比例尺的应用(一)
比例尺的用途分为哪几种
比例尺的用途分为哪几种比例尺是地图上的一个重要元素,用于表示地图上的距离比例关系。
它显示的是地图上的长度与实际距离之间的比例。
比例尺通常以分数或比例的形式表示,例如1:100000,1/100000或1cm:1km等。
比例尺有许多用途,以下是其中的几种主要用途。
第一,比例尺用于测量距离。
比例尺可以帮助我们在地图上测量两点之间的实际距离。
通过使用比例尺和一个公差测量工具(如一根测量尺或一个或者计算机),我们可以非常准确地测量任意两点之间的距离。
这对于旅行规划、道路规划或者其他需要准确测量距离的任务非常有用。
第二,比例尺用于计算面积。
比例尺不仅可以帮助我们测量线段的长度,还可以帮助我们计算面积。
通过将地图上的面积与实际面积比例进行转换,我们可以非常准确地计算出任意区域的实际面积。
这对于土地测量、城市规划或者其他需要准确计算面积的任务非常有用。
第三,比例尺用于生成缩微地图。
缩微地图是较大或较复杂地图的缩小版本。
通过调整比例尺,我们可以将一个大地图缩小到适合于显示在较小区域内的缩微地图中。
这对于城市规划、导航系统或者其他需要在有限空间内显示大量信息的任务非常有用。
第四,比例尺用于确定方向。
在地图上,我们可以使用比例尺来确定一个点相对于另一个点的方向。
通过测量两个点之间的距离并使用比例尺来确定实际距离,我们可以确定相对于一个点的方向。
这对于导航、定位或者其他需要确定方向的任务非常有用。
第五,比例尺用于计算速度。
在某些情况下,我们可以使用比例尺来计算物体的速度。
通过测量物体在地图上移动的距离并使用比例尺来确定实际距离,我们可以计算出物体的速度。
这对于交通规划、运输管理或者其他需要计算速度的任务非常有用。
第六,比例尺用于比较地理特征。
比例尺可以帮助我们比较不同地区之间的地理特征。
通过调整比例尺,我们可以将不同地区上的地理特征缩小并放置在同一个地图上进行比较。
这对于研究地理、环境或者其他需要比较地理特征的任务非常有用。
苏教版数学六年级下册 比例尺及其应用(1)
比例尺及其应用(1)
情境导入
红光小学有一块长方形草坪,长50米,宽30米。把这块草坪
按一定的比例缩小,画出的平面图长5厘米,宽3厘米。你能
分别写出草坪长、宽的图上距离和实际距离比吗?
怎样写出5厘
米和50米的
比呢?
3
厘
米
实际距离
图上距离
30
米
5厘米
50米
探究新知
3
厘离
或 比例尺=图上距离:实际距离
所以这幅平面图的比例是
1:1000
50米
把3厘米改写成0.03
厘米。草坪宽的图上
距离和实际距离的比:
0.03
3
1
=
=
30
3000
1000
3
厘
米
实际距离
图上距离
30
米
5厘米
你能说说这个比
例尺的含义吗?
50米
比例尺1:1000,
表示实际距离是图
上距离的1000倍。
你能说说1:1000比例尺的含义吗?
是多少厘米?
解:设甲、乙两城市的图上距离是x厘米。
题中单位不同,
75km=7500000cm
应先统一单位。
1:3000000=x:7500000
x=2.5
答:甲、乙两城市的图上距离是2.5厘米。
课堂小结
这节课你们都学会了哪些知识?
一幅画的图上距离和实际距离的比,
叫作这幅画的比例尺。
图上距离
比例尺=
比例尺1:1000,表是图上
距离是实际距离的
。
比例尺=1:1000,
表示实际距离是图
上距离的1000倍。
比例尺的应用(求实际距离)
如果地图A上的1单位长度表示实际上的100米,而地图B的比例尺为1:200,则地图A上 实际距离为100米时,在地图B上表示为50厘米。
05
比例尺的精度与误差
比例尺的精度
01
比例尺精度决定了地图上表示的距离与实际距 离之间的误差范围。
02
比例尺越小,精度越高,表示的实际距离越准 确。
03
地图制作过程中,需要考虑比例尺与地图用途 的匹配度,以确保地图的实用性。
比例尺误差的消除与减小过采用更先进的测量技术和设备,可以减小地图制作过程中
的测量误差。
选择合适的投影方式
02
根据地图用途和区域特点,选择合适的投影方式,可以减小投
影变换带来的误差。
加强地图校准和检验
03
通过加强地图校准和检验,可以及时发现并纠正地图中的误差,
提高地图的精度。
比例尺的作用
1 2
3
方便测量和估算实际距离
通过比例尺,我们可以根据图上的距离计算出实际的距离, 从而进行测量和估算。
提高地图的可读性和准确性
比例尺可以帮助我们更好地理解地图上的信息,并提高地图 的可读性和准确性。
在工程设计和建设中有广泛应用
在工程设计和建设中,比例尺可以帮助设计师和工程师更好 地理解和规划实际的空间和尺寸,提高设计的准确性和可行 性。
举例
如果地图上的1单位长度表示实际上的100米,而地图的比例尺为1:1000,则实际距离为100米时,在地 图上表示为1厘米。
不同地图之间的换算
地图换算
当需要将一个地图上的距离转换为另一个地图上的距离时,可以使用比例尺进行换算。 假设两个地图的比例尺分别为1:M和1:N,则换算公式为:新距离 = 旧距离 × (N/M)。
比例尺应用题及答案
