小升初六年级奥数测试题及答案

合集下载

六年级小升初奥数题100例附答案(完整版)

六年级小升初奥数题100例附答案(完整版)

六年级小升初奥数题100例附答案(完整版)题目1:一个数的30%是15,这个数是多少?答案:15÷30% = 50题目2:比80 米多25%是多少米?答案:80×(1 + 25%) = 100 米题目3:某班男生人数是女生人数的4/5,女生比男生多5 人,男生有多少人?答案:设女生人数为x 人,则男生人数为4/5 x 人。

x - 4/5 x = 5 ,解得x = 25 ,男生人数为20 人。

题目4:一个圆的半径是4 厘米,它的面积是多少平方厘米?答案:3.14×4×4 = 50.24 平方厘米题目5:一件商品原价200 元,现打八折出售,现价是多少元?答案:200×80% = 160 元题目6:在一个比例中,两个外项互为倒数,其中一个内项是 2.5,另一个内项是多少?答案:两个外项互为倒数,积为1。

所以另一个内项为1÷2.5 = 0.4题目7:一项工程,甲单独做15 天完成,乙单独做20 天完成,甲乙合作几天完成?答案:1÷(1/15 + 1/20) = 60/7 天题目8:一个数除以8,商是12,余数是5,这个数是多少?答案:8×12 + 5 = 101题目9:有一堆煤,第一天用去1/3,第二天用去1/4,还剩下18 吨,这堆煤原有多少吨?答案:设这堆煤原有x 吨,x - 1/3 x - 1/4 x = 18 ,解得x = 43.2 吨题目10:一个长方体的棱长总和是48 厘米,长、宽、高的比是3:2:1,这个长方体的体积是多少?答案:48÷4 = 12 厘米,长为12×3/(3 + 2 + 1) = 6 厘米,宽为4 厘米,高为2 厘米,体积为6×4×2 = 48 立方厘米题目11:一个圆锥形沙堆,底面周长是18.84 米,高是 2 米,每立方米沙重 1.8 吨,这堆沙重多少吨?答案:底面半径为18.84÷3.14÷2 = 3 米,体积为1/3×3.14×3×3×2 = 18.84 立方米,重18.84×1.8 = 33.912 吨题目12:甲乙两车同时从A、B 两地相对开出,3 小时相遇,甲车每小时行50 千米,乙车每小时行40 千米,A、B 两地相距多少千米?答案:(50 + 40)×3 = 270 千米题目13:小明看一本120 页的书,第一天看了全书的1/4,第二天看了全书的1/3,第三天应从第几页看起?答案:第一天看了120×1/4 = 30 页,第二天看了120×1/3 = 40 页,前两天共看了70 页,第三天从第71 页看起。

小升初六年级数学奥数培优模拟试题及答案(5份)暑假寒假作业辅导

小升初六年级数学奥数培优模拟试题及答案(5份)暑假寒假作业辅导

小升初奥数培优模拟试题(一)一、填空题:3.一个两位数,其十位与个位上的数字交换以后,所得的两位数比原来小27,则满足条件的两位数共有______个.5.图中空白部分占正方形面积的______分之______.6.甲、乙两条船,在同一条河上相距210千米.若两船相向而行,则2小时相遇;若同向而行,则14小时甲赶上乙,则甲船的速度为______.7.将11至17这七个数字,填入图中的○内,使每条线上的三个数的和相等.8.甲、乙、丙三人,平均体重60千克,甲与乙的平均体重比丙的体重多3千克,甲比丙重3千克,则乙的体重为______千克.9.有一个数,除以3的余数是2,除以4的余数是1,则这个数除以12的余数是______.10.现有七枚硬币均正面(有面值的面)朝上排成一列,若每次翻动其中的六枚,能否经过若干次的翻动,使七枚硬币的反面朝上______(填能或不能).二、解答题:1.浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克,混合后所得到的酒精溶液的浓度是多少?2.数一数图中共有三角形多少个?3.一个四位数,它的第一个数字等于这个数中数字0的个数,第二个数字表示这个数中数字1的个数,第三个数字表示这个数中数字2的个数,第四个数字等于这个数中数字3的个数,求出这个四位数.小升初奥数培优模拟试题答案一、填空题:1.(1)3.(6个)设原两位数为10a+b,则交换个位与十位以后,新两位数为10b+a,两者之差为(10a+b)-(10b+a)=9(a-b)=27,即a-b=3,a、b为一位自然数,即96,85,74,63,52,41满足条件.4.(99)5.(二分之一)把原图中靠左边的半圆换成面积与它相等的右半部的半圆,得右图,图6.(60千米/时)两船相向而行,2小时相遇.两船速度和210÷2=105(千米/时);两船同向行,14小时甲赶上乙,所以甲船速-乙船速=210÷14=15(千米/时),由和差问题可得甲:(105+15)÷2=60(千米/时).乙:60-15=45(千米/时).7.11+12+13+14+15+16+17=98.若中心圈内的数用a表示,因三条线的总和中每个数字出现一次,只有a多用3两次,所以98+2a应是3的倍数,a=11,12,…,17代到98+2a中去试,得到a=11,14,17时,98+2a是3的倍数.(1)当a=11时98+2a=120,120÷3=40(2)当a=14时98+2a=126,126÷3=42(3)当a=17时98+2a=132,132÷3=44相应的解见上图.8.(61)甲、乙的平均体重比丙的体重多3千克,即甲与乙的体重比两个丙的体重多3×2=6(千克),已知甲比丙重3千克,得乙比丙多6-3=3千克.又丙的体重+差的平均=三人的平均体重,所以丙的体重=60-(3×2)÷3=58(千克),乙的体重=58+3=61(千克).9.(5)满足条件的最小整数是5,然后,累加3与4的最小公倍数,就得所有满足这个条件的整数,5,17,29,41,…,这一列数中的任何两个的差都是12的倍数,所以它们除以12的余数都相等即都等于5.10.(不能)若使七枚硬币全部反面朝上,七枚硬币被翻动的次数总和应为七个奇数之和,但是又由每次翻动七枚中的六枚硬币,所以无论经过多少次翻动,次数总和仍为若干个偶数之和,所以题目中的要求无法实现。

