尺寸链计算
尺寸链计算和公差叠加
尺寸链计算和公差叠加尺寸链计算和公差叠加是机械工程学中常用的一种计算方法,它以度量尺寸计算构造元件和机械设备的相对位置为基础,可以明确指定每个元件和机械系统的定位要求,从而满足设计性能计算要求。
尺寸链计算可以分为直接尺寸链计算法和公差叠加法两种形式。
本文针对这两种方法进行深入分析,分别介绍其原理、特点、应用场景以及计算步骤。
一、尺寸链计算法尺寸链计算法是用于定义机械设备空间布局的一种工具,它采用位置坐标系统来定义各种机械元件的相对位置。
它的原理是在构造的三维空间中,用空间坐标表示机械元件的坐标位置,然后通过一系列计算步骤,根据不同元件之间的相对尺寸计算出其他元件坐标位置。
它的计算特点是:计算结果准确,不受尺寸变化的影响,可以有效地计算出构件的空间布局,简化设计过程,降低设计的复杂程度。
在机械设计中,尺寸链计算法可以实现从草图到实物的直接构造,从而更加方便、快捷地进行机械空间布局设计。
二、公差叠加公差叠加法是另一种常用的计算尺寸构造元件位置的方法,主要用于计算机械系统中多个元件或构件间联合运动和固定位置之间的精密位置关系。
它的原理是根据尺寸度量结果,利用公差叠加法计算出实际尺寸度量值,从而确定每个构件的定位位置。
公差叠加的计算步骤也比较简单,可以根据公差值进行循环叠加,以计算出机械设备的定位位置。
不同于尺寸链计算法的计算结果准确,公差叠加法可以根据实际公差值调节各元件的精度。
三、尺寸链计算和公差叠加比较尺寸链计算法和公差叠加法都是机械设计中常用的一种计算方法,它们都可以实现机械设备空间布局的计算,从而满足设计性能计算要求。
但是,二者也存在一定的区别。
首先,它们的原理不同:尺寸链计算法是利用三维坐标下的相对尺寸,根据计算公式计算出其他元件的坐标位置;而公差叠加法是根据尺寸度量和公差叠加参数,计算出构件的定位位置。
其次,它们的计算结果也不同:尺寸链计算法的计算结果准确,不受尺寸变化的影响;而公差叠加法可以根据实际公差值调节各元件的精度。
公差尺寸链计算公式
公差尺寸链计算公式公差尺寸链公差尺寸链是指由一系列零件组成的装配体系中,各零件之间的公差关系。
在机械设计和生产过程中,正确的计算和控制公差尺寸链是确保装配质量的重要因素。
下面列举一些相关的计算公式,并给出解释和例子。
1. 最大材料条件与最小材料条件最大材料条件(MMC)是指零件或特征的最大尺寸,而最小材料条件(LMC)是指零件或特征的最小尺寸。
根据这两个条件,在公差尺寸链的计算中,我们可以得到以下两个公式:•最大材料条件下公差尺寸:T = MMC - 低限制公差•最小材料条件下公差尺寸:T = LMC - 高限制公差以螺纹为例,最大材料条件下,螺纹轴的最大尺寸为25 mm,低限制公差为- mm,那么螺纹轴的最大材料条件下公差尺寸为 mm(25 + (-))。
2. 链公差法则在公差尺寸链的计算中,使用链公差法则可以将公差传递从装配体到各个零件,下面是链公差法则的一般形式:T(a, b) = T(a) + T(b) + |∑L|其中,T(a, b)是装配体尺寸的公差,T(a)和T(b)分别是零件a和b的公差,∑L是两个零件直接的公差和(所有相邻公差的代数和),也称为“累加和”。
以一个简单的装配体为例,该装配体由两个零件a和b组成,零件a的公差为 mm,零件b的公差为 mm。
两个零件的直接公差和为 mm。
根据链公差法则,装配体的公差尺寸为:T(a, b) = + + || = mm3. 频率分布法则在公差尺寸链的计算中,使用频率分布法则可以根据具体的公差分布情况,计算出装配体尺寸的公差。
以下是频率分布法则的一般形式:T = ΔD × K其中,ΔD是公差限制域(公差分布范围的一半),K是概率累积函数曲线的系数。
以一个简单的零件为例,假设公差限制域为 mm,概率累积函数曲线的系数为。
那么该零件的公差尺寸为:T = × = mm总结•最大材料条件与最小材料条件可用于计算公差尺寸。
•链公差法则可用于将公差传递到装配体。
尺寸链计算
(三)加工余量的确定——计算法、查表法和经验估计法 四、工序尺寸及其公差的确定零件图上所标注的尺寸公差是零件加工最终所要求达到的尺寸要求,工艺过程中许多中间工序的尺寸公差,必须在设计工艺过程中予以确定。
工序尺寸及其公差一般都是通过解算工艺尺寸链确定的,为掌握工艺尺寸链计算规律,这里先介绍尺寸链的概念及尺寸链计算方法,然后再就工序尺寸及其公差的确定方法进行论述。
