北师大版八年级数学下册第三章测试题及答案

合集下载

北师大版八年级数学下册第三章同步测试题及答案

北师大版八年级数学下册第三章同步测试题及答案

北师大版八年级数学下册第三章同步测试题及答案1 图形的平移1.在直角坐标系中,将点P(-3,2)向沿y轴方向向上平移4个单位长度后,得到的点坐标为() A.(-3,6) B.(1,2) C.(-7,2) D.(-3,-2)2.如图,A、B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.53.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为()A.(-2,-1) B.(-1,0) C.(-1,-1) D.(-2,0)4.已知△ABC顶点坐标分别是A(0,6),B(-3,-3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1) B.(1,7) C.(1,1) D.(2,1)5.在平面直角坐标系中,点P(-1,2)向右平移3个单位长度得到的点的坐标是.6.将点A(1,-3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到的点A′的坐标为.7.将点P向左平移2个单位,再向上平移1个单位,得到P′(-1,3),则点P的坐标是.8.将四边形ABCD平移后得到四边形A′B′C′D′,已知点A(-1,2)的对应点为A′(-7,10).若将四边形A′B′C′D′看成由四边形ABCD沿A到A′的方向一次平移得到的,则平移的距离为.9.在平面直角坐标系中指出下列各点A(5,1)、B(5,0)、C(2,1)、D(2,3),并顺次连接,且将所得图形向下平移3个单位,写出对应点A′、B′、C′、D′的坐标.10.四边形ABCD各顶点的坐标分别为A(2,4)、B(0,2)、C(2,1)、D(3,2),将四边形向左平移4个单位长度,再向上平移3个单位长度,得到四边形A′B′C′D′.(1)四边形A′B′C′D′与四边形ABCD对应点的横坐标有什么关系?纵坐标呢?分别写出A′B′C′D′的坐标;(2)如果将四边形A′B′C′D′看成是由四边形ABCD经过一次平移得到的,请指出这一平移的方向和距离.11.如图,A、B两点的坐标分别为(2,3)、(4,1).(1)求△ABO的面积;(2)把△ABO向下平移3个单位后得到一个新三角形△O′A′B′,求△O′A′B′的3个顶点的坐标.12.如图,△A′B′C′是由△ABC平移后得到的,已知△ABC中一点P(x0,y0)经平移后对应点P′(x0+5,y0-2).(1)已知A(-1,2),B(-4,5),C(-3,0),请写出A′、B′、C′的坐标;(2)试说明△A′B′C′是如何由△ABC平移得到的;(3)请直接写出△A′B′C′的面积为6.13.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(-3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.参考答案1.A2.A3.C4.C5.(2,2)6.(-2,2)7.(1,2)8. 109.【解】如图.∵将所得图形向下平移3个单位,∴点A (5,-2),B (5,-3),C (2,-2),D (2,0).10.【解】(1)四边形A ′B ′C ′D ′与四边形ABCD 相比,对应点的横坐标分别减了4,纵坐标分别加了3. A ′(-2,7),B ′(-4,5),C ′(-2,4),D ′(-1,5).(2)连接AA ′,则AA ′=42+32=5.如果将四边形A ′B ′C ′D ′看成是由四边形ABCD 经过一次平移得到的,那么平移的方向是由A 到A ′的方向,平移的距离是5个单位长度.11.【解】(1) S △ABO =3×4-12×3×2-12×4×1-12×2×2=5. (2)A ′(2,0),B ′(4,-2),O ′(0,-3).12.【解】(1)A ′为(4,0)、B ′为(1,3)、C ′为(2,-2).(2)△ABC 先向右平移5个单位,再向下平移2个单位(或先向下平移2个单位,再向右平移5个单位).(3)△A ′B ′C ′的面积为6.13.【解】(1)∵B (-3,3),将点B 先向右平移1个单位长度,再向下平移2个单位长度得到点C , ∴-3+1=-2,3-2=1,∴C 的坐标为(-2,1).设直线l 1的解析式为y =kx +c .∵点B 、C 在直线l 1上,∴代入得⎩⎪⎨⎪⎧-3k +c =3-2k +c =1,解得k =-2,c =-3. ∴直线l 1的解析式为y =-2x -3.(2)∵将点C 先向左平移3个单位长度,再向上平移6个单位长度得到点D ,C (-2,1),∴-2-3=-5,1+6=7,∴D 的坐标为(-5,7),代入y =-2x -3时,左边=右边,即点D 在直线l 1上.(3)把B 的坐标代入y =x +b 得3=-3+b ,解得b =6.∴y =x +6,∴E 的坐标为(0,6).∵直线y =-2x -3与y 轴交于A 点,∴A 的坐标为(0,-3),∴AE =6+3=9.∵B (-3,3),∴△ABE 的面积为12×9×|-3|=13.5.2 图形的旋转一、选择题1.下列图形中,绕某个点旋转90°能与自身重合的有( )①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形.A.1个B.2个C.3个D.4个2.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是( )A.36°B.60°C.72°D.90°3.下面的图形(1)-(4),绕着一个点旋转120°后,能与原来的位置重合的是( )A.(1),(4)B.(1),(3)C.(1),(2)D.(3),(4)4.在平面上有一个角是60°的菱形绕它的中心旋转,使它与原来的菱形重合,那么旋转的角度至少是( ) A.90° B.180° C.270° D.360°5.数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是( )A.甲B.乙C.丙D.丁6.下面四个图案,是旋转对称图形的是( )A. B. C. D.7.在如图所示的图形中,是旋转对称图形的有( )A.1个B.2个C.3个D.4个二、填空题8.请写出一个既是轴对称图形又是旋转对称图形的图形_____.9.将等边三角形绕其对称中心O旋转后,恰好能与原来的等边三角形重合,那么旋转的角度至少是_____.10.如图所示的五角星_____旋转对称图形.(填“是”或“不是”)11.给出下列图形:①线段;②平行四边形;③圆;④矩形;⑤等腰梯形.其中,旋转对称图形有_____.(填序号)三、解答题12.如下图是由三个叶片组成的,绕点O旋转120°后可以和自身重合,若每个叶片的面积为5cm2,∠AOB=120°,则图中阴影部分的面积之和为多少?13.如图,已知AD=AE,AB=AC.(1)求证:∠B=∠C.(2)若∠A=50°,问△ADC经过怎样的变换能与△AEB重合?14.如图,△ABC和△BED是等边三角形,则图中三角形ABE绕B点旋转多少度能够与三角形重合.15.如图,已知△ABC和△AEF中,∠B=∠E,AB=AE,BC=EF,∠EAB=25°,∠F=57°;(1)请说明∠EAB=∠FAC的理由;(2)△ABC可以经过图形的变换得到△AEF,请你描述这个变换;(3)求∠AMB的度数.参考答案1.A【解析】①正方形旋转的最小的能与自身重合的度数是90度,正确;②长方形旋转的最小的能与自身重合的度数是180度,错误;③等边三角形旋转的最小的能与自身重合的度数是120度,错误;④线段旋转的最小的能与自身重合的度数是180度,错误;⑤角旋转的最小的能与自身重合的度数是360度,错误;⑥平行四边形旋转的最小的能与自身重合的度数是180度,错误.故选A.2.C【解析】根据旋转的性质可知,每次旋转的度数可以是360°÷5=72°或72°的倍数.故选C.3.C【解析】①旋转120°后,图形可以与原来的位置重合,故正确;②旋转120°后,图形可以与原来的位置重合,故正确;③五角星中心角是72°,120不是72的倍数,图形无法与原来的位置重合,故错误;④旋转90°后,图形无法与原来的位置重合,故错误.故选C.4.B【解析】因为菱形是中心对称图形也是旋转对称图形,要使它与原来的菱形重合,那么旋转的角度至少是180°.故选B.5.B【解析】圆被平分成八部分,旋转45°的整数倍,就可以与自身重合,因而甲,丙,丁都正确;错误的是乙.故选B.6.D【解析】A、B、C不是旋转对称图形;D、是旋转对称图形.故选D.7.C【解析】旋转对称图形的有①、②、③.故选C.【分析】图形①可抽象出正六边形,图形②可抽象出正五边形,图形③可抽象出正六边形,而④中为等腰三角形,然后根据旋转对称图形的定义进行判断.8.圆(答案不唯一)9.120°【解析】该图形被经过中心的射线平分成三部分,因而每部分被分成的圆心角是120°,那么它至少要旋转120°.10.是【解析】因为五角星的五个顶点到其中心的距离相等,将圆周角5等分,故五角星是旋转对称图形.11.①②③④【解析】①线段,旋转中心为线段中点,旋转角为180°,是旋转对称图形;②平行四边形,旋转中心为对角线的交点,旋转角为180°,是旋转对称图形;③圆,旋转中心为圆心,旋转角任意,是旋转对称图形;④矩形,旋转中心为对角线交点,旋转角为180°,是旋转对称图形;⑤等腰梯形,是轴对称图形,不能旋转对称.故旋转对称图形有①②③④.12.【解】每个叶片的面积为5cm2,因而图形的面积是15cm2,图形中阴影部分的面积是图形的面积的三分之一,因而图中阴影部分的面积之和为5cm2.13.【分析】(1)要证明∠B=∠C,可以证明它们所在的三角形全等,即证明△ABE≌△ACD;已知两边和它们的夹角对应相等,由SAS即可判定两三角形全等.(2)因为△ADC≌△AED,公共点A,对应线段CD与BE相交,所以要通过旋转,翻折两次完成.(1)【证明】在△AEB与△ADC中,AB=AC,∠A=∠A,AE=AD,∴△AEB≌△ADC,∴∠B=∠C.(2)【解】先将△ADC绕点A逆时针旋转50°,再将△ADC沿直线AE对折,即可得△ADC与△AEB重合.或先将△ADC绕点A顺时针旋转50°,再将△ADC沿直线AB对折,即可得△ADC与△AEB重合.14.【解】已知△ABC和△BED是等边三角形,∠ABC=∠EBD=60°⇒∠EBC=60°,又因为AB=BC,EB=BD,∠ABE=∠CBD=120°,所以△ABE≌△CBD.所以△ABE绕B点旋转60度能够与△CBD重合.15. 【分析】(1)先利用已知条件∠B=∠E,AB=AE,BC=EF,利用SAS可证△ABC≌△AEF,那么就有∠C=∠F,∠BAC=∠EAF,那么∠BAC-∠PAF=∠EAF-∠PAF,即有∠BAE=∠CAF=25°;(2)通过观察可知△ABC绕点A顺时针旋转25°,可以得到△AEF;(3)由(1)知∠C=∠F=57°,∠BAE=∠CAF=25°,而∠AMB是△ACM的外角,根据三角形外角的性质可求∠AMB.【解】(1)∵∠B=∠E,AB=AE,BC=EF,∴△ABC≌△AEF.∴∠C=∠F,∠BAC=∠EAF,∴∠BAC-∠PAF=∠EAF-∠PAF,∴∠BAE=∠CAF=25°.(2)通过观察可知△ABC绕点A顺时针旋转25°,可以得到△AEF.(3)由(1)知∠C=∠F=57°,∠BAE=∠CAF=25°,∴∠AMB=∠C+∠CAF=57°+25°=82°.3 中心对称一、选择题1.下列几个图形是国际通用的交通标志,其中不是中心对称图形的是( )A. B. C. D.2.下列图案,既是轴对称图形又是中心对称图形的有( )A.1个B.2个C.3个D.4个3.如图,不是中心对称图形的是( )A. B. C. D.4.已知点P关于x轴的对称点P1的坐标是(2,3),那么点P关于原点的对称点P2的坐标是( )A.(-3,-2)B.(2,-3)C.(-2,-3)D.(-2,3)5.用四块形如的正方形瓷砖拼成如下四种图案,其中成中心对称图形的是( )A.①②B.②③C.②④D.①④6.如图,△ABC与△A′B′C′关于O成中心对称,下列结论中不成立的是( )A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′7.如图,直线l与⊙O相交于点A、B,点A的坐标为(4,3),则点B的坐标为( )A.(-4,3)B.(-4,-3)C.(-3,4)D.(-3,-4)二、填空题8.在下列图的四个图案中,既是轴对称图形,又是中心对称图形的有_____个.9.平行四边形是_____图形,它的对称中心是_____.10.如图,点C是线段AB的中点,点B是线段CD的中点,线段AB的对称中心是点_____,点C关于点B成中心对称的对称点是点_____.11.已知点P(x,-3)和点Q(4,y)关于原点对称,则x+y等于_____.三、解答题12.如图①,已知△ABC与△ADE关于点A成中心对称,∠B=50°,△ABC的面积为24,BC边上的高为5,若将△ADE向下折叠,如图②点D落在BC的G点处,点E落在CB的延长线的H点处,且BH=4,则∠BAG是多少度,△ABG的面积是多少.13.如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)图中哪两个图形成中心对称?(2)若△ADC的面积为4,求△ABE的面积.14.已知六边形ABCDEF是以O为中心的中心对称图形(如图),画出六边形ABCDEF的全部图形,并指出所有的对应点和对应线段.15.如图,正方形ABCD于正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标.(2)写出顶点B,C,B1,C1的坐标.参考答案1.D【解析】A、B、C都是中心对称图形;D不是中心对称图形.故选D.2.A【解析】第一个图形既是轴对称图形又是中心对称图形,符合题意;第二个图形不是轴对称图形,是中心对称图形,不符合题意;第三个图形是轴对称图形,不是中心对称图形,不符合题意;第四个图形既不是轴对称图形,又不是中心对称图形,不符合题意;故符合题意的有1个.故选A.3.D【解析】根据中心对称图形的概念可知A、B、C是中心对称图形;D不是中心对称形.故选D.4.D【解析】∵点P关于x轴的对称点P1的坐标是(2,3),∴点P的坐标是(2,-3).∴点P关于原点的对称点P2的坐标是(-2,3).故选D.5.D【解析】根据中心对称图形的概念,可知第①④是中心对称图形.故选D.6.D【解析】对应点的连线被对称中心平分,A,B正确;成中心对称图形的两个图形是全等形,那么对应线段相等,C正确.故选D.7.B【解析】由图可以发现:点A与点B关于原点对称,∵点A的坐标为(4,3),∴点B的坐标为(-4,-3).故选B.8.1【解析】第一个是中心对称图形;第二个不是对称图形;第三个两种都是;第四个是轴对称图形.∴既是轴对称图形,又是中心对称图形的有1个.9.中心对称,两对角线的交点【解析】连接BD、AC,AC和BD交于O,∵平行四边形ABCD,∴OA=OC,OD=OB,即平行四边形ABCD是中心对称图形,对称中心是两对角线的交点O.10.C D【解析】根据题意得点C是线段AB的中点,点B是线段CD的中点,线段AB的对称中心是点C;点C关于点B成中心对称的对称点是点D.11.-1【解析】∵点P(x,-3)和点Q(4,y)关于原点对称,∴x=-4,y=3,∴x+y=-4+3=-1.12.【解】依题意有AD=AB=AG,AE=AH=AC.又∠B=50°,则∠BAG=180°-50°×2=80°.作AD⊥BC于D,根据三角形的面积公式得到BC=9.6.根据等腰三角形的三线合一,可以证明CG=BH=4,则BG=5.6.根据三角形的面积公式得△ABG的面积是14.13.【分析】(1)直接利用中心对称的定义写出答案即可;(2)根据成中心对称的图形的两个图形全等确定三角形BDE的面积,根据等底同高确定ABD的面积,从而确定ABE的面积.【解】(1)图中△ADC和三角形EDB成中心对称.(2)∵△ADC和三角形EDB成中心对称,△ADC的面积为4,∴△EDB的面积也为4,∵D为BC的中点,∴△ABD的面积也为4,所以△ABE的面积为8.14.【分析】画中心对称图形,要确保对称中心是对应点所连线段的中点,即B,O,E共线,并且OB=OE,C,O,F共线,并且OC=OF.【解】作法如下.图中A的对应点是D,B的对应点是E,C的对应点是F;AB对应线段是DE,BC对应线段是EF,CD对应线段是AF.15.【分析】(1)根据对称中心的性质,可得对称中心的坐标是D1D的中点,据此解答即可.(2)首先根据A,D的坐标分别是(0,4),(0,2),求出正方形ABCD与正方形A1B1C1D1的边长是多少,然后根据A,D1,D三点的坐标分别是(0,4),(0,3),(0,2),判断出顶点B,C,B1,C1的坐标各是多少即可.【解】(1)根据对称中心的性质,可得对称中心的坐标是D1D的中点,∵D1,D的坐标分别是(0,3),(0,2),∴对称中心的坐标是(0,2.5).(2)∵A,D的坐标分别是(0,4),(0,2),∴正方形ABCD与正方形A1B1C1D1的边长都是:4﹣2=2,∴B,C的坐标分别是(﹣2,4),(﹣2,2),∵A1D1=2,D1的坐标是(0,3),∴A1的坐标是(0,1),∴B1,C1的坐标分别是(2,1),(2,3),综上可得顶点B,C,B1,C1的坐标分别是(﹣2,4),(﹣2,2),(2,1),(2,3).4 简单的图案设计一、选择题1.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有()A.2种B.3种C.4种D.5种2.在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用轴对称知识的是()A. B. C. D.3.下列图形不是由平移而得到的是()A.B.C.D.4.如图所示的图案可以看作由“基本图案”经过平移得到的是()A. B. C. D.5.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A. B. C. D.6.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()A.2种B.3种C.4种D.5种7.风车应做成中心对称图形,并且不是轴对称图形,才能在风口处平稳旋转.现有一长条矩形硬纸板(其中心有一个小孔)和两张全等的矩形薄纸片,将纸片粘到硬纸板上,做成一个能绕着小孔平稳旋转的风车.正确的粘合方法是()A. B.C. D.8.下列每个图中都有一对全等三角形,其中的一个三角形只经过一次旋转运动即可和另一个三角形重合的是()A. B.C. D.二、填空题9.在如图的方格纸上画有2条线段,若再画1条线段,使图中的三条线段组成一个轴对称图形,则这条线段的画法最多有________种.10.如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为________.11.如图,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有________个,它们分别是________.12.如图,可以看作是一个基础图形绕着中心旋转7次而生成的,则每次旋转的度数是________.13.________ 和________不改变图形的形状和大小.三、解答题14.在5×7的方格纸上,任意选出5个小方块涂上颜色,使整个图形(包括着色的“对称”)有:(1)1条对称轴;(2)2条对称轴;(3)4条对称轴.15.如图,两条相交直线l1与l2的夹角是45°,都是一个图案的对称轴,画出这个图案的其余部分.这个图案共有多少条对称轴?16.如图,按要求完成下列问题:作出这个小红旗图案关于y轴的轴对称图形,写出所得到图形相应各点的坐标.17.利用一条线段、一个圆、一个正三角形设计几个轴对称图案,并说明你要表达的意思.18.如图,在8×5的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在小正方形的顶点上.(1)在图1中画△ABD(点D在小正方形的顶点上),使△ABD的周长等于△ABC的周长,且以A、B、C、D为顶点的四边形是轴对称图形.(2)在图2中画△ABE(点E在小正方形的顶点上),使△ABE的周长等于△ABC的周长,且以A、B、C、E为顶点的四边形是中心对称图形,并直接写出该四边形的面积.参考答案1.A【解析】如图. 故选A.2.C 【解析】A是轴对称图形,故此选项错误;B是轴对称图形,故此选项错误;C不是轴对称图形,故此选项正确;D是轴对称图形,故此选项错误.故选C.3.D4.B【解析】观察图形可知,图案B可以看作由“基本图案”经过平移得到.故选B.5.D【解析】A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确.故选D.6.C【解析】如图.组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.故选C.7.A【解析】风车应做成中心对称图形,并且不是轴对称图形,A、是中心对称图形,并且不是轴对称图形,符合题意;B、不是中心对称图形,是轴对称图形,不符合题意;C、是中心对称图形,也是轴对称图形,不符合题意;D、不是中心对称图形,是轴对称图形,不符合题意.故选A.8.D【解析】A、无法借助旋转得到,故此选项错误;B、无法借助旋转得到,故此选项错误;C、可以借助轴对称得到,故此选项错误;D、可以只经过一次旋转运动即可和另一个三角形,故此选项正确.故选D.9.4【解析】如图,共有4条线段.10.(﹣1,1),(﹣2,﹣2),(0,2),(﹣2,﹣3)【解析】如图. A1(﹣1,1),A2(﹣2,﹣2),A3(0,2),A4(﹣2,﹣3),(﹣3,2)(此时不是四边形,舍去).11.5;△ACG、△AFE、△BFD、△CHD、△CGB【解析】如图.与△ABC成轴对称的有△ACG、△AFE、△BFD、△CHD、△CGB一共有5个.12.45°【解析】∵一个周角是360度,等腰直角三角形的一个锐角是45度,∴如图,是一个基础图形绕着中心旋转7次而生成的,∴每次旋转的度数是:=45°.13.平移旋转14.【解】(1)如图1.(2)如图2.(3)如图3.15.【解】如图.这个图案共有4条对称轴.16.【解析】小红旗关于y轴的轴对称图形如图.A′(8,3),B′(8,5),C′(2,5)17.【解析】如图,①表示劳动工具,②电灯泡,③路标.18.【解】(1)如图1.(2)如图2.四边形ACBE的面积为:2×4=8.。