六年级小升初奥数专题100道!答案

六年级小升初奥数专题100道!答案

60、想:由已知条件知,5桶油共取出(15×5)千克。

由于剩下油的重量正好等于原来2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克。

解:15×5÷(5-2)=25(千克) 答:原来每桶油重25千克。

61、想:女工比男工少35人,男、女工各调出17人后,女工仍比男工少35人。

这时男工人数是女工人数的2倍,也就是说少的35人是女工人数的(2-1)倍。

这样就可求出现在女工多少人,然后再分别求出男、女工原来各多少人。

解:35÷(2-1)=35(人)女工原有:35+17=52(人) 男工原有:52+35=87(人)答:原有男工87人,女工52人。

62、想:由每小时行12千米,5小时到达可求出两地的路程,即返回时所行的路程。

由去时5小时到达和返回时多用1小时,可求出返回时所用时间。

解:12×5÷(5+1)=10(千米)答:返回时平均每小时行10千米。

63、想:由题意知,狗跑的时间正好是二人的相遇时间,又知狗的速度,这样就可求出狗跑了多少千米。

解:18÷(5+4)=2(小时) 8×2=16(千米)答:狗跑了16千米。

64、想:由条件知,(21+20+19)表示三种球总个数的2倍,由此可求出三种球的总个数,再根据题目中的条件就可以求出三种球各多少个。

解:总个数:(21+20+19)÷2=30(个) 白球:30-21=9(个) 红球:30-20=10(个) 黄球:30-19=11(个)答:白球有9个,红球有10个,黄球有11个。

65、想:根据题意,33米比18米长的米数正好是3根细钢管的长度,由此可求出一根细钢管的长度,然后求一根粗钢管的长度。

解:(33-18)÷(5-2)=5(米) 18-5×2=8(米)答:一根粗钢管长8米,一根细钢管长5米。

66、想:由题意知,实际10天比原计划10天多生产水泥(4.8×10)吨,而多生产的这些水泥按原计划还需用(12-10)天才能完成,也就是说原计划(12-10)天能生产水泥(4.8×10)吨。

六年级奥数难题小升初试卷

六年级奥数难题小升初试卷

1、一个长方形的长与宽的比为3:2,如果长减少4厘米,宽增加2厘米,则面积减少28平方厘米,原来长方形的面积为A、48平方厘米B、96平方厘米C、144平方厘米D、无法确定解析:设长方形的长为3x,宽为2x,根据题意,变化后的长方形面积为(3x-4)(2x+2),且比原面积3x2x少28平方厘米,即3x2x - (3x-4)(2x+2) = 28,展开并化简得6x² - (6x² - 4x + 6x - 8) = 28,进一步化简得-2x + 8 = 28,解得x = -10(舍去,因为长度不能为负)或x = 6。

所以原长方形的长为18厘米,宽为12厘米,面积为18*12 = 216平方厘米的四分之三,即144平方厘米。

故答案选C。

(答案:C)2、小明从家到学校,如果每分钟走60米,则要迟到5分钟;如果每分钟走90米,则要提前2分钟到达。

小明家到学校的距离是A、900米B、1080米C、1350米D、1620米解析:设小明家到学校的距离为s米,标准到达时间为t分钟,根据题意,60*(t+5) = s,90*(t-2) = s,联立两式,可得60t + 300 = 90t - 180,解得t = 16,代入任一方程得s = 13506/9 = 900 + 1803 = 1350米。

故答案选C。

(答案:C)3、一桶油,第一次取出总量的四分之一,第二次取出余下的三分之一,第三次取出余下的二分之一,桶中还剩8千克,桶中原有油A、32千克B、48千克C、64千克D、96千克解析:设桶中原有油x千克,第一次取出后剩x/43,第二次取出后剩(x/43)/32 = x/22/3 = x/32,第三次取出后剩(x/32)/2 = x/3,根据题意x/3 = 8,解得x = 243/22 = 482/2 = 641.5/1.5 = 64千克。

故答案选C。

(答案:C)4、甲、乙、丙、丁四人进行象棋比赛,每两人都要比赛一场,结果甲胜了3场,乙胜了1场,丙最多胜A、0场B、1场C、2场D、3场解析:四人进行单循环赛,总共比赛6场(C(4,2)=6),甲胜3场,则甲与乙、丙、丁中至少两人的比赛中获胜;乙胜1场,则乙只能在与丙、丁的比赛中获胜一场,因为甲已经胜了乙。

小升初奥数题及答案(全面)

小升初奥数题及答案(全面)

使用办法:题目后面有答案,但是要遮住答案完成,把题目完成在笔记本,自行核对,一天一题小学六年级奥数题及答案1。

某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A—2)/4-(A+22)=(A—90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A—2)/4,也即是78,参赛的总人数314+78=3922。

电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。

这时两人钱相等,求乙的存款答案取40%后,存款有9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)4。

由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%.再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1.5倍再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍增加了3-1.5=1。

