2015年全国新课标2卷高考文科数学答案

合集下载

2015年全国新课标2卷高考文科数学答案

2015年全国新课标2卷高考文科数学答案

2015年全国新课标2卷高考文科数学答案2015普通高等学校招生全国统一考试?卷文科数学第一卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A= ,,,,x,1,x,2,B,x0,x,3,则A:B,A.(-1,3)B.(-1,0 )C.(0,2)D.(2,3)1、选A2,ai(2)若a实数,且,3,i,则a, 1,iA.-4B. -3C. 3D. 4 2、解:因为故选D 2,ai,(3,i)(1,i),2,4i,所以a,4.(3)根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是27002600250024002300220021002000 1900A.逐年比较,2008年减少二氧化碳排放量的效果最显著;2013(年)B.2007年我国治理二氧化碳排放显现成效;C.2006年以来我国二氧化碳排放量呈减少趋势;D.2006年以来我国二氧化碳年排放量与年份正相关。

3、选D(4)已知向量 a,(0,,1),b,(,1,2),则(2a,b),a,A. -1B. 0C. 1D. 2 、选B 4,,S是等差数列a的前n项和,a,a,a,3,则S,(5)设若 nn1355A. 5B. 7C. 9D. 11 5、解:在等差数列中,因为(a,a),515a,a,a,3,所以a,1,S,,5a,5,故选A. 1353532(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为- 1 -1111A. B. C. D. 87656、解:如图所示,选D.,ABC(7)已知三点,则外接圆的A(1,0),B(0,3),C(2,3)圆心到原点的距离为542125A. B. C. D. 33337、解:根据题意,三角形ABC是等边三角形,设外接圆的23圆心为D,则D(1,)所以, 34721OD,1,,,.故选B. 333(8)右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”。

2015年全国新课标2卷高考文科数学及答案详解

2015年全国新课标2卷高考文科数学及答案详解

2015年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}{}30|,21|<<=<<-=x x B x x A ,则=⋃B A ( )A .(-1,3)B .(-1,0)C .(0,2)D .(2,3)2.若a 为实数,且i iai +=++312,则=a ( ) A .-4 B .-3 C .3 D .43.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关4.向量()1,1-=a ,()2,1-=b ,则()=⋅+a b a 2 ( )A .-1B .0C .1D .25.设n S 是等差数列{}n a 的前n 项和,若3531=++a a a ,则=5S ( )A .5B .7C .9D .11 6.第6题图一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A.18 B.17 C.16 D.157.已知三点()01,A ()30,B ,()32,C ,则ABC ∆外接圆的圆心到原点的距离为( )A.53B.213C.253D.438.第8题图右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的=a ( )A .0B .2C .4D .149.已知等比数列{}n a 满足411=a ,()14453-=a a a ,则=2a ( ) A .2 B .1 C.12 D.1810.已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O ­ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B .64π C.144π D.256π11.如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记∠BOP =x ,将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )12.设函数()()2111ln x x x f +-+=,则使得()()12->x f x f 成立的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,1B.()∞+⋃⎪⎭⎫ ⎝⎛∞,,131- C.⎝ ⎛⎭⎪⎫-13,13 D.⎪⎭⎫ ⎝⎛∞+⋃⎪⎭⎫ ⎝⎛∞,,3131-- 第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知函数()x ax x f 23-=的图象过点()4,1-,则=a ________.14.若x ,y 满足约束条件⎩⎨⎧ x +y -5≤0,2x -y -1≥0,x -2y +1≤0,则y x z +=2的最大值为________. 15.已知双曲线过点()34,,且渐近线方程为x y 21±=,则该双曲线的标准方程为________.16.已知曲线x x y ln +=在点()1,1处的切线与曲线()122+++=x a ax y 相切,则=a ________. 三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分) ABC ∆中,D 是BC 上的点,AD 平分BAC ∠,DC BD 2=(1)求CB sin sin (2)若︒=∠60BAC ,求B ∠18.(本小题满分12分)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.图①B地区用户满意度评分的频数分布表满意度评分[50,60)[60,70)[70,80)[80,90)[90,100] 分组频数281410 6 2015·新课标Ⅱ卷第4页(1)在图②中作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).图②(2)根据用户满意度评分,将用户的满意度分为三个等级:满意度评分 低于70分 70分到89分 不低于90分满意度等级 不满意 满意 非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.19.(本小题满分12分)如图,长方体1111D C B A ABCD -中,16=AB ,10=BC ,81=AA ,点E ,F 分别在11B A ,11C D 上,411==F D E A .过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.20.(本小题满分12分)已知椭圆C :12222=+by a x ()0.>>b a 的离心率为22,点()22,在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.21.(本小题满分12分)已知函数()()x a x x f -+=1ln .(1)讨论()x f 的单调性;(2)当()x f 有最大值,且最大值大于22-a 时,求a 的取值范围.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22. (本小题满分10分)选修4-1:几何证明选讲如图O 是等腰三角形AB C 内一点, ⊙O 与△ABC 的底边BC 交于M ,N 两点,与底边上的高交于点G ,且与AB ,AC 分别相切于E ,F 两点.(I )证明EF ∥BC .(II )若AG 等于⊙O 的半径,且23AE MN == ,求四边形EDCF 的面积23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩ (t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:23cos .C C ρθρθ== (I )求2C 与3C 交点的直角坐标;(II )若1C 与 2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值24.(本小题满分10分)选修4-5:不等式选讲设a ,b ,c ,d 均为正数,且a +b =c +d .证明:(1)若ab >cd ,则a +b >c +d ;N M G OFE D C B A(2)a+b>c+d是|a-b|<|c-d|的充要条件.2015·新课标Ⅱ卷第8页1、选A2、故选D3、选D4、选B5、解:在等差数列中,因为.,5525)(,1,335153531A a a a S a a a a 故选所以==⨯+===++6、解:如图所示,选D.7、选B.8、故选B.9、解:因为{}),1(4,414531-==a a a a a n 满足所以, .21241,2,2),1(4123144424=⨯=====-=q a a q q a a a a a 所以,所以又解得故选C.10、解:因为A,B 都在球面上,又为该球面上动点,C AOB ,90︒=∠所以 三棱锥的体积的最大值为3661213132==⨯⨯R R R ,所以R=6,所以球的表面积为 S=14442=R ππ,故选C.11、解:如图,当点P 在BC 上时, ,tan 4tan ,tan 4,tan ,22x x PB PA x PA x PB x BOP ++=+∴+===∠ 当4π=x 时取得最大值51+,以A,B 为焦点C,D 为椭圆上两定点作椭圆,显然,当点P 在C,D 之间移动时PA+PB<51+. 又函数)(x f 不是一次函数,故选B.xP O DC B A12、解:因为函数时函数是增函数是偶函数,),0[,11)1ln()(2+∞∈+-+=x x x x f .131,)12(,12)12()(22<<->∴->∴->x x x x x x f x f 解得 故选A.第二卷一、填空题:本大题共4个小题,每小题5分 13、答:a=-214、解:当x=3,y=2时,z=2x+y 取得最大值8.15、解:设双曲线的方程为.43,4),0(422=≠=-k k k y x )代入方程,解得,点(1422=-∴y x 双曲线的标准方程为16、解:.122,11'-=∴+=x y xy ,切线方程为切线的斜率为 .8120.08,08,021)2(12222=+=====-=∆=+++++=-=a x y a a a a a ax ax x a ax y x y 所以与切线平行,不符。

2015年普通高等学校招生全国统一考试数学文试题(新课标2卷,含答案)

2015年普通高等学校招生全国统一考试数学文试题(新课标2卷,含答案)