(一)尺寸链及尺寸链计算公式1.尺寸链的定义在工件加工和机器装配过程中,由相互连接的尺寸形成的封闭尺寸组,称为尺寸链。
图示工件如先以A 面定位加工C 面,得尺寸A1然后再以A 面定位用调整法加工台阶面B ,得尺寸A2,要求保证B 面与C 面间尺寸A0;A1、A2和A0这三个尺寸构成了一个封闭尺寸组,就成了一个尺寸链。
组成尺寸链的每一个尺寸,称为尺寸链的环。
尺寸链中凡属间接得到的尺寸称为封闭环,在图b 所示尺寸链中,A0是间接得到的尺寸,它就是图b 所示尺寸链的封闭环。
尺寸链中凡属通过加工直接得到的尺寸称为组成环,尺寸链中A1与A2都是通过加工直接得到的尺寸,A1、A2都是尺寸链的组成环。
组成环按其对封闭环的影响又可分为增环和减环。
当其它组成环的大小不变,若封闭环随着某组成环的增大而增大,则此组成环就称为增环;若封闭环随着某组成环的增大而减小,则此组成环就称为减环;在图b 所示尺寸链中,A1是增环,A2是减环。
尺寸链示例 2.尺寸链的分类按尺寸链在空间分布的位置关系,可分为直线尺寸链、平面尺寸链和空间尺寸链。
3.尺寸链的计算尺寸链计算有正计算、反计算和中间计算等三种类型。
已知组成环求封闭环的计算方式称作正计算;已知封闭环求各组成环称作反计算;已知封闭环及部分组成环,求其余的一个或几个组成环,称为中间计算。
尺寸链计算有极值法与统计法两种。
用极值法解尺寸链是从尺寸链各环均处于极值条件来求解封闭环尺寸与组成环尺寸之间关系的。
用统计法解尺寸链则是运用概率论理论来求解封闭环尺寸与组成环尺寸之间关系的。
写出尺寸链计算的四个公式
尺寸链(dimension chain)计算是在工程和制造领域中常用的方法,用于计算物体的尺寸或特征之间的关系。
以下是尺寸链计算中常用的四个公式:
1.长度链:长度链用于计算物体的长度或距离之间的关系。
常见的长度链公式如下:
L = L₁ + L₂ + L₃ + … + Ln
其中,L 表示总长度或距离,L₁、L₂、L₃等表示各个部分的长度或距离。
2.半径链:半径链用于计算物体的半径或直径之间的关系。
常见的半径链公式如下:
R = R₁ + R₂ + R₃ + … + Rn
或
D = 2R = 2(R₁ + R₂ + R₃ + … + Rn)
其中,R 表示总半径或直径,R₁、R₂、R₃等表示各个部分的半径或直径。
3.弧长链:弧长链用于计算物体的弧长之间的关系。
通常以角度来度量弧长,常见的弧长链公式如下:
S = S₁ + S₂ + S₃ + … + Sn
其中,S 表示总弧长,S₁、S₂、S₃等表示各个部分的弧长。
4.面积链:面积链用于计算物体的面积之间的关系。
常见的面积链公式如下:
A = A₁ + A₂ + A₃ + … + An
其中,A 表示总面积,A₁、A₂、A₃等表示各个部分的面积。
这些公式表示了尺寸链计算中常见的关系,可用于计算和预测物体的尺寸或特征。
在实际应用中,具体的公式和计算方式可能会根据实际情况和所涉及的几何形状而有所变化。
尺寸链公差计算
一.尺寸链公差计算
“公差的计算公式:尺寸公差δ=最大极限尺寸D(d)max-最小极限尺寸
D(d)min=ES(es)-EI(ei)。
公差就是零件尺寸允许的变动范围,合理分配零件的公差,优化产品设计,可以以最小的成本和最高的质量制造产品。
公差的计算方法:1、极值法这种方法是在考虑零件尺寸最不利的情况下,通过尺寸链中尺寸的最大值或最小值来计算目标尺寸的值。
2、均方根法这种方法是一种统计分析法,其实就是把尺寸链中的各个尺寸公差的平方之和再开根而得到目标尺寸的值。
尺寸链(dimensional chain ),是分析和技术工序尺寸的有效工具,在制订机械加工工艺过程和保证装配精度中都起着很重要的作用。
在零件加工或机器装配过程中,由互相联系的尺寸按一定顺序首尾相接排列而成的封闭尺寸组。
组成尺寸链的各个尺寸称为尺寸链的环。
其中,在装配或加工过程最终被间接保证精度的尺寸称为封闭环,其余尺寸称为组成环。
组成环可根据其对封闭环的影响性质分为增环和减环。
若其他尺寸不变,那些本身增大而封闭环也增大的尺寸称为增环,那些本身增大而封闭环减小的尺寸则称为减环。
尺寸链计算方法及案例详解 计算机辅助公差设计