比例尺应用题及答案一、问题描述现有一条公路,长度为300千米,若要将其缩小到一张长为15厘米的纸上,应使用何种比例尺?二、解题过程1.确定比例尺的公式:比例尺 = 实际长度 ÷绘制长度2.计算比例尺的值:实际长度为300千米,绘制长度为15厘米,代入公式可得:比例尺 = 300 ÷ 15 = 20三、答案阐述根据计算结果可得,将300千米的公路缩小至15厘米的纸上时,应采用比例尺为1:20。
即每1厘米的纸代表实际公路的20千米。
四、其他应用示例1.问题描述现有一块土地,面积为80亩,若要将其绘制在一张长为40厘米的图纸上,应使用何种比例尺?2.解题过程(1)确定比例尺的公式:比例尺 = 实际长度 ÷绘制长度(2)计算比例尺的值:实际长度为80亩,绘制长度为40厘米,代入公式可得:比例尺 = 80 ÷ 40 = 23.答案阐述根据计算结果可得,将80亩的土地绘制在一张长为40厘米的图纸上时,应采用比例尺为1:2。
即每1厘米的图纸代表实际土地的2亩。
2.问题描述某模型飞机的实际长度为30厘米,若要将其放大至实际飞机的长度,应使用何种比例尺?3.解题过程(1)确定比例尺的公式:比例尺 = 实际长度 ÷绘制长度(2)计算比例尺的值:实际长度为30厘米,绘制长度为实际飞机的长度,代入公式可得:比例尺 = 30 ÷ 1 = 304.答案阐述根据计算结果可得,将某模型飞机放大至实际飞机的长度时,应采用比例尺为30:1。
即模型飞机的长度是实际飞机长度的30倍。
五、总结比例尺是地图、图纸等绘制工作中常用的概念,用于表示实际长度与绘制长度之间的比例关系。
在实际问题中,我们需要根据实际情况确定比例尺的数值,以便准确地绘制出所需的图形或地理信息。
在计算比例尺时,我们可以根据公式进行简单的除法运算,得出比例尺的数值。
比例尺的正确应用可以确保绘制的图形或地理信息具有一定的准确性和可读性。
比例尺的应用(求图上距离)
作业
按8:1的比例尺画在图纸上,长和宽各
应画多长?
练1
小军量得公园一个圆形花坛的周长是
157米,他想把它画在平面图上,请你
帮帮画一画。(比例尺根据纸的大小和 圆规的大小确定)
练2
一幅图的线段比例尺是:0
80 160 240 千米
甲乙两城在这幅地图上相距15厘米,两 城间的实际距离是多少千米?如果把甲 乙两城画在另一幅比例尺是 1 ︰10000000的地图上,应画 多少厘米?
答:应画40厘米。
一张地图的比例尺是1︰200000, 从甲地到乙地的距离是60千米,求
图上距离是多少厘米。
试1
英华小学有一块长120米、宽80米 的长方形操场,画在比例尺为1 : 4000的平面图上,长和宽各应画多 少厘米?图上面积是多少平方厘米?
试2
一个长方形机件长4.5毫米,宽2.4毫米,
复
例
一条跑道长200米,如果用1:500的比例尺画 在图纸上,应画多长? 算术方法
200米=20000厘米 实际距离×比例尺=图上距离
1 20000× =40(厘米) 500
列方程法
解:设应画χ厘米。 200米=20000厘米 图上距离︰实际距离=比例尺 χ︰20000=1︰500 500χ=20000 ×1 χ=20000÷500 χ=40
( 图上距离 ) =比例尺 ( 实际距离 ) ( =实际距离 ( 图上距离)÷ 比例尺 ) ( =图上距离 实际距离)× 比例尺 ) (
在一幅地图上,测得甲、乙两地的图上距离是13厘米,已知甲 乙两地的实际距离是780千米。 (1)求这幅图的比例尺。 (2)在这幅地图上量得A、B两城的图上距离是5厘米,求A、 B两城的实际距离。 (1)比例尺: 13厘米︰780千米 =13厘米︰78000000厘米 =1 ︰6000000 (2)实际距离 解:设A、B两城的实际 距离是χ厘米。 5 ︰ χ=1 ︰6000000 1χ=5×6000000 (2)实际距离: 1 χ=30000000 5 ÷ 6000000 =30000000(厘米) 30000000厘米=300千米 =300千米 答:这幅图的比例尺是1 ︰6000000,A、B两城 的实际距离是300千米。
比例的应用(比例尺的概念、例1) 省优获奖课件ppt
北京到天津的实际距离是120km,在一幅地图上量得两地的 图上距离是2.4cm。这幅地图的比例尺是多少?
图上距离:实际距离=比例尺 120km=12000000cm 2.4:12000000=1:5000000 答:这幅地图的比例尺是1:5000000。
二、知识应用
孙老师说,杨蕙心学习效率很高,认真执行老师 的复习要求,往往一个小时能完成别人两三个小 时的作业量,而且计划性强,善于自我调节。此 外,学校还有一群与她实力相当的同学,他们经 常在一起切磋、交流,形成一种良性的竞争氛围。 谈起自己的高考心得,杨蕙心说出了“听话” 两个字。她认为在高三冲刺阶段一定要跟随老师 的脚步。“老师介绍的都是多年积累的学习方法, 肯定是最有益的。”高三紧张的学习中,她常做 的事情就是告诫自己要坚持,不能因为一次考试 成绩就否定自己。高三的几次模拟考试中,她的 成绩一直稳定在年级前5名左右。
1. 一个圆柱形零件的高是5mm,在图纸上的高是2cm, 这幅图纸的比例尺是多少?