北师大版数学八下第三章各节练习题含答案

北师大版数学八下第三章各节练习题含答案

北师大版八年级下册第三章图形的平移与旋转各节含答案3.1 图形的平移同步训练题1.下列运动属于平移的是()A.冷水加热过程中小气泡上升成为大气泡B.急刹车时汽车在地面上的滑动C.投篮时的篮球运动D.随风飘动的树叶在空中的运动2.在图示的四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()3.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cmC.20cm D.21cm4.下列平移作图错误的是()5.如图,在6×6方格中有两个涂有阴影的图形M、N,①中的图形M平移后位置如②所示,以下对图形M的平移方法叙述正确的是()A.向右平移2个单位,向下平移3个单位B.向右平移1个单位,向下平移3个单位C.向右平移1个单位,向下平移4个单位D.向右平移2个单位,向下平移4个单位6.将自己的双手手掌印按在同一张纸上,两个手掌印(填“能”或“不能”)通过平移完全重合在一起.7.如图,将△ABC平移到△A′B′C′的位置(点B′在AC边上),若∠B=55°,∠C=100°,则∠AB′A′的度数为.8.已知一副直角三角板如图放置,其中BC=3,EF=4,把30°的三角板向右平移,使顶点B落在45°的三角板的斜边DF上,则AE=.9.如图,△ABC沿直线l向右移了3厘米,得△FDE,且BC=6厘米,∠B=40°.(1)求BE;(2)求∠FDB的度数;(3)找出图中相等的线段(不另添加线段);(4)找出图中互相平行的线段(不另添加线段).10.如图,经过平移,△ABC的顶点A移到点D,画出平移后的图形△DEF,并找出图中所有平行且相等的线段.11.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′. 12.如图,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路,宽均为1米,其它部分均种植花草.试求出种植花草的面积是多少?13.如图①将△ABD平移,使D沿BD延长线移至C得到△A′B′D′,A′B′交AC于E,AD平分∠BAC.(1)猜想∠B′EC与∠A′之间的关系,并写出理由;(2)如图将△ABD平移至如图②所示,得到△A′B′D′,求证:A′D平分∠B′A′C.3.1答案:1—5 BDCCB6. 不能7. 25°8. 33-19. 解:(1)∵△ABC 沿直线l 向右移了3厘米,∴CE =BD =3cm ,∴BE =BC +CE =6+3=9厘米;(2)∵∠FDE =∠B =40°,∴∠FDB =140°;(3)相等的线段有:AB =FD 、AC =FE 、BC =DE 、BD =CE ; (4)平行的线段有:AB ∥FD 、AC ∥FE .10. 解:画图略.平行且相等的线段为:①AB 与DE ;②AC 与DF ;③BC 与EF ;④AD 、BE 与CF .11. 解:(1)点D 以及四边形ABCD 另两条边如图所示:(2)得到的四边形A ′B ′C ′D ′如图所示.12. 解:根据题意,小路的面积相当于横向与纵向的两条小路,种植花草的面积=(50-1)(30-1)=1421m 2.13. 解:(1)∠B ′EC =2∠A ′.理由:∵将△ABD 平移,使D 沿BD 延长线移至C 得到△A ′B ′D ′,A ′B ′交AC 于E ,AD 平分∠BAC ,∴∠BAD =∠DAC ,∠BAD=∠A ′,AB ∥A ′B ′,∴∠BAC =∠B ′EC ,∴∠BAD =∠A ′=12∠BAC =12∠B ′EC ,即∠B ′EC =2∠A ′;(2)证明:∵将△ABD 平移至如图②所示,得到△A ′B ′D ′,∴∠B ′A ′D ′=∠BAD ,AB ∥A ′B ′,∴∠BAC =∠B ′A ′C ,∵∠BAD =12∠BAC ,∴∠B ′A ′D ′=12∠B ′A ′C ,∴A ′D ′平分∠B ′A ′C .3.2《图形的旋转》习题一、选择题1.下列图形中,绕某个点旋转90°能与自身重合的有()①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形.A.1个B.2个C.3个D.4个2.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是()A.36°B.60°C.72°D.90°3.下面的图形(1)-(4),绕着一个点旋转120°后,能与原来的位置重合的是()A.(1),(4)B.(1),(3)C.(1),(2)D.(3),(4)4.在平面上有一个角是60°的菱形绕它的中心旋转,使它与原来的菱形重合,那么旋转的角度至少是()A.90°B.180°C.270°D.360°5.数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是()A.甲B.乙C.丙D.丁6.下面四个图案中,是旋转对称图形的是()A. B. C. D.7.如图所示的图形中,是旋转对称图形的有()A.1个B.2个C.3个D.4个二、填空题8.请写出一个既是轴对称图形又是旋转对称图形的图形_____.9.将等边三角形绕其对称中心O旋转后,恰好能与原来的等边三角形重合,那么旋转的角度至少是_____.10.如图所示的五角星_____旋转对称图形.(填“是”或“不是”).11.给出下列图形:①线段、②平行四边形、③圆、④矩形、⑤等腰梯形,其中,旋转对称图形有_____(只填序号).三、解答题12.如下图是由三个叶片组成的,绕点O旋转120°后可以和自身重合,若每个叶片的面积为5cm2,∠AOB=120°,则图中阴影部分的面积之和为多少cm2.13.如图,已知AD=AE,AB=AC.(1)求证:∠B=∠C;(2)若∠A=50°,问△ADC经过怎样的变换能与△AEB重合?14.如图,△ABC和△BED是等边三角形,则图中三角形ABE绕B点旋转多少度能够与三角形重合.15.如图,已知△ABC和△AEF中,∠B=∠E,AB=AE,BC=EF,∠EAB=25°,∠F=57°;(1)请说明∠EAB=∠FAC的理由;(2)△ABC可以经过图形的变换得到△AEF,请你描述这个变换;(3)求∠AMB的度数.3.2图形旋转参考答案一、选择题1.答案:A解析:【解答】①正方形旋转的最小的能与自身重合的度数是90度,正确;②长方形旋转的最小的能与自身重合的度数是180度,错误;③等边三角形旋转的最小的能与自身重合的度数是120度,错误;④线段旋转的最小的能与自身重合的度数是180度,错误;⑤角旋转的最小的能与自身重合的度数是360度,错误;⑥平行四边形旋转的最小的能与自身重合的度数是180度,错误.故选A.【分析】根据旋转对称图形的旋转角的概念作答.2.答案:C解析:【解答】根据旋转的性质可知,每次旋转的度数可以是360°÷5=72°或72°的倍数.故选C【分析】分清基本图形,判断旋转中心,旋转次数,旋转一周为360°.3.答案:C解析:【解答】①旋转120°后,图形可以与原来的位置重合,故正确;②旋转120°后,图形可以与原来的位置重合,故正确;③五角星中心角是72°,120不是72的倍数,图形无法与原来的位置重合,故错误;④旋转90°后,图形无法与原来的位置重合,故错误.故选C.【分析】根据旋转的性质,对题中图形进行分析,判定正确选项.4.答案:B解析:【解答】因为菱形是中心对称图形也是旋转对称图形,要使它与原来的菱形重合,那么旋转的角度至少是180°.故选B.【分析】根据中心对称图形、旋转对称图形的性质.5.答案:B解析:【解答】圆被平分成八部分,旋转45°的整数倍,就可以与自身重合,因而甲,丙,丁都正确;错误的是乙.故选B【分析】根据圆周角的度数.6.答案:D解析:【解答】A、B、C不是旋转对称图形;D、是旋转对称图形.故选D.【分析】根据旋转的定义.7.答案:C解析:【解答】旋转对称图形的有①、②、③.故选C【分析】图形①可抽象出正六边形,图形②可抽象出正五边形,图形③可抽象出正六边形,而④中为等腰三角形,然后根据旋转对称图形的定义进行判断.二、填空题8.答案:圆(答案不唯一)解析:【解答】根据旋转对称图形和轴对称图形的定义:旋转对称图形:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.(0度<旋转角<360度).如果一个图形沿着一条直线对折后两部分完全重合,叫轴对称图形.可以得出圆、正方形等都符合答案.【分析】根据旋转对称图形和轴对称图形的定义找出符合图形,得出答案.9.答案:120°解析:【解答】该图形被经过中心的射线平分成三部分,因而每部分被分成的圆心角是120°,那么它至少要旋转120°.故答案为:120.【分析】正三角形被经过中心的射线平分成三部分,因而每部分被分成的圆心角是120°,因而旋转120度的整数倍,就可以与自身重合.10.答案:是.解析:【解答】因为五角星的五个顶点到其中心的距离相等,将圆周角5等分,故五角星是旋转对称图形.【分析】五角星的五个顶点到其中心的距离相等,将周角平分为5份,可判断是旋转图形.11.答案:①②③④解析:【解答】①线段,旋转中心为线段中点,旋转角为180°,是旋转对称图形;②平行四边形,旋转中心为对角线的交点,旋转角为180°,是旋转对称图形;③圆,旋转中心为圆心,旋转角任意,是旋转对称图形;④矩形,旋转中心为对角线交点,旋转角为180°,是旋转对称图形;⑤等腰梯形,是轴对称图形,不能旋转对称.故旋转对称图形有①②③④.【分析】根据每个图形的特点,寻找旋转中心,旋转角,逐一判断.三、解答题12.答案:5cm2解析:【解答】每个叶片的面积为5cm2,因而图形的面积是15cm2,图形中阴影部分的面积是图形的面积的三分之一,因而图中阴影部分的面积之和为5cm2.【分析】根据旋转的性质和图形的特点解答.13.答案:见解答过程.解析:【解答】(1)证明:在△AEB与△ADC中,AB=AC,∠A=∠A,AE=AD;∴△AEB≌△ADC,∴∠B=∠C.(2)解:先将△ADC绕点A逆时针旋转50°,再将△ADC沿直线AE对折,即可得△ADC与△AEB重合.或先将△ADC绕点A顺时针旋转50°,再将△ADC沿直线AB对折,即可得△ADC与△AEB重合.【分析】(1)要证明∠B=∠C,可以证明它们所在的三角形全等,即证明△ABE ≌△ACD;已知两边和它们的夹角对应相等,由SAS即可判定两三角形全等.(2)因为△ADC≌△AED,公共点A,对应线段CD与BE相交,所以要通过旋转,翻折两次完成.14.答案:60度.解析:【解答】已知△ABC和△BED是等边三角形,∠ABC=∠EBD=60°⇒∠EBC=60°,又因为AB=BC,EB=BD,∠ABE=∠CBD=120°,所以△ABE≌△CBD.故△ABE绕B点旋转60度能够与△CBD重合.【分析】根据旋转对称图形的定义以及全等三角形的判定作答.15.答案:见解答过程.解析:【解答】(1)∵∠B=∠E,AB=AE,BC=EF,∴△ABC≌△AEF,∴∠C=∠F,∠BAC=∠EAF,∴∠BAC-∠PAF=∠EAF-∠PAF,∴∠BAE=∠CAF=25°;(2)通过观察可知△ABC绕点A顺时针旋转25°,可以得到△AEF;(3)由(1)知∠C=∠F=57°,∠BAE=∠CAF=25°,∴∠AMB=∠C+∠CAF=57°+25°=82°.【分析】(1)先利用已知条件∠B=∠E,AB=AE,BC=EF,利用SAS可证△ABC≌△AEF,那么就有∠C=∠F,∠BAC=∠EAF,那么∠BAC-∠PAF=∠EAF-∠PAF,即有∠BAE=∠CAF=25°;(2)通过观察可知△ABC绕点A顺时针旋转25°,可以得到△AEF;(3)由(1)知∠C=∠F=57°,∠BAE=∠CAF=25°,而∠AMB是△ACM的外角,根据三角形外角的性质可求∠AMB.第三节中心对称课时练习一、选择题(共10题)1.下列图形中不是轴对称而是中心对称图形的是( )A.等边三角形B.平行四边形C.矩形D.