六年级小升初50题奥数题

六年级小升初50题奥数题

小升初50道经典奥数题及详细解析1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克.一箱梨比一箱苹果多5千克,3箱梨重多少千克?3。

甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?4。

李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱?5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸.由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。

第一小组每小时走4.5千米,第二小组每小时行3。

5千米。

两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组.多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。

甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。

甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。

快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。

运后结算时,共付运费4400元。

托运中损坏了多少箱玻璃?12.五年级一中队和二中队要到距学校20千米的地方去春游。

小学六年级奥数题 小升初 及答案

小学六年级奥数题 小升初 及答案

小学六年级奥数题小升初及答案1、育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?答案:原来达标人数占总人数的3÷(3+5)=3/8现在达标人数占总人数的9/11÷(1+9/11)=9/20育才小学共有学生60÷(9/20-3/8)=800人答:育才小学共有学生800人。

2、甲乙两地相距420千米,其中一段路面铺了柏油,另一段是泥土路.一辆汽车从甲地驶到乙地用了8小时,已知在柏油路上行驶的速度是每小时60千米,而在泥土路上的行驶速度是每小时40千米.泥土路长多少千米?答案:泥土路用了x小时,柏油路用了(8-x)小时。

40x+(8-x)60=420X=3所以3×40=120(千米)答:泥土路长120千米。

3、学校田径组原来女生人数占1/3,后来又有6名女生参加进来,这样女生就占田径组总人数的4/9。

现在田径组有女生多少人?解:设原来田径队男女生一共x人1/3x+6= 4/9(x+6)x=3030×1/3+6=16答:女生16人。

4、学校购买840本图书分给高、中、低三个年级段,高年级段分的是低年级段的2倍,中年级段分的是低年级段的3倍少120本。

三个年级段各分得多少本图书?解:设低年级段分得x本书,则高年级段分得2x本,中年级段分得(3x-120)本x+2x+3x-120=840x=160高年级段为:160×2=320(本),中年级段为:160×3-120=360(本)答:低年级段分得图书160本,中年级段分得图书360本,高年级段分得图书320本。

5、小华有连环画本数是小明6倍,如果两人各再买2本,那么小华所有本数是小明4倍,两人原来各有连环画多少本?解:设小明原来有x本书4(x+2)=6x+2x=36×3=18 (本)答:小明有3本,小华有18本。

小升初数学奥数题120道附带完整答案

小升初数学奥数题120道附带完整答案

小升初数学奥数题120道附带完整答案1. 某数加上6,乘以6,减去6,除以6,其结果等于6,求这个数。

答案:1。

解题思路:从后向前来推算,“除以6,结果等于6”,则前一个数是6×6=36;“减去6 等于36”,则前一个数是36+6=42;“乘以6 等于42”,则前一个数是42÷6=7;“加上6 等于7”,所以这个数是7-6=1。

2. 两支蜡烛,第一支4 小时燃尽,第二支3 小时燃尽,如果同时点燃这两支蜡烛,问多长时间后第一支蜡烛的长度是第二支蜡烛的2 倍?答案:12/5 小时。

解题思路:把蜡烛的长度看作单位“1”,第一支蜡烛每小时燃烧1/4,第二支蜡烛每小时燃烧1/3,设x 小时后第一支蜡烛的长度是第二支蜡烛的 2 倍,可列出方程1-x/4=2×(1-x/3),解得x=12/5。

3. 一个最简分数,如果分子加1,分数值就等于1,如果分母加1,分数值就等于2/3,求原来这个分数。

答案:4/5。

解题思路:设分子为x,分母为y,根据条件可列方程组(x+1)/y=1,x/(y+1)=2/3,解方程组可得x=4,y=5,所以原来的分数是4/5。

4. 甲、乙两车分别从A、B 两地同时出发相向而行,它们的速度比是2:3,在途中相遇后,甲车速度提高20%,乙车速度不变,当乙车到达A 地时,甲车距B 地还有28 千米,求A、B 两地相距多少千米?答案:180 千米。

解题思路:相遇时甲乙所行路程比也是2:3,设全程为 5 份,相遇后乙行2 份到 A 地,甲行2×(1+20%)=2.4 份,那么3-2.4=0.6 份是28 千米,一份是28÷0.6=140/3 千米,全程5 份就是140/3×5=700/3=180 千米。

5. 有含盐8%的盐水40 千克,要配制成含盐20%的盐水,需加盐多少千克?答案:6 千克。

解题思路:原来盐水中盐的质量为40×8%=3.2 千克,设加盐x 千克,可列出方程(3.2+x)/(40+x)=20%,解得x=6。

六年级小升初奥数竞赛题100道及答案(完整版)

六年级小升初奥数竞赛题100道及答案(完整版)

六年级小升初奥数竞赛题100道及答案(完整版)题目1:甲、乙两车分别从A、B 两地同时出发,相向而行,甲车每小时行60 千米,乙车每小时行80 千米,经过 3 小时两车相遇。

A、B 两地相距多少千米?答案:(60 + 80)×3= 140×3= 420(千米)答:A、B 两地相距420 千米。

题目2:一个长方体的棱长总和是80 厘米,长、宽、高的比是5 : 3 : 2,这个长方体的体积是多少立方厘米?答案:80÷4 = 20(厘米)5 + 3 + 2 = 10长:20×5/10 = 10(厘米)宽:20×3/10 = 6(厘米)高:20×2/10 = 4(厘米)体积:10×6×4 = 240(立方厘米)答:这个长方体的体积是240 立方厘米。