图上距离:实际距离=比例尺 2cm=20mm 20:5=4:1 答:这幅图纸的比例尺是4:1。
二、知识应用
2. 一副地图的比例尺1:30000000,你能用线段比例尺表示出来吗?
比例尺1:30000000表示图上距离 1cm相当于实际距离30000000cm。
上海 2006 高考 理科 状元-武亦 文
武亦文 格致中学理科班学生 班级职务:学习委员 高考志愿:复旦经济 高考成绩:语文127分 数学142分 英语144分 物理145分 综合27分 总分585分
“一分也不能少”
“我坚持做好每天的预习、复习,每 天放学回家看半小时报纸,晚上10: 30休息,感觉很轻松地度过了三年 高中学习。”当得知自己的高考成 绩后,格致中学的武亦文遗憾地说 道,“平时模拟考试时,自己总有 一门满分,这次高考却没有出现, 有些遗憾。”
初中数学知识归纳比例尺的概念和应用
初中数学知识归纳比例尺的概念和应用比例尺是初中数学中一个重要的概念,它在日常生活中的应用广泛。
比例尺主要用于表示地图、图表以及模型等比例缩放的关系。
在本文中,我们将对比例尺的概念及其应用进行归纳和总结。
1. 比例尺的概念比例尺是指地图、图表等的比例关系。
它通常以“1:n”的形式表示,其中1单位的实际长度(或面积)对应于地图上的n单位长度(或面积)。
比例尺描述了实际尺寸与缩放尺寸之间的关系,帮助我们在实际尺寸和缩放尺寸之间进行转换。
2. 比例尺的应用(1)地图中的比例尺比例尺在地图中起着至关重要的作用。
通过地图的比例尺,我们可以准确地测量和估算地图上各种要素的实际长度、面积和方位关系。
比如,在一张1:10000的比例尺地图上,1厘米对应实际距离100米,我们可以通过测量地图上两个点之间的距离,并利用比例关系得知实际距离。
(2)模型的比例尺比例尺也常用于制作模型,例如建筑模型、飞机模型等。
模型的比例尺可以帮助我们将实际物体缩小或放大到适合的尺寸,以便于观察、学习和展示。
比如,1:100比例尺的建筑模型,实际尺寸的100倍缩小,使得我们可以更清晰地观察到建筑的细节。
(3)图表中的比例尺比例尺也可以在图表中应用,以便更好地呈现数据。
常见的例子是折线图和柱状图中的纵轴比例尺。
比例尺的设定可以帮助我们准确地读取图表中的数据,并进行比较和分析。
比如,在柱状图中,纵轴上每个刻度所表示的数值,可以根据比例尺来确定具体数值。
3. 比例尺的计算方法为了计算比例尺,我们需要知道实际长度(或面积)和缩放尺寸之间的比例关系。
一种简单的方法是通过测量实际长度和相应的缩放长度,然后计算比例。
另一种常用的方法是利用单位换算,将实际长度和缩放长度转化为相同的单位,然后利用比例关系计算比例尺。
4. 比例尺的注意事项在使用比例尺时,我们需要注意以下几点:(1)要正确理解比例尺的含义和表示方法,特别是地图上的比例尺单位。
(2)要确保在测量实际长度和缩放长度时使用相同的单位,以便计算比例尺时不产生误差。
比例尺的应用知识点总结
比例尺的应用知识点总结比例尺是地图上的一种重要工具,用于表示地图上的距离与实际距离之间的比例关系。
在地理学、测绘学以及其他领域中,比例尺被广泛应用于测量、规划和导航等方面。
本文将对比例尺的应用知识点进行总结。
1.什么是比例尺?比例尺是地图上的一个重要元素,用于表示地图上的距离与实际距离之间的比例关系。
比例尺通常以分数的形式表达,例如1:10,000,表示地图上的1个单位长度对应于实际距离上的10,000个单位长度。
2.比例尺的种类比例尺可以分为三种类型:图形比例尺、线性比例尺和数字比例尺。
•图形比例尺:通过图形的大小和形状来表示地图上的距离与实际距离的比例关系。
最常见的图形比例尺是一条标有刻度和距离的线段。
•线性比例尺:使用线段来表示地图上的距离与实际距离的比例关系。
线性比例尺通常标有单位长度,例如1公里。
•数字比例尺:直接以数字的形式表示地图上的距离与实际距离的比例关系,例如1:10,000。
3.比例尺的测量在地图上使用比例尺进行测量时,需要使用测量工具(例如尺子或测距仪)将地图上的距离与实际距离进行对比。
首先,根据比例尺的表示方法确定比例尺的比例关系。
然后,使用测量工具测量地图上的距离,并将其与实际距离进行对比,从而确定实际距离。
4.比例尺的应用•地图制作:比例尺是制作地图时必不可少的元素。
它可以帮助人们了解地图上的距离与实际距离之间的关系,从而更好地理解地图的信息。
•测量和规划:比例尺可以用于测量和规划工作中的距离。
例如,在设计道路、建筑物或城市规划时,比例尺可以帮助工程师和规划师准确地计算和估计距离。
•导航和定位:比例尺可以用于导航和定位工作中。
通过比较地图上的距离与实际距离,人们可以确定自己的位置以及需要移动的方向和距离。
5.比例尺的注意事项•比例尺的准确性:地图制作和测量工作中,比例尺的准确性非常重要。
不同的地图可能使用不同的比例尺,因此在使用比例尺进行测量或导航时,要确保使用正确的比例尺。
比例尺的用法比例尺如何使用
比例尺的用法比例尺如何使用导读:我根据大家的需要整理了一份关于《比例尺的用法比例尺如何使用》的内容,具体内容:比例尺是表示图上一条线段的长度与地面相应线段的实际长度之比。
那么你对比例尺的使用方法了解多少呢?以下是由我整理关于比例尺的用法的内容,希望大家喜欢!比例尺的用法方法...比例尺是表示图上一条线段的长度与地面相应线段的实际长度之比。
那么你对比例尺的使用方法了解多少呢?以下是由我整理关于比例尺的用法的内容,希望大家喜欢!比例尺的用法方法1.根据地图上的比例尺,可以量算图上两地之间的实地距离;根据两地的实际距离和比例尺,可计算两地的图上距离;根据两地的图上距离和实际距离,可以计算比例尺。
根据地图的用途,所表示地区范围的大小、图幅的大小和表示内容的详略等不同情况,制图选用的比例尺有大有小。