菱形答案:B解析:解答:根据中心对称图形的定义把一个图形绕某一点旋转180度,如果旋转后能和原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做对称中心,由此可知平行四边形是中心对称图形,而不是轴对称图形;故答案是B 选项分析:考查中心对称图形的定义2.下列图形中既是轴对称图形又是中心对称图形的是()A.等边三角形B.等腰三角形C.菱形D.平行四边形答案:C解析:解答:根据中心对称和轴对称的定义可以知道菱形既是中心对称又是轴对称图形;故答案是C选项分析:考查特殊几何图形特点3.下列图形中是轴对称而不是中心对称图形的是()A.平行四边形B.线段C.角D.正方形答案:C解析:解答:角是轴对称图形,对称轴是角平分线,角不是中心对称图形,所以答案是C选项分析:考查轴对称和中心对称的定义4.已知下列命题:()①关于中心对称的两个图形一定不全等②关于中心对称的两个图形是全等形③两个全等的图形一定关于中心对称其中真命题的个数是A.1个B.2个C.3个D.0个答案:A解析:解答:关于中心对称的两个图形一定是全等图形,但是两个全等图形不一定关于中心对称;所以答案是A选项分析:注意关于中心对称的两个图形一定是全等形5.如图,不是中心对称图形的是()A.B.C.D.答案:B解析:解答:根据中心对称的定义可以知道B选项不是中心对称图形分析:考查中心对称的定义6.△ABC和△AˊBˊCˊ关于点O对称,下列结论不正确的是()A .AO=AˊO B.AB∥AˊBˊC .CO=BO D.∠BAC=∠BˊAˊCˊ答案:C解析:解答:因为只有对称点到对称中心的距离相等,所以C选项是错误的分析:考查中心对称问题7.下列说法中正确的是( )A.会重合的图形一定是轴对称图形B.中心对称图形一定是重合的图形C.两个成中心对称的图形的对称点连线必过对称中心D.两个会重合的三角形一定关于某一点成中心对称答案:C解析:解答:两个城中心对称的图形的对称点连线一定过对称中心,故答案是C 选项分析:注意成中心对称图形的对称点的连线一定过对称中心8.下列图形中,是中心对称图形的是( )A.B.C.D.答案:A解析:解答:根据中心对称的定义可知只有A选项符合,故答案是A分析:注意对中心对称图形的理解9.在下列图形中,是中心对称图形的是( )A.B.C.D.答案:C解析:解答:根据中心对称的定义可知,图形C\符合中心对称,故答案是C选项分析:考查中心对称的定义10.圆是中心对称图形,它的对称中心是( )A.圆周B.圆心C.半径D.直径答案:B解析:解答:圆的是既是中心对称图形又是轴对称图形,对称中心是圆心,所以答案是B分析:考查中心对称二、填空题(共10题)11.关于中心对称的两个图形的关系是___________答案:全等解析:解答:关于中心对称的两个图形是全等图形分析:考查中心对称12.正方形既是_________图形,又是_____________图形答案:轴对称︱中心对称解析:解答:正方形既是轴对称图形又是中心对称图形分析:注意分清图形的特点13.关于中心对称的两个图形,对称点的连线经过答案:对称中心解析:解答:关于中心对称的两个图形,对称点的连线经过对称中心,故答案是对称中心分析:注意对称点的连线一定经过对称中心14.关于中心对称的两个图形对应线段答案:相等解析:解答:关于中心对称的两个图形对应线段长度是相等的,故答案是相等分析:考查中心对称15.关于点O成中心对称的两个四边形ABCD和DEFG,AD、BE、CF、DG都过答案:点O解析:解答:连线经过对称中心分析:考查中心对称16.判断对错:两个会重合的图形一定是中心对称图形;答案:错解析:解答:两个会重合的图形不一定是中心对称图形,因为还要找到对称中心分析:考查中心对称17.判断对错:轴对称图形也是中心对称图形;答案:错解析:解答:有的图形式轴对称图形但不一定是中心对称图形,例如等腰三角形分析:注意区分轴对称和中心对称的定义18.判断对错:对顶角是中心对称图形;________________答案:对解析:解答:对顶角是中心对称图形分析:考查中心对称19.判断对错:关于中心对称的两个图形全等;_____答案:对解析:解答:关于中心对称的两个图形大小形状全等分析:考查中心对称20.线段是中心对称图形,对称中心是它的中点;_____(判断对错)答案:正确解析:解答:因为线段绕它的中点旋转180度,可以和它本身重合,所以答案是正确的分析:注意对称中心的定义三、解答题(共5题)21.两个图形成中心对称和中心对称图形有什么区别?答案:解答:前者是指具有某种特性(绕一点旋转180度后能与原图重合)的一个图形;后者是指两个图形之间,若其中某一个图形绕一点旋转180度后能与另一个图形重合,则称这两个图形之间成中心对称.解析:分析:注意区分好成中心对称和中心对称图形22.中心对称图形和旋转对称图形的区别是什么呢?答案:解答:中心对称是把一个图形绕其几何中心旋转180度后能够和原来的图形互相重合的图形叫中心对称图形.这个点就是它的对称中心.例如菱形;旋转对称不是旋转一定的角度,而是旋转非周角的角度。

北师大版八年级数学(下册)第三章测试卷(附答案)

北师大版八年级数学(下册)第三章测试卷(附答案)

第三章测试卷本试卷共3大题,计20小题,满分100分,考试时间100分钟。

题号 一二三四五总分得分一、选择题(本大题共10小题,每小题3分,满分30分)每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.将如图所示的Rt △ABC 绕直角边BC 旋转一周,所得几何体的左视图是( )2.下列4张扑克牌中,是中心对称图形的是 ( ).A B C D 3.对右边这个图形的判断,正确的是( ) A .这是一个轴对称图形,它有一条对称轴; B .这是一个轴对称图形,但不是中心对称图形; C .这是一个中心对称图形,但不是轴对称图形; D .这既是轴对称图形,也是中心对称图形. 4.右边有两个边长为4cm 的正方形,其中一个正方形的顶点在另一个正方形的中心上,那么图中阴影部分的 面积是( ). A .4cm 2B.8cm2C.16cm2D.无法确定DABCC BA1题图3题图4题图5.如图,正方形ABCD 和CEFG 的边长分别为m 、n ,那么∆AEG 的面积的值 ( ) A .与m 、n 的大小都有关 B .与m 、n 的大小都无关 C .只与m 的大小有关 D .只与n 的大小有关6.下列几组图形中,既是轴对称图形,又是中心对称图形,完全正确的一组是( )A .正方形、菱形、矩形、平行四边形B .正三角形、正方形、菱形、矩形C .正方形、菱形、矩形D .平行四边形、正方形、等腰三角形 7.下列命题正确的个数是( )①两个全等三角形必关于某一点中心对称②关于中心对称的两个三角形是全等三角形(注意比较命题①、②的真假) ③两个三角形对应点连线都经过同一点,则这两个三角形关于该点成中心对称 (没有说明被这一点平分)④关于中心对称的两个三角形,对应点连线都经过对称中心 A .1 B .2 C .3 D .48、如图,边长为1的正方形ABCD 绕点A 逆时针旋转030到正方形///AB C D ,则图中阴影部分面积为( )A .B.C.314D.9如图,点P 是等边三角形ABC 内部一点,,则以P A 、PB 、PC 为边的三角形的三内角之比为( )A.2:3:4B.3:4:5C.4:5:6D.不能确定A BC D GEF5题图10.如图,图形旋转一定角度后能与自身重合,则旋转的角度可能是( ) A.300 B.600 C.900 D.1200二、填空题(本大题共4小题,每小题3分,满分12分)11.将点A 绕另一个点O 旋转一周,点A 在旋转过程中所经过的路线是_______. 12.以等腰直角△ABC 的斜边AB 所在的直线为对称轴,作这个△ABC 的对称图形△,则所得到的四边形ACBC ′一定是_______。

北师大版初二数学下册第三章测试题及答案

北师大版初二数学下册第三章测试题及答案

北师大版初二数学下册第三章测试题及答案一、选择题(共30分)1、若,则的值是( ) A .B .C .D .2.假如分式2||55x x x-+的值为0,那么x 的值是( ) A .0 B .5 C .-5 D .±53.把分式22x yx y+-中的x ,y 都扩大2倍,则分式的值( )A .不变B .扩大2倍C .扩大4倍D .缩小2倍 4.下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b-++-++---- A .2个 B .3个 C .4个 D .5个 5.分式方程2114339x x x +=-+-的解是( ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x++-的值为( ) A .-13.55B - C .1 D .无法确定7.关于x 的方程233x k x x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为( )A .3B .0C .±3D .无法确定8.使分式224x x +-等于0的x 值为( )A .2B .-2C .±2D .不存在 9.下列各式中正确的是( )....a b a b a ba bA B a b a b a b a ba b a b a b a b C D a ba ba b b a-++--==-----++--+-+-==-+-+-10、方程21011x x x-+=--的解是( )A.2B.0C.1D.3 二、填空题(共24分) 11、若分式||55y y--的值等于0,则y= . 12、在比例式9:5=4:3x 中,x= 。

13、1111b a b a a b a b++---的值是 . 14、当 时,分式213x--的为正数。

最新北师大版八年级数学下册第三章同步测试题及答案全套

最新北师大版八年级数学下册第三章同步测试题及答案全套

最新北师大版八年级数学下册第三章同步测试题及答案全套最新北师大版八年级数学下册第三章同步测试题及答案全套第三章图形的平移与旋转1.图形的平移第1课时知能演练提升能力提升1.在俄罗斯方块游戏中,已拼成的图案如图,现又出现一小方块拼图向下运动。

为了使所有图案消失,你必须进行以下哪项操作才能拼成一个完整的图案,使其自动消失?A。

向右平移1格B。

向左平移1格C。

向右平移2格D。

向右平移3格2.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形。

现计划用铁丝按照图形制作相应的造型。

所用铁丝的长度关系是?A。

甲种方案所用铁丝最长B。

乙种方案所用铁丝最长C。

丙种方案所用铁丝最长D。

三种方案所用铁丝一样长3.如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF。

有下列结论:①△ABC与△DEF的面积相等②∠DEF=90°③ AC=DF④ EC=CF其中正确的有?A。

1个B。

2个C。

3个D。

4个4.如图,点O是正六边形ABCDEF的中心。

图中可由△OBC平移得到的三角形是?5.如图,在矩形ABCD中,AB=3,BC=4.则图中五个小矩形的周长之和为?6.如图,在平面直角坐标系中,点A的坐标为(0,6)。

将△OAB沿x轴向左平移得到△O'A'B',点A的对应点A'落在直线y=-x上。

则点B与其对应点B'间的距离为?7.五边形ABCDE经过平移后变为五边形A'B'C'D'E'。

1) AC与A'C',∠B与∠B'有何关系?2) 若△ABC的面积为6 cm²,求△A'B'C'的面积。

8.如图,经过平移,四边形ABCD的顶点A移到点A'。

请作出平移后的四边形。

创新应用9.如图,有一条小船。

若把小船平移,使点A平移到点B。

1) 请你在图中画出平移后的小船。

2) 若该小船先从点A航行到达岸边l的点P处后,再航行到点B,但要求航程最短。

北师大版八年级数学(下册)第三章测试卷(及答案)

