关注学生用列方程或算式的方法解决它的过程,目的是强调方程的根本特征,感受方程是刻画现实世界的一种有效的数学模型,逐步去体会列方程比列算式更直接、更自然、更优越。
再通过多元化的方程让学生观察和类比,来引出和分析一元一次方程的概念,从而确定教学主题,达到突出理解一元一次方程的概念实质。
(5)将例1问题中的2、3小题作为巩固练习,由讲变成练,让学生独立思考完成,不同的思维就有不同的解答,然后上台自主展示,目的是关注学生数学活动经验的积累,思维水平的提高,以及运用数学知识解决问题的能力。
五、教学过程:(一)创设情境,感受方程魅力(新课引入)今年是祖国70周年大庆,小明观看了阅兵式后也想去北京感受一下祖国首都的风采,他设计了几种出行方案,如下:出行方案1:小明打算独自一人上午9点从贵阳坐高铁下午7点到北京旅游,高铁的平均速度为240km/h,你知道两地有多远吗?师生活动:学生审题之后教师提问:①同学们,你们能帮小明解决这个问题吗?(学生思考后给出答案(19-9)×240=2400 )②你们觉得容易吗?这是小学解决问题的什么方法呢?(学生觉得很容易,没有难度;列算式的方法)【设计意图】利用阅兵式图片,激发学生的爱国热情,借助国庆出游中的实际行程问题,感受算式解决简单实际问题带来的便捷。
小明觉得一人出行太孤单了,他又想约好朋友们一起去北京感受祖国首都的风采,又设计出如下方案:出行方案2:小明打算异地约2个好朋友一起去北京旅游,小明在贵阳站上车后,行驶了全程的31到A 地时小军上车,又行驶了全程的21到B 地时小彬上车,三人共同再行驶400千米到达北京,这样你又能求出两地的距离吗?③小明觉得一人出行太孤单了,他想约好朋友一起游玩,请问同学们,你能帮助他们解决这个问题吗?(学生开始思考,说明问题变复杂了)④等待之后,问大家是否会列式解决问题呢? (有学生来列出算式:⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-÷21311400) 带着同学们一起来解析这个式子,进一步理解其中的含义;⑤既然能列出算式,那么同学们能用列方程的方法试一试吗?(学生思考后给出答案:设两地路程为x 千米,则4002131=⎪⎭⎫ ⎝⎛+-x x ) (学生给出不同的答案:设两地路程为x 千米,则4002131=--x x x ) ⑥为什么?你们是怎么想到的呢?(学生回答:去寻找问题中的相等关系,即:贵阳到北京的总路程-贵阳到A 地路程-AB 路程=B 地到北京路程) ⑦非常好,我们利用了路程之间的等量关系,很容易列出了方程,所以,从算式到方程的学习是非常有必要的,今天我们的主要学习内容就是——从算式到方程。
【设计意图】通过两个实际问题的问答和比较,引发冲突,感知列算式的困难,使学生认识到进一步学习新解法的必要性。
而列方程则顺理成章、简洁自然,得出本章的主题,并强调方程的重要性。
⑧我们通过小视频来进一步的了解认识一下方程吧!(观看视频)⑨同学们,现在知道什么是方程了吗?列方程时,我们先要设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程。
【设计意图】在此回答了开头提出的问题,正式给出方程的定义,学生在小学已经学习过简易方程,通过此题可以让学生回顾已学过的知识,同时通过小视频进一步感受方程和算式的不同,感受列方程的重要性,为从算术思维过渡到代数思维做好铺垫。
(二)对比方法,建立方程模型 (教学重、难点)小明觉得国庆出游可能人会很多,很拥挤,不想出去添堵,就想约好朋友就在贵阳周边自驾游,设计方案如下:出行方案3:小明打算约小伟在贵阳周边进行自驾游,他们同时从贵阳出发沿同一公路同方向行驶,小明的平均行驶速度是70 km/h ,小伟的平均行驶速度是60 km/h ,小明比小伟早1 h 到达旅游地,两地的距离你能知道有多远吗? 师生活动:(学生深度研讨中)①先让学生独立思考尝试练习,如果出现困难,让学生们分组讨论解决问题的方法,之后请学生代表展示结果。
(请同学们仔细阅读题干:勾出题中的关键词和关键句)展示一:设两地间的路程是x km ,列方程得:70160x x =- ②此方程涉及到哪些量呢?这些量之间有什么关系呢?这个方程中的相等关系是什么呢? (学生回答)③对于上面的问题,同学们还能列出其他的方程吗?(学生思考)展示三:设两地间的路程是x km ,列方程得:17060+=x x ; 展示四:设客车行驶时间为y km/h ,列方程得:70y = 60(y +1);展示五:设卡车行驶时间为a km/h ,列方程得:60a = 70(a -1);......④上述方法中,你们分别列出方程的依据是哪些等量关系的呢?(学生思考、讨论并回答)⑤同学们,你们还能用列算式的方法解决这个问题吗?试一试吧。
它们又涉及哪些量呢?这些量之间有什么关系呢?又该如何表示呢?展示二:70-60=10,60÷10=6,70×6=420 或其他算式(有些难度,师生共同探讨得出结论)【设计意图】这是一个行程问题,用未知量表示路程、时间、速度,让学生体会到用字母也可以表示数量,找出相等关系是列方程的关键所在。
继续追问,有助于分析问题,体会问题中的相等关系不只一个,所以列方程的角度不是唯一的,同时也是为了让教学更有深度,也是为了让学生的数学抽象、逻辑推理、数学建模、直观想象和数据分析等方面的培养更有广度。
⑥展开讨论:用算术方法和用方程方法解决这个问题各有什么特点?谈谈你们的感想?【设计意图】让学生感受此题用算式解法比较不容易,通过不同方法的对比,体验出方程和算术方法都是解决实际问题非常好的办法,但是各有千秋,当问题简单时,算式更简单,当题目数量之间的关系比较复杂时,用方程更方便列式;算式只用到了已知量,而方程既用到已知量也用到了未知量;算式只是式子,而方程则是等式;列方程是一个顺向思维过程,而列算式是一个逆向思维过程。
(三)感受方程内涵,定义新知(突出主题)师生活动:①刚才我们对比了算式和方程的特点,现在我们再来类比一下上述我们列出的这些方程又有什么共同特征呢?(教师引导学生对列出的方程进行特征分析)(学生很容易回答:含有一个未知数;都是等式)②未知数的次数都有什么特点呢? (引导、启发发现特点)(学生发现未知数的次数不同,从而推导出未知数的次数都是1)③同学们,在一元一次方程中,还有什么重要的地方需要注意的吗?我们再通过小视频来一起来看看什么是一元一次方程吧!④视频中需要注意的关键点:等号两边的式子都是什么式呢?列方程的关键是什么呢?给出明确结论:只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。