2015年普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。

写在本试卷上无效。

3.答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷一、 选择题:本大题共12小题。

每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。

1.已知集合}21|{<<-=x x A ,}30|{<<=x x B ,则A ∪B=A. )3,1(-B. )0,1(-C. )2,0(D. )3,2( 2.若a 为实数,且i iai+=++312,则=a A. 4- B. 3- C. 3 D. 43. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是A.逐年比较,2008年减少二氧化碳排放量的效果显著B.2007年我国治理二氧化碳排放显现成效C.2006年以来我国二氧化碳年排放量呈逐渐减少趋势D.2006年以来我国二氧化碳年排放量与年份正相关 4.向量a=(1,-1) b=(-1,2),则(2a +b ).a=A. 1-B. 0C. 1D.2 5. 设n S 是数列}{n a 的前n 项和,若3531=++a a a ,则=5S A. 5 B. 7 C. 9 D. 116. 一个正方体被一个平面截取一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为 A.81 B. 71 C. 61 D. 517.已知三点)0,1(A ,)3,0(B ,)3,2(C ,则ABC ∆外接圆的圆心到原点的距离为 A.35 B. 321 C. 352 D. 34 8.右边程序框图的算法思路源于我国古代数学名著《九章算术》中“更相减损术”.执行该程序框图,若输入的a 、b 分别为14、18,则输出的=aA. 0B. 2C. 4D. 149.已知等比数列}{n a 满足411=a ,)1(4453-=a a a ,则=2a A. 2 B. 1 C.21 D. 8110.已知A 、B 是球O 的球面上两点,90=∠AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为A. π36B. π64C. π144D. π25611.如图,长方形ABCD 的边2=AB ,1=BC ,O 是AB 的中点,点P 沿着BC 、CD 与DA 运动,记x BOP =∠.将动点P 到A 、B 两点距离之和表示为x 的函数)(x f ,则)(x f y =的图象大致为12. 设函数211|)|1ln()(xx x f +-+=,则使得)12()(->x f x f 成立的x 的取值范围是 A. )1,31( B. ),1()31,(+∞-∞U C. )31,31(- D. ),31()31,(+∞--∞U 二.填空题:共4小题,每小题5分.13. 已知函数x ax x f 2)(3-=的图象过点)4,1(-,则=a .14.若x 、y 满足约束条件⎪⎩⎪⎨⎧≤+-≥--≤-+01201205y x y x y x ,则y x z +=2的最大值为 .15.已知双曲线过点)3,4(,且渐近线方程为x y 21±=,则该双曲线的标准方程为 . 16.已知曲线x x y ln +=在点)1,1(处的切线与曲线1)2(2+++=x a ax y 相切,则=a .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17、(本小题满分12分)ΔABC 中,D 是BC 上的点,AD 平分∠BAC ,BD=2DC.(I)求sinsinBC∠∠;(II)若∠BAC=60°,求∠B.18、(本小题满分12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得分A地区用户满意评分的频率分布直方图和B地区用户满意度评分的频数分布表.B地区用户满意度评分的频数分布表度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(II)根据用户满意度评分,将用户的满意度分为三个等级;19、(本小题满分12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,分别在A1B1, D1C1上,A1E= D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(I ) 在图中画出这个正方形(不必说明画法和理由) (II )求平面α把该长方体分成的两部分体积的比值.20、(本小题满分12分)已知椭圆C :22221x y a b +=(a >b >0)的离心率为2,点(2C 上.(I ) 求C 的方程.(II )直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M.直线OM 的斜率与直线l 的斜率的乘积为定值. 21、(本小题满分12分) 已知函数f (x )=ln x +a (1- x ) (I ) 讨论f (x )的单调性;(II ) 当f (x )有最大值,且最大值大于2a-2时,求a 的取值范围.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号。

2015年高考文科数学全国卷2-答案

2015年高考文科数学全国卷2-答案
(Ⅱ)A地区的用户的满意度等级为不满意的概率大.记 表示事件“A地区的用户的满意度等级为不满意”; 表示事件“B地区的用户的满意度等级为不满意”,由直方图得 的估计值为 , 的估计值为 ,所以A地区的用户的满意度等级为不满意的概率大.
【提示】(Ⅰ)通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值,B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散;(Ⅱ)由直方图得 的估计值为0.6, 的估计值为0.25,所以A地区的用户的满意度等级为不满意的概率大.
【考点】统计知识及对学生柱形图的理解
4.【答案】C
【解析】由题意可得 , ,所以 ,故选C.
【考点】向量数量积的坐标运算
5.【答案】A
【解析】由 ,所有 ,故选A.
【考点】等差数列的性质及前n项和公式的应用
6.【答案】D
【解析】如图所示,截去部分是正方体的一个角,其体积是正方体体积的 ,剩余部分体积是正方体体积的 ,所以截去部分体积与剩余部分体积的比值为 ,故选D.
(Ⅱ)由(Ⅰ)知 , ,故 是 的垂直平分线,又 为圆 的弦,所以 在 上,连接 , ,则 ,由 等于圆 的半径得 ,所以 ,因此, 和 都是等边三角形,因为 ,所以 , ,因为 , ,所以 ,于是 , ,
所以四边形 的面积为 .
【提示】(Ⅰ)要证明 ,可证明 , ;
(Ⅱ)先求出有关线段的长度,然后把四边形 的面积转化为 和 面积之差来求.
【提示】(Ⅰ)由 ,可分 , 两种情况来讨论;
(Ⅱ)由(Ⅰ)知当 时 在 无最大值,当 时 最大值为 ,因此 .令 ,则 在 是增函数,当 时, ,当 时 ,因此可求出 的取值范围.
【考点】导数的应用

2015高考试题——数学文(新课标II卷)word版含答案

2015高考试题——数学文(新课标II卷)word版含答案

2015年普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。

写在本试卷上无效。

3.答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷一、 选择题:本大题共12小题。

每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。

1.已知集合}21|{<<-=x x A ,}30|{<<=x x B ,则A ∪B=A. )3,1(-B. )0,1(-C. )2,0(D. )3,2( 2.若a 为实数,且i iai+=++312,则=a A. 4- B. 3- C. 3 D. 43. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是A.逐年比较,2008年减少二氧化碳排放量的效果显著B.2007年我国治理二氧化碳排放显现成效C.2006年以来我国二氧化碳年排放量呈逐渐减少趋势D.2006年以来我国二氧化碳年排放量与年份正相关 4.向量a=(1,-1) b=(-1,2),则(2a +b ).a=A. 1-B. 0C. 1D.2 5. 设n S 是数列}{n a 的前n 项和,若3531=++a a a ,则=5S A. 5 B. 7 C. 9 D. 116. 一个正方体被一个平面截取一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为 A.81 B. 71 C. 61 D. 517.已知三点)0,1(A ,)3,0(B ,)3,2(C ,则ABC ∆外接圆的圆心到原点的距离为A.35 B. 321 C. 352 D. 348.右边程序框图的算法思路源于我国古代数学名著《九章算术》中“更相减损术”.执行该程序框图,若输入的a 、b 分别为14、18,则输出的=a A. 0 B. 2 C. 4 D. 149.已知等比数列}{n a 满足411=a ,)1(4453-=a a a ,则=2a A. 2 B. 1 C. 21 D. 8110.已知A 、B 是球O 的球面上两点, 90=∠AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为A. π36B. π64C. π144D. π25611.如图,长方形ABCD 的边2=AB ,1=BC ,O 是AB 的中点,点P 沿着BC 、CD 与DA 运动,记x BOP =∠.将动点P 到A 、B 两点距离之和表示为x 的函数)(x f ,则)(x f y =的图象大致为12. 设函数211|)|1ln()(xx x f +-+=,则使得)12()(->x f x f 成立的x 的取值范围是 A. )1,31( B. ),1()31,(+∞-∞UC. )31,31(-D. ),31()31,(+∞--∞U二.填空题:共4小题,每小题5分.13. 已知函数x ax x f 2)(3-=的图象过点)4,1(-,则=a .14.若x 、y 满足约束条件⎪⎩⎪⎨⎧≤+-≥--≤-+01201205y x y x y x ,则y x z +=2的最大值为 .15.已知双曲线过点)3,4(,且渐近线方程为x y 21±=,则该双曲线的标准方程为 . 16.已知曲线x x y ln +=在点)1,1(处的切线与曲线1)2(2+++=x a ax y 相切,则=a .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17、(本小题满分12分)ΔABC 中,D 是BC 上的点,AD 平分∠BAC ,BD=2DC. (I )求sin sin BC∠∠;(II ) 若∠BAC=60°,求∠B.18、(本小题满分12分)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得分A 地区用户满意评分的频率分布直方图和B 地区用户满意度评分的频数分布表.B 地区用户满意度评分的频数分布表(I)在答题卡上作出B 地区用户满意度评分的频数分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(II)根据用户满意度评分,将用户的满意度分为三个等级;估计哪个地区用户的满意度等级为不满意的概率大?说明理由. 19、(本小题满分12分)如图,长方体ABCD ﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E ,分别在A1B1, D1C1上,A1E= D1F=4.过点E,F 的平面α与此长方体的面相交,交线围成一个正方形.(I ) 在图中画出这个正方形(不必说明画法和理由) (II )求平面α把该长方体分成的两部分体积的比值.20、(本小题满分12分)已知椭圆C :22221x y a b +=(a >b >0,点(2)在C 上.(I ) 求C 的方程.(II )直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M.直线OM 的斜率与直线l 的斜率的乘积为定值. 21、(本小题满分12分) 已知函数f (x )=ln x +a (1- x ) (I ) 讨论f (x )的单调性;(II ) 当f (x )有最大值,且最大值大于2a-2时,求a 的取值范围.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号。

2015年高考全国卷2文科数学试题及答案解析(word精校版)

2015年高考全国卷2文科数学试题及答案解析(word精校版)

2015年高考全国卷2文科数学试题及答案(word 精校版)含详细解析一、选择题:本大题共12道小题,每小题5分1.已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B =A .()1,3-B .()1,0-C .()0,2D .()2,3 【答案】A考点:集合运算.【名师点睛】本题属基础题,主要考查数列的交集运算。