北师大版八年级数学(下册)第三章测试卷(及答案)

第三章测试卷本试卷共3大题,计20小题,满分100分,考试时间100分钟。

题号 一二三四五总分得分一、选择题(本大题共10小题,每小题3分,满分30分)每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.起重机将重物垂直提起,这可以看作为数学上的( )A.轴对称B.平移C.旋转D.变形2.下列说法中正确的是( )A .一个图形经过平移后,与原图形成轴对称B .如果两个图形成轴对称,那么一个图形可由另一个图形经过平移变换得到C .一个图形经过平移后,它的性质都发生了变化D .图形的平移由平移的方向和距离决定 3.在以下现象中,属于平移的是( )① 在挡秋千的小朋友;② 打气筒打气时,活塞的运动; ③ 钟摆的摆动; ④ 传送带上,瓶装饮料的移动 A . ①② B . ①③ C . ②③ D . ②④4.如图,将正方形图案绕中心O 旋转180°后,得到的图案是( )5.在图形旋转中,下列说法中错误的是( )A. 图形上的每一点到旋转中心的距离相等B. 图形上的每一点移动的角度相同C. 图形上可能存在不动点D. 图形上任意两点的连线与其对应两点的连线相等 6.平面直角坐标系内一点P 34 (,)关于原点对称点的坐标是( ) A. 34(,)B. C.D.43(,-)7.下列图形中,既是轴对称图形又是中心对称图形的是( )A .等边三角形B .平行四边形C .等腰梯形D .菱形 8.如图,大矩形的长是10cm ,宽是8cm ,阴影的宽为2cm ,则空白部分的面积是( )A.36cm 2B.40cm 2C.32cm 2D.48 cm 29.在平面上一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是( )A .180°B .90°C .270°D .360°10.国旗上的四个小五角星,通过怎样的移动可以相互得到( )A.轴对称B.平移C.旋转D.平移和旋转二、填空题(本大题共4小题,每小题3分,满分12分)11.图形的平移只改变图形的________,不改变图形的_______、________。

北师大版八年级数学下册第3章测试题及参考答案

北师大版八年级数学下册第3章测试题及参考答案

北师大版八年级数学下册第3章测试题一、选择题1.将长度为5cm的线段向上平移10cm后,所得线段的长度是()A.10cm B.5cm C.0cm D.无法确定2.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A.B.C.D.3.一个图形无论经过平移变换,还是经过旋转变换,下列说法正确的是()①对应线段平行②对应线段相等③图形的形状和大小都没有发生变化④对应角相等.A.①②③B.②③④C.①②④D.①③④4.如图,△ABC和△BDE是等边三角形,点A、B、D在一条直线上,并且AB=BD.由一个三角形变换到另一个三角形()A.仅能由平移得到B.仅能由旋转得到C.既能由平移得到,也能由旋转得到D.既不能由平移得到,也不能由旋转得到5.将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,2)D.(1,﹣2)6.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°7.如图,若△DEF是由△ABC经过平移后得到的,则平移的距离是()A.线段BC的长度B.线段BE的长度C.线段EC的长度D.线段EF的长度8.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°9.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4)B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)10.如图,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心为直角的扇形纸板的圆心放在O点处,并将纸板的圆心绕O旋转,则正方形ABCD 被纸板覆盖部分的面积为()A.a2B.a2C.a2D.a11.关于这一图案,下列说法正确的是()A.图案乙是由甲绕BC的中点旋转180°得到的B.图案乙是由甲绕点C旋转108°得到的C.图案乙是由甲沿AB方向平移3个边长的距离得到的D.图案乙是由甲沿直线BC翻转180°得到的12.如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为()A.(﹣1,)B.(﹣1,)或(﹣2,0)C.(,﹣1)或(0,﹣2)D.(,﹣1)二、填空题13.线段AB沿和它垂直的方向平移到A′B′,则线段AB和线段A′B′的位置关系是.14.如图,在四边形ABCD中,AD∥BC,BC>AD,∠B与∠C互余,将AB,CD分别平移到EF和EG的位置,则△EFG为三角形.15.如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=度.16.如图,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,那么图中的四边形ACED的面积为.17.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为.18.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=.三、解答题19.如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.20.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:2线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.21.如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一种实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0).得到正方形A′B′C′D′及其内部的点,其中点A、B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.答案与解析1.将长度为5cm的线段向上平移10cm后,所得线段的长度是()A.10cm B.5cm C.0cm D.无法确定【考点】Q2:平移的性质.【专题】选择题【分析】根据平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.【解答】解:线段长度不变,还是5cm.故选B.【点评】此题主要考查平移的基本性质,题目比较基础,把握平移的性质即可.2.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【专题】选择题【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选B.【点评】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.一个图形无论经过平移变换,还是经过旋转变换,下列说法正确的是()①对应线段平行②对应线段相等③图形的形状和大小都没有发生变化④对应角相等.A.①②③B.②③④C.①②④D.①③④【考点】R2:旋转的性质;Q2:平移的性质.【专题】选择题【分析】根据平移和旋转的性质对各小题分析判断,然后利用排除法求解.【解答】解:①平移后对应线段平行,旋转对应线段不一定平行,故本小题错误;②无论平移还是旋转,对应线段相等,故本小题正确;③无论平移还是旋转,图形的形状和大小都没有发生变化,故本小题正确;④无论平移还是旋转,对应角相等,故本小题正确.综上所述,说法正确的是②③④.故选B.【点评】本题主要考查了旋转的性质,平移的性质,熟记旋转变换,平移变换都只改变图形的位置不改变图形的形状与大小是解题的关键.4.如图,△ABC和△BDE是等边三角形,点A、B、D在一条直线上,并且AB=BD.由一个三角形变换到另一个三角形()A.仅能由平移得到B.仅能由旋转得到C.既能由平移得到,也能由旋转得到D.既不能由平移得到,也不能由旋转得到【考点】RA:几何变换的类型.【专题】选择题【分析】是轴对称图形,这三对全等三角形中的一个都是以其中另一个三角形绕点B旋转90°后得到或对折得到的.【解答】解:∵△ABC和△BDE是等边三角形,点A、B、D在一条直线上,并且AB=BD.∴这三对全等三角形中的一个都是以其中另一个三角形绕点B旋转90°后得到或对折得到的.故选C.【点评】本题考查了几何变换的类型,解题的关键是看清由两个三角形组成的图象是轴对称图形还是中心对称图形.5.将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,2)D.(1,﹣2)【考点】Q3:坐标与图形变化﹣平移;P5:关于x轴、y轴对称的点的坐标.【专题】选择题【分析】先利用平移中点的变化规律求出点A′的坐标,再根据关于y轴对称的点的坐标特征即可求解.【解答】解:∵将点A(3,2)沿x轴向左平移4个单位长度得到点A′,∴点A′的坐标为(﹣1,2),∴点A′关于y轴对称的点的坐标是(1,2).故选:C.【点评】本题考查坐标与图形变化﹣平移及对称的性质;用到的知识点为:两点关于y轴对称,纵坐标不变,横坐标互为相反数;左右平移只改变点的横坐标,右加左减.6.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°【考点】R2:旋转的性质.【专题】选择题【分析】根据直角三角形两锐角互余求出∠BAC,然后求出∠BAB1,再根据旋转的性质对应边的夹角∠BAB1即为旋转角.【解答】解:∵∠B=35°,∠C=90°,∴∠BAC=90°﹣∠B=90°﹣35°=55°,∵点C、A、B1在同一条直线上,∴∠BAB′=180°﹣∠BAC=180°﹣55°=125°,∴旋转角等于125°.故选C.【点评】本题考查了旋转的性质,直角三角形两锐角互余的性质,熟练掌握旋转的性质,明确对应边的夹角即为旋转角是解题的关键.7.如图,若△DEF是由△ABC经过平移后得到的,则平移的距离是()A.线段BC的长度B.线段BE的长度C.线段EC的长度D.线段EF的长度【考点】Q2:平移的性质.【专题】选择题【分析】根据平移的性质,结合图形可直接求解.【解答】解:观察图形可知:△DEF是由△ABC沿BC向右移动BE的长度后得到的,∴平移距离就是线段BE的长度.故选B.【点评】本题利用了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.8.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°【考点】R2:旋转的性质;JA:平行线的性质.【专题】选择题【分析】首先证明∠ACC′=∠AC′C;然后运用三角形的内角和定理求出∠CAC′=30°即可解决问题.【解答】解:由题意得:AC=AC′,∴∠ACC′=∠AC′C;∵CC′∥AB,且∠BAC=75°,∴∠ACC′=∠AC′C=∠BAC=75°,∴∠CAC′=180°﹣2×75°=30°;由题意知:∠BAB′=∠CAC′=30°,故选A【点评】该命题以三角形为载体,以旋转变换为方法,综合考查了全等三角形的性质及其应用问题;对综合的分析问题解决问题的能力提出了较高的要求.9.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4)B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)【考点】R7:坐标与图形变化﹣旋转.【专题】选择题【分析】如图,把线段OP绕点O逆时针旋转90°到OP′位置看作是把Rt△OPA 绕点O逆时针旋转90°到RtOP′A′,再根据旋转的性质得到OA′、P′A′的长,然后根据第二象限点的坐标特征确定P′点的坐标.【解答】解:如图,OA=3,PA=4,∵线段OP绕点O逆时针旋转90°到OP′位置,∴OA旋转到x轴负半轴OA′的位置,∠P′A′0=∠PAO=90°,P′A′=PA=4,∴P′点的坐标为(﹣3,4).故选C.【点评】本题考查了坐标与图形变化﹣旋转:在直角坐标系中线段的旋转问题转化为直角三角形的旋转,然后利用旋转的性质求出相应的线段长,再根据点的坐标特征确定点的坐标.10.如图,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心为直角的扇形纸板的圆心放在O点处,并将纸板的圆心绕O旋转,则正方形ABCD 被纸板覆盖部分的面积为()A.a2B.a2C.a2D.a【考点】R2:旋转的性质.【专题】选择题【分析】扇形的半径交AD于E,交CD于F,连结OD,如图,利用正方形的性质得OD=OC,∠COD=90°,∠ODA=∠OCD=45°,再利用等角的余角相=S△OCF,所等得到∠EOD=∠FOC,于是可证明△ODE≌△OCF,得到S△ODE=S正方形ABCD=a2.以S阴影部分=S△DOC【解答】解:扇形的半径交AD于E,交CD于F,连结OD,如图,∵四边形ABCD为正方形,∴OD=OC,∠COD=90°,∠ODA=∠OCD=45°,∵∠EOF=90°,即∠EOD+∠DOF=90°,∠DOF+∠COF=90°,∴∠EOD=∠FOC,在△ODE和△OCF中,,∴△ODE≌△OCF,=S△OCF,∴S△ODE=S正方形ABCD=a2.∴S阴影部分=S△DOC故选B.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.11.关于这一图案,下列说法正确的是()A.图案乙是由甲绕BC的中点旋转180°得到的B.图案乙是由甲绕点C旋转108°得到的C.图案乙是由甲沿AB方向平移3个边长的距离得到的D.图案乙是由甲沿直线BC翻转180°得到的【考点】Q5:利用平移设计图案.【专题】选择题【分析】直接利用旋转的性质得出旋转中心进而得出答案.【解答】解:如图所示:可得图案乙是由甲绕BC的中点旋转180°得到的.故选:A.【点评】此题主要考查了旋转变换,正确得出旋转中心是解题关键.12.如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为()A.(﹣1,)B.(﹣1,)或(﹣2,0)C.(,﹣1)或(0,﹣2)D.(,﹣1)【考点】R7:坐标与图形变化﹣旋转.【专题】选择题【分析】需要分类讨论:在把△ABO绕点O顺时针旋转150°和逆时针旋转150°后得到△A1B1O时点A1的坐标.【解答】解:∵△ABO中,AB⊥OB,OB=,AB=1,∴tan∠AOB==,∴∠AOB=30°.如图1,当△ABO绕点O顺时针旋转150°后得到△A1B1O,则∠A1OC=150°﹣∠AOB﹣∠BOC=150°﹣30°﹣90°=30°,则易求A1(﹣1,﹣);如图2,当△ABO绕点O逆时针旋转150°后得到△A1B1O,则∠A1OC=150°﹣∠AOB﹣∠BOC=150°﹣30°﹣90°=30°,则易求A1(﹣2,0);综上所述,点A1的坐标为(﹣1,﹣)或(﹣2,0);故选B.【点评】本题考查了坐标与图形变化﹣﹣旋转.解题时,注意分类讨论,以防错解.13.线段AB沿和它垂直的方向平移到A′B′,则线段AB和线段A′B′的位置关系是.【考点】Q2:平移的性质.【专题】填空题【分析】根据平移的性质可知,线段AB沿和它垂直的方向平移到A′B′,则线段AB和线段A′B′平行且相等.【解答】解:∵线段AB沿和它垂直的方向平移到A′B′,∴线段AB和线段A′B′的位置关系是平行且相等.故答案为:平行且相等.【点评】本题考查的是平移的性质,①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.14.如图,在四边形ABCD中,AD∥BC,BC>AD,∠B与∠C互余,将AB,CD分别平移到EF和EG的位置,则△EFG为三角形.【考点】Q2:平移的性质.【专题】填空题【分析】利用平移的性质可以知∠B+∠C=∠EFG+∠EGF,然后根据三角形内角和定理在△EFG中求得∠FEG=90°.【解答】解:∵AB,CD分别平移到EF和EG的位置后,∠B的对应角是∠EFG,∠C的对应角是∠EGF,又∵∠B与∠C互余,∴∠EFG与∠EGF互余,∴在△EFG中,∠FEG=90°(三角形内角和定理),∴△EFG为Rt△EFG,故答案是:直角.【点评】本题考查了平移的性质,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等.15.如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=度.【考点】R2:旋转的性质.【专题】填空题【分析】根据旋转的性质可得AB=AB′,∠BAB′=40°,然后根据等腰三角形两底角相等求出∠ABB′,再利用直角三角形两锐角互余列式计算即可得解.【解答】解:∵Rt△ABC绕点A逆时针旋转40°得到Rt△AB′C′,∴AB=AB′,∠BAB′=40°,在△ABB′中,∠ABB′=(180°﹣∠BAB′)=(180°﹣40°)=70°,∵∠AC′B′=∠C=90°,∴B′C′⊥AB,∴∠BB′C′=90°﹣∠ABB′=90°﹣70°=20°.故答案为:20.【点评】本题考查了旋转的性质,等腰三角形的性质,直角三角形的两锐角互余,比较简单,熟记旋转变换只改变图形的位置不改变图形的形状与大小得到等腰三角形是解题的关键.16.如图,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,那么图中的四边形ACED的面积为.【考点】Q2:平移的性质.【专题】填空题【分析】设点A到BC的距离为h,根据平移的性质用BC表示出AD、CE,然后根据三角形的面积公式与梯形的面积公式列式进行计算即可得解.=BC•h=5,【解答】解:设点A到BC的距离为h,则S△ABC∵平移的距离是BC的长的2倍,∴AD=2BC,CE=BC,∴四边形ACED的面积=(AD+CE)•h=(2BC+BC)•h=3×BC•h=3×5=15.故答案为:15.【点评】本题考查了平移的性质,三角形的面积,主要用了对应点间的距离等于平移的距离的性质.17.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为.【考点】R7:坐标与图形变化﹣旋转.【专题】填空题【分析】画出旋转后的图形位置,根据图形求解.【解答】解:AB旋转后位置如图所示.B′(4,2).【点评】本题涉及图形旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心A,旋转方向逆时针,旋转角度90°,通过画图得B′坐标.18.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=.【考点】R2:旋转的性质;LB:矩形的性质.【专题】填空题【分析】根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠3=70°,然后利用互余即可得到∠α的度数.【解答】解:如图,∵四边形ABCD为矩形,∴∠B=∠D=∠BAD=90°,∵矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,∴∠D′=∠D=90°,∠4=α,∵∠1=∠2=110°,∴∠3=360°﹣90°﹣90°﹣110°=70°,∴∠4=90°﹣70°=20°,∴∠α=20°.故答案为:20°.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的性质.19.如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.【考点】R8:作图﹣旋转变换;Q4:作图﹣平移变换.【专题】解答题【分析】(1)将点A、B、C分别向左平移6个单位长度,得出对应点,即可得出△A1B1C1;(2)将点A、B、C分别绕点O按逆时针方向旋转180°,得出对应点,即可得出△A2B2C2.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.【点评】此题主要考查了图形的平移和旋转,根据已知得出对应点位置是解题关键.20.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:3线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.【考点】KD:全等三角形的判定与性质.【专题】解答题【分析】(1)①根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行解答;②根据等边三角形的性质可得AC=AD,再根据直角三角形30°角所对的直角边等于斜边的一半求出AC=AB,然后求出AC=BD,再根据等边三角形的性质求出点C到AB的距离等于点D到AC的距离,然后根据等底等高的三角形的面积相等解答;(2)根据旋转的性质可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角边”证明△ACN和△DCM全等,根据全等三角形对应边相等可得AN=DM,然后利用等底等高的三角形的面积相等证明;(3)过点D作DF1∥BE,求出四边形BEDF1是菱形,根据菱形的对边相等可得BE=DF1,然后根据等底等高的三角形的面积相等可知点F1为所求的点,过点D作DF2⊥BD,求出∠F1DF2=60°,从而得到△DF1F2是等边三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“边角边”证明△CDF1和△CDF2全等,根据全等三角形的面积相等可得点F2也是所求的点,然后在等腰△BDE 中求出BE的长,即可得解.【解答】解:(1)①∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;②∵∠B=30°,∠C=90°,∴CD=AC=AB,∴BD=AD=AC,根据等边三角形的性质,△ACD的边AC、AD上的高相等,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;故答案为:DE∥AC;S1=S2;(2)如图,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,=S△BDE;此时S△DCF1过点D作DF2⊥BD,∵∠ABC=60°,F1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB=×60°=30°,∴∠CDF1=180°﹣∠BCD=180°﹣30°=150°,∠CDF2=360°﹣150°﹣60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=×60°=30°,又∵BD=4,∴BE=×4÷cos30°=2÷=,∴BF1=,BF2=BF1+F1F2=+=,故BF的长为或.【点评】本题考查了全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题的关键,(3)要注意符合条件的点F有两个.21.如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一种实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0).得到正方形A′B′C′D′及其内部的点,其中点A、B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.【考点】9A:二元一次方程组的应用;Q3:坐标与图形变化﹣平移.【专题】解答题【分析】首先根据点A到A′,B到B′的点的坐标可得方程组;,解可得a、m、n的值,设F点的坐标为(x,y),点F′点F重合可列出方程组,再解可得F点坐标.【解答】解:由点A到A′,可得方程组;由B到B′,可得方程组,解得,设F点的坐标为(x,y),点F′点F 重合得到方程组,解得,即F(1,4).【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,根据点的坐标列出方程组.第31页(共31页)。