尺寸链计算方法及案例详解计算机辅助公差设计尺寸链计算方法及案例详解计算机辅助公差设计尺寸链计算方法是机械设计中常用的计算方法,主要用于确定不同元件之间的公差分配关系,在产品设计和制造过程中发挥着重要作用。
为了提高设计和制造的精度、降低成本、提高效率,很多企业采用了计算机辅助公差设计技术。
本篇文章将针对这些问题进行详细阐述。
一、尺寸链计算方法尺寸链可以理解为一个工程系统中的一串元件的尺寸关系,每个元件都是根据之前的元件尺寸来设计其自身尺寸的。
尺寸链计算方法是通过确定元件之间的公差分配关系来实现设计要求的。
实际运用中,常采用公差收缩法、最大公差法、最小公差法或偏心法等不同的计算方法,因此本部分主要介绍一下这四种尺寸链计算方法。
1. 公差收缩法公差收缩法是常用的分配公差的方法,它先以公差大小确定一个公差限制带,然后根据收缩值的大小来确定每个元件尺寸的公差限制范围。
在实际设计中,可以按照公差大的原则,从高到低分别对各个元件进行公差的分配。
但也要避免公差分配重叠或者过于偏向某一元件的情况。
2. 最大公差法最大公差法是以平均尺寸与公差的最大值作为分配依据,即为最大公差。
通过这种方法,可以提高工件装配精度,防止装配磕碰,同时还可以控制各个元件尺寸的精度。
3. 最小公差法最小公差法是以平均尺寸与公差的最小值作为分配依据,即为最小公差。
通过这种方法,可以降低整个元件的公差,提高产品的生产效率,但是也应注意每个元件的公差不应小于其自身制造能力所允许的误差范围。
4. 偏心法偏心法是根据工件装配误差机理,确定出工作表面的偏心量,然后再根据此量来分配元件的公差。
通过这种方法,可以更好地防止工件装配误差的产生,但也可能因此过多地增加生产成本。
二、计算机辅助公差设计计算机辅助公差设计是一种利用计算机辅助软件对工程系统实现公差设计的技术。
这种技术可以减少手工计算中繁琐的过程,提高计算速度和准确性,同时还可以进行三维模型的构建和虚拟装配的仿真分析。
尺寸链计算
1、尺寸链的概念
尺寸链:在机械加工或装配过程中,由相互关联的尺寸形成封闭尺寸组,这样的尺寸组就成为尺寸链。
尺寸链包括封闭环、增环及减环,一个尺寸链中只有一个封闭环。
封闭环:在机械加工或装配过程中,最后形成(间接获得)的尺寸,成为封闭环。
增环:在其他组成环不变的情况下,当某一组成环的尺寸增大时,封闭环也随之增大,则这一组成环成为增环。
减环:在其他组成环不变的情况下,当某一组成环的尺寸增大时,封闭环随之减小,则这一组成环成为减环。
2、增环、减环的判定技巧
由尺寸链任一环的基面出发,绕其轮廓线顺时针或逆时针旋转一周,回到这个基面,按旋转方向给每一环标上箭头,与封闭环箭头方向相反的为增环,反之,为减环。
增环:A1、A2、A3、A5
减环:A4、A6
3、尺寸链的计算方法
封闭环基本尺寸=所有增环基本尺寸之和-所有减环基本尺寸之和
封闭环最大极限尺寸=所有增环最大极限尺寸之和-所有减环最小极限尺寸之和
封闭环最小极限尺寸=所有增环最小极限尺寸之和-所有减环最大极限尺寸之和。
尺寸链的计算方法-PPT
从上面得假设中我们可以瞧到: 封闭环得大小与增环、减环有关。当增环最
大,减环最小时,封闭环最大;当增环最小,减环最大 时,封闭环最小,所以有以下计算关系:
封闭环基本尺寸=增环基本尺寸—减环基本尺寸
封闭环最大 = 增环最大 — 减环最小
封闭环最小 = 增环最小 — 减环最大
结
论
大家应该也有点累了,稍作休息 大家有疑问的,可以询
12
例题
解:
检验:封闭环公差就是否等于各组成环公差之与 0、2 — 0、02 = 0、14+0、03+0、01
尺寸链解题步骤
1、根据题意绘制出尺寸链简图; 2、正确判断封闭环,再根据尺寸链简图判
断增环、减环; 3、列式计算; 4、结论; 5、验算。(可在草稿上进行验算)
我们可以瞧出,各个组成环公差较 小,但通过误差得积累,封闭环得公差 却比较大。
在尺寸链中如某一尺寸就是:最后形成、 间接获得、自然形成、没有直接 测量,那这个尺寸就就是封闭环,一个尺
寸链中只有一个封闭环。
返回
增环、减环得概念就是什么?增与减环统称组成环。怎么确定?
增环:在其她组成环不变得情况下,当某一组成环得 尺寸增大时,封闭环也随之增大,则该组成
环就称为增环,用 A1 、 B1 等表示。
减环:在其她组成环不变得情况下,当某一组成环得 尺寸增大时,封闭环也随之减小,则该组成
环就称为减环,用 A2、B2 等表示。
怎么确定增环、减环?