题目3:在比例尺是1 : 5000000 的地图上,量得甲、乙两地的距离是8 厘米。

一辆汽车从甲地开往乙地,每小时行80 千米,几小时能到达乙地?答案:实际距离:8×5000000 = 40000000(厘米)= 400(千米)时间:400÷80 = 5(小时)答:5 小时能到达乙地。

题目4:一项工程,甲单独做10 天完成,乙单独做15 天完成。

甲乙合作,几天可以完成这项工程?答案:1÷(1/10 + 1/15)= 1÷(3/30 + 2/30)= 1÷5/30= 6(天)答:甲乙合作,6 天可以完成这项工程。

题目5:小明看一本120 页的故事书,第一天看了全书的1/4,第二天看了全书的1/3。

还剩下多少页没有看?答案:第一天看的页数:120×1/4 = 30(页)第二天看的页数:120×1/3 = 40(页)剩下的页数:120 - 30 - 40 = 50(页)答:还剩下50 页没有看。

题目6:一个圆形花坛的周长是31.4 米,这个花坛的半径是多少米?答案:31.4÷3.14÷2 = 5(米)答:这个花坛的半径是5 米。

六年级奥数题小升初方程单选题100道及答案解析

六年级奥数题小升初方程单选题100道及答案解析

六年级奥数题小升初方程单选题100道及答案解析1. 甲、乙两人共有120 元钱,如果甲给乙20 元,那么甲、乙两人的钱数相等,设甲原来有x 元,则可列方程为()A. x - 20 = 120 - x + 20B. x - 20 = 120 - x - 20C. x + 20 = 120 - x + 20D. x + 20 = 120 - x - 20答案:A解析:甲原来有x 元,那么乙原来有120 - x 元。

甲给乙20 元后,甲剩下x - 20 元,乙有120 - x + 20 元,此时两人钱数相等,所以x - 20 = 120 - x + 20。

2. 学校图书馆新买了一批图书,其中故事书的本数是科技书的3 倍,故事书比科技书多48 本,设科技书有x 本,则可列方程为()A. 3x - x = 48B. 3x + x = 48C. x - 3x = 48D. x + 3x = 48答案:A解析:设科技书有x 本,因为故事书的本数是科技书的 3 倍,所以故事书有3x 本。

故事书比科技书多48 本,即3x - x = 48。

3. 果园里有苹果树和梨树共360 棵,苹果树的棵数是梨树的3 倍,设梨树有x 棵,则可列方程为()A. 3x + x = 360B. 3x - x = 360C. x + 3x = 360D. x - 3x = 360答案:A解析:设梨树有x 棵,苹果树的棵数是梨树的3 倍,则苹果树有3x 棵,它们的总数是360 棵,所以3x + x = 360。

4. 小明买了5 本练习本和8 支铅笔,一共花了23 元,已知每本练习本2 元,设每支铅笔x 元,则可列方程为()A. 5×2 + 8x = 23B. 5×2 - 8x = 23C. 8x - 5×2 = 23D. 8x + 5×2 = 23答案:A解析:每本练习本2 元,5 本练习本花费5×2 元。

小升初奥数竞赛题100例附答案(完整版)

小升初奥数竞赛题100例附答案(完整版)

小升初奥数竞赛题100例附答案(完整版)1. 计算:2 + 4 + 6 + 8 + …+ 100解:这是一个等差数列求和,项数= (100 - 2)÷2 + 1 = 50和= (2 + 100)×50 ÷2 = 2550答:25502. 若a△b = a×b - a + b,计算5△3解:5△3 = 5×3 - 5 + 3 = 13答:133. 一本书,已看页数与未看页数之比是3 : 5,再看30 页,已看页数与未看页数之比是2 : 3,这本书共有多少页?解:30÷(2/5 - 3/8)= 1200(页)答:1200 页4. 甲、乙、丙三个数的比是5 : 3 : 4,甲数是20,乙数比丙数少多少?解:乙数:20÷5×3 = 12丙数:20÷5×4 = 16乙数比丙数少:16 - 12 = 4答:45. 一个圆柱的底面半径是4 厘米,高是6 厘米,它的侧面积是多少平方厘米?解:侧面积= 2×3.14×4×6 = 150.72(平方厘米)答:150.72 平方厘米6. 一项工程,甲队单独做10 天完成,乙队单独做15 天完成,两队合作几天能完成这项工程的一半?解:1/2÷(1/10 + 1/15)= 3(天)答:3 天7. 有浓度为30%的糖水200 克,要使浓度变为40%,需蒸发掉多少克水?解:糖的质量:200×30% = 60(克)后来糖水质量:60÷40% = 150(克)蒸发掉水:200 - 150 = 50(克)答:50 克8. 一圆形花坛周长36 米,每隔6 米种一棵月季花,在相邻两棵月季花之间种两棵菊花,一共种了多少棵花?解:月季花:36÷6 = 6(棵)菊花:6×2 = 12(棵)共种:6 + 12 = 18(棵)答:18 棵9. 鸡兔共有20 只,脚有56 只,鸡兔各有多少只?解:假设全是鸡,脚有20×2 = 40 只兔:(56 - 40)÷(4 - 2)= 8(只)鸡:20 - 8 = 12(只)答:鸡12 只,兔8 只10. 把一个棱长8 厘米的正方体木块削成一个最大的圆柱,圆柱的体积是多少?解:半径= 8÷2 = 4(厘米)体积= 3.14×4²×8 = 401.92(立方厘米)答:401.92 立方厘米11. 某商品进价100 元,按20%的利润定价,然后打九折出售,赚了多少钱?解:定价:100×(1 + 20%)= 120(元)售价:120×90% = 108(元)利润:108 - 100 = 8(元)答:8 元12. 甲乙两车分别从A、B 两地同时出发,相向而行,甲车每小时行70 千米,乙车每小时行80 千米,3 小时后两车相距60 千米,A、B 两地相距多少千米?解:(70 + 80)×3 + 60 = 450 + 60 = 510(千米)答:510 千米13. 小明读一本书,第一天读了全书的1/5,第二天读了28 页,这时读的页数与剩下页数的比是5 : 6,这本书有多少页?解:两天读了全书的5/(5 + 6)= 5/11全书页数:28÷(5/11 - 1/5)= 110(页)答:110 页14. 在200 克水中加入50 克盐,盐水的含盐率是多少?解:50÷(200 + 50)×100% = 20%答:20%15. 一个数的3/4 比它的40%多70,这个数是多少?解:70÷(3/4 - 40%)= 200答:20016. 修一条路,已修的和未修的长度比是3 : 5,如果再修12 千米,已修的和未修的长度比是9 : 11,这条路全长多少千米?解:原来已修的占全长的3/(3 + 5)= 3/8后来已修的占全长的9/(9 + 11)= 9/20全长:12÷(9/20 - 3/8)= 160(千米)答:160 千米17. 一个圆锥形麦堆,底面直径6 米,高1.2 米。