北师大版八年级数学(下册)第三章测试卷(附参考答案)

北师大版八年级数学(下册)第三章测试卷(附参考答案)

第三章测试卷(考试时间:90分钟满分:100分)1.下列现象中,属于平移的是( )①温度计中,液柱的上升或下降;②打气筒打气时,活塞的运动;③钟摆的摆动;④传送带上,瓶装饮料的移动.A.②④B.①③C.②③D.①②2.下列说法正确的是( )A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.平移和旋转的共同点是改变图形的位置C.图形可以向某方向平移一定距离,也可以向某方向旋转一定距离D.由平移得到的图形也一定可由旋转得到3.下列图形中,旋转120°后能与原图形重合的是( )A.等边三角形B.正方形C.正五边形D.矩形4.如图1,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5,EC=3,那么平移的距离为( )图1A.2B.3C.5D.75.已知平面内A,B,C三点有如下关系:将点A先向右平移2个单位长度,再向下平移1个单位长度得到点B;将点A先向左平移1个单位长度,再向下平移3个单位长度得到点C.若点B的坐标为(5,-3),则点C的坐标为( )A.(4,-6)B.(6,-7)C.(2,-5)D.(8,-1)6.如图2所示的是一个以点O为对称中心的中心对称图形,若∠A=30°,∠C=90°,AC=1,则AB的长为( )图2A.4B.C.D.7.如图3所示,将△ABC绕点A逆时针旋转80°得到△ADE,连接BD,则∠ADB的度数为( )图3A.30°B.50°C.80°D.100°8.风车应做成中心对称图形,并且不是轴对称图形,才能在风口处平稳旋转.如图4,现有一长条矩形硬纸板(其中心有一个小孔)和两张全等的矩形薄纸片,将纸片粘到硬纸板上,做成一个能绕着小孔平稳旋转的风车.正确的粘合方法是( )图4A. B.C. D.9.△A1B1C1是△ABC平移后得到的三角形,则△A1B1C1≌△ABC,理由是.10.在平面直角坐标系中,点A(1,2)可由点B(1,0)向平移个单位长度得到.11.在26个大写英文字母中,写出既是轴对称,也是中心对称的字母、、.(写出3个)12.如图5,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=3,则BE=.图513.如图6所示,△ABC和△DCE是等边三角形,将△ACE绕着点逆时针旋转度可得到.图614.如图7所示,△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP’重合,如果AP=2,那么PP’=.图715.作图:(1)如图8所示,将字母A按箭头所指的方向,平移3cm,作出平移后的图形;(2)如图9所示,经过平移,△ABC的顶点A移到了点D,请作出平移后的三角形.图8图916.如图10所示的图案可以看成是什么“基本图案”通过怎样的变化得到的?图1017.如图11所示,A,B两点的坐标分别为(2,3),(4,1).(1)求△ABO的面积;(2)把△ABO向下平移3个单位长度后得到△A’B’O’,求△A’B’O’的3个顶点的坐标.图1118.如图12所示,四边形ABCD是正方形,AF=AE.(1)可以通过平移、轴对称、旋转中的哪一种方法怎样变化,使△ABE变到△ADF的位置?(2)线段BE与DF之间有怎样的关系,为什么?图1219.如图13,已知△ABC三个顶点坐标分别是A(1,3),B(4,1),C(4,4).(1)请按要求画图:①画出△ABC向左平移5个单位长度后得到的△A1B1C1;②画出△ABC绕着原点O顺时针旋转90°后得到的△A2B2C2.(2)请写出直线B1C1与直线B2C2的交点坐标.图1320.如图14①所示,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE.(1)线段AF和BE有怎样的大小关系?请证明你的结论;(2)将图14①中的△CEF绕点C旋转一定的角度,得到图14②,(1)中的结论还成立吗?作出判断,并说明理由;(3)将图14①中的△ABC绕点C旋转一定的角度,请你画出一个变换后的图形(草图即可).此时(1)中的结论还成立吗?作出判断,不必说明理由.①②图14参考答案1.A2.B3.A4.A5.C6.D7.B8.A9.平移不改变图形的形状和大小10.上 211.H、I、O12.313.C 60 △BCD14.215.解:作图略.16.解:图案是由△ABC绕点O顺时针(逆时针)旋转三次而形成的,旋转角度依次为90°,180°,270°.17.解:(1)S△ABO=3×4-×4×1-×2×2-×2×3=5.(2)△A’B’O’的3个顶点的坐标分别为A’(2,0),B’(4,-2),O’(0,-3).18.解:(1)旋转方法,△ABE绕A点逆时针旋转90°,变到△ADF的位置.(2)BE=DF且BE⊥DF.理由如下:由(1)得△ABE≌△ADF,∴BE=DF,∠ABE=∠ADF.∵∠ADF+∠F=90°,∴∠ABE+∠F=90°,即BE⊥DF.19.(1)①如图所示:△A1B1C1即为所求;②如图所示:△A2B2C2即为所求;(2)由图形可知:交点坐标为(-1,-4).20.解:(1)AF=BE.证明:∵△ABC和△CEF是等边三角形,∴AC=BC,CF=CE,∠ACF=∠BCE=60°.∴△AFC≌△BEC.∴AF=BE.(2)成立.理由如下:∵△ABC和△CEF是等边三角形,∴AC=BC,CF=CE,∠ACB=∠FCE=60°.∴∠ACB-∠FCB=∠FCE-∠FCB,即∠ACF=∠BCE,∴△AFC≌△BEC,∴AF=BE.(3)结论仍成立.作图不唯一,如:。

北师大版八年级数学下册第三章测试题(附答案)

北师大版八年级数学下册第三章测试题(附答案)

北师大版八年级数学下册第三章测试题(附答案)一、单选题1.线段CD 是由线段AB 平移得到的,点A(-1,4)的对应点为C(4,7),则AB 可以通过以下方式平移到CD ()A. 先向上平移3个单位,再向左平移5个单位B. 先向左平移5个单位,再下平移3个单位C. 先向上平移3个单位,再右平移5个单位D. 先向右平移5个单位,再向下平移3个单位2.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有( )A. 3个B. 4个C. 5个D. 无数个3.如图,将△ABE向右平移50px得到△DCF,如果△ABE的周长是400px(1px=0.04cm),那么四边形ABFD 的周长是()A. 16cmB. 18cmC. 20cmD. 21cm4.下列图形中,是中心对称图形的是()A. 等边三角形B. 正五边形C. 平行四边形D. 等腰直角三角形5.下列交通标志中,是中心对称图形的是( )A. B. C. D.6.下列四个交通标志中,是中心对称图形的标志是()A. B. C. D.7.下列各图中,不是中心对称图形的为()A. B. C. D.8.如图,在4×4的网格纸中,ABC的三个顶点都在格点上,现要在这张网格纸的四个格点M,N,P,Q中找一点作为旋转中心.将ABC绕着这个中心进行旋转,旋转前后的两个三角形成中心对称,且旋转后的三角形的三个顶点都在这张4×4的网格纸的格点上,那么满足条件的旋转中心有()A. 点M,点NB. 点M,点QC. 点N,点PD. 点P,点Q9.在平面直角坐标系中,将△ABC各点的纵坐标保持不变,横坐标都加上3,则所得图形与原图形的关系是:将原图形()A. 向左平移3个单位B. 向右平移3个单位C. 向上平移3个单位D. 向下平移3个单位10.下列图形中,是中心对称图形的是()A. B. C. D.11.如图,把绕点A逆时针旋转40°,得到,点恰好落在边AB上,连接,则的度数为()A. 15°B. 20°C. 25°D. 30°12.观察下列图形,是中心对称图形的是()A. B. C. D.13.学生会组织周末爱心义卖活动,义卖所得利润将全部捐献给希望工程,活动选在一块长20米、宽14米的矩形空地上.如图,空地被划分出6个矩形区域,分别摆放不同类别的商品,区域之间用宽度相等的小路隔开,已知每个区域的面积均为32平方米,小路的宽应为多少米?设小路的宽为x米,依据题意列方程得( )A. (20-2x)(14-x)=32×6B. (20-x)(14-2x)=32×6C. (20-2x)(14-x)=20×14D. (20-2x)(14-x)+2x2=32×614.如图,△ABC沿BC所在直线向左平移4cm得到△A'B'C',若△ABC的周长为20cm,则四边形A'B'CA的周长为( )A. 16cmB. 24cmC. 28cmD. 32cm15.如图,把△ABC绕点C逆时针旋转90°得到△DCE,若BE=17,AD=7,则BC为( )A. 3B. 4C. 5D. 6二、填空题16.如图,已知∠AOB=45°,将射线OA绕点O逆时针旋转α°(0 α360),得到射线OA′.若OA′⊥OB,则α的值是________.17.如图,在△ABC中,∠C=90°,△ABC绕点A按顺时针方向旋转26°得到△AED,若AD BC,则∠BAE=________°.18.如图,在长20米、宽10米的长方形草地内修建了宽2米的道路,则草地的面积是________平方米.19.如图,小正方形方格的边长都是1,点A、B、C、D、O都是小正方形的顶点.若COD是由AOB 绕点O按顺时针方向旋转一次得到的,则至少需要旋转________°.20.如图,沿BC方向平移4cm,得到,如果四边形ABFD的周长是32cm,则的周长是________cm.21.如图,把绕点顺时针旋转角度得到,对应,若点在边上,且,则a=________.22.如图,在平面直角坐标系中,点、的坐标分别为、,将线段沿轴向右平移,若点的对应点的坐标为,则点的对应点的坐标为________.三、解答题23.如图是10×8的网格,网格中每个小正方形的边长均为1,A、B、C三点在小正方形的顶点上,请在图①、②中各画一个凸四边形,使其满足以下要求:(1)请在图①中取一点D(点D必须在小正方形的顶点上),使以A、B、C、D为顶点的四边形是中心对称图形,但不是轴对称图形;(2)请在图形②中取一点D(点D必须在小正方形的顶点上),使以A、B、C、D为顶点的四边形是轴对称图形,但不是中心对称图形.24.已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′(1)在图中画出△A′B′C′;(2)写出点A′、B′的坐标;(3)在y轴上是否存在一点P,使得△BCP与△ABC面积相等?若存在,求直接写出点P的坐标;若不存在,说明理由.四、综合题25.把两个全等的等腰直角三角板ABC和EFG(其直角边长均为4)叠放在一起(如图1),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合,现将三角板EFG绕O点顺时针旋转,旋转角满足条件四边形CHGK是旋转过程中两三角板的重叠部分(如图2).(1)在上述旋转过程中,BH与CK有怎样的数量关系?证明你的结论;(2)在上述旋转过程中,两个直角三角形的重叠部分面积是否会发生改变?证明你的结论.26.如图,在△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△EBD,连接DC交AB于点F.(1)求∠ABE的度数;(2)求DC的长;(3)求△ACF与△BDF的周长之和是多少?答案一、单选题1. C2. C3. C4. C5. A6. C7. A8. C9. B 10. B 11. B 12. C 13. A 14. C 15. C二、填空题16. 135或315 17. 38 18. 144米219. 90 20. 24 21. 36°22. (3,2)三、解答题23. 解:(1)如图所示:四边形ABCD即为所求;(2)如图所示:四边形ABCD即为所求.24. 解:(1)如图所示:(2)由图可知,A'(0,4),B'(﹣1,1);(3)存在.设P(0,y),则y=1或y=﹣5,故点P的坐标是(0,1)或(0,﹣5).四、综合题25. (1)解:BH=CK.四边形CHGK的面积没有变化.∵△ABC是等腰直角三角形,O为斜边中点,∴CG=BG,CG⊥AB,∴∠ACG=∠B=45°,∵∠BGH与∠CGK均为旋转角,∴∠BGH=∠CGK,因此△CGK可以看作是由△BGH绕点O顺时针旋转而得,故BH=CK,S△CGK=S△BGH,(2)解:∴S四边形CHGK=S△CGK+S△CGH=S△BGH+S△CGH=S△BCG= S△ABC= × ×4×4=4.即四边形CHGK的面积在旋转过程中没有变化,始终为4.26. (1)解:由题意得:∠ABE=∠CBD=60°.(2)解:由题意得:BC=BD,∠CBD=60°,∴△CBD是等边三角形,∴DC=BC=12cm.(3)解:∵∠ACB=90°,AC=5cm,BC=12cm,∴AB==13cm,∴△ACF与△BDF的周长和=AC+AF+CF+DF+BD+BF =AC+(AF+BF)+(CF+DF)+BD=AC+AB+CD+BD=5+13+12+12=42cm。