2. 若为a 实数,且2i3i 1ia +=++,则a = A .4- B .3- C .3 D .4 【答案】D 【解析】试题分析:由题意可得()()2i 1i 3i 24i 4a a +=++=+⇒= ,故选D. 考点:复数运算.【名师点睛】本题主要考查复数的乘除运算,及复数相等,难度不大,但要注意运算的准确性。

3. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是A .逐年比较,2008年减少二氧化碳排放量的效果最显著B .2007年我国治理二氧化碳排放显现成效C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关 【答案】D考点:柱形图【名师点睛】本题考查学生对柱形图的理解,要求学生能从图中读出有用信息,背景比较新颖。

4. 已知()0,1=-a ,()1,2=-b ,则(2)+⋅=a b a A .1- B .0 C .1 D .2 【答案】B 【解析】试题分析:由题意可得21=a ,2,⋅=-a b 所以()222220+⋅=+⋅=-=a b a a a b .考点:向量数量积。

【名师点睛】本题主要考查向量数量积的坐标运算,属于基础题。

5. 设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S = A .5 B .7 C .9 D .11【答案】A2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年【解析】试题解析:13533331a a a a a ++==⇒=,()15535552a a S a +===. 考点:等差数列【名师点睛】本题主要考查等差数列性质及前n 项和公式,具有小、巧、活的特点。

2015年全国新课标2卷高考文科数学试题及答案

2015年全国新课标2卷高考文科数学试题及答案

2015年全国新课标2卷高考文科数学试题及答案2015普通高等学校招生全国统一考试II卷文科数学第一卷一、选择题:本大题共12小题,每小题5分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合 $A=x-1<x<2$,$B=x<x<3$,则 $A\cup B=$A。

$(-1,3)$ B。

$(-1,0)$ C。

$(0,2)$ D。

$(2,3)$2.若 $a$ 是实数,且 $\frac{2+ai}{1+i}=3+i$,则 $a=$A。

$-4$ B。

$-3$ C。

$3$ D。

$4$3.根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是此处删除明显有问题的段落)4.已知向量 $a=(1,-1)$,$b=(-1,2)$,则 $(2a+b)\cdot a=$A。

$-1$ B。

$0$ C。

$1$ D。

$2$5.设 $S_n$ 是等差数列 $\{a_n\}$ 的前 $n$ 项和。

若$a_1+a_3+a_5=3$,则 $S_5=$A。

$5$ B。

$7$ C。

$9$ D。

$11$6.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为A。

$\frac{1}{1111}$ B。

$\frac{1}{8576}$ C。

$\frac{2}{1254}$ D。

$\frac{1}{333}$7.已知三点 $A(1,-1)$,$B(2,3)$,$C(2,3)$,则 $\triangle ABC$ 外接圆的圆心到原点的距离为A。

$\sqrt{5}$ B。

$3$ C。

$2\sqrt{5}$ D。

$3\sqrt{2}$8.右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”。

执行该程序框图,若输入的$a,b$ 分别为14,18,则输出的 $a$ 为开始输入a,ba>b是a≠b 否输出a是否结束a=a-b b=b-aA。

2015年高考全国卷2文科数学试题和答案解析

2015年高考全国卷2文科数学试题和答案解析

2015年高考全国卷2文科数学试题及答案(word精校版)含详细解析一、选择题:本大题共12道小题,每小题5分1.已知集合A={x|-l<x<2},B={x|0<x<3},则A B=A.(-1,3)B.(-1,0)C.(0,2)D.(2,3)【答案】A【解析】试题分析:因为彳={x|-l<x<2},3={x|0<x<3},所以火汕={*|一1<*<3}.故选人.考点:集合运算.【名师点睛】本题属基础题,主要考查数列的交集运算。

2.若为a实数,且?+=3+i,则a=1+iA.-4B.-3C.3D.4【答案】D【解析】试题分析:由题意可得2+tri=(l+i)(3+i)=2+4ina=4,故选D.考点:复数运算.【名师点睛】本题主要考查复数的乘除运算,及复数相等,难度不大,但要注意运算的准确性。

3.根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是A.逐年比较,2008年减少二氧化碳排放量的效果最显著B.2007年我国治理二氧化碳排放显现成效C.2006年以来我国二氧化碳年排放量呈减少趋势D.2006年以来我国二氧化碳年排放量与年份正相关【答案】D【解析】试题分析:由柱形图可知2006年以来,我国二氧化碳排放童基本成i走诚趋势,所以二氧化碳援放童与年份负相关,故选D.考点:柱形图【名师点睛】本题考查学生对柱形图的理解,要求学生能从图中读出有用信息,背景比较新颖。

4,己知«=(0,-1),*=(-1,2),贝i](2a+6)-a=A.-1B.0C.1D.2【答案】B【解析】试题分析:由题意可得«2=1,a b=-2,所以(2a+b)a=2a1+a b=2-2=0.考点:向量数量积。

【名师点睛】本题主要考查向量数量积的坐标运算,属于基础题。

5.设&是等差数列{%}的前"项和,若tZ]+O,+a5=3,则S5=A.5B.7C.9D.11【答案】A【解析】试题解析:%+%+%= 3% = 3 => % = 1,S)=---------= 5角=5.考点:等差数列【名师点睛】本题主要考查等差数列性质及前〃项和公式,具有小、巧、活的特点。

2015年高考文数真题试卷(新课标Ⅱ卷)及解析

2015年高考文数真题试卷(新课标Ⅱ卷)及解析

2015年高考文数真题试卷(新课标Ⅱ卷)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.·已知集合A={x|-1<x <2},B={x|0<x <3},则A ∪B=() A.(-1,3) B.(-1,0) C.(0,2) D.(2,3)2.(2015·全国)若a 为实数,且2+ai1+i =3+i,则a=() A.-4 B.-3 C.3 D.43.已知a =(1,-1),b =(-1,2),则(2a +b )·a =() A.-1 B.0 C.1 D.24.·已知三点A (1,0),B(0,√3),C(2,√3),则△ABC 外接圆的圆心到原点的距离为() A.53 B.√213C.2√53 D.435.·下边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a ,b 分别为14,18,则输出的a 为( )答案第2页,总14页…………外…………○………○…………线…………○※※※题※※…………内…………○………○…………线…………○A.0B.2C.4D.146.(2015·全国统考II)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=() A.2 B.1 C.12 D.187.·已知A ,B 是球O 的球面上两点,∠AOB=90°,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为() A.36π B.64π C.144π D.256π8.·如图,长方形的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP=x ,将动点P 到A,B 两点距离之和表示为x 的函数f (x ),则图像大致为()……装…………○…………订…………○…………线…………○…_______姓名:___________班级:___________考号:___________……装…………○…………订…………○…………线…………○… A.B.C.D.9.(2015·全国统考II)设函数f (x )=ln (1+|x|)-11+x 2,则使得f (x )>f (2x-1)成立的x 的取值范围是() A.(13,1)B.(-∞,13)∪(1,+∞) C.(-13,13)D.(-∞,-13)∪(13,+∞)第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)答案第4页,总14页○…………装…………○………※※请※※不※※要※※在※※装※※订※※线※○…………装…………○………10.·已知函数f(x)=ax3-2x的图像过点(-1,4),则a= .11.若x,y满足约束条件{x+y−5≤02x−y−1≥0x−2y+1≤0,则z=2x+y的最大值为。

2015年全国统一高考数学试卷(文科)(新课标ⅱ)(含答案及解析)

2015年全国统一高考数学试卷(文科)(新课标ⅱ)(含答案及解析)