小升初数学常见奥数题100道附答案(完整版)

小升初数学常见奥数题100道附答案(完整版)

小升初数学常见奥数题100道附答案(完整版)1. 甲、乙两人同时从A、B 两地相向而行,甲每分钟走52 米,乙每分钟走48 米,两人走了10 分钟后交叉而过,又相距38 米,A、B 两地相距多少米?答案:962 米思路:两人10 分钟走的路程之和为(52 + 48)×10 = 1000 米,减去交叉而过相距的38 米,A、B 两地相距1000 - 38 = 962 米。

2. 一筐苹果,先拿出140 个,又拿出余下的60%,这时剩下的苹果正好是原来总数的1/6,这筐苹果原来有多少个?答案:240 个思路:设这筐苹果原来有x 个,(x - 140)×(1 - 60%) = 1/6x ,解得x = 240 。

3. 修一条路,第一天修了全长的1/5 多100 米,第二天修了余下的2/7 ,还剩500 米,这条路全长多少米?答案:1000 米思路:设全长为x 米,第一天修了1/5x + 100 米,余下x - (1/5x + 100) = 4/5x - 100 米,第二天修了2/7×(4/5x - 100) 米,可列方程4/5x - 100 - 2/7×(4/5x - 100) = 500 ,解得x = 1000 。

4. 某工厂三个车间共有180 人,第二车间人数是第一车间人数的3 倍多1 人,第三车间人数是第一车间人数的一半还少1 人,三个车间各有多少人?答案:第一车间40 人,第二车间121 人,第三车间19 人思路:设第一车间有x 人,则第二车间有3x + 1 人,第三车间有1/2x - 1 人,x + 3x + 1 + 1/2x - 1 = 180 ,解得x = 40 ,第二车间121 人,第三车间19 人。

5. 一个书架,上层书的本数是下层的4 倍,如果从上层拿60 本到下层,两层书的本数就相同,上层和下层原来各有多少本书?答案:上层160 本,下层40 本思路:设下层原来有x 本,则上层原来有4x 本,4x - 60 = x + 60 ,解得x = 40 ,上层160 本。

小升初常考的奥数题100道附答案(完整版)

小升初常考的奥数题100道附答案(完整版)

小升初常考的奥数题100道附答案(完整版)1. 有红、黄、白三种颜色的球,红球和黄球一共有21 个,黄球和白球一共有20 个,红球和白球一共有19 个。

三种球各有多少个?答案:三种球的总数:(21 + 20 + 19)÷2 = 30(个)白球:30 - 21 = 9(个)红球:30 - 20 = 10(个)黄球:30 - 19 = 11(个)2. 在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3 倍,那么差等于多少?答案:被减数= 减数+ 差被减数+ 减数+ 差= 120所以被减数= 60差:60÷(3 + 1) = 153. 某班学生去划船,如果增加一条船,那么每条船正好坐6 人;如果减少一条船,那么每条船就要坐9 人。

问:学生有多少人?答案:设原来有x 条船。

6(x + 1) = 9(x - 1)x = 5学生人数:6×(5 + 1) = 36(人)4. 老师把一些苹果分给小朋友。

如果每人分一个,还剩下8 个苹果;如果每人分2 个,那么还少2 个苹果。

一共有多少个小朋友?答案:设小朋友有x 个。

x + 8 = 2x - 2x = 105. 甲、乙两数的和是180,甲数的1/4 等于乙数的1/5,甲、乙两数各是多少?答案:甲:乙= 4 : 5甲:180×4/(4 + 5) = 80乙:180 - 80 = 1006. 一个长方形,如果长增加2 厘米,宽增加5 厘米,那么面积就增加60 平方厘米,这时恰好是一个正方形。

原来长方形的面积是多少平方厘米?答案:设正方形边长为x 厘米。

(x - 2)(x - 5) + 60 = x²x = 10原长方形长8 厘米,宽 5 厘米,面积40 平方厘米。

7. 一筐苹果分给甲、乙、丙三人,甲分得全部苹果的1/5 加5 个苹果,乙分得全部苹果的1/4 加7 个苹果,丙分得其余苹果的1/2,最后剩下的苹果正好等于一筐苹果的1/8。

六年级小升初奥数题目

六年级小升初奥数题目

六年级小升初奥数题目一、工程问题。

1. 一项工程,甲队单独做20天完成,乙队单独做30天完成。

现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天。

从开始到完成共用了16天。

问乙队休息了多少天?- 解析:- 甲队单独做20天完成,则甲队每天的工作效率为1÷20=(1)/(20);乙队单独做30天完成,则乙队每天的工作效率为1÷30=(1)/(30)。