地图比例尺中的分子通常为1,分母越大,比例尺就越小。
通常比例尺大于十万分之一的地图称为大比例尺地图;比例尺介于十万分之一至一百万分之一之间的地图,称为中比例尺地图;比例尺小于百万分之一的地图,称为小比例尺地图。
在同样图幅上,比例尺越大,地图所表示的范围越小,图内表示的内容越详细,精度越高;比例尺越小,地图上所表示的范围越大,反映的内容越简略,精确度越低。
(此可简记为"大小详、小大略"方便应用)地理课本和中学生使用的地图册中的地图,多数属于缩小比例尺地图。
方法2.用图上距离除以实际距离等于比例尺,公式是图上距离:实际距离=比例尺,例如:图上2厘米表示实际300千米,可以这样求比例尺——2cm:300km=2cm:30000000cm=1:15000000,这样就求出来了。
比例尺的表示方法用公式表示为:比例尺=图上距离/实际距离。
比例尺通常有三种表示方法。
(1)数字式,用数字的比例式或分数式表示比例尺的大小。
例如地图上1厘米代表实地距离500千米,可写成:1∶50,000,000或写成:1/50,000,000。
比例尺在地制作中的应用有哪些
比例尺在地制作中的应用有哪些关键信息项:1、比例尺的定义与类型名称:____________________________描述:____________________________2、地制作的范围与目的范围:____________________________目的:____________________________3、比例尺在地图绘制中的应用地图类型:____________________________应用方式:____________________________4、比例尺在建筑设计中的应用建筑项目类型:____________________________应用场景:____________________________5、比例尺在工程规划中的应用工程领域:____________________________具体作用:____________________________6、比例尺在地理信息系统中的应用系统功能:____________________________比例尺影响:____________________________11 比例尺的定义与类型比例尺是表示图上一条线段的长度与地面相应线段的实际长度之比。
它通常用于地图、建筑设计图、工程规划图等领域,以确保图形能够准确反映实际物体或区域的大小和形状。
比例尺的类型主要包括数字比例尺和线段比例尺。
数字比例尺是用数字的比例式或分数式表示的比例尺,例如 1:1000 或 1/1000。
线段比例尺则是在地图上用一条线段,并标明其代表的实际距离。
111 比例尺的选择原则在实际应用中,选择合适的比例尺至关重要。
一般来说,需要根据地图或设计图的用途、所表示区域的大小和精度要求来确定比例尺。
对于大面积的区域,通常采用较小的比例尺,以便在有限的图纸上展示全貌;而对于详细的局部区域或需要高精度表示的部分,则采用较大的比例尺。
比例尺的应用
三、比例的应用(一)比例尺例1、一幅地图,图上20cm,表示实际距离10Km,求这幅地图的比例尺。
例2、在一幅比例尺是1:30000000的地图上,量得北京到上海的距离是3.5cm,北京到上海的实际距离大约是多少千米?例3、甲、乙两城120Km,在一幅1:3000000的地图上,图上距离是多少?例4、一幅地图比例尺是在这幅地图上量甲、乙两地间铁路长3.6cm,求甲、乙两地间的实际距离例5、一张设计图的比例尺是1:40,图中的一个长方形大厅长60cm,宽45cm,这个大厅的实际面积是多少平方米?例6、一块长方形花地,长75m,宽30m,把它画在比例尺是1:200设计图上,长和宽各应画多少厘米?同类练习:1.甲、乙两城实际相距120Km,在地图上量得两城相距4cm,求这幅地图的比例尺是____________2.在比例尺是1:6000000的地图上,量得南京到北京的距离是15cm,南京到北京实际距离大约是____________Km3.建筑一幢校舍,所占地长240m,宽180m的长方形,用1:2000的比例尺把它画在纸上,则长是_________cm,宽是__________cm。
4.在一幅比例尺是1:6000000的地图上,量得一座城市和海港的距离是8cm,这个城市离海港有__________千米5.学校修建一座运动场,在设计图上用25cm长的线段表示操场实际长度150米,则这幅设计图比例尺是_____________6.一幅地图上的比例尺是地图上量得甲、乙两城的距离是2.5cm,甲、乙两城实际相距________千米7.在一幅1:4000000的地图上,量得从甲地到乙地的距离是25厘米,一飞机从甲地飞往乙地用4小时,这架飞机每小时飞__________千米8.北京到天津之间的实际距离是120Km,在比例改是1:5000000的地图上,两地之间的距离是__________厘米。
9.篮球场长26m,宽14m,用1:1000的比例尺画成平面图,长比宽多__________厘米(图上1cm代表实际10m)10.一个零件长6cm,画在设计图上是12mm这个设计图的比例尺是______________11.一张精密零件图的比例尺是8:1,图上一条长4.8cm线段,它所表示实际长度是_________cm12.在比例尺1:500000的地图上,量得两地间的距离是4cm,实际距离是___________千米。
比例的应用比例尺的概念例1市公开课一等奖省优质课获奖课件
百分比尺2:1表示图 上距离是实际距离2 倍。实际距离是图 上距离 。12
为了计算方便,普通把百分比尺写成前项或后项是1形式!