2015年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分1.(5分)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)2.(5分)若为a实数,且=3+i,则a=()A.﹣4B.﹣3C.3D.43.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1B.0C.1D.25.(5分)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.116.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.8.(5分)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0B.2C.4D.149.(5分)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.10.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π11.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.12.(5分)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x﹣1)成立的x的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)二、填空题13.(3分)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=.14.(3分)若x,y满足约束条件,则z=2x+y的最大值为.15.(3分)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是.16.(3分)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=.三.解答题17.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.18.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.20.椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.21.设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.四、选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.五、选修4-4:坐标系与参数方程23.(10分)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.六、选修4-5不等式选讲24.(10分)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分1.(5分)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)【考点】1D:并集及其运算.【专题】5J:集合.【分析】根据集合的基本运算进行求解即可.【解答】解:∵A={x|﹣1<x<2},B={x|0<x<3},∴A∪B={x|﹣1<x<3},故选:A.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)若为a实数,且=3+i,则a=()A.﹣4B.﹣3C.3D.4【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】根据复数相等的条件进行求解即可.【解答】解:由,得2+ai=(1+i)(3+i)=2+4i,则a=4,故选:D.【点评】本题主要考查复数相等的应用,比较基础.3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【考点】B8:频率分布直方图.【专题】5I:概率与统计.【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1B.0C.1D.2【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】利用向量的加法和数量积的坐标运算解答本题.【解答】解:因为=(1,﹣1),=(﹣1,2)则(2+)=(1,0)•(1,﹣1)=1;故选:C.【点评】本题考查了向量的加法和数量积的坐标运算;属于基础题目.5.(5分)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.11【考点】85:等差数列的前n项和.【专题】35:转化思想;4A:数学模型法;54:等差数列与等比数列.【分析】由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3.再利用等差数列的前n项和公式即可得出.【解答】解:由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3=1.则S5==5a3=5.故选:A.【点评】本题考查了等差数列的通项公式及其性质、前n项和公式,考查了推理能力与计算能力,属于中档题.6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.【考点】J1:圆的标准方程.【专题】5B:直线与圆.【分析】利用外接圆的性质,求出圆心坐标,再根据圆心到原点的距离公式即可求出结论.【解答】解:因为△ABC外接圆的圆心在直线BC垂直平分线上,即直线x=1上,可设圆心P(1,p),由PA=PB得|p|=,得p=圆心坐标为P(1,),所以圆心到原点的距离|OP|===,故选:B.【点评】本题主要考查圆性质及△ABC外接圆的性质,了解性质并灵运用是解决本题的关键.8.(5分)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0B.2C.4D.14【考点】EF:程序框图.【专题】27:图表型;5K:算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的a,b的值,当a=b=2时不满足条件a≠b,输出a的值为2.【解答】解:模拟执行程序框图,可得a=14,b=18满足条件a≠b,不满足条件a>b,b=4满足条件a≠b,满足条件a>b,a=10满足条件a≠b,满足条件a>b,a=6满足条件a≠b,满足条件a>b,a=2满足条件a≠b,不满足条件a>b,b=2不满足条件a≠b,输出a的值为2.故选:B.【点评】本题主要考查了循环结构程序框图,属于基础题.9.(5分)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.【考点】88:等比数列的通项公式.【专题】54:等差数列与等比数列.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵,a3a5=4(a4﹣1),∴=4,化为q3=8,解得q=2则a2==.故选:C.【点评】本题考查了等比数列的通项公式,属于基础题.10.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.11.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【考点】HC:正切函数的图象.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.12.(5分)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x﹣1)成立的x的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)【考点】6B:利用导数研究函数的单调性.【专题】33:函数思想;49:综合法;51:函数的性质及应用.【分析】根据函数的奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.【解答】解:∵函数f(x)=ln(1+|x|)﹣为偶函数,且在x≥0时,f(x)=ln(1+x)﹣,导数为f′(x)=+>0,即有函数f(x)在[0,+∞)单调递增,∴f(x)>f(2x﹣1)等价为f(|x|)>f(|2x﹣1|),即|x|>|2x﹣1|,平方得3x2﹣4x+1<0,解得:<x<1,所求x的取值范围是(,1).故选:B.【点评】本题主要考查函数奇偶性和单调性的应用,综合考查函数性质的综合应用,运用偶函数的性质是解题的关键.二、填空题13.(3分)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=﹣2.【考点】36:函数解析式的求解及常用方法.【专题】11:计算题;51:函数的性质及应用.【分析】f(x)是图象过点(﹣1,4),从而该点坐标满足函数f(x)解析式,从而将点(﹣1,4)带入函数f(x)解析式即可求出a.【解答】解:根据条件得:4=﹣a+2;∴a=﹣2.故答案为:﹣2.【点评】考查函数图象上的点的坐标和函数解析式的关系,考查学生的计算能力,比较基础.14.(3分)若x,y满足约束条件,则z=2x+y的最大值为8.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(3,2)将A(3,2)的坐标代入目标函数z=2x+y,得z=2×3+2=8.即z=2x+y的最大值为8.故答案为:8.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.15.(3分)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是x2﹣y2=1.【考点】KB:双曲线的标准方程.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】设双曲线方程为y2﹣x2=λ,代入点,求出λ,即可求出双曲线的标准方程.【解答】解:设双曲线方程为y2﹣x2=λ,代入点,可得3﹣=λ,∴λ=﹣1,∴双曲线的标准方程是x2﹣y2=1.故答案为:x2﹣y2=1.【点评】本题考查双曲线的标准方程,考查学生的计算能力,正确设出双曲线的方程是关键.16.(3分)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=8.【考点】6H:利用导数研究曲线上某点切线方程.【专题】26:开放型;53:导数的综合应用.【分析】求出y=x+lnx的导数,求得切线的斜率,可得切线方程,再由于切线与曲线y=ax2+(a+2)x+1相切,有且只有一切点,进而可联立切线与曲线方程,根据△=0得到a的值.【解答】解:y=x+lnx的导数为y′=1+,曲线y=x+lnx在x=1处的切线斜率为k=2,则曲线y=x+lnx在x=1处的切线方程为y﹣1=2x﹣2,即y=2x﹣1.由于切线与曲线y=ax2+(a+2)x+1相切,故y=ax2+(a+2)x+1可联立y=2x﹣1,得ax2+ax+2=0,又a≠0,两线相切有一切点,所以有△=a2﹣8a=0,解得a=8.故答案为:8.【点评】本题考查导数的运用:求切线方程,主要考查导数的几何意义:函数在某点处的导数即为曲线在该点处的导数,设出切线方程运用两线相切的性质是解题的关键.三.解答题17.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.【考点】HP:正弦定理.【专题】58:解三角形.【分析】(Ⅰ)由题意画出图形,再由正弦定理结合内角平分线定理得答案;(Ⅱ)由∠C=180°﹣(∠BAC+∠B),两边取正弦后展开两角和的正弦,再结合(Ⅰ)中的结论得答案.【解答】解:(Ⅰ)如图,由正弦定理得:,∵AD平分∠BAC,BD=2DC,∴;(Ⅱ)∵∠C=180°﹣(∠BAC+∠B),∠BAC=60°,∴,由(Ⅰ)知2sin∠B=sin∠C,∴tan∠B=,即∠B=30°.【点评】本题考查了内角平分线的性质,考查了正弦定理的应用,是中档题.18.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.【考点】B8:频率分布直方图;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(I)根据分布表的数据,画出频率直方图,求解即可.(II)计算得出C A表示事件:“A地区用户的满意度等级为不满意”,C B表示事件:“B地区用户的满意度等级为不满意”,P(C A),P(C B),即可判断不满意的情况.【解答】解:(Ⅰ)通过两个地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值,B 地区的用户满意度评分的比较集中,而A地区的用户满意度评分的比较分散.(Ⅱ)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”,C B表示事件:“B地区用户的满意度等级为不满意”,由直方图得P(C A)=(0.01+0.02+0.03)×10=0.6得P(C B)=(0.005+0.02)×10=0.25∴A地区用户的满意度等级为不满意的概率大.【点评】本题考查了频率直方图,频率表达运用,考查了阅读能力,属于中档题.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.【考点】LF:棱柱、棱锥、棱台的体积;LJ:平面的基本性质及推论.【专题】15:综合题;5F:空间位置关系与距离.【分析】(Ⅰ)利用平面与平面平行的性质,可在图中画出这个正方形;(Ⅱ)求出MH==6,AH=10,HB=6,即可求平面a把该长方体分成的两部分体积的比值.【解答】解:(Ⅰ)交线围成的正方形EFGH如图所示;(Ⅱ)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EFGH为正方形,所以EH=EF=BC=10,于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为.【点评】本题考查平面与平面平行的性质,考查学生的计算能力,比较基础.20.椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.【考点】K3:椭圆的标准方程;KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(1)利用椭圆的离心率,以及椭圆经过的点,求解椭圆的几何量,然后得到椭圆的方程.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),联立直线方程与椭圆方程,通过韦达定理求解K OM,然后推出直线OM的斜率与l的斜率的乘积为定值.【解答】解:(1)椭圆C:=1,(a>b>0)的离心率,点(2,)在C上,可得,,解得a2=8,b2=4,所求椭圆C方程为:.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),把直线y=kx+b代入可得(2k2+1)x2+4kbx+2b2﹣8=0,故x M==,y M=kx M+b=,于是在OM的斜率为:K OM==,即K OM•k=.∴直线OM的斜率与l的斜率的乘积为定值.【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力.21.设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】26:开放型;53:导数的综合应用.【分析】(Ⅰ)先求导,再分类讨论,根据导数即可判断函数的单调性;(2)先求出函数的最大值,再构造函数(a)=lna+a﹣1,根据函数的单调性即可求出a的范围.【解答】解:(Ⅰ)f(x)=lnx+a(1﹣x)的定义域为(0,+∞),∴f′(x)=﹣a=,若a≤0,则f′(x)>0,∴函数f(x)在(0,+∞)上单调递增,若a>0,则当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,所以f(x)在(0,)上单调递增,在(,+∞)上单调递减,(Ⅱ),由(Ⅰ)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=取得最大值,最大值为f()=﹣lna+a﹣1,∵f()>2a﹣2,∴lna+a﹣1<0,令g(a)=lna+a﹣1,∵g(a)在(0,+∞)单调递增,g(1)=0,∴当0<a<1时,g(a)<0,当a>1时,g(a)>0,∴a的取值范围为(0,1).【点评】本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题.四、选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【考点】N4:相似三角形的判定.【专题】26:开放型;5F:空间位置关系与距离.【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC﹣S△AEF计算即可.【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.五、选修4-4:坐标系与参数方程23.(10分)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2cosθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.六、选修4-5不等式选讲24.(10分)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【考点】29:充分条件、必要条件、充要条件;R6:不等式的证明.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.。