- 甲队工作了16 - 3=13天,甲队完成的工作量为(1)/(20)×13=(13)/(20)。

- 那么乙队完成的工作量为1-(13)/(20)=(7)/(20)。

- 乙队完成这些工作量需要的时间为(7)/(20)÷(1)/(30)=(7)/(20)×30 = 10.5天。

- 所以乙队休息的天数为16 - 10.5 = 5.5天。

2. 有一个水池,单开甲管1小时可以将水池的水注满,单开乙管40分钟可以将水池的水注满,两管同时开10(2)/(5)分钟后,共注水4(1)/(3)吨,水池能装水多少吨?- 解析:- 1小时 = 60分钟,甲管1分钟注水1÷60=(1)/(60),乙管1分钟注水1÷40=(1)/(40)。

- 两管同时开10(2)/(5)分钟,即(52)/(5)分钟,它们注水的效率和为(1)/(60)+(1)/(40)=(2 + 3)/(120)=(5)/(120)=(1)/(24)。

- 那么(52)/(5)分钟的注水量占水池总量的(1)/(24)×(52)/(5)=(13)/(30)。

- 已知共注水4(1)/(3)吨,即(13)/(3)吨,设水池能装水x吨,则(13)/(30)x=(13)/(3),解得x = 10吨。

二、行程问题。

3. 甲、乙两车分别从A、B两地同时出发相向而行,6小时后相遇在C点。

如果甲车速度不变,乙车每小时多行5千米,且两车还从A、B两地同时出发相向而行,则相遇地点距C点12千米;如果乙车速度不变,甲车每小时多行5千米,且两车还从A、B两地同时出发相向而行,则相遇地点距C点16千米。

小升初六年级奥数题-20道题(中等难度)

小升初六年级奥数题-20道题(中等难度)

小升初六年级奥数题及答案20道题(中等难度)【题-001】抽屉原理有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

【题-002】牛吃草:(中等难度)一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?【题-003】奇偶性应用:(中等难度)桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。

【题-004】整除问题:(中等难度)用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少?【题-005】填数字:(中等难度)请在下图的每个空格内填入1至8中的一个数字,使每行、每列、每条对角线上8个数字都互不相同.【题-006】灌水问题:(中等难度)公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开小1时,恰好在打开某根进水管1小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用________小时.【题-007】浓度问题:(中等难度)瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的A、B两种酒精溶液,瓶中的浓度变成了14%.已知A种酒精溶液浓度是B种酒精溶液浓度的2倍,那么A种酒精溶液的浓度是百分之几?【题-008】水和牛奶:(中等难度)一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水,另一个钢桶里盛着牛奶,由于牛奶乳脂含量过高,必须用水稀释才能饮用.现在我把A桶里的液体倒入B桶,使其中液体的体积翻了一番,然后我又把B桶里的液体倒进A桶,使A桶内的液体体积翻番.最后,我又将A桶中的液体倒进B桶中,使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体,而在B桶中,水比牛奶多出1升.现在要问你们,开始时有多少水和牛奶,而在结束时,每个桶里又有多少水和牛奶?【题-009】巧算:(中等难度)计算:【题-010】队形:(中等难度)做少年广播体操时,某年级的学生站成一个实心方阵时(正方形队列)时,还多10人,如果站成一个每边多1人的实心方阵,则还缺少15人.问:原有多少人?【题-011】计算:(中等难度)一个自然数,如果它的奇数位上各数字之和与偶数位上各数字之和的差是11的倍数,那么这个自然数是11的倍数,例如1001,因为1+0=0+1,所以它是11的倍数;又如1234,因为4+2-(3+1)=2不是11的倍数,所以1234不是11的倍数.问:用0、1、2、3、4、5这6个数字排成不含重复数字的六位数,其中有几个是11的倍数?【题-012】分数:(中等难度)某学校的若干学生在一次数学考试中所得分数之和是8250分.第一、二、三名的成绩是88、85、80分,得分最低的是30分,得同样分的学生不超过3人,每个学生的分数都是自然数.问:至少有几个学生的得分不低于60分?某个四位数有如下特点:①这个数加1之后是15的倍数;②这个数减去3是38的倍数;③把这个数各数位上的数左右倒过来所得的数与原数之和能被10整除,求这个四位数.【题-014】行程:(中等难度)王强骑自行车上班,以均匀速度行驶.他观察来往的公共汽车,发现每隔12分钟有一辆汽车从后面超过他,每隔4分钟迎面开来一辆,如果所有汽车都以相同的匀速行驶,发车间隔时间也相同,那么调度员每隔几分钟发一辆车?【题-015】跑步:(中等难度)狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。

六年级下册小升初奥数综合测试卷(含解析)

六年级下册小升初奥数综合测试卷(含解析)

六年级下册小升初奥数综合测试卷(含解析)一、选择题(每题4分,共20分)1.一个长方体的表面积是33.66平方分米,其中一个面的长是2.3分米,宽是2.1分米,它的体积是()立方分米。

