结构力学第二章静定梁详解

合集下载

结构力学静定梁

结构力学静定梁
2
剪力,荷载集度之间的微分关系 五、弯矩,剪力 荷载集度之间的微分关系 弯矩 剪力
q
A B
M ( x) qdx
N