2015年高考新课标全国Ⅱ文科数学试题及答案解析

2015年高考新课标全国Ⅱ文科数学试题及答案解析

2015年普通高等学校招生全国统一考试(新课标II )数学(文科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2015年新课标全国Ⅱ,文1】已知集合{}12A x x =-<<,{}03B x x =<<,则A B = ( )(A )()1,3- (B )()1,0- (C )()0,2 (D )()2,3【答案】A 【解析】因为{}12A x x =-<<,{}03B x x =<<,所以{}13A B x x =-<< ,故选A .(2)【2015年新课标全国Ⅱ,文2】若a 为实数,且2i 3i 1ia +=++,则=a ( ) (A )-4 (B )-3 (C )3 (D )4【答案】D【解析】由已知得()()2i 1i 3i 24i 4a a +=++=+⇒=,故选D . (3)【2015年新课标全国Ⅱ,文3】根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )(A )逐年比较:2008年减少二氧化硫排放量的效果最显著(B )2007年我国治理二氧化硫排放显现成效(C )2006年以来我国二氧化硫年排放量显减少趋势(D )2006年以来我国二氧化硫年排放量与年份正相关【答案】D【解析】由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关. (4)【2015年新课标全国Ⅱ,文4】向量()1,1a =- ,()1,2b =- ,则(2)a b a += ( )(A )-1 (B )0 (C )1 (D )2【答案】C 【解析】由题意可得22a = ,3a b ⋅=- ,所以()222431a b a a a b +⋅=+⋅=-= ,故选C . (5)【2015年新课标全国Ⅱ,文5】设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( )(A )5 (B )7 (C )9 (D )11【答案】A【解析】在等差数列中,因为1353a a a ++=,所以15353()51,552a a a S a +⨯====,故选A .(6)【2015年新课标全国Ⅱ,文6】一个正方形被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )(A )18 (B )17 (C )16 (D )15【答案】D【解析】由三视图得,在正方体1111ABCD A B C D -中,截去四面体111A A B D -,如图所示,设正方体棱长为a ,则11133111326A A B D V a a -=⨯=,故剩余几何体体积为3331566a a a -=,所以截去部分体积与剩余部分体积的比值为15.(7)【2015年新课标全国Ⅱ,文7】已知三点(10),(0(2A B C ,,则ABC ∆外接圆的圆心到原点的距离为( )(A )53(B (C (D )43 【答案】B【解析】根据题意,ABC ∆是等边三角形,设外接圆的圆心为D ,则D ⎛ ⎝⎭所以,OD ===故选B .(8)【2015年新课标全国Ⅱ,文8】右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =( )(A )0 (B )2 (C )4 (D )14【答案】B【解析】程序在执行过程中,a ,b 的值依次为14a =,18b =,4b =,10a =;6a =;2a =;2b =,此时2a b ==程序结束,输出a 的值为2,故选B .(9)【2015年新课标全国Ⅱ,文9】已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )(A )2 (B )1 (C )12 (D )18【答案】C【解析】因为{}n a 满足114a =,3544(1)a a a =-,所以,2444(1)a a =-,解得42a =,又341a a q =,所以2q =,所以2111242a a q ==⨯=,故选C . (10)【2015年新课标全国Ⅱ,文10】已知B A ,是球O 的球面上两点,90AOB ∠=︒,C 为该球面上的动点.若三棱锥O ABC -体积的最大值为36,则球O 的表面积为( )(A )36π (B )64π (C )144π (D )256π【答案】C【解析】如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯==,故6R =,则 球O 的表面积为24144S R ππ==,故选C .(11)【2015年新课标全国Ⅱ,文11】如图,长方形的边2AB =,1BC =,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=,将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则()y f x =的图像大致为( )(A ) (B ) (C ) (D )【答案】B【解析】解法一:由已知得,当点P 在BC 边上运动时,即0x π≤≤时,tan PA PB x +,当点P 在CD 边上运动时,即344x ππ≤≤,2x π≠时,PA PB +2x π=时,PA PB +=当点P 在AD 边上运动时,即34x ππ≤≤,tan PA PB x +,从点P 的运动过程可以看出,轨迹关于直线2x π=对称,且42f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,且轨迹非线型,故选B .解法二:排除法:由题意可知2f π⎛⎫= ⎪⎝⎭4f π⎛⎫= ⎪⎝⎭24f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,排除C 和D ,当 34x ππ≤≤,()1tan cos f x x x =-+,可知3,4x ππ⎡⎤∈⎢⎥⎣⎦时,图像不是线段,可排除A ,故选B . (12)【2015年新课标全国Ⅱ,文12】设函数21()ln(1||)1f x x x =+-+,则使得()(21)f x f x >-成立的x 的取值 范围是( )(A )1,13⎛⎫ ⎪⎝⎭(B )()1,1,3⎛⎫-∞+∞ ⎪⎝⎭ (C )11,33⎛⎫- ⎪⎝⎭ (D )11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭ 【答案】A【解析】因为函数21()ln(1)1f x x x =+-+是偶函数,[0,)x ∈+∞时函数是增函数,()(21)f x f x >- ,21x x ∴>-, 22(21)x x ∴>-,解得113x <<,故选A . 第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上(13)【2015年新课标全国Ⅱ,文13】已知函数()32f x ax x =-的图像过点()1,4-,则a =______.【答案】2-【解析】由()32f x ax x =-可得()124f a -=-+=,所以2a =-.(14)【2015年新课标全国Ⅱ,文14】若x ,y 满足约束条件50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩,则2z x y =+的最大值为__ ____.【答案】8【解析】不等式组50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩表示的可行域是以()1,1,()2,3,()3,2为顶点的三角形区域,2z x y =+的最大值必在顶点处取得,经验算,()3,2时,max 8z =.(15)【2015年新课标全国Ⅱ,文15】已知双曲线过点(,且渐近线方程为12y x =±,则该双曲线的标准方程为_______. 【答案】2214x y -= 【解析】设双曲线的方程为224(0)x y k k -=≠,点4(代入方程,解得4k =,所以双曲线2214x y -=. (16)【2015年新课标全国Ⅱ,文16】已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a = _______.【答案】8 【解析】1'1y x=+,所以切线的斜率为2,切线方程为21y x =-,将21y x =-与2(2)1y ax a x =+++联立得 220ax ax ++=,由280a a ∆=-=,解得8a =或0a =.0a =时,曲线为21y x =+与切线平行,不符,所以8a =.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2015年新课标全国Ⅱ,文17】(本小题满分12分)ABC ∆中,D 是BC 上的点,AD 平分BAC ∠,2BD DC =.(Ⅰ)求CB ∠∠sin sin ; (Ⅱ)若60BAC ∠=︒,求B ∠.解:(Ⅰ)由正弦定理得sin sin B AC C AB ∠=∠,再由三角形内角平分线定理得12AC DC AB BD ==,∴sin 1sin 2B C ∠=∠. (Ⅱ)60BAC ∠=︒ ,120B C ∴∠+∠=︒,由(Ⅰ)得sin 1sin 2B C ∠=∠,∴所以sin 2sin C B ∠=∠, ∴sin(120)2sin B B ︒-∠=,展开得tan B ∠=,30B ∴∠=︒. (18)【2015年新课标全国Ⅱ,文18】(本小题满分12分)某公司为了了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频率分布表.均值及分散程度.(不要求计算出具体值,给出结论即可)B 地区用户满意度评分的频率分布直方图解:(Ⅰ)B 地区频率分布直方图如图所示.通过两地区用户满意度评分的频率分布直方图可以看出,B 地区用户满意度评分的平均值高于A 地区用户满意度评分的平均值;B 地区用户满意度评分比较集中,而A 地区用户满意度评分比较分散.(Ⅱ)A 地区用户满意度等级为不满意的概率大.记A C 表示事件:“A地区用户满意度等级为不满意”;A C 表示事件:“B 地区用户满意度等级为不满意”.由直方图得()A P C =()0.010.020.03100.6++⨯=,()B P C =()0.0050.02100.25+⨯=,所以A 地区用户满意度等级为不满意的概率大.(19)【2015年新课标全国Ⅱ,文19】(本小题满分12分)如图,长方体1111ABCD A B C D -中,16AB =,10BC =,18AA =,点E ,F 分别在11A B ,11D C 上,114A E D F ==.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说明画法和理由);B 地区用户满意度评分的频率分布直方图频率组距(Ⅱ)求平面α把该长方体分成的两部分体积的比值.解:(Ⅰ)交线围成的正方形EHGF 如图:(Ⅱ)作EM AB ⊥,垂足为M ,则14AM A E ==,112EB =,18EM AA ==,因此EHGF 是正方形,所以10EH EF BC ===,于是6MH =,10AH =,6HB =.因为长方体被平面α分成两个高位10的直棱柱,所以其体积比值为111241076129AMEA EMBB S V V S +===+(97也正确). (20)【2015年新课标全国Ⅱ,文20】(本小题满分12分)已知椭圆()2222:10x y C a b a b+=>>的离心,点(在C 上. (Ⅰ)求C 的方程;(Ⅱ)直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M ,证明:直线OM 的斜率与直线l 的斜率乘积为定值. 解:=22421a b +=,解得228,4a b ==.所以C 的方程为22184x y +=. (Ⅱ)设直线1122:(0,0),(,),(,),(,)M M l y kx b k b A x y B x y M x y =+≠≠,将y kx b =+代入22184x y +=得222(21)4280k x kbx b +++-=, 故12222,22121m m m x x kb b x y k x b k k +-===+=++ 于是直线OM 的斜率12m om m y k x k ==-, 1.2om k k =-,所以直线OM 的斜率与直线l 的斜率的乘积为定值. (21)【2015年新课标全国Ⅱ,文21】(本小题满分12分)已知()()ln 1f x x a x =+-.(Ⅰ)讨论()f x 的单调性;(Ⅱ)当()f x 有最大值,且最大值为22a -时,求a 的取值范围.解:(Ⅰ)()f x 的定义域为(0,)+∞,'1()f x a x=- 若0,a ≤则'()0,f x >所以()f x 在(0,)+∞单调递增.若0a >,则当1(0,)x a ∈时,'()0f x >,当1(,)x a∈+∞时,'()0f x <, 所以()f x 在1(0,)a 单调递增,在1(,)a +∞单调递减. (Ⅱ)由(Ⅰ)知,当0a ≤时,()(0,)f x +∞在无最大值;当0a >时,()f x 在1x a=取得最大值, 最大值为111()1()(1)11f n a na a a a a =+-=-+-,因此1()22f a a>-等价于110na a +-< 令()11g a na a =+-,则()g a 在(0,)+∞单调递增,(1)0g =,于是,当01a <<时()0g a <;当1a >时,()0g a >,因此,a 的取值范围是(0,1).请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个 题目计分,做答时请写清题号.(22)【2015年新课标全国Ⅱ,文22】(本题满分10分)(选修4-1:几何证明选讲)如图,O 为等腰三角形ABC 内一点,O 与ABC ∆的底边BC 交于M ,N 两点,与底边上的高AD 交于点G ,且与AB ,AC 分别相切于E ,F 两点.(Ⅰ)证明://EF BC ;(Ⅱ)若AG 等于O的半径,且AE MN ==EBCF 的面积.解:(Ⅰ)由于ABC ∆是等腰三角形,AD BC ⊥,所以AD 是CAB ∠的平分线.又因为O 分别与AB ,AC 相切于点E ,F ,所以AE AF =,故AD EF ⊥,从而//EF BC .(Ⅱ)由(Ⅰ)知,AE AF =,AD EF ⊥,故AD 是EF 的垂直平分线.又EF 为O 的弦,所以O 在AD 上.连结,OE OM ,则OE AE ⊥.由AG 等于O 的半径得2AO OE =,所以30OAE ∠= ,因此ABC ∆和AEF ∆都是等边三角形.因为AE =,所以4,2AO OE ==.因为12,2OM OE DM MN ===1OD =,于是5,AD AB == 所以四边形EBCF的面积为221122⨯-⨯= (23)【2015年新课标全国Ⅱ,文23】(本小题满分10分)(选修4-4:坐标系与参数方程)在直角坐标系xOy中,曲线1cos :sin x t C y t αα=⎧⎨=⎩(t 为参数,0t ≠),其中0απ≤<.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2:2sin C ρθ=,3:C ρθ=.(Ⅰ)求2C 与3C 交点的直角坐标;(Ⅱ)若1C 与2C 相交于点A ,1C 与3C 相交于点B ,求AB 的最大值.解:(Ⅰ)曲线2C 的直角坐标方程为2220x y y +-=,曲线3C的直角坐标方程为220x y +-=.联立2222200x y y x y ⎧+-=⎪⎨+-=⎪⎩,解得00x y =⎧⎨=⎩,或32x y ⎧=⎪⎪⎨⎪=⎪⎩,所以2C 与3C 交点的直角坐标为(0,0)和3)2. (Ⅱ)曲线1C 的极坐标方程为(,0)R θαρρ=∈≠,其中0απ≤<, 因此A 的极坐标为(2sin ,)αα,B的极坐标为,)αα,所以|||2sin |4|sin()|3AB πααα=-=-,当56πα=时,||AB 取得最大值,最大值为4. (24)【2015年新课标全国Ⅱ,文24】(本小题满分10分)(选修4-5:不等式选讲)设a ,b ,c ,d 均为正数,且a b c d +=+,证明:(Ⅰ)若ab cd >>a b c d -<-的充要条件.解:(Ⅰ)因为22a b c d =++=++,由题设,a b c d ab cd +=+>得22>(Ⅱ)(i )若||||a b c d -<-,则22()()a b c d -<-,即22()4()4a b ab c d cd +-<+-,因为a b c d +=+,所以ab cd >>(ii22>,即a b c d ++++因为a b c d +=+,所以ab cd >,于是2222()()4()4()a b a b ab c d cd c d -=+-<+-=-.因此||||a b c d -<-||||a b c d -<-的充要条件.。