在尺寸中简图中,由尺寸链任一环得基面出发,
绕其轮廓线顺时针(或逆时针)方向旋转一周,回
到这个基面。按旋转方向给每一个环标上箭头,
凡就是与封闭环肩头相反得为增环,反之为减环。
如下图中,我们根据前面对封闭环、增环、 减环得判断,我们可以知道40尺寸为间接得到 所以为封闭环我们记着A0,由此可知70尺寸为 增环我们记着 A1 ,30尺寸为减环我们记着 A2 。
尺寸链计算方法
2、按几何特征及空间位置分类
1) 长度尺寸链—全部环为长度的尺寸链 2) 角度尺寸链—全部环为角度的尺寸链 3)直线尺寸链—— 全部组成环平行于封闭 环的尺寸链。 4)平面尺寸链—— 全部组成环位于一个或 几个平行平面内,但某些组成环不平行于 封闭环的尺寸链。 5) 空间尺寸链——组成环位于几个不平行 平面内的尺寸链。
假定各环尺寸按正态分布,且其分布中心与公差带中心重合。
(1) 各环公差之间的关系
(2) 各 环 平 均 尺 寸 之 间 的 关 系
(3)各环平均偏差之间的关系
n1
ቤተ መጻሕፍቲ ባይዱ
T ( A0) T 2 ( Ai)
i 1
m
n 1
A0 Ai Ai
i 1
i m 1
m
n 1
A0 Ai Ai
i 1
i m1
m
n 1
n 1
T(A ) 0
T
i 1
(A) i
T
i m1
(A) i
T
(
A i
)
i 1
极值法解算尺寸链的特点是: 简便、可靠,但当封闭环公差较小,组成环数目较多 时,分摊到各组成环的公差可能过小,从而造成加工困 难,制造成本增加,在此情况小,常采用概率法进行尺 寸链的计算。
2. 概率法特点:以概率论理论为基础,计算科学、复杂, 经济效果好,用于环数较多的大批大量生产中。
2)查找组成环,建立尺寸链
3)计算尺寸及偏差
10.4-0.2
求得 A0=15-0.4+0.5 4)解决办法:
( 超差)
10-0.3
•改变工艺过程,如将钻孔改在工序40之后;
•提高加工精度,缩小组成环公差。
8.2尺寸链的计算
n
m
j
EI0 EIz 4、公差:
ES
j
T0 Ti
i 1
m
上一页
下一页
后
退
退
出
极值法解中间计算问题(例8.1)
图8.4所示,先加工平面 M、N,保证M-N零件厚 度60-00.10mm,现以M面 定位调整加工平面P,问 P-M距离为多少,才能保 证加工后P-N的设计尺寸 为25+00.25mm。
A0=A1/2+A3-A2/2=35+0-30=5mm ES0=ES1+ES3-EI2=-0.02+0.01-0=-0.01mm EI0=EI1+EI3-ES2=(-0.04)+(-0.01)-0.03
=-0.08mm
0.01 0 壁厚: A0 5 或 mm A 4.99 0.08 0 0.07 mm
考虑尺寸大小、加工难易,调整公差:
TA1=0.35mm TA2=0.25mm TA3=TA5=0.048mm 选定A4为“协调环” TA4=TA0-(TA1+TA2+TA3+TA5)=0.054mm
上一页 下一页 后 退 退 出
③ 确定所有组成环的上、下偏差
上一页
下一页
后
退
退
出
④ 校验计算结果 由已知条件可求得 T0=A0max-A0min=1.75-1=0.75mm 由计算结果 T0=TA1+TA2+TA3+TA4+TA5=0.75mm 最后结果:
A3=A5=5mm
A4=140mm
求各尺寸的极限偏差。
上一页 下一页 后 退 退 出
互换性与技术测量 8.2尺寸链的计算
=-0.08mm
壁厚: A0 50..01 mm 或 A0 4.9900.07 mm 0 08
极值法解反计算问题
已知条件: 封闭环所有信息、各组成环公称 尺寸; 待 求 量: 各组成环的公差、极限偏差; 公差值的分配方法: 相等公差值法; 相等公差等级法; 极限偏差的确定方法:————向体内原则。
m
j
4、极限偏差的计算公式
T0 T0 ES0 0 ,EI0 0 2 2 Ti Ti ESi i ,EIi i 2 2
三、分组互换法
先将组成环按极值法或概率法求出公差值, 扩大若干倍,使组成环加工容易和经济, 然后分组,根据大配大、小配小的原则, 按对应组进行装配。 分组数与公差扩大倍数相等。 但测量工作麻烦,用于大量生产中精度要 求高、环数少、形状简单的零件。
0 0.0025
mm
+ 0 φ28
轴
ห้องสมุดไป่ตู้
-0.0025
-0.0050
孔 -0.0075
0.0050 0.0075
mm
分组互换