第7页
一、探究新知
(二)计算一幅图百分比尺
北京到天津实际距离是120km,在一幅地图上量得两地 图上距离是2.4cm。这幅地图百分比尺是多少?
图上距离:实际距离=百分比尺 120km=1000cm 2.4:1000=1:5000000
答:这幅地图百分比尺是1:5000000。
第8页
二、知识应用
1. 一个圆柱形零件高是5mm,在图纸上高是2cm, 这幅图纸百分比尺是多少? 图上距离:实际距离=百分比尺 2cm=20mm 20:5=4:1 答:这幅图纸百分比尺是4:1。
第9页
二、知识应用
2. 一副地图百分比尺1:30000000,你能用线段百分比尺表示出来 吗?
这是线段百分比尺, 表示地图上1cm距离 相当于地面上40千 米距离。
第4页
一、探究新知
(一)百分比尺概念
你能把这个线段百分比 尺改成数值百分比尺吗?
图上距离:实际距离
=1cm:40km
=1cm:4000000cm 单位要相同哦!
=1:4000000
想一想:百分比尺1:4000000表示图上距离是实际距离几分之几? 实际距离是图上距离多少倍?
百分比尺1:30000000表示图上距离 1cm相当于实际距离30000000cm。
30000000cm=300km 线段百分比尺:0 300km
第10页
二、知识应用
处理问题
一套房子客厅东西方向长4m,在图 纸上长度是4cm,这幅图纸百分比 尺是多少?
图上距离:实际距离=百分比尺 4m=400cm 4:400=1:100 答:这幅图纸百分比尺是1:100。
(小学教育)2019六年级数学上册 第6单元 比例尺(比例尺的应用(一))教案 冀教版
比例尺的应用(一)
教学目标:
1、结合具体事例,经历测量图上线段长度并根据比例尺按要求计算实际距离的过程。
2、进一步认识比例尺,会根据示意图图上线段的长度和比例尺求实际长度。
3、感受“比例尺”在日常生活中的应用,增强学好数学的自信心。
教学建议:
◆读示意图
1、让学生观察“某小学的
平面图”,了解平面图上边是
“北”;画出了教学楼、操场等
七处设施的位置和占地大小;操
场的北面是花坛;画图的比例尺
是1: 2000等。
2、让学生说一说比例尺1:
2000的含义。
然后,教师介绍
比例尺的两种表达方式。
◆测量并计算
1、提出“议一议”的问题,
让学生充分发表意见,了解计算
方法。
然后师生共同完成求校园
实际长度的测量和计算。
2、教师提出大头蛙的方法,
先让学生说一说这样算的道理,
然后师生完成计算。
◆试一试
1、先让学生自己测量并计
算出校园宽的实际长度。
交流
时,重点说一说是怎样测量图上宽的,怎样计算的。
2、提出蓝灵鼠的要求,让学生自己计算,然后交流计算结果。
◆练一练
第1题,先让学生说一说从“红红家住房平面图”了解到哪些情况,知道两个问题分别是求哪一部分的面积,再独立完成。
交流时,重点交流测量的图上距离是否准确。
第2题,先让学生完成(1)和(2)两题,交流测量和计算出的结果后,再自己提出问题并解答。
小学教育资料
好好学习,天天向上!