北师大版八年级数学(下册)第三章测试卷(附答案)

北师大版八年级数学(下册)第三章测试卷(附答案)

北师八下数学测试卷第三章1.下列4张扑克牌中,是中心对称图形的是()A.B.C.D.2.对如图1的判断,正确的是()图1A.这是一个轴对称图形,它有一条对称轴B.这是一个轴对称图形,但不是中心对称图形C.这是一个中心对称图形,但不是轴对称图形D.这既是轴对称图形,也是中心对称图形3.如图2有两个边长为4 cm的正方形,其中一个正方形的顶点在另一个正方形的中心上,那么图中阴影部分的面积是()图2A.4 cm2B.8 cm2C.16 cm2D.无法确定4.如图3,正方形ABCD和CEFG的边长分别为m、n,那么△AEG的面积()图3A.与m、n的大小都有关B.与m、n的大小都无关C.只与m的大小有关D.只与n的大小有关5.下列几组图形中,既是轴对称图形,又是中心对称图形,完全正确的一组是()A.正方形、菱形、矩形、平行四边形B.正三角形、正方形、菱形、矩形C.正方形、菱形、矩形D.平行四边形、正方形、等腰三角形6.下列命题正确的个数是()①两个全等三角形必关于某一点中心对称;②关于中心对称的两个三角形是全等三角形;③两个三角形对应点连线都经过同一点,则这两个三角形关于该点成中心对称;④关于中心对称的两个三角形,对应点连线都经过对称中心.A.1B.2C.3D.47.如图4,图形旋转一定角度后能与自身重合,则旋转的角度可能是()图4A.30°B.60°C.90°D.120°8.如图5,在平面直角坐标系中,点B、C、E在y轴上,Rt△ABC经过变换得到的Rt△ODE,若点C的坐标为(0,1),AC=2,则这种变换可以是()图5A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移39.将点A绕另一个点O旋转一周,点A在旋转过程中所经过的路线是.10.以等腰直角△ABC的斜边AB所在的直线为对称轴,作这个△ABC的对称图形△ABC’,则所得到的四边形ACBC’一定是.11. 将线段AB向右平移3 cm得到线段CD,如果AB=5 cm,则CD=cm.12. 已知A、B、O三点不在同一直线上,A、A’关于点O对称,B、B’关于点O对称,那么线段AB与A’B’的关系是.13.如图6,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB’C’D’,则图中阴影部分面积为 .图614.如图7,点P是等边三角形ABC内部一点,∠APB:∠BPC:∠CPA=5:6:7,则以PA、PB、PC为边的三角形的三内角之比为.图715.如图8,请画出▱ABCD关于点O成对称中心的图形.图816.已知△ABC和射线PQ,画出△ABC沿射线PQ的方向平移2 cm后的图形.图917.如图10,正方形ABCD的边长为1,AB、AD上各有一点P、Q,如果△APQ的周长为2,求∠PCQ的度数.图1018.利用平移的知识求图形的周长.图1119.如图12,正方形ABCD中,E在BC上,△DEC按顺时针方向转动一个角度后成△DGA.(1)图中哪一个点是旋转中心?(2)旋转了多少度?(3)求∠GDE的度数并指出△DGE的形状.图1220.如图13,P为正方形ABCD内一点,PA=1,PB=2,PC=3,求∠APB的度数.图13参考答案1.D2.D3.A4.D5.C6.B7.C8.A9.圆10.正方形11.512.平行且相等13.1 -14.2:3:415.略16.略17. 解:45°.提示:在PQ上截取PG=BP,则GQ=DQ,再通过三角形全等证明.18. 解:将折线部分所有横线都平移到上面那条边,所有竖线平移到两边,那么就得到一个边长为3和4的长方形,它的周长为14.19. 解:(1)D点;(2)90度;(3)∠GDE=90°,△DGF是等腰直角三角形.20. 解:将△PBC绕B点逆时针旋转90°至BC与AB重合,得到一个新的△AQB,可知:BQ=BP=2,QA=PC=3,∠ABQ=∠PBC,由于∠PBC+∠ABP=90°,所以∠PBQ=∠ABQ+∠ABP=∠PBC+∠ABP=90°,则△PBQ是一个等腰直角三角形,故∠BPQ=45°.由勾股定理,得:PQ2=PB2+BQ2=22+22=8,另外,在△APQ中,PA2+PQ2=12+8=9=QA2,由勾股定理的逆定理知:△APQ是一个以∠APQ为直角的直角三角形,即∠APQ=90°.综上得:∠APB=∠APQ+∠BPQ=90°+45°=135°.。

北师大版八年级数学下册第三章测试卷及答案

北师大版八年级数学下册第三章测试卷及答案

北师大版八年级数学下册第三章测试卷及答案一、选择题(共10小题,每小题3分,共30分)1.在以下生活现象中,属于旋转变换的是( )A .钟表的指针和钟摆的运动B .站在电梯上的人的运动C .坐在火车上睡觉的旅客D .地下水位线逐年下降2.下列图形中,既是轴对称图形,又是中心对称图形的是( )3. 已知点A 的坐标为(1,3),点B 的坐标为(2,1).将线段AB 沿某一方向平移后,点A 的对应点的坐标为(-2,1),则点B 的对应点的坐标为( )A .(5,3)B .(-1,-2)C .(-1,-1)D .(0,-1)4.如图,在平面直角坐标系中,把△ABC 绕原点O 旋转180°得到△CDA ,点A ,B ,C 的坐标分别为(-5,2),(-2,-2),(5,-2),则点D 的坐标为( )A .(2,2)B .(2,-2)C .(2,5)D .(-2,5)5.若P 与A(1,3)关于原点对称,则点P 落在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,在△ABC 中,∠ACB =90°,∠BAC =α,将△ABC 绕点C 顺时针旋转90°得到△A′B′C,点B 的对应点B′在边AC 上(不与点A ,C 重合),则∠AA′B′的度数为( )A .αB .α-45°C .45°-αD .90°-α7.如图,在△AOB 中,BO =32,将△AOB 绕点O 逆时针旋转90°,得到△A′OB′,连接BB′,则线段BB′的长为( )A .1 B. 2 C. 32 D.322 8.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 的延长线上,连接AD.下列结论一定正确的是( )A .∠ABD =∠EB .∠CBE =∠CC .AD ∥BC D .AD =BC9.如图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到△O′A′B′,点A 的对应点A′在直线y =34x 上,则点B 与其对应点B′之间的距离为( )A.94B .3C .4D .5 10. 如图,在Rt △ABC 中,∠ACB =90°,∠A =60°,AC =6,将△ABC 绕点C 按逆时针方向旋转得到△A′B′C,此时点A′恰好在AB 边上,则点B′与点B 之间的距离为( )A .12B .6C .6 2D .6 3二.填空题(共8小题,每小题3分,共24分)11.将线段AB 平移1 cm ,得到线段A′B′,则点B 到点B′的距离是_________.12. 一个图形无论经过平移还是旋转,有以下说法:①对应线段平行;②对应线段相等;③对应角相等;④图形的形状和大小都没有发生变化.其中说法正确的是__________.( 填序号)13.如图,已知面积为1的正方形ABCD 的对角线相交于点O ,过点O 任作一条直线分别交AD ,BC 于E ,F ,则阴影部分的面积是_______.14.如图,等边三角形AOB 绕点O 逆时针旋转到△A′OB′的位置,OA′⊥OB ,则△AOB 旋转了____度.15.如图,△ABC 的顶点分别为A(3,6),B(1,3),C(4,2).若将△ABC 绕点B 顺时针旋转90°,得到△A′BC′,则点A 的对应点A′的坐标为________.16.如图,将长方形ABCD 绕点A 顺时针旋转到长方形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=110°,则α=________.17.如图,OA ⊥OB ,△CDE 的边CD 在OB 上,∠ECD =45°,CE =4.若将△CDE 绕点C 逆时针旋转75°,点E 的对应点N 恰好落在OA 上,则OC =________.18.如图,将Rt △ABC 沿着直角边CA 所在的直线向右平移得到Rt △DEF ,已知BC =a ,CA =b ,FA =13b ,则四边形DEBA 的面积等于__________.三.解答题(共7小题, 66分)19.(8分) 如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)若△ABC 经过平移后得到△A 1B 1C 1,已知点C 的对应点C 1的坐标为(4,0),画出△A 1B 1C 1;(2)若△A 2B 2C 2是△ABC 关于原点O 中心对称的图形,写出△A 2B 2C 2各顶点的坐标;(3)将△ABC 绕着点O 按顺时针方向旋转90°得到△A 3B 3C 3,画出△A 3B 3C 3.20.(8分) 如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O 为AD边的中点.若把四边形ABCD绕点O顺时针旋转180°,试解决下列问题:(1)画出四边形ABCD旋转后的图形;(2)求点C在旋转过程中经过的路径长.21.(8分) 如图,已知线段AB和点A′.尺规作图:作出由线段AB平移得到的线段A′B′,其中点A的对应点为A′.(不写作法,保留作图痕迹)22.(8分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD 绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.23.(10分)如图,在△ABC中,∠BAC=120°,以BC为边向外作等边三角形BCD,连接AD,把△ABD绕着D点按顺时针方向旋转60°后到△ECD的位置,A,C,E三点恰好在同一直线上.若AB=6,AC=4,求∠BAD 的度数和AD的长.24.(10分) 如图①,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.(1)求∠BCD的度数;(2)将图①中的△BCD绕点B顺时针旋转得到△BC′D′.当点D′恰好落在BC边上时,如图②所示,连接C′C 并延长交AB于点E.①求∠C′CB的度数;②求证:△C′BD′≌△CAE.25.(14分) 如图,小明将一张长方形纸片沿对角线剪开,得到两张三角形纸片(如图②),量得它们的斜边长为10 cm,较小的锐角为30°,再将这两张三角形纸片摆成如图③的形状,且点B,C,F,D在同一条直线上,且点C与点F重合(在图③至图⑥中统一用F表示).小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮忙解决:(1)将图③中的△ABF沿BD向右平移到图④的位置,使点B与点F重合,请你求出平移的距离;(2)将图③中的△ABF绕点F顺时针方向旋转30°到图⑤的位置,A1F交DE于点G,请你求出线段FG的长度;(3)将图③中的△ABF沿直线AF翻折到图⑥的位置,AB1交DE于点H,请证明:AH=DH.参考答案1-5ABCAB 6-10CDCCD11. 1cm12. ②③④13. 1414. 15015. (4,1)16. 20°17. 218. 23ab 19. 解:(1)如图,△A 1B 1C 1为所作.(2)A 2(3,-5),B 2(2,-1),C 2(1,-3).(3)如图,△A 3B 3C 3为所作.20.解:(1)旋转后的图形如图所示.(2)如图,连接OC.由题意可知,点C 的旋转路径是以O 为圆心,OC 的长为半径的半圆.∵OC =12+22=5,∴点C 在旋转过程中经过的路径长为5π.21. 解:如图,线段A′B′即为所求.(画法不唯一)22. (1)解:补全图形,如图所示.(2)证明:由旋转的性质得∠DCF =90°,DC =FC ,∴∠DCE +∠ECF =90°.∵∠ACB =90°,∴∠DCE +∠BCD =90°.∴∠ECF =∠BCD.∵EF ∥DC ,∴∠EFC +∠DCF =180°.∴∠EFC =90°,在△BDC 和△EFC 中,⎩⎪⎨⎪⎧DC =FC ,∠BCD =∠ECF ,BC =EC ,∴△BDC ≌△EFC.∴∠BDC =∠EFC =90°.23.解:∵△BAD 绕D 点顺时针旋转60°得到△CED ,∴AD =DE ,∠ADE =60°,∴△ADE 为等边三角形,∴∠E =60°,∵∠BAC =120°,∴∠BAC +∠E =180°,∴AB ∥DE ,∴∠BAD =∠ADE =60°.∵△ABD ≌△ECD ,∴CE =AB =6,∴AE =AC +CE =4+6=10,∵△ADE 为等边三角形,∴AD =AE =10.24. 解:(1)∵AC =BC ,∠A =30°,∴∠CBA =∠CAB =30°.∵∠ADC =45°,∴∠BCD =∠ADC -∠CBA =15°.(2)①由旋转的性质,得CB =C′B=AC ,∠C′BD′=∠CBD =∠A =30°,∴∠CC′B=∠C′CB=75°. ②证明:∵AC =C′B,∠C′BD′=∠A ,∴∠CEB =∠C′CB-∠CBA =45°,∴∠ACE =∠CEB -∠A =15°,∴∠BC′D′=∠BCD =∠ACE ,在△C′BD′和△CAE 中,⎩⎪⎨⎪⎧∠BC′D′=∠ACE ,C′B=CA ,∠C′BD′=∠A ,∴△C′BD′≌△CAE(ASA).25. 解:(1)图形平移的距离就是线段BC 的长,∵在Rt △ABC 中,斜边长为10 cm ,∠BAC =30°,∴BC =5 cm.∴平移的距离为5 cm(2)∵∠A 1FA =30°,∴∠GFD =60°,又∵∠D =30°,∴∠FGD =90°.在Rt △DFG 中,由勾股定理得FD =5 3 cm ,∴FG =12FD =532cm (3)在△AHE 与△DHB 1中,∵∠FAB 1=∠EDF =30°,FD =FA ,EF =FB =FB 1,∴FD -FB 1=FA -FE ,即AE =DB 1.又∵∠AHE =∠DHB 1.∴△AHE ≌△DHB 1(AAS).∴AH =DH。