将活塞销和销孔的公差放大四倍,即 活塞销:
0 0.010
+ 0 TS φ28
28
mm
活塞孔:
0.005 0.015
28
mm
轴
Th
-0.0025 -0.0050 -0.0075 -0.0100
A0min Azmin z 1
j n 1
A
jmax
极值法计算公式
3、极限偏差: ES0
ES - EI
z 1 n z j n 1 m z 1 j n 1
尺寸链的计算
尺寸链的计算2008-4-28 来源:阅读: 523次我要收藏【字体:大中小】一、尺寸链的基本术语:1.尺寸链——在机器装配或零件加工过程中,由相互连接的尺寸形成封闭的尺寸组,称为尺寸链。
如下图间隙A0与其它五个尺寸连接成的封闭尺寸组,形成尺寸链。
2.环——列入尺寸链中的每一个尺寸称为环。
如上图中的A0、A1、A2、A3、A4、A5都是环。
长度环用大写斜体拉丁字母A,B,C……表示;角度环用小写斜体希腊字母α,β等表示。
3.封闭环——尺寸链中在装配过程或加工过程后自然形成的一环,称为封闭环。
如上图中A0。
封闭环的下角标“0”表示。
4.组成环——尺寸链中对封闭环有影响的全部环,称为组成环。
如上图中A1、A2、A3、A4、A5。
组成环的下角标用阿拉伯数字表示。
5.增环——尺寸链中某一类组成环,由于该类组成环的变动引起封闭环同向变动,该组成环为增环。
如上图中的A3。
6.减环——尺寸链中某一类组成环,由于该类组成环的变动引起封闭环的反向变动,该类组成环为减环。
如上图中的A1、A2、A4、A5。
7.补偿环——尺寸链中预先选定某一组成环,可以通过改变其大小或位置,使封闭环达到规定的要求,该组成环为补偿环。
如下图中的L2。
二、尺寸链的形成为分析与计算尺寸链的方便,通常按尺寸链的几何特征,功能要求,误差性质及环的相互关系与相互位置等不同观点,对尺寸链加以分类,得出尺寸链的不同形式。
1.长度尺寸链与角度尺寸链①长度尺寸链——全部环为长度尺寸的尺寸链,如图1②角度尺寸链——全部环为角度尺寸的尺寸链,如图32.装配尺寸链,零件尺寸链与工艺尺寸链①装配尺寸链——全部组成环为不同零件设计尺寸所形成的尺寸链,如图4②零件尺寸链——全部组成环为同一零件设计尺寸所形成的尺寸链,如图5③工艺尺寸链——全部组成环为同一零件工艺尺寸所形成的尺寸链,如图6。
工艺尺寸指工艺尺寸,定位尺寸与基准尺寸等。
装配尺寸链与零件尺寸链统称为设计尺寸链。
尺寸链概率法计算公式
尺寸链概率法计算公式
P(a≤X≤b)=Σ(P(a≤X≤b,X=x)*P(X=x))
其中,P(a≤X≤b)表示目标尺寸在a和b之间的概率。
P(a≤X≤b,
X=x)表示在已知尺寸为x的情况下,目标尺寸在a和b之间的概率。
P(X=x)表示目标尺寸为x的概率。
通常我们会通过已知的数据来计算P(X=x)的概率分布,然后在已知
的数据范围内,将a和b分布代入计算公式来得到目标尺寸在给定范围内
的概率。
具体步骤如下:
1.收集已知的尺寸数据。
这些数据可以是从实际测量中获取的,也可
以是通过理论推导得到的。
2.根据已知尺寸数据,计算P(X=x)的概率分布。
可以使用统计方法,如正态分布、均匀分布等等。
3.确定目标尺寸的范围,即a和b的取值。
4.将a和b的取值代入计算公式,计算P(a≤X≤b)的概率。
需要注意的是,在计算概率时,尺寸数据需要满足一定的统计学假设
和分布条件。
并且,计算结果只是一个估计值,可能会存在误差。
尺寸链计算
尺寸链计算一、尺寸链的基本术语:1.尺寸链——在机器装配或零件加工过程中,由相互连接的尺寸形成封闭的尺寸组,称为尺寸链。
如下图间隙A0与其它五个尺寸连接成的封闭尺寸组,形成尺寸链。
2.环——列入尺寸链中的每一个尺寸称为环。
如上图中的A0、A1、A2、A3、A4、A5都是环。
长度环用大写斜体拉丁字母A,B,C……表示;角度环用小写斜体希腊字母α,β等表示。
3.封闭环——尺寸链中在装配过程或加工过程后自然形成的一环,称为封闭环。
如上图中A0。
封闭环的下角标“0”表示。
4.组成环——尺寸链中对封闭环有影响的全部环,称为组成环。
如上图中A1、A2、A3、A4、A5。
组成环的下角标用阿拉伯数字表示。
5.增环——尺寸链中某一类组成环,由于该类组成环的变动引起封闭环同向变动,该组成环为增环。
如上图中的A3。
6.减环——尺寸链中某一类组成环,由于该类组成环的变动引起封闭环的反向变动,该类组成环为减环。
如上图中的A1、A2、A4、A5。