第3 页共3 页。
生活中的比例尺有哪些用途
生活中的比例尺有哪些用途生活中的比例尺有许多用途,可以在不同领域中得到应用。
以下是一些常见的使用比例尺的情况:1. 建筑规划和设计:在建筑和城市规划中,比例尺是一种重要的工具,用于在图纸上准确地表示现实世界中的物体和空间。
建筑师和设计师使用比例尺来绘制平面图、立面图和剖面图,以及评估和调整建筑物尺寸。
2. 地图制作:比例尺在地图制作中起着关键作用。
地图是我们了解和导航周围世界的主要工具之一。
比例尺用于恰当地表示地球表面在纸张上的距离比例,以使人们可以准确地估计实际距离。
3. 地理和地球科学研究:比例尺对于测量和描述地球上的地理特征和过程非常重要。
科学家使用比例尺来制作地球表面的地貌图、气候图和地形图,以便更好地了解地球的形状和地理特征。
4. 工程和施工:比例尺在工程和施工领域也是非常有用的。
建筑工程师和施工团队使用比例尺来估算和绘制建筑物和基础设施的尺寸,以确保施工过程中的准确度和一致性。
5. 室内设计和家居装饰:比例尺在室内设计和家居装饰中也发挥着重要作用。
设计师使用比例尺来绘制平面图和布局图,以体现房间的比例、尺寸和空间布局,从而为客户提供更好的设计方案。
6. 数学和科学教学:比例尺是一个不可或缺的工具,用于教授数学和科学概念。
学生可以使用比例尺来了解实际尺寸和图像之间的比例关系,从而更好地理解和应用数学和科学原理。
7. 绘画和艺术创作:比例尺在绘画和艺术创作中也非常有用。
艺术家可以使用比例尺来准确地绘制物体的尺寸和比例,以获得逼真和准确的艺术作品。
以上只是生活中比例尺的一些常见用途,实际上比例尺在各个领域中的应用非常广泛。
无论是在科学研究、建筑设计、还是在日常生活中,比例尺都是一个重要且必不可少的工具,帮助我们准确地表示和测量物体和空间的尺寸和比例关系。
生活中比例尺有什么用途
生活中比例尺有什么用途比例尺是一个用于测量和绘制地图的工具,在生活中有着广泛的应用。
它可以帮助我们准确地估计和表示地理现象和地图上的物体大小。
以下是比例尺在生活中的一些常见用途。
首先,比例尺在地图制作中起着重要的作用。
地图是一个重要的导航工具,可以帮助人们在陌生的地方找到自己的位置和目的地。
比例尺是制作地图时的重要组成部分,它决定了地图上的物体尺寸和与实际世界的比例关系。
通过使用比例尺,我们可以根据地图上的距离和尺寸,准确地估计实际距离和物体大小。
其次,比例尺在房屋设计和规划中也有广泛的应用。
比例尺可以帮助建筑师和设计师准确地绘制建筑平面图和室内设计图。
通过使用比例尺,我们可以将实际尺寸缩小到方便绘制的比例尺上,从而更好地展示建筑物的结构和细节。
此外,在房屋规划中,比例尺可以帮助确定房间的尺寸,确保各个房间的空间布局合理。
通过准确地使用比例尺,我们可以避免房屋设计和规划中的尺寸错误和布局不合理的问题。
第三,比例尺在地理研究和环境保护中也起着重要的作用。
地理学家和环境科学家可以使用比例尺来衡量地球表面的地貌特征和地形。
通过测量基准尺度并将其缩放到比例尺上,他们可以准确地测算山脉、河流和湖泊的高度和长度。
比例尺还可以用于研究地球上不同地区的资源分布和环境变化。
通过使用比例尺,我们可以更好地了解和保护地球各个地区的自然资源和生态系统。
此外,比例尺在地理教育中也起着重要的作用。
在学校中,教师可以使用比例尺来向学生解释地图上的距离和比例关系。
比例尺可以帮助学生理解地球的尺度和地形。
通过绘制地图并使用比例尺,学生可以更好地理解和记忆地理知识。
比例尺还可以用于教学资源的制作,例如地球仪和模型,以及图片和图表的制作。
通过使用比例尺,教师可以更好地向学生解释地理概念和现象。
最后,比例尺在商业和消费领域也有重要的应用。
在购买商品时,比例尺可以帮助我们准确地估计物体的大小和尺寸。
例如,在购买家具时,比例尺可以提供物品的真实尺寸,以便我们决定是否符合我们的需求。
比例尺及其应用
小学六年级小升初数学专题复习(21)——比例尺及其应用一、比例尺知识归纳1.比例尺:表示图上距离比实地距离缩小的程度,因此也叫缩尺.图上距离和实际距离的比,叫做这幅图的比例尺.即:图上距离:实际距离=图上距离÷比例尺比例尺分类:比例尺一般分为数值比例尺和线段比例尺:(1)数值比例尺:例如一幅图的比例尺是1:20000或.为了方便,通常把比例尺写成前项(或后项)是1的比.(2)线段比例尺是在图上附上一条标有数量的线段,用来表示实际相对应的距离.2.比例尺表示方法:用公式表示为:实际距离=图上距离÷比例尺.比例尺通常有三种表示方法.(1)数字式,用数字的比例式或分数式表示比例尺的大小.例如地图上1厘米代表实地距离500千米,可写成:1:50000000或写成:.(2)线段式,在地图上画一条线段,并注明地图上1厘米所代表的实际距离.(3)文字式,在地图上用文字直接写出地图上1厘米代表实地距离多少千米,如:图上1厘米相当于地面距离500千米,或五千万分之一.3.比例尺公式:图上距离=实际距离×比例尺实际距离=图上距离÷比例尺比例尺=图上距离÷实际距离.常考题型例1:图上6厘米表示实际距离240千米,这幅图的比例尺是()A、1:40000B、1:400000C、1:4000000分析:比例尺=图上距离:实际距离,根据题意可直接求得比例尺.解:240千米=24000000厘米,比例尺为6:24000000=1:4000000.故选:C.点评:考查了比例尺的概念,掌握比例尺的计算方法,注意在求比的过程中,单位要统一.