【数学】2015年高考真题——新课标Ⅱ卷(文)(word版含解析)

【数学】2015年高考真题——新课标Ⅱ卷(文)(word版含解析)

2015年普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。

写在本试卷上无效。

3.答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷一、 选择题:本大题共12小题。

每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。

1.已知集合}21|{<<-=x x A ,}30|{<<=x x B ,则A ∪B=( )A. )3,1(-B. )0,1(-C. )2,0(D. )3,2( 2.若a 为实数,且i iai+=++312,则=a ( ) A. 4- B. 3- C. 3 D. 43. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A.逐年比较,2008年减少二氧化碳排放量的效果显著B.2007年我国治理二氧化碳排放显现成效C.2006年以来我国二氧化碳年排放量呈逐渐减少趋势D.2006年以来我国二氧化碳年排放量与年份正相关 4.向量a =(1,-1) b =(-1,2),则(2a +b )⋅a = ( )A. 1-B. 0C. 1D.2 5. 设n S 是数列}{n a 的前n 项和,若3531=++a a a ,则=5S ( ) A. 5 B. 7 C. 9 D. 116. 一个正方体被一个平面截取一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( ) A.81 B. 71 C. 61 D. 517.已知三点)0,1(A ,)3,0(B ,)3,2(C ,则ABC ∆外接圆的圆心到原点的距离为( )A.35B. 321C. 352 D. 348.右边程序框图的算法思路源于我国古代数学名著《九章算术》中“更相减损术”.执行该程序框图,若输入的a 、b 分别为14、18,则输出的=a ( )A. 0B. 2C. 4D. 149.已知等比数列}{n a 满足411=a ,)1(4453-=a a a ,则=2a ( ) A. 2 B. 1 C. 21 D. 8110.已知A 、B 是球O 的球面上两点, 90=∠AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为( )A. π36B. π64C. π144D. π25611.如图,长方形ABCD 的边2=AB ,1=BC ,O 是AB 的中点,点P 沿着BC 、CD 与DA 运动,记x BOP =∠.将动点P 到A 、B 两点距离之和表示为x 的函数)(x f ,则)(x f y =的图象大致为( )12. 设函数211|)|1ln()(x x x f +-+=,则使得)12()(->x f x f 成立的x 的取值范围是( )A. )1,31( B. ),1()31,(+∞-∞U C. )31,31(- D. ),31()31,(+∞--∞U 二.填空题:共4小题,每小题5分.13. 已知函数x ax x f 2)(3-=的图象过点)4,1(-,则=a .14.若x 、y 满足约束条件⎪⎩⎪⎨⎧≤+-≥--≤-+01201205y x y x y x ,则y x z +=2的最大值为 .15.已知双曲线过点)3,4(,且渐近线方程为x y 21±=,则该双曲线的标准方程为 . 16.已知曲线x x y ln +=在点)1,1(处的切线与曲线1)2(2+++=x a ax y 相切,则=a .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17、(本小题满分12分)ΔABC 中,D 是BC 上的点,AD 平分∠BAC ,BD=2DC. (Ⅰ)求sin sin BC∠∠;(Ⅱ)若∠BAC=60°,求∠B.18、(本小题满分12分)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得分A 地区用户满意评分的频率分布直方图和B 地区用户满意度评分的频数分布表.B 地区用户满意度评分的频数分布表(Ⅰ)在答题卡上作出B 地区用户满意度评分的频数分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级;估计哪个地区用户的满意度等级为不满意的概率大?说明理由.19、(本小题满分12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,分别在A1B1, D1C1上,A1E= D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说明画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.20、(本小题满分12分)已知椭圆C :22221x y a b +=(a >b >0)的离心率为2,点(2C 上.(Ⅰ)求C 的方程.(Ⅱ)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M.直线OM 的斜率与直线l 的斜率的乘积为定值.21、(本小题满分12分) 已知函数f (x )=ln x +a (1- x ) (Ⅰ)讨论f (x )的单调性;(Ⅱ)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号。