A. 8.4B. 9.66C. 10.08D. 11.342.一个五位数恰好等于它各位数字和的2007倍,则这个五位数是()。

A. 10035B. 20070C. 30105D. 401403.在一只口袋里装着2个红球,3个黄球和4个黑球。

从口袋中任取一个球,这个球是红球的概率是()。

A. 1/9B. 2/9C. 1/3D. 2/34.甲、乙两车分别从A、B两地出发相向而行,甲车先行三小时后乙车从B地出发,乙车出发5小时后两车还相距15千米。

甲车每小时行48千米,乙车每小时行50千米。

求A、B两地间相距多少千米?A. 360B. 400C. 420D. 4505.一个圆柱体的体积是50.24立方厘米,底面半径是2厘米。

将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米?A. 25.12B. 50.24C. 75.36D. 100.48二、填空题(每题5分,共20分)1.已知一个正方体的棱长是6厘米,则它的体积是________立方厘米。

2.一个盛有水的圆柱形容器底面内半径为5厘米,深20厘米,水深15厘米。

今将一个底面半径为2厘米,高为18厘米的铁圆柱垂直放入容器中。

求这时容器的水深是________厘米。

3.一个自然数与自身相乘的结果称为完全平方数。

已知一个完全平方数是四位数,且各位数字均小于7。

如果把组成它的数字都加上3,便得到另外一个完全平方数,求原来的四位数是________。

4.将自然数按从小到大的顺序排列成螺旋形,2处拐一个弯,在3处拐第二个弯,在5处拐第三个弯,问拐第20个弯的地方是________。

三、解答题(每题10分,共60分)1.一艘轮船顺流航行120千米,逆流航行80千米共用16时;顺流航行60千米,逆流航行120千米也用16时。

(奥数典型题)容斥原理--2024年六年级下册小升初数学思维拓展含答案

(奥数典型题)容斥原理--2024年六年级下册小升初数学思维拓展含答案

(奥数典型题)容斥原理--2024年六年级下册小升初数学思维拓展容斥原理【知识点归纳】在日常生活中,人们常常需要统计一些数量,在统计的过程中,往往会发现有些数量重复出现,为了使重复出现的部分不致被重复计算,人们研究出一种新的计数方法,既先不考虑重复的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排除出去,使计算的结果既无遗漏又无重复.这种计数方法称为包含排除法,也叫做容斥原理或重叠问题.一般方法:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.容斥原理1:两量重叠问题A类与B类元素个数的总和=A类元素的个数+B类元素个数﹣既是A类又是B类的元素个数用符号可表示成:A∪B=A+B﹣A∩B(其中符号“∪”读作“并”,相当于中文“和”或者“或”的意思,符号“∩”读作“交”,相当于中文“且”的意思).容斥原理2:三量重叠问题A类、B类与C类元素个数的总和=A类元素的个数+B类元素个数+C类元素个数﹣既是A类又是B类的元素个数﹣既是B类又是C类的元素个数﹣既是A类又是C类的元素个数+同时是A类、B类、C类的元素个数.用符号表示为:A∪B∪C=A+B+C﹣A∩B﹣B∩C﹣A∩C+A∩B∩C1.三年级共有80名同学参加书法兴趣小组和美术兴趣小组,其中参加书法组的有52人,参加美术组的有48人.那么,既参加书法组又参加美术组的有多少人?2.我们班参入调查了饭后吃水果情况:30人喜欢吃苹果,27人喜欢吃梨,10人两种都喜欢,问我们班有多少人?3.同学们收集图片.张明、李红、蔡正明、王丹、熊威、高伟、梅芳7个人收集了名山图片,吴凤、李红、王丹、戴月红、高伟这5人收集了河流图片,吴心怡、张冬、李可这3人收集了奥运图片.(1)收集名山图片和奥运图片的共有多少人?(2)收集名山图片和河流图片的共有多少人?4.在校运动会上,共有30人参加跳远和跳高。

参加跳远的有18人,参加跳高的有22人,既参加跳远又参加跳高的有多少人?5.三(1)班有48人,其中订《少年报》的有32人,订《数学报》的有38人,有25人两份报都订。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初六年级奥数测试题及答案
整理者:申冬慧
答案
一、计算:(每小题4分,共20分)
1、 155/4 都化成分数,乘法进行计算
2、 32/125
3、 7/15 4/9和1/45,11/120和3/8,5/21和8/35
4、 11/16
5、 18 分子分母分别同时计算
二、填空题(每题6分,共60分)
1、5.6小时
2、176
3、41人
4、15公里
5、43.0
6. 2.4小时达到要求,故应该在7点36分点燃
7、30%
8、设现在为10点X分
300+(x-3)*0.5-180=(x+6)*6
x=15
10点15
9、40%
10、111
三、填空题
11、100
12、552和115
13、(503)7,(305)9 248
14、56
15、151/7
答案:
1.找规律填数:2、3、5、8、13、()、()、()、()、144
解答:从第三个数开始,每个数都是前面两个数的和。

填21、34、55、89。

2.找规律填数:1、2、3、6、11、()、()、()、125
解答:从第四个数开始,每个数都是前面三个数的和。

填20、37、68。

3.观察分析排列规律,然后填空:
(1)2,4,8,16,( ),( )
(2)4,5,7,11,19,( ),( )
(3)0,1,1,2,3,5,( ),( )
(4)10,20,21,42,43,( ),( ),174,175
解答:(1)2,4,8,16,32,64
(2)4,5,7,11,19,35,67
(3)0,1,1,2,3,5,8,13
(4)10,20,21,42,43,86,87,174,175
4.甲乙两堆货物一共160件,甲堆比乙堆的3倍还多40件,甲乙两堆各有多少件?
解答:乙:(160-40)÷(1+3)=30件
甲:160-30=130件
5.小燕上学时骑车,回家时步行,路上共用50分钟。