7.补偿环——尺寸链中预先选定某一组成环,可以通过改变其大小或位置,使封闭环达到规定的要求,该组成环为补偿环。
如下图中的L2。
二、尺寸链的形成为分析与计算尺寸链的方便,通常按尺寸链的几何特征,功能要求,误差性质及环的相互关系与相互位置等不同观点,对尺寸链加以分类,得出尺寸链的不同形式。
1.长度尺寸链与角度尺寸链①长度尺寸链——全部环为长度尺寸的尺寸链,如图1②角度尺寸链——全部环为角度尺寸的尺寸链,如图32.装配尺寸链,零件尺寸链与工艺尺寸链①装配尺寸链——全部组成环为不同零件设计尺寸所形成的尺寸链,如图4②零件尺寸链——全部组成环为同一零件设计尺寸所形成的尺寸链,如图5③工艺尺寸链——全部组成环为同一零件工艺尺寸所形成的尺寸链,如图6。
工艺尺寸指工艺尺寸,定位尺寸与基准尺寸等。
装配尺寸链与零件尺寸链统称为设计尺寸链。
3.基本尺寸链与派生尺寸链①基本尺寸链——全部组成环皆直接影响封闭环的尺寸链,如图7中尺寸链β。
尺寸链计算方法
3).按各环尺寸的几何特征分
(1)长度尺寸链 示。 (2)角度尺寸链 如图12—1,图12—2所 如图12—3所示。
4、尺寸链的建立
1).确定封闭环
装配尺寸链的封闭环是在装配之后形成的,往往是 机器上有装配精度要求的尺寸,如保证机器可靠工作的 相对位置尺寸或保证零件相对运动的间隙等。 零件尺寸链的封闭环应为公差等级要求最低的环, 如图12-1b中尺寸B0是不标注的。 工艺尺寸链的封闭环是在加工中自然形成的,一般 为被加工零件要求达到的设计尺寸或工艺过程中需要的 尺寸。 一个尺寸链中只有一个封闭环。
6、解算尺寸链的方法
1. 完全互换法(极值法) 完全互换法是尺寸链计算中最基本的方法。 2. 不完全互换法(概率法) 采用概率法,不是在全部产品中,而是在绝大多 数产品中,装配时不需挑选或修配,就能满足封闭环 的公差要求,即保证大多数互换。 与完全互换法相比,在封闭环公差相等的情况下, 不完全互换法可使用组成环的公差扩大,从而获得良 好的技术经济效益,也比较科学合理,常用在大批量 生产的情况。 3.其他方法
封闭环的重要性: (1) 体现在尺寸链计算中,若封闭环判断错误,则全部分 析计算之结论,也必然是错误的。 (2) 封闭尺寸是通过其他尺寸要间接保证的尺寸。通常是 产品技术规范或零件工艺要求决定的尺寸。 在装配尺寸链中,封闭环往往代表装配中精度要求的尺 寸;而在零件中往往是精度要求最低的尺寸,通常在零件图 中不予标注。
3.画尺寸链线图 为清楚地表达尺 寸链的组成,通常不 需要画出零件或部件 的具体结构,只需将 尺寸链中各尺寸依次 画出,形成封闭的图 形即可,这样的图形 称为尺寸链线图,如 图12-4b所示。
5、解算尺寸链的任务
(1)正计算 已知各组成环的极限尺寸,求封 闭环的尺寸。 (2)反计算 已知封闭环的极限尺寸和各组成 环的基本尺寸,求各组成环的极限偏差。 (3)中间计算 已知封闭环和部分组成环的极 限尺寸,求某一组成环的极限尺寸。
尺寸链概率法计算公式(一)
尺寸链概率法计算公式(一)尺寸链概率法计算公式1. 总体概述尺寸链概率法是一种用于计算尺寸链的概率的方法。
它通过考察尺寸链上各个尺寸之间的关系和概率来计算尺寸链的概率。
以下是相关的计算公式。
2. 尺寸链的定义尺寸链是指产品或系统开发过程中的各个尺寸之间的关系。
尺寸链的起点是最初确定的目标尺寸,终点是实际达到的尺寸。
尺寸链通常包括多个中间尺寸,每个中间尺寸都是前一个尺寸和后一个尺寸之间的一个比例。
3. 尺寸链计算公式尺寸链概率法使用以下公式来计算尺寸链的概率:P(A1, A2, ..., An) = P(A1) * P(A2|A1) * P(A3|A2) * ... * P(An|An-1)其中,P(A1, A2, ..., An)表示尺寸链A1 -> A2 -> ... -> An的概率,P(Ai|Ai-1)表示第i个尺寸在前一个尺寸条件下出现的概率。
4. 举例解释假设我们要计算一个产品的尺寸链的概率,该尺寸链包括 A, B, C, D 四个尺寸。
具体的相关概率如下:•P(A) = ,表示目标尺寸 A 的概率为。
•P(B|A) = ,表示在目标尺寸 A 的条件下,尺寸 B 出现的概率为。
•P(C|B) = ,表示在尺寸 B 的条件下,尺寸 C 出现的概率为。
•P(D|C) = ,表示在尺寸 C 的条件下,尺寸 D 出现的概率为。