例2:把线段比例尺,改为数值比例尺是()A、110B、1:100000C、1:1000000 分析:图上距离和实际距离已知,依据“比例尺=”即可将线段比例尺改写成数值比例尺.解:因为10千米=1000000里面,则1里面:1000000里面=1:1000000;答:改成数值比例尺为1:1000000.故选:C.点评:此题主要考查比例尺的计算方法,解答时要注意单位的换算.二、图上距离与实际距离的换算(比例尺的应用)知识归纳单位换算:在比例尺计算中要注意单位间的换算:1公里=1千米=1×1000米=1×100000厘米图上用厘米,实地用千米,厘米换千米,去五个零;千米换厘米,在千的基础上再加两个零.常考题型例1:在比例尺是1:30000000的地图上,量得甲地到乙地的距离是5.6厘米,一辆汽车按3:2的比例分两天行完全程,两天行的路程差是()千米.A、672B、1008C、336D、1680.分析:要求两天行的路程差是多少千米,先根据“图上距离÷比例尺=实际距离”,求出甲地到乙地的路程,然后根据两天行的路程比,得出第一天行了全程的,第二天行了全程的,第一天比第二天多行全程的-,解答即可得出结论.解:5.6÷×(-),=168000000×,=33600000(厘米);33600000厘米=336(千米);故选:C.点评:此题应根据图上距离、比例尺和实际距离的关系,先求出全程,进而运用按比例知识进行解答即可.例2:一幅图的比例尺是1:5000000,下面图()是这幅图的线段比例尺.分析:题干中的数值比例尺是已知的,可根据比例尺的概念(图上距离:实际距离=比例尺),把数值比例尺转换成线段比例尺即可得出答案.解:这幅图的比例尺是1:5000000,地图上1厘米的距离相当于地面上5000000厘米的实际距离.因为5000000厘米=50千米,所以地图上1厘米的距离相当于地面上50千米的实际距离.故选:C.点评:注意:图上距离一般用厘米作单位,实际距离一般用米或千米作单位.三、应用比例尺画图知识归纳1.方法:在绘制地图和其他平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上.要确定图上距离和相对应的实际距离的比.2.比例尺公式:图上距离=实际距离×比例尺实际距离=图上距离÷比例尺比例尺=图上距离÷实际距离.常考题型例:街心花园的直径是5米,现在它的周围修一条1米宽的环形路,请按的比例尺画好设计图,并求出路面的实际面积.分析:先根据比例尺求出街心花园的直径和1米宽的环形路在图形上的长度,再在设计图上画出图形;根据圆环的面积公式即可求出路面的实际面积.解:5÷250=0.02(m)=2cm,(5+1×2)÷250=0.028(m)=2.8cm.5+1×2=7(m),3.14×[(7÷2)2-(5÷2)2]=3.14×6=18.84(m2).答路面的实际面积18.84m2.作图如下:点评:考查了应用比例尺画图,圆环的面积.能够根据比例尺正确进行计算,注意单位的统一.四、路线图知识归纳1.看懂并描述路线图:(1)根据方向标确定路线图的方向;(2)根据比例尺和测得的图上距离算出相应的实际距离;(3)弄清楚图中从哪儿按什么方向走,走多远到哪儿.2.画线路图:(1)确定方向;(2)根据实际距离及图纸大小确定比例;(3)求出图上距离;(4)以某一地点为起点,根据方向和图上距离确定下一地点的位置,再以下一地点为起点继续画.常考题型例:看路线图填空红红从甜品屋出发到电影院,她可以有下面几种走法.请把红红的行走路线填完整.(1)从甜品屋出发,向北走到,再向走到电影院(2)从甜品屋出发,向走到街心花园,再向走到电影院.(3)从甜品屋出发,向走到花店,再向走到书店,再向北走到电影院.分析:根据上北下南,左西右东的方位辨别法分析解答.解:(1)从甜品屋出发,向北走到布店,再向东走到电影院(2)从甜品屋出发,向东北走到街心花园,再向东北走到电影院.(3)从甜品屋出发,向东走到花店,再向东走到书店,再向北走到电影院;故答案为:布店,东,东北,东北,东,东.点评:本题主要考查方向的辨别,注意找准观察点掌握基本方位.一.选择题(共6小题)1.如图(5路公交车路线图)图书馆在科技馆的()方向.A.西北B.东北C.西南D.东南2.一只蚂蚁先向东爬6分米,再向西爬1分米,最后停下,这时蚂蚁停在了起点的()处。
比例尺的用途范文
比例尺的用途范文比例尺是指地图上用比率表示的长度比例关系。
它常用于表示地图上物体的实际大小和地图上的相对位置。
比例尺的用途主要包括以下几个方面:1.定位和导航:比例尺可以帮助人们在地图上准确地确定位置。
通过比例尺,可以将地图上的距离转换为实际距离,从而确定所在位置的相对位置关系,方便人们进行导航和定位。
2.测量距离:比例尺可以帮助人们实际测量地图上的距离。
通过比例尺和地图上的标尺,可以准确地测量地图上物体的实际长度,如河流的长度、道路的长度等等。
这对于城市规划、工程勘测等领域具有重要意义。
3.计算面积:比例尺也可以帮助人们计算地图上物体或区域的实际面积。
通过比例尺和地图上的标尺,可以将地图上的面积转化为实际面积。
这对于土地利用规划、农业生产等方面有着重要的应用。
4.规划设计:比例尺在规划设计中起到了至关重要的作用。
通过比例尺,可以将实际的地理空间映射到地图上,使得规划设计者能够更好地理解地理环境和相对位置关系,从而进行科学合理的规划设计。
5.教育和研究:比例尺对于地理教育和研究也具有重要价值。
通过比例尺,可以帮助学生更好地理解地理空间概念,如地理区域的大小、相对位置等。