2015年普通高等学校招生全国统一考试 全国卷2 数学试卷含答案(文科)

2015年普通高等学校招生全国统一考试 全国卷2 数学试卷含答案(文科)

2015年普通高等学校招生全国统一考试(课标全国卷Ⅱ)文数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=()A.(-1,3)B.(-1,0)C.(0,2)D.(2,3)2.若a为实数,且=3+i,则a=( )A.-4B.-3C.3D.43.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.向量a=(1,-1),b=(-1,2),则(2a+b)·a=()A.-1B.0C.1D.25.设S n是等差数列{a n}的前n项和.若a1+a3+a5=3,则S5=( )A.5B.7C.9D.116.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A. B. C. D.7.已知三点A(1,0),B(0,),C(2,),则△ABC外接圆的圆心到原点的距离为( )A. B. C. D.8.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=( )A.0B.2C.4D.149.已知等比数列{a n}满足a1=,a3a5=4(a4-1),则a2=( )A.2B.1C.D.10.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为( )A.36πB.64πC.144πD.256π11.如图,长方形ABCD的边AB=2,BC=1,O是AB的中点.点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为( )12.设函数f(x)=ln(1+|x|)-,则使得f(x)>f(2x-1)成立的x的取值范围是( )A.,B.- ,∪(1,+ )C.-,D.- ,-∪,第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.已知函数f(x)=ax3-2x的图象过点(-1,4),则a= .14.若x,y满足约束条件-,--,-,则z=2x+y的最大值为.15.已知双曲线过点(4,),且渐近线方程为y=±x,则该双曲线的标准方程为.16.已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a= .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC.(Ⅰ)求;(Ⅱ)若∠BAC=60°,求∠B.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.B地区用户满意度评分的频数分布表(Ⅰ)作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级:估计哪个地区用户的满意度等级为不满意的概率大?说明理由.如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说明画法和理由);(Ⅱ)求平面α把该长方体分成的两部分体积的比值.20.(本小题满分12分)已知椭圆C:+=1(a>b>0)的离心率为,点(2,在C上.(Ⅰ)求C的方程;(Ⅱ)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.21.(本小题满分12分)已知函数f(x)=ln x+a(1-x).(Ⅰ)讨论f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.请从下面所给的22、23、24三题中选定一题作答,多答按所答第一题评分.22.(本小题满分10分)选修4—1:几何证明选讲如图,O为等腰三角形ABC内一点,☉O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(Ⅰ)证明:EF∥BC;(Ⅱ)若AG等于☉O的半径,且AE=MN=2求四边形EBCF的面积.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy中,曲线C1:,(t为参数,t≠0),其中0≤α<π.在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sin θ,C3:ρ=2cos θ. (Ⅰ)求C2与C3交点的直角坐标;(Ⅱ)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.24.(本小题满分10分)选修4—5:不等式选讲设a,b,c,d均为正数,且a+b=c+d.证明:(Ⅰ)若ab>cd,则++(Ⅱ)+>+是|a-b|<|c-d|的充要条件.2015年普通高等学校招生全国统一考试(课标全国卷Ⅱ)一、选择题1.A 因为A=(-1,2),B=(0,3),所以A∪B=(-1,3),故选A.2.D 由已知得2+ai=(1+i)(3+i)=2+4i,所以a=4,故选D.3.D 由已知柱形图可知A、B、C均正确,2006年以来我国二氧化硫年排放量呈减少趋势,所以排放量与年份负相关,∴D不正确.4.C 因为2a+b=2(1,-1)+(-1,2)=(2,-2)+(-1,2)=(1,0),所以(2a+b)·a=(1,0)·(1,-1)=1×1+0×(-1)=1.故选C.5.A ∵{a n}为等差数列,∴a1+a5=2a3,得3a3=3,则a3=1,∴S5=()=5a3=5,故选A.6.D 如图,由已知条件可知,在正方体ABCD-A1B1C1D1中,截去三棱锥A-A1B1D1后剩余的部分即为题中三视图对应的几何体,设该正方体的棱长为a,则截去部分的体积为a3,剩余部分的体积为a3-a3=a3.它们的体积之比为.故选D.评析本题主要考查三视图和体积的计算;考查空间想象能力.7.B 在平面直角坐标系xOy中画出△ABC,易知△ABC是边长为2的正三角形,其外接圆的圆心为D,.因此|OD|===.故选B.8.B 执行程序框图:当a=14,b=18时,a<b,则b=18-14=4;当a=14,b=4时,a>b,则a=14-4=10;当a=10,b=4时,a>b,则a=10-4=6;当a=6,b=4时,a>b,则a=6-4=2;当a=2,b=4时,a<b,则b=4-2=2,此时a=b=2,输出a为2,故选B.评析本题主要考查程序框图,属容易题.9.C 设{a n}的公比为q,由等比数列的性质可知a3a5=,∴=4(a4-1),即(a4-2)2=0,得a4=2,则q3===8,得q=2,则a2=a1q=×2=,故选C.10.C 因为△AOB的面积为定值,当OC垂直于平面AOB时,三棱锥O-ABC的体积取得最大值.由R3=36得R=6.从而球O的表面积S=4πR2=144π.故选C.11.B 当点P与C、D重合时,易求得PA+PB=1+;当点P为DC中点时,PA+PB=2PA=2.显然,1+,故当x=时, f(x)不取最大值,故C、D选项错误.当x∈,时, f(x)=tan x+,不是一次函数,排除A.故选B.评析做选择题可以取特殊位置进行研究.12.A 当x>0时,f(x)=ln(1+x)-,∴f '(x)=+()>0,∴f(x)在(0,+ )上为增函数,∵f(-x)=f(x),∴f(x)为偶函数,由f(x)>f(2x-1)得f(|x|)>f(|2x-1|),∴|x|>|2x-1|,即3x2-4x+1<0,解得<x<1,故选A.二、填空题13.答案-2解析因为函数f(x)=ax3-2x的图象过点(-1,4),所以4=a×(-1)3-2×(-1),故a=-2. 14.答案8解析由约束条件画出可行域(如图所示).解方程组-,-得A(3,2).当动直线2x+y-z=0经过点A(3,2)时,z max=2×3+2=8.评析本题考查了简单的线性规划,考查了数形结合的思想方法.15.答案-y2=1解析根据渐近线方程为x±2y=0,可设双曲线方程为x2-4y2=λ(λ≠0).因为双曲线过点(4,),所以42-4×()2=λ,即λ=4.故双曲线的标准方程为-y2=1.16.答案8解析令f(x)=x+ln x,求导得f '(x)=1+, f '(1)=2,又f(1)=1,所以曲线y=x+ln x在点(1,1)处的切线方程为y-1=2(x-1),即y=2x-1.设直线y=2x-1与曲线y=ax2+(a+2)x+1的切点为P(x0,y0),则y'|=2ax0+a+2=2,得a(2x0+1)=0,∴a=0或x0=-,又a+(a+2)x0+1=2x0-1,即a+ax0+2=0,当a=0时,显然不满足此方程,∴x0=-,此时a=8.评析本题主要考查导数的几何意义,能够利用点斜式求出切线方程是解题关键.三、解答题17.解析(Ⅰ)由正弦定理得=,=.因为AD平分∠BAC,BD=2DC,所以==.(Ⅱ)因为∠C=180°-(∠BAC+∠B),∠BAC=60°,所以sin∠C=sin(∠BAC+∠B)=cos∠B+sin∠B.由(Ⅰ)知2sin∠B=sin∠C,所以tan∠B=,即∠B=30°.评析本题考查了正弦定理;考查了解三角形的能力.属中档题.18.解析(Ⅰ)通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(Ⅱ)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”;C B表示事件:“B地区用户的满意度等级为不满意”.由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,P(C B)的估计值为(0.005+0.02)×10=0.25.所以A地区用户的满意度等级为不满意的概率大.19.