根据尺寸链概率法计算公式,我们可以得到尺寸链 A -> B -> C -> D 的概率:P(A -> B -> C -> D) = P(A) * P(B|A) * P(C|B) * P(D| C)= * * *=因此,尺寸链 A -> B -> C -> D 的概率为,即该尺寸链的出现概率较高。
5. 总结尺寸链概率法是一种用于计算尺寸链的概率的方法。
它通过考察尺寸链上各个尺寸之间的关系和概率来计算尺寸链的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上式说明:尺寸链封闭环的基本尺寸,等于各增环基本
尺寸之和,减去各减环基本尺寸立和。
二、极值解法
1.各环极限尺寸计算 当增环为最大极限尺 寸,而减环为最小极 限尺寸时,封闭环为
A 2min Δ sA2 T2 Δ sA2 A∑ A ∑min T1 Δ sA1 Δ sA1 A ∑max
A2
最大极限尺寸。
也即:
A A4 A5 A6 A1 A2 A3
由此可以推得多环尺寸链的基本尺寸的一般公式: 对于任何一个总数为N的独立尺寸链,若其中增环数为m, 由于其封闭环只有有一个,则减环数n为n=N-1-m。故:
m n
A Ai Ai
i 1 i 1
A6 AΣ A7
(3) 空间尺寸链: 尺寸链全部尺 寸位干几个不平行的平面内。
3.按照构成尺寸链各环的几何特征,可分为: (1) 长度尺寸链:所有构成尺寸的环,均为直线长度量。 (2) 角度尺寸链:构成尺寸链的各环为角度量,或平行度、 垂直度等。
AΣ A1 A2 A3
4.按照尺寸键的相互联系的形态,又可分为: (1)独立尺寸链:所有构成尺寸链的环,在同一尺寸链中。 (2)相关尺寸链:具有公共环的两个以上尺寸链组。即构 成尺寸链中的一个或几个环,分布在两个或两个以上的尺寸 链中。
例如齿轮减速箱装配 后,要求轴承左端面 与左端轴套之间的间 隙为L∑ 。此尺寸可通
L5
过事先检验零件的实
际尺寸L1、L2、L3、 L4、L5 ,就可预先知 L∑的实际尺寸是否合 格?
L∑ L2 L1 L3 L4
2.已知封闭环,求组成环 根据设计要求的封闭环基本尺寸及公差(或偏差),反 过来计算各组成环基本尺寸及公差(或偏差),称为“尺寸 链的反计算”。 如齿轮零件
m
n
A min Ai min Ai max
i 1 i 1
m
n
2.各环上、下偏差的计算
根据上述的几个式子可得出封闭环上、下偏差计算的一般公式:
s A A max A ( Ai max Ai min ) ( Ai Ai )
而在零件中往往是精度要求最低的尺寸,通常在零件图中不予
标注。
A1
A∑ A2 A3
L2 L1
L3 L∑ L4
L2 L1
L3 L∑ L4
A1
A∑
A2
A3
3. 组成环
一个尺寸链中,除封闭环以外的其他各环,都是“组成 环”。按其对封闭环的影响可分为增环和减环。
表示为:Ai 、Li i=1,2,3……
增环:在尺寸链中,当其余组成环不变的情况下,将某一组 成环增大,封闭环也随之增大,该组成环即称为“增环”。
i 1 i 1 i 1 i 1
m
n
m
n
s Ai x Ai
i 1 i 1
m
n
x A A min A ( Ai min Ai max ) ( Ai Ai )
i 1 i 1 i 1 i 1
m
n
m
轴向尺寸加工, 采用的工序如 10±0.15 图,现需控制 幅板厚度10土 40 0.15,如何控 制L1、L2、 零件图 L3
L1
L2
l3
工序一
工序二
工序三
工序1;车外圆,车两端面后得L1=40 工序2;车一端幅板,至深度L2. 工序3:车另一端帽板,至深度L3。并保证10士0.15。 由上述工序安排可知,幅板厚度10士0.15是按尺寸L1、
其实质属于反计算的一种,也可称作“尺寸链的中间计 算”。这种计算在工艺设计上应用较多,如基准的换算,工 序尺寸的确定等。
总之,尺寸链的基本理论,无论对机器的设计,或零件
的制造、检验,以及机器的部件(组件)装配,整机装配等,
都是一种很有实用价值的。如能正确地运用尺寸链计算方法, 可有利于保证产品质量、简化工艺、减少不合理的加工步骤 等。尤其在成批、大量生产中,通过尺寸链计算,能更合理 地确定工序尺寸、公差和余量,从而能减少加工时间,节约 原料,降低废品率,确保机器装配精度。
i 1 i 1 i 1 i 1
n
m
n
m
n
( Ai max Ai min ) ( Ai max Ai min ) T i T i
i 1 i 1 i 1 i 1
m
m