如果往返都步行,则全程需要70分钟。

求小燕往返都骑车所需的时间?
解答:步行走单程为70÷2=35分,
骑车为50-35=15分,往返骑车用15×2=30分。

6.顺天府学和电视机厂之间有一条公路,原计划下午2点时学校派车去电视机厂接劳模来校作报告,往返需1小时。

实际上这位劳模在下午1点便提前离厂步行向学校走来,途中遇到接他的汽车,劳模便立刻上车去往学校,并在下午2点40分到达。

问:汽车行驶速度是劳模步行速度的几倍?
解答:由题可知计划遇到劳模的时间为2:30,实际遇到时间为2:20分,汽车少走了一段路程,少用了10分钟,而劳模用了60+20=80分钟,汽车速度是步行速度的80÷10=8倍。

7.在0.2和0.5之间有九个分数,若任意相邻两个分数之差都相同。

这十一个分数之和是多少?
解答:根据等差数列求和公式(0.2+0.5)×11÷2=3.85
8.正六边形的内部有2009个点,以正六边形的6个顶点和内部的2009个点为顶点,将它剪成一些三角形。

最多可以剪成多少个?
解答:在六边形内放入第一个点可将其剪为6个三角形,以后每放入一个点则增加两个三角形,所以共可剪成6+2×(2009-1)=4022个三角形。

9.一个口袋分别装有红、黄、黑球4、7、8个,为使取出的球中有6个同色,则至少要取小球多少个?
解答:从最不利的情况考虑,前四次都取出红球,只有4个同色;之后又将黄球、黑球各取出5个。

那么再任取1个球,都会有6个同色。

所以至少取:4+5+5+1=15个。

10.是否能将1至16这16个自然数排成一排,使得任意相邻两个数的和都等于自然数的平方,如果能,请写出排法,如果不能,请说明理由。

解答:1至16中任意两个数之和不大于31,平方数可能为4,9,16,25。

16只与9相加得到平方数,8只有与1相加得到平方数,因此16和8一定在最左端和最右端。

然后依次考虑,即可得到:16,9,7,2,14,11,5,4,12,13,3,6,10,15,1,8。

2012备战小升初之奥数试题及答案19
答案:
1.找规律填数:1、2、4、8、()、()、64
解答:每个数都是前面的2倍。

填16、32。

2.找规律填数:96、48、24、()、()、3
解答:每个数都是前面的一半。

填12、6。

3.甲、乙、丙、丁、戊五名同学站成一排,已知丙在戊右边2米处,丁在甲右3米处,丙在丁右边6米处,戊在乙左边3米处,请问最左边和最右边的同学相距多少米?
解答:如图
最左边与最右边两边相距10米
4.如图:王叔叔早晨8:00开车去上海办事,车子每小时行100km,在苏州要停留1小时40分钟,叔叔最早在几点到达上海?
解答:路上所用时间:(220+80)÷100=3(时),3小时+1小时40分=4小时40分
8时00分+4小时40分=12时40分
5.甲、乙、丙、丁四名同学同在一间教室里。

他们当中一个人在做数学题,一个人在念英语,一个人在看小说,一个人在写信。

已知:
(1)甲不在念英语,也不在看小说;
(2)如果甲不在做数学题,那么丁不在念英语;
(3)有人说乙在做数学题,或在念英语,但事实并非如此;
(4)丙既不是在看小说,也不在念英语。

请问:在写信的是谁?
解答:如表
写信的是丙
6.小悦、冬冬、阿奇去参加一次奥运活动。

他们三人分别戴着三种不同颜色的帽子,穿着三种不同颜色的衣服。

已知:
(1)帽子和衣服颜色都只有红、黄、蓝三种;
(2)小悦没戴红帽子,冬冬没戴黄帽子;
(3)戴红帽子的那个没有穿蓝衣服;
(4)带黄帽子的那个人穿着红衣服;
(5)冬冬没有穿黄衣服。

请问:小悦、冬冬、阿奇各戴什么颜色的帽子,穿什么颜色的衣服?
解答:如表
小悦:黄帽子,红衣服
冬冬:蓝帽子,蓝衣服
阿奇:红帽子,黄衣服
7.(23074)9=( )3
解答:因为3的平方是9,所以可如下转化:4=(11)37=(21)30=(00)33=(10)32=(2)3
将以上结果中的数由右向左依次排列可得(210002111)3。

8.两个三位数的和是999,且组成这两个三位数的6个数码各不相同,这样的两个三位数共有多少组?
解答:由题意可知,两个三位数的个位数字之和、十位数字之和、百位数字之和都是9,所以两个三位数只要确定其中一个另一个也随之确定。

而和为9的数对共有5组,(0与9、1
与8、2与7、3与6、4与5)根据乘法原理,其中一个加数有8×8×6=384种情况,所以这样的两个三位数共有384÷2=192组。

9.n!能被990整除,那么n的最小值是多少?
解答:990=2×3×3×5×11,n!能被990整除,则n!能被2、3、5、11整除,11!=11×10×9×…×2×1,n的最小值为11。

10.在法庭上作为物证出示了14枚珍珠。

证人知道其中的第1至7颗珍珠是真的,第8至1 4颗珍珠是假的。

但是法官只知道真珍珠的重量都一样,假珍珠的重量也一样,而且假的比真的轻。

问:证人如何通过用没有砝码的天平称三次,向法官证明前7颗珍珠是真的,后7颗珍珠是假的?
解答:(1)取1和8,分放两边,可知8为假,1为真。

(2)取1、9、10放左,8、2、3放右,可知1、2、3为真,8、9、10为假。

(3)取1、2、3、11、12、13、14放左,8、9、10、4、5、6、7放右,即可。

2012备战小升初之奥数试题及答案18。

相关文档
最新文档