对于研究者来说,比例尺是进行地理数据分析和研究的重要工具。
6.旅游和观光:比例尺在旅游和观光领域也有着广泛的应用。
通过比例尺,可以帮助游客更好地规划行程,了解景点之间的距离和相对位置关系,从而更好地安排旅游时间。
总的来说,比例尺在地理学、地理信息系统、城市规划、旅游观光等领域具有重要的应用价值。
它能帮助人们准确地测量地图上的距离和面积,方便进行定位和导航,支持规划设计和地理教育研究。
因此,比例尺被广泛应用于各个行业和领域,对于人们的日常生活和工作有着重要的影响。
比例尺的使用 -。比例尺的应用
比例尺的使用 -。
比例尺的应用比例尺的应用比例尺是测量和绘制地图时常用的工具。
它可以帮助我们准确地表示真实世界中的距离、面积和方向。
本文将介绍比例尺的使用和应用。
使用方法当制作地图时,首先需要确定所绘制区域的比例尺。
比例尺通常以分数的形式表示,如1:10,000.这意味着地图上的一单位等于真实世界中的十万单位。
确定比例尺后,我们可以根据标准比例进行绘制。
为了在地图上使用比例尺,我们可以将地图的边缘或角落标上比例尺线,以便读者可以准确测量距离或面积。
比例尺线通常是直线或折线,上面标有适当的刻度。
读者只需将物体或距离与比例尺线进行比较,就可以得出实际尺寸。
应用领域比例尺的应用领域非常广泛。
下面是一些常见的应用示例:1.地图测量:比例尺可以帮助我们测量地图上两个地点之间的距离或地理要素的面积。
这对于规划旅行路线、测量土地面积或评估资源分布非常重要。
2.工程设计:在建筑、道路或城市规划等工程设计中,比例尺可用于确定设计图纸中的尺寸。
通过将真实世界中的尺寸映射到设计图纸上,工程师可以准确地计划和执行项目。
3.环境保护:比例尺可以帮助环境保护人员评估受污染的地区的范围和程度。
通过测量受影响区域的面积和距离,他们可以采取适当的措施来保护环境和人类健康。
总之,比例尺是地图制作和测量的重要工具。
它可以帮助我们准确地表示和测量地理要素,为各个领域的决策和规划提供基础。
在使用比例尺时,我们应该确保选择合适的比例,并参考标准比例尺进行绘制和测量。
注:本文仅介绍了比例尺的基本使用和应用,对于高级测量技术和专业项目中的比例尺使用,请参考相关专业文献和咨询专业人士。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、一条跑道全长200米,在图纸上 的长度是10厘米。这幅图纸的比例尺 是多少? 10厘米:200米 =10厘米:20000厘米 =1:2000
数值比例尺的应用 在比例尺是1 ∶6000000的地图上,量得南京到 北京的距离是15厘米.南京到北京的实际距离是多 少千米? 因为图上距离÷比例尺 图上距离 想 因为 =比例尺,可以用 =实际距离。还可以用算 实际距离 术法求出实际距离 解比例的方法求出实际距离. 解:设南京到北京的实际距离是 x 厘米. 1 15÷—— 15 1 = 6000 x 6000000 =15×6000000 x = 15 × 6000000 =90000000(cm) = 90000000 x 90000000厘米 = 900千米 90000000厘米 = 900千米
答:南京到北京的实际距离是900千米.
线段比例尺的应用
把下面的线段比例尺改成数值比例尺。
1厘米:40千米
0
40
80120千米源自=1厘米:4000000厘米
=1:4000000
40×4.6=184(千米)
答:这两地的实际 距离是184千米。
如果在画有这样的比例尺 的地图上量得两地的距离 是4.6厘米,这两地间的 实际距离是多少千米?
实际距离=图上距离×1厘米代表的实际距离
智慧城堡
加油啊!
图上距离 2.8厘米
实际距离
比例尺 1∶50000
5厘米
900千米
260千米 1∶20000
上海
杭州
在比例尺是1︰5000000的中国地图上,量 得上海到杭州的距离是3.4厘米。计算一下, 上海到杭州的实际距离大约是多少千米?
2、在一幅比例尺是1:4500000的 地图上,量得甲乙两地之间的距离是20 厘米,两地的实际距离是多少千米?
为了计算简便,通常把比例尺写成前项(或 图上距离和实际距离的比 后项)为1的比。 1
叫做这幅图的比例尺。 ) 1︰100 (或100
图上距离︰实际距离=比例尺
或
图上距离 = 比例尺 实际距离
比 例 尺 的 分 类
数值比例尺
线段比例尺
记忆 (1)比例尺与一般的尺不同,它是一个比,不应 带有计量单位. (2)求比例尺时,前、后项的单位长度一定要化成 同级单位. (3)比例尺的前项(或后项),一般应化简成 “1”.
这节课你学到了什么? 有什么收获?
数值比例尺的应用 因为图上距离÷比例尺 因为 图上距离 =比例尺,可以用 实际距离 =实际距离。还可以用算 术法求出实际距离 解比例的方法求出实际距离.
——
线段比例尺的应用
实际距离=图上距离×1厘米代表的实际距离
谢
谢
求比例尺的方法是: (1)写出图上距离和实际距离的比; (2)统一这个比的单位,去掉单位 后化简成前项(或后项)是1的比。
1、说说下列各比例尺表示的具体意义。 (1)比例尺1:4500000. (2)比例尺80:1。 (3)比例尺0 20 40km
︱ ︱ ︱
2、北京到天津的实际距离是120千 米,在一幅地图上量得两地的图上距 离是2厘米,求这幅地图的比例尺. 120千米=12000000cm 2cm:12000000cm =2:12000000 =1:6000000