n
n
m
i 1
i 1
即: T T i
i 1
A 2max A 1min
A max A1max A2 min
同理:
A1 A 1max
A min A1min A2 max
三环尺寸链极限尺寸计算关系图
当多环尺寸键计算时,则封闭环的极限尺寸可写成一般 公式为:
A max Ai max Ai min
i 1 i 1
第三章 工艺尺寸链
§3.1 尺寸链的定义和组成 一、尺寸链 尺寸链指的是在零件加工或机器装配过程中,由相互联系 的尺寸形成的封闭尺寸组。
A1
A∑ A2 A3
L2 L1
L3 L∑ L4
L2 L1
L3 L∑ L4
A1
A∑
A2
A3
1.尺寸链的分类
(1)出现在零件中,称之为零件尺寸链 (2)由工艺尺寸组成,称之为工艺尺寸链 (3)出现在装配中,称之为装配尺寸链
N 1
概率解法的数学依据: 在大批大量生产中,一个尺寸链中的各组成环尺寸的获得, 彼此并无关系,因此可将它们看成是相互独立的随机变量。相
互独立的随机变量。经大量实测数据后,从概率的概念来看,
有两个特征数: (1)算术平均值 A ——这数值表示尺寸分布的集中位置。 (2)均方根偏差 δ ——这数值说明实际尺寸分布相对算术平 均值的离散程度。
三、尺寸链的分类
1.按不同生产过程来分 (1) 工艺尺寸链:在零件加工工序中,由有关工序尺寸、设 计尺寸或加工余量等所组成的尺寸链。
(2) 装配尺寸链:在机器设计成装配中,由机器或部件内若
干个相关零件构成互相有联系的封闭尺寸链。包含零件尺寸、 间隙、形位公差等。 (3) 工艺系统尺寸链:在零件生产过程中某工序的工艺系统 内,由工件、刀具、夹具、机床及加工误差等有关尺寸所形
求解尺寸链的情形:
1.已知组成环,求封闭环 2.已知封闭环,求组成环
尺寸链的正计算 尺寸链的反计算
3.已知封闭环及部分组成环,求其余组成环 尺寸链的中间计算
1.已知组成环,求封闭环 根据各组成环基本尺寸及公差(或偏差),来计算封 闭环的基本尺寸及公差(或偏差),称为“尺寸链的正计 算”。这种计算主要用在审核图纸,验证设计的正确性。 如下例:
2. 封闭环 在零件加工或机器装配过程 中,最后自然形成(即间接获 得或间接保证)的尺寸。表示
增环 A1 减环 A2
L2 L1 L2
L3 L∑ L4
L3 L∑ L4 L1
方法:下标加∑,如A∑、L∑。
2.1 封闭环的特点: (1) 由于封闭环是最后形成的,因此在加工或装配完成前,它
是不存在的。
由于尺寸链计算时,不是均方根偏差间的关系,而是以误 差量(或公差)间的关系来计算的,所以上述公式需改写成其 它形式。当零件尺寸为正态分布曲线时,其偶然误差ε与均方 根误差ζ间的关系,可表达为: ε=6ζ 即:
6 若尺寸链中各组成环的误差分布,都遵循正态分布规律时,
则其封闭环也将遵循正态分布规律。若取公差带T=6ζ,则封闭
n
x Ai s Ai
i 1 i 1
m
n
因为零件图和工艺卡片中的尺寸和公差,一般均以上、下偏
差的形式标注,所以该式较为简便迅速
3.各环公差的计算
T A max A min ( Ai max Ai min ) ( Ai min Ai max )
A(算术平均)
独立随机变量之和的均方差为:
i2
i 1
N 1
其中: ( A A)
i i
-3 δ
+3 δ
这是用概率法解尺寸链的数学基础,它反映了封闭环误差与组成环误差间的基本关系。
1. 各环公差计算
i2
i 1 N 1
反映了封闭环误差与组成环误差间的基本关系。
L2 L2 L3 L∑ L4 L1 L3 L4 L5 L1 L∑
L1为增环
L1、L4为增环
减环:在尺寸链中,当其余组成环不变的情况下,将某 一组成环增大,封闭环却随之减小,该组成环即称为 “减环”。
L2 L2 L3 L∑ L4 L1 L3 L4 L5 L1 L∑
L2、L3 、 L4为减环
L2、L3 、 L5为减环
成的封闭尺寸链。
2.按照各构成尺寸所处的空间位置,可分为:
(1) 直线尺寸链:尺寸链全部尺寸位于两 根或几根平行直线上,称为线性尺寸链。 (2) 平面尺寸链: 尺寸键全部尺 寸位于一个或几个平行平面内。
A6 AΣ A4 A1 A2 A3 A5
A4 A3 A2 A1 A5
L2 L3 L∑ L4 L1
2. 尺寸链的含义
尺寸链的含义包含两个意思: (1)封闭性:尺寸链的各尺寸应构成封闭形式(并且是按照 一定顺序首尾相接的。 (2)关联性:尺寸链中的任何一个尺寸变化都将直接影响其