解析(Ⅰ)交线围成的正方形EHGF如图:(Ⅱ)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是MH=-=6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为也正确.20.解析(Ⅰ)由题意有-=,+=1,解得a2=8,b2=4.所以C的方程为+=1.(Ⅱ)设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M).将y=kx+b代入+=1得(2k2+1)x2+4kbx+2b2-8=0.故x M==-,y M=k·x M+b=.于是直线OM的斜率k OM==-,即k OM·k=-.所以直线OM的斜率与直线l的斜率的乘积为定值.评析本题考查了椭圆的方程、直线与椭圆的位置关系;考查了定值问题的解题方法.利用韦达定理解决线段的中点是求解关键.21.解析(Ⅰ)f(x)的定义域为(0,+ ),f '(x)=-a.若a≤0,则f '(x)>0,所以f(x)在(0,+ )上单调递增.若a>0,则当x∈,时,f '(x)>0;当x∈,时,f '(x)<0.所以f(x)在,上单调递增,在,上单调递减.(Ⅱ)由(Ⅰ)知,当a≤0时,f(x)在(0,+ )上无最大值;当a>0时,f(x)在x=处取得最大值,最大值为f=ln+a-=-ln a+a-1.因此f>2a-2等价于ln a+a-1<0.令g(a)=ln a+a-1,则g(a)在(0,+ )上单调递增,g(1)=0.于是,当0<a<1时,g(a)<0;当a>1时,g(a)>0.因此,a的取值范围是(0,1).22.解析(Ⅰ)由于△ABC是等腰三角形,AD⊥BC,所以AD是∠CAB的平分线.又因为☉O分别与AB,AC相切于点E,F,所以AE=AF,故AD⊥EF.从而EF∥BC.(Ⅱ)由(Ⅰ)知,AE=AF,AD⊥EF,故AD是EF的垂直平分线.又EF为☉O的弦,所以O在AD上. 连结OE,OM,则OE⊥AE.由AG等于☉O的半径得AO=2OE,所以∠OAE=30°.因此△ABC和△AEF都是等边三角形.因为AE=2,所以AO=4,OE=2.因为OM=OE=2,DM=MN=,所以OD=1.于是AD=5,AB=.所以四边形EBCF的面积为××-×(2)2×=.评析本题考查了直线和圆的位置关系,考查了圆的初步知识.23.解析(Ⅰ)曲线C 2的直角坐标方程为x2+y2-2y=0,曲线C3的直角坐标方程为x2+y2-2x=0.联立-,-,解得,或,.所以C2与C3交点的直角坐标为(0,0)和,.(Ⅱ)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.因此A的极坐标为(2sin α,α),B的极坐标为(2cos α,α).所以|AB|=|2sin α-2cos α|=4-.当α=时,|AB|取得最大值,最大值为4.评析本题考查了极坐标和参数方程,考查了最值问题.利用极径的几何意义建立关系式是求解关键.24.证明(Ⅰ)因为(+)2=a+b+2,(+)2=c+d+2,由题设a+b=c+d,ab>cd得(+)2>(+)2.因此+>+.(Ⅱ)(i)若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(Ⅰ)得++.(ii)若++则(+2>(+)2,即a+b+2因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,+>+是|a-b|<|c-d|的充要条件.评析本题主要考查不等式证明,对带有根号、绝对值的不等式,平方作差比较是常用的方法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. B. C. D.
7、解:根据题意,三角形ABC是等边三角形,设外接圆的圆心为D,则D(1, )所以,
故选B.
(8)右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”。执行该程序框图,若输入的a,b分别为14,18,则输出的a为
是 否
是 否
A. 0 B.2C. 4 D.14
B地区评分均值为55x0.05+65x0.2+75x0.35+85x0.25+95x0.15=76.5分
A地区用户评价意见较分散,B地区用户评价意见相对集中。
(2)A地区的用户不满意的概率为0.3+0.2+0.1=0.6,
B地区的用户不满意的概率为0.05+0.20=0.25,
所以A地区的用户满意度等级为不满意的概率大。
3、选D
(4)已知向量
A. -1 B.0C. 1 D. 2
4、选B
(5)设 若
A. 5 B.7C. 9 D. 11
5、解:在等差数列中,因为
(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为
A. B. C. D.
6、解:如图所示,选D.
(7)已知三点 ,则 外接圆的圆心到原点的距离为
B地区用户满意度评分的频数分布表
满意度评分分组
[50,60)
[60,70)
[70,80)
[80,90)
[90,100]
频数
2
8
14
10
6
(I)在答题卡上作出B地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度,(不要求计算出具体值,给出结论即可)
(II)根据用户满意度评分,将用户的满意度评分分为三个等级:
(3)根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下
结论中不正确的是
A.逐年比较,2008年减少二氧化碳排放量的效果最显著;
B.2007年我国治理二氧化碳排放显现成效;
C.2006年以来我国二氧化碳排放量呈减少趋势;
D.2006年以来我国二氧化碳年排放量与年份正相关。
10、解:因为A,B都在球面上,又 所以
三棱锥的体积的最大值为 ,所以R=6,所以球的表面积为
S= π,故选C.
(11)如图,长方形的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD,与DA运动,记
11、解:如图,当点P在BC上时,
当 时取得最大值 ,
以A,B为焦点C,D为椭圆上两定点作椭圆,显然,当点P在C,D之间移动时PA+PB< .
满意度评分
低于70分
70分到89分
不低于90分
满意度等级
不满意
满意
非常满意
估计那个地区的用户的满意度等级为不满意的概率大,说明理由.
18、解:(1)B地区频率分布直方图如图所示
比较A,B两个地区的用户,由频率分布直方图可知:
A地区评分均值为45x0.1+55x0.2+65x0.3+75x0.2+85x0.15+95x0.05=67.5分
(II)两部分几何体都是高为10的四棱柱,所以体积之比等于底面积之比,即
20.(本小题满分12分)
已知椭圆 的离心率为 ,点 在C上.
(I)求C的方程;
(II)直线l不经过原点O,且不平行于坐标轴,l与C有两个交点A,B,线段AB中点为M,证明:直线OM的斜率与直线l的斜率乘积为定值.
20、解、(I)如图所示,由题设得
又点的坐标满足椭圆的方程,所以 ,
联立解得:
(II)设A,B两点的坐标为
上面两个式子相减得:
(定值)
21. (本小题满分12分)已知 .
(I)讨论 的单调性;
(II)当 有最大值,且最大值大于 时,求a的取值围.
21、解:已知 .
(II)由(1)知,当
请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号
又函数 不是一次函数,故选B.
(12)设函数
A. B. C. D.
12、解:因为函数
故选A.
第二卷
二、填空题:本大题共4个小题,每小题5分
(13)已知函数 。
13、答:a=-2
(14)若x,y满足约束条件 。
14、解:当x=3,y=2时,z=2x+y取得最大值8.
(15)已知双曲线过点 ,且渐近线方程为 ,则该双曲线的标准方程为
19. (本小题满分12分)如图,长方体 中AB=16,BC=10, ,点E,F分别在 上, 过点E,F的平面 与此长方体的面相交,交线围成一个正方形.
(I)在图中画出这个正方形(不必说明画法与理由);
(II)求平面 把该长方体分成的两部分体积的比值.
19、解:(I)在AB上取点M,在DC上取点N,使得AM=DN=10,然后连接EM,MN,NF,即组成正方形EMNF,即平面α。
2015普通高等学校招生全ຫໍສະໝຸດ 统一考试Ⅱ卷文科数学第一卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A=
A.(-1,3) B.(-1,0 ) C.(0,2) D.(2,3)
1、选A
(2)若a实数,且
A.-4
B.-3C. 3 D. 4
2、解:因为 故选D
22.(本小题满分10分)选修4-1:几何证明选讲
如图O是等腰三角形ABC一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高交于点G,且与AB,AC分别相切于E,F两点.
(I)证明 ∥ .
(II)若AG等于⊙O的半径,且 ,求四边形EDCF的面积.

15、解:设双曲线的方程为
(16)已知曲线 在点(1,1)处的切线与曲线

16、解:
三、解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)
(Ⅰ)求 (Ⅱ)若
17、解:(Ⅰ)由正弦定理得
再由三角形角平分线定理得
(Ⅱ)
18. (本小题满分12分)某公司为了了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频率分布表.
8、解:18-14=4,14=4=10,10-4=6,6-4=2,
4-2=2,所以a=b=2,故选B.
(9)已知等比数列 C
A. 2 B.1C. D.
9、解:因为 所以,
故选C.
(10)已知A,B是球O的球面上两点, 若三棱锥O-ABC
体积的最大值为36,则球O的表面积为
A.36πB.64πC.144πD.256π
相关文档
最新文档