最新北师大版八年级数学下册第三章测试题及答案

最新北师大版八年级数学下册第三章测试题及答案

命题人:陈仓园初级中学 王五明一、选择题(共30分)1、若,则的值是( ) A .B .C .D .2.如果分式2||55x x x-+的值为0,那么x 的值是( ) A .0 B .5 C .-5 D .±53.把分式22x yx y+-中的x ,y 都扩大2倍,则分式的值( )A .不变B .扩大2倍C .扩大4倍D .缩小2倍 4.下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b-++-++---- A .2个 B .3个 C .4个 D .5个 5.分式方程2114339x x x +=-+-的解是( ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x++-的值为( ) A .-13.55B - C .1 D .无法确定7.关于x 的方程233x k x x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为( )A .3B .0C .±3D .无法确定8.使分式224x x +-等于0的x 值为( )A .2B .-2C .±2D .不存在 9.下列各式中正确的是( )....a b a b a ba bA B a b a b a b a ba b a b a b a b C D a ba ba b b a-++--==-----++--+-+-==-+-+-10、方程21011x x x-+=--的解是( )A.2B.0C.1D.3 二、填空题(共24分) 11、若分式||55y y--的值等于0,则y= . 12、在比例式9:5=4:3x 中,x= 。

13、1111b a b a a b a b++---的值是 . 14、当 时,分式213x--的为正数。

北师大版数学八年级下册第三章图形的平移与旋转 测试题及答案

北师大版数学八年级下册第三章图形的平移与旋转 测试题及答案
发现两个三角形的对应点到点N的距离相等,因此格点N就是所求的旋转中心;
故选B.
【点睛】
熟练掌握旋转的性质是确定旋转中心的关键所在.
11.D
【解析】
根据平移的性质——对应边平行且相等(或者共线),对应点的连线平行且相等(或者共线),易得四个结论全部正确.故选D.
12.D
【解析】
【分析】
先根据题意画出图形,再利用勾股定理结合网格结构即可判断线段A′B与线段AC的关系.
评卷人
得分
三、解答题
21.在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(0,0),B(3,3),C(4,1).
(1)画出△ABC及△ABC绕点A逆时针旋转90°后得到的△AB1C1;
(2)分别写出B1和C1的坐标.
22.如图,已知A(-1,0),B(1,1),把线段AB平移,使点B移动到点D(3,4)处,这时点A移动到点C处.
4.在平面直角坐标系中,若将三角形上各点的纵坐标都减去3,横坐标保持不变,则所得图形在原图形的基础上( )
A.向左平移了3个单位B.向下平移了3个单位
C.向上平移了3个单位D.向右平移了3个单位
5.下列图形中,既是轴对称图形又是中心对称图形的是
A. B. C. D.
6.如图,在正方形网格中,将△ABC绕点A旋转后得到△ADE,则下列旋转方式中,符合题意的是()
9.A
【解析】
∠AOC就是旋转角,根据等边三角形的性质,即可求解.
解:旋转角∠AOC=∠AOB+∠BOC=60°+90°=150°.
故选A.
本题主要考查了旋转的性质,正确理解旋转角是解题的关键.
10.B
【解析】
【分析】
此题可根据旋转前后对应点到旋转中心的距离相等来判断所求的旋转中心.

北师大版初中数学八下第三章综合测试试题试卷含答案

北师大版初中数学八下第三章综合测试试题试卷含答案

第三章综合测试一、单选题(每小题3分,共30分)1.下列图形中,能将其中一个图形平移得到另一个图形的是( )A .B .C .D .2.在下列四个图案中,不能用平移变换来分析其形成过程的是( )A .B .C .D .3.如下图,在平面直角坐标系中,ABC △位于第二象限,点A 的坐标是()23−,,先把ABC △向右平移4个单位长度得到111A B C △,再作与111A B C △关于x 轴对称的222A B C △,则点A 的对应点2A 的坐标是( )A .()32−,B .()23−,C .()12−,D .()12−,4.如下图所示的网格是正方形网格,图中ABC △绕着一个点旋转,得到A B C '''△,点C 的对应点C '所在的区域在1区~4区中,则点C '所在单位正方形的区域是( )A .1区B .2区C .3区D .4区5.如下图,将ABC Rt △绕点A 按顺时针旋转一定角度得到ADE Rt △,点B 的对应点D 恰好落在BC 边上.若°60AC B =∠=,则CD 的长为( )A .1BCD .26.如下图,ABC △和DCE △都是直角三角形,其中一个三角形是由另一个三角形旋转得到的下列说法正确的是( )A .旋转中心是点B B .旋转角是60°C .既可以顺时针旋转又可以逆时针旋转D .旋转角是ABC ∠7.下列四个图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .8.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .9.如下图,在直角坐标系中,已知菱形OABC 的顶点()()1233A B ,,,.作菱形OABC 关于y 轴的对称图形OA B C ''',再作图形OA B C '''关于点O 的中心对称图形OA B C '''''',则点C 的对应点C ''的坐标是( )A .()21−,B .()12−,C .()21−,D .()21−−,10.如下图,图(1)中的三角形有8个,图(2)中的三角形有14个,图(3)中的三角形有20个,……,则图(8)中的三角形有( )A .48个B .50个C .56个D .64个二、填空题(每小题4分,共28分)11.数轴上A 点表示的数是()23−,将点A 向左平移2个单位得到点B ,则B 点表示的数是________. 12.将ABC △沿BC 方向平移2cm 得到DEF △,若ABC △的周长为16cm ,则四边形ABFD 的周长为________cm .13.如下图,把ABC △绕点B 按逆时针方向旋转°35,得到A BC '''△,若A C AB '''⊥于点D ,则A ∠=________度.14.点()2A m n −,与点()2B n −,关于原点对称,则点A 的坐标为________.15.如下图,在平面直角坐标系中,将线段OA 绕原点O 逆时针旋转90︒,记点(A −的对应点为1A ,则1A 的坐标为________.16.如下图,在平面直角坐标系中,点()()1120P N MNP ,,,,△和111M N P △的顶点都在格点上,MNP △与111M N P △是关于某一点中心对称,则对称中心的坐标为________.17.如下图所示,其中的图(2)可以看作是由图(1)经过________次旋转,每次旋转________得到的.三、解答题一(每小题6分,共18分)18.已知坐标平面内的三个点()()()010331O B A ,,,,,,把ABO △向下平移3个单位再向右平移2个单位后得DEF △. (1)画出DEF △;(2)DEF △的面积为 .19.如下图,在平面直角坐标系中,已知线段OA ,点()34A ,.(1)将线段OA 绕点O 逆时针旋转90°得到OA ',画出线段OA '.(2)直接写出点A '的坐标.20.如下图,在网格中作图.(1)作出ABC △关于O 点对称的111A B C △;(2)作出ABC △以A 为旋转中心,沿顺时针方向旋转90°后的图形222A B C △.四、解答题二(每小题8分,共24分)21.如下图,在等腰ABC Rt △中,90ACB AC BC ︒∠==,,点P 为BC 边上一点(不与B C 、重合),连接PA ,以P 为旋转中心,将线段PA 顺时针旋转90°,得到线段PD ,连接DB .(1)请在图中补全图形;(2)DBA ∠的度数.22.如下图,ABC △是等边三角形,点D 在AC 边上,将BCD △绕点C 旋转得到ACE △.(1)求证:DE BC ∥.(2)若87AB BD ==,,求ADE △的周长.23.如下图,ABC △三个顶点的坐标分别为()()()114234A B C ,,,,,.(1)请画出ABC △向左平移5个单位长度后得到的111A B C △;(2)请画出ABC △关于原点对称的222A B C △;并写出点222A B C 、、坐标;(3)请画出ABC △绕O 逆时针旋转90°后的333A B C △;并写出点333A B C 、、坐标.五、解答题三(每小题10分,共20分)24.如图,ABC △中,点E 在BC 边上.AE AB =,将线段AC 绕点A 旋转到AF 的位置.使得CAF BAE ∠=∠.连接EF EF ,与AC 交于点G .(1)求证:EF BC =;(2)若6528ABC ACB ︒︒∠=∠=,,求FGC ∠的度数.25.如下图,等腰直角ABC △中,90ABC ︒∠=,点P 在AC 上,将ABP △绕顶点B 沿顺时针方向旋转90°后得到CBQ △.(1)求PCQ ∠的度数;(2)当4AB AP ==,时,求PQ 的大小;(3)当点P 在线段AC 上运动时(P 不与A C ,重合),求证:2222PB PA PC =+第三章综合测试答案解析一、 1.【答案】A【解析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案. 解:A .图形的形状和大小没有变化,符合平移的性质,属于平移得到; B .图形由轴对称得到,不属于平移得到,不属于平移得到; C .图形由旋转变换得到,不符合平移的性质,不属于平移得到; D .图形的大小发生变化,不属于平移得到; 故选:A .【考点】本题考查平移的基本性质,平移不改变图形的形状、大小和方向.注意结合图形解题的思想. 2.【答案】B【解析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是B . 解:观察图形可知图案B 通过平移后可以得到. 故选:B .【考点】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转. 3.【答案】B【解析】首先利用平移的性质得到111A B C △1,进而利用关于x 轴对称点的性质得到222A B C △,即可得出答案.如下图所示:点A 的对应点2A 的坐标是:()23−,.故选B .4.【答案】D【解析】如图,连接AA BB '',,分别作AA BB '',的中垂线,两直线的交点即为旋转中心,从而便可判断出点C '位置.如图,连接AA BB '',,分别作AA BB '',的中垂线,两直线的交点O 即为旋转中心,连接OC ,易得旋转角为90°,从而进一步即可判断出点C '位置.在4区. 故选:D .【考点】本题主要考查了图形的旋转,熟练掌握相关方法是解题关键. 5.【答案】D【解析】由直角三角形的性质可得224AB BC AB ===,,由旋转的性质可得AD AB =,可证ADB △是等边三角形,可得2BD AB ==,即可求解.解:°°6090AC B BAC =∠=∠=∵, 224AB BC AB ===∴,,ABC ∵Rt △绕点A 按顺时针旋转一定角度得到ADE Rt △,AD AB =∴,且°60B ∠= ADB ∴△是等边三角形2BD AB ==∴,422CD BC BD =−=−=∴故选:D .【考点】本题考查了旋转的性质,等边三角形的判定和性质,直角三角形的性质,熟练运用旋转的性质是本题的关键. 6.【答案】C【解析】根据旋转的性质和直角三角形的性质即可解答.解:A .ABC △通过旋转可得到DCE △,它的旋转中心是点C ,错误; B .AC CD ⊥旋转的旋转角为90°,错误; C .既可以顺时针旋转又可以逆时针旋转,正确; D .旋转角是ACD ∠或者是°360ACD −∠,错误. 故选C .【考点】本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点−−旋转中心;②旋转方向;③旋转角度. 7.【答案】C【解析】根据轴对称图形与中心对称图形的概念求解. A .是中心对称图形,是轴对称图形,故此选项错误; B .不是中心对称图形,是轴对称图形,故此选项错误; C .是中心对称图形,不是轴对称图形,故此选项正确; D .不是中心对称图形,是轴对称图形,故此选项错误; 故选C .【考点】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 8.【答案】B【解析】根据轴对称图形和中心对称图形的定义,逐一判断选项,即可.A.既不是轴对称对称图象,也不是中心对称图形,不符合题意,B.既是轴对称图形又是中心对称图形,符合题意,C.是轴对称对称图象,但不是中心对称图形,不符合题意,D.是轴对称对称图象,但不是中心对称图形,不符合题意,故选B.【考点】本题主要考查轴对称图形和中心对称图形的定义,熟悉轴对称图形和中心对称图形的定义,是解题的关键.9.【答案】A【解析】先找出对应点,再用线段顺次连接作出图形,根据图形解答即可.如下图,()C''−,.21故选A.【考点】本题考查了轴对称作图及中心对称作图,熟练掌握轴对称作图及中心对称的性质是解答本题的关键,中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.10.【答案】Bn+,据此求解可得.【解析】根据已知图形得出第n个图形中三角形的个数为62=+⨯,解:∵图(1)中的三角形个数8261=+⨯,图(2)中的三角形个数12262=+⨯,图(3)中的三角形个数20263……+⨯=,∴图(8)中的三角形有26850故选:B.【考点】本题主要考查图形的变化规律,解题的关键是根据已知图形得出第n个图形中三角形的个数为n+.62二、11.【答案】7【解析】根据平方的意义先求出点A表示的数,然后根据左减右加进行计算即可得答案.()239−=,所以点A表示的数为9,将点A 向左平移两个单位得到点B ,所以点B 表示的数为927−=,故答案为:7.【考点】本题考查了有理数的乘方运算,数轴上点的平移,解题的关键是牢记数轴上点的坐标变化和平移规律:左减右加.12.【答案】20【解析】先根据平移的性质得到2cm CF AD AC DF ===,,而16cm AB BC AC ++=,则四边形ABFD 的周长AB BC CF DF AD =++++,然后利用整体代入的方法计算即可.解:ABC ∵△沿BC 方向平移2cm 得到DEF △,2cm CF AD AC DF ===∴,,ABC ∵△的周长为16cm ,16cm AB BC AC ++=∴,∴四边形ABFD 的周长AB BC CF DF AD =++++AB BC AC CF AD =++++16cm 2cm 2cm =++20cm =故答案为:20cm .【考点】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.13.【答案】55【解析】由旋转的性质可知A A '∠=∠,所以问题可以转化为求A '∠的度数,由垂直的定义和三角形外角和定理可求出A '∠的度数,问题得解.∵将三角形ABC 绕点B 按顺时针方向旋转°35,得到A BC ''△,35ABA A A ︒'∠=∠=∠'∴,.A C AB ''⊥∵,90A DB ︒'∠=∴,903555A ︒︒︒'∠=−=∴.55A A ︒'∠=∠=∴,故答案为:55.【考点】本题主要考查了旋转的性质以及三角形内角和定理等知识,得出A '∠的度数是解题关键.14.【答案】()21−,. 【解析】关于原点对称的两个坐标点,其对应横纵坐标互为相反数.解:由题意得22m n n =−=−,,解得1n =,故A 点坐标为()21−,.【考点】本题考查了关于原点中心对称的两个坐标点的特点.15.【答案】()1−【解析】根据旋转的性质即可得出结论.如下图,根据题意过点A 作AB y ⊥轴于点B ,过点1A 作1AC y ⊥轴于点C ,依题意得:°1190OA OA AOA =∠=,.°190AOB AOC ∠+∠=∴. AB y ⊥∵轴,1AC y ⊥轴, 19090A CO ABO AOB OAB ︒︒∠=∠=∠+∠=∴,.1AOC OAB ∠=∠∴. 在1OAC △和AOB △中111A CO ABO A OC OAB OA OA ∠=∠⎧⎪∠=∠⎨⎪=⎩1OAC AOB ∴△≌△,11OC AB AC OB ====∴,∵点1A 在第三象限,1A ∴的坐标为()1−.故答案为()1−. 【考点】本题考查了旋转的基本性质,正确理解旋转前后的两个图形是全等形及全等形的对应边相等是解题的关键. 16.【答案】()21,【解析】观察图形,根据中心对称的性质即可解答.∵点()()1120P N ,,,, ∴由图形可知()()()()11130122231M M N P ,,,,,,,, ∵关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,∴对称中心的坐标为()21,, 故答案为()21,. 【考点】本题考查了中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.17.【答案】5 60°【解析】解:由6个图形组成,所以360660︒︒÷=,故可以看成由一个图形经过5次旋转得到的,每次分别旋转了60°.故答案为:5,60°.三、18.【答案】解:(1)∵点()()()133100A B O ,,,,,, ∴把ABO △向下平移3个单位再向右平移2个单位后A B O 、、三个对应点()1233D +−,、 ()()32130203E F +−+−,、,,即()()()305223D E F −−,、,、,;如下图:(2)4.【解析】(1)根据点的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减可以直接算出A B O 、、三个对应点D E F 、、的坐标,然后画出图形即可;(2)把DEF △放在一个矩形中,利用矩形的面积减去周围多余三角形的面积即可.DEF △的面积:111331313229 1.5 1.524222⨯−⨯⨯−⨯⨯−⨯⨯=−−−=. 【考点】此题主要考查了坐标与图形的变化,解题的关键是掌握平移后点的变化规律.19.【答案】解:(1)如图,线段OA '为所作;′(2)点A '的坐标为()43−,. 【解析】(1)根据旋转定义和要求易画出图形;(2)根据画出图形,可直接得到点的坐标.【考点】画旋转90度图形,求点的坐标.20.【答案】(1)如图所示,111A B C △即为所求;(2)如图所示,222A B C △即为所求.【解析】(1)连接AO 并延长相同长度可得1A 点,同理可得点B C 、的对称点,顺次连接即可;(2)将AC 绕点A 顺时针旋转90°得到1AC ,同理可得1AB ,连接11B C 即可.【考点】本题考查了图形的中心对称与旋转,熟练掌握这两者的作图方法是解题的关键.四、21.【答案】解:(1)依题意补全图形,如图所示,(2)过点P 作PE AC ∥,PEB CAB ∠=∠∴,AB BC =∵,CBA CAB ∠=∠∴,PEB PBE ∠=∠∴,PB PE =∴,90BPD DPE EPA DPE ︒∠+∠=∠+∠=∵,BPD EPA ∠=∠∴,PA PD =∵,()PDB PAE SAS ∴△≌△,()118090452PBA PEB ︒︒︒∠=∠=−=∵, 180135PBD PEA PEB ︒︒∠=∠=−∠=∴,90DBA PBD PBA ︒∠=∠−∠=∴.【解析】(1)依题意画出图形,如图所示;(2)先判断出BPD EPA ∠=∠,从而得出PDB PAE △≌△,简单计算即可.【考点】本题考查了作图−旋转变换,全等三角形的性质和判定,判断PDB PAE △≌△是解本题的关键,也是难点.22.【答案】证明:(1)ABC ∵△是等边三角形,60AB BC AC ACB ︒==∠=∴,,∵将BCD △绕点C 旋转得到ACE △.60CD CE ACB ACE ︒=∠=∠=∴,,CDE ∴△是等边三角形,60CDE ACB ︒∠==∠∴,DE BC ∴∥;(2)∵将BCD △绕点C 旋转得到ACE △.7AE BD ==∴,ADE ∵△的周长AE DE AD AE DC AD AE AC =++=++=+,ADE ∴△的周长7815=+=.【解析】(1)由旋转的性质可得60CD CE ACB ACE ︒=∠=∠=,,可得60CDE ACB ︒∠==∠,可证DE BC ∥;(2)由旋转的性质可得7AE BD ==,即可求ADE △的周长.【考点】本题考查了旋转的性质,等边三角形的性质,解决本题的关键是正确理解题意,能够熟练掌握旋转的性质和等边三角形的性质,找到相等的线段和角.23.【答案】解:(1)如下图,111A B C △即为所求;(2)如图,222A B C △即为所求,()()()222114234A B C −−−−−−,、,、,;(3)如图,333A B C △即为所求,()()()333112443A B C −−−,、,、,. 【解析】(1)利用平移的性质得出对应点的位置进而得出答案(2)利用关于原点对称点的性质得出对应点的位置进而得出答案(3)利用旋转的性质得出旋转后的点的坐标进而得出答案【考点】本题主要考查了二次函数平移旋转等图形变换的基本性质,掌握前后变换规律是解题关键 五、24.【答案】(1)证明:CAF BAE ∠=∠∵,BAC EAF ∠=∠∴.∵将线段AC 绕A 点旋转到AF 的位置,AC AF =∴.在ABC △与AEF △中,AB AE BAC EAF AC AF =⎧⎪∠=∠⎨⎪=⎩,()ABC AEF SAS ∴△≌△,EF BC =∴;(2)解:65AB AE ABC ︒=∠=∵,,18065250BAE ︒︒︒∠=−⨯=∴,50FAG BAE ︒∠=∠=∴.ABC AEF ∵△≌△,28F C ︒∠=∠=∴,502878FGC FAG F ︒︒︒∠=∠+∠=+=∴.【解析】(1)由旋转的性质可得AC AF =,利用SAS 证明ABC AEF △≌△,根据全等三角形的对应边相等即可得出EF BC =;(2)根据等腰三角形的性质以及三角形内角和定理求出18065250BAE ︒︒︒∠=−⨯=,那么50FAG ︒∠=.由ABC AEF △≌△,得出28F C ︒∠=∠=,再根据三角形外角的性质即可求出78FGC FAG F ︒∠=∠+∠=. 本题考查了旋转的性质,全等三角形的判定与性质,等腰三角形的性质,三角形内角和定理以及三角形外角的性质,证明△ABC ≌△AEF 是解题的关键.25.【答案】(1)ABC ∵△是等腰直角三角形,45A ACB ︒∠=∠=∴,ABP ∵△绕顶点B 沿顺时针方向旋转90°后得到CBQ △.ABP CBQ ∴△≌△,45A ACB BCQ ︒∠=∠=∠=∴,454590PCQ ACB BCQ ︒︒︒∠=∠+∠=+=∴;(2)在等腰直角三角形ABC 中,4AB =∵,AC =∴AP =∵PC AC AP =−=∴由(1)知,ABP CBQ △≌△,CQ AP ==∴由(1)知,90PCQ ︒∠=°,根据勾股定理得,PQ ===;(3)证明:由(1)知,ABP CBQ △≌△,ABP CBQ AP CQ PB BQ ∠=∠==∴,,90CBQ PBC ABP PBC ∠+∠∠+∠︒∴==,BPQ ∴△是等腰直角三角形,PCQ △是直角三角形,PQ =∴,AP CQ =∵,在PCQ Rt △中,根据勾股定理得,22222PQ PC CQ PA PC =+=+2222PB PA PC =+∴.【解析】(1)先由旋转得出ABP CBQ △≌△,即:45A ACB BCQ ︒∠=∠=∠=,即可得出结论;(2)先求出AC ,进而求出PC ,最后用勾股定理即可得出结论;(3)先判断出BPQ △是等腰直角三角形,PCQ △是直角三角形,最后用勾股定理即可得出结论.【考点】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判断和性质,等腰直角三角形的判定和性质,勾股定理,判断出PCQ △是直角三角形是解本题的关键.。

北师大版八年级数学下册第三章图形的平移与旋转单元复习试题(附答案).doc

北师大版八年级数学下册第三章图形的平移与旋转单元复习试题(附答案).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】第三章复习一、选择题(每小题3分,共30分)1、下列图形经过平移后恰好可以与原图形组合成一个长方形的是( ) A 、三角形 B 、正方形 C 、梯形 D 、都有可能2、在图形平移的过程中,下列说法中错误的是( )A 、图形上任意点移动的方向相同B 、图形上任意点移动的距离相同C 、图形上可能存在不动的点D 、图形上任意两点连线的长度不变 3、有关图形旋转的说法中错误的是( ) A 、图形上每一点到旋转中心的距离相等 B 、图形上每一点移动的角度相同 C 、图形上可能存在不动点D 4、如右图所示,观察图形,下列结论正确的是( ) A 、它是轴对称图形,但不是旋转对称图形; B 、它是轴对称图形,又是旋转对称图形; C 、它是旋转对称图形,但不是轴对称图形; D 、它既不是旋转对称图形,又不是轴对称图形。

5、下列图形中,既是轴对称图形,又是旋转对称图形的是( ) A 、等腰三角形 B 、平行四边形 C 、等边三角形 D 、三角形6、等边三角形的旋转中心是什么?旋转多少度能与原来的图形重合( ) A 、三条中线的交点,60° B 、三条高线的交点,120° C 、三条角平分线的交点,60° D 、三条中线的交点,180°7、如图1,△BOD 的位置经过怎样的运动和△AOC 重合( ) A 、翻折 B 、平移 C 、旋转90° D 、旋转180°8、钟表上12时15分钟时,时针与分针的夹角为( ) A 、90° B 、82.5° C 、67.5° D 、60° 二、填空题(每小题4分,共32分)9、经过平移, 和 平行且相等, 相等。

10、如图2,△ABC 中,∠ACB=90°,AB=13,AC=12,将△ABC 沿射线BC 的方向平移一段距离后得到△DCE ,那么CD= ;BD= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

命题人:陈仓园初级
中学 王五明
一、选择题(共30分) 1、若,则
的值是
( ) A .
B .
C .
D .
2.如果分式2||5
5x x x
-+的值为0,那么x
的值是( )
A .0
B .5
C .-5
D .±5 3.把分式
22x y
x y
+-中的x ,y 都扩大2倍,则分式的值( )
A .不变
B .扩大2倍
C .扩大4倍
D .缩小2倍 4.下列分式中,最简分式有( )
32222
22222
222
12,,,,312a x y m n m a ab b x x y m n m a ab b -++-++---- A .2个 B .3个 C .4
个 D .5个
5.分式方程2114339
x x x +=-+-的解
是( )
A .x=±2
B .x=2
C .x=-2
D .无解
6.若2x+y=0,则22
2
2x xy y xy x ++-的值为
( ) A .-
13
.5
5B - C .1
D .无法确定 7.关于x 的方程
233
x k
x x =+
--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为( )
A .3
B .0
C .±3
D .无法确定 8.使分式
2
2
4
x x +-等于0的x 值为( )
A .2
B .-2
C .±2
D .不存在
9.下列各式中正确的是( )
....a b a b a b
a b
A B a b a b a b a b
a b
a b
a b a b C D a b a b
a b b a
-++--==-
----++--+-+-==-+-+-
10、方程21011x x x
-+=--的解是
( )
A.2
B.0
C.1
D.3 二、填空题(共24分)
11、若分式||5
5y y
--的值等于0,则
y= .
12、在比例式9:5=4:3x 中,x= 。

13、1111
b a b a a b a b
++---g g
的值是 .
14、当 时,分式2
13x
--的为正数。

15、
11
11x x
+
+-= . 16、已知x+1
x
=3,则
x 2+21
x
= .
17、当a= 时,关于x
的方程23ax a x +-=5
4
的解是x=1.
18、一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是 . 三、解答题(共66分) 19、化简(12分)
(1)(1+11x -)÷(1-11x -)
(2)2
13
(2)22
x x x x x -÷-+-++
20、解方程(12分) (1)
105
2112x x +
--=2; (2)2233111
x x x x +-=-+-.
21、(8分)若
2
54
52310A B x x x x x -+=-+--,试求A 、B 的值.
22、(8分)如果
,31
1=-y
x 试求y
-2x y x 2y
-3x y -2x -的值。

23、(8分)若x 2+3x+1=0, 试求的
x 2+21
x 值。

24、(8分)一件工程甲单独做15天
可以完成,乙单独做12天可以完成,甲,乙,•丙三人合作4天可以完成,那么丙单独做,几天可
以完成?
25、(10分)某人骑摩托车从甲地出
发,去90km外的乙地执行任务,
出发1h后,发现按原来速度前进,就要迟到40min,于是立即将车速
增加一倍,因此提前20min到达,求摩托车的原来速度是多少?一、选择题
1、A
2、B
3、A4、C 5、B
6、B
7、A8、D9、C10、D
二、填空题
11、-512、
20
2713、
2()
a b
ab
+
14、x>
1
3
15、
2
2
1x
-
16、717、-
17
3
18、(
a a
m n
+)h
三、解答题
19、解:(1)原式=
11111
11122 x x x x x
x x x x x
-+---
÷==
-----
g

(2)原式=
22(1)(2)(2)3121
(2)(1)2211x x x x x x x x x x ---+++÷=-=-+-++--g
20、解:(1)x=7
4

(2)用(x+1)(x -1)同时乘以方程的两边得,
2(x+1)-3(x -1)=x+3. 解得 x=1. 经检验,x=1是增根.
所以原方程无解.
21、解:A=3,B=2. 22、解:由
311=-y
x 知.3x y x
-y =即x-y=-3xy.故
()()=----=----=---2x y 3x y 3x y
6x y 2x y y x 3x y y x 2y
2x y x 2y -3x y 2x 5
9
23、解:x 2+3x+1=0,两边除以x 得
x+x 1
=-3,故
x 2+21x =212
-⎪⎭

⎝⎛+x x =9-2=7
24、解:设丙单独做x 天可以完成,依题意列方程得 4(
115+112+1
x
)=1,解得x=10. 经检验,x=10是方程的根,也符合题意.
答:丙单独做10天可以完成. 25、解:设摩托车原来的速度是
xkm/h ,依题意可列方程
90409020
60260
x x x x ---=+
,解得x=30.
经检验,x=30是方程的根,也符合题意.
答:摩托车原来的速度是30km/h .。

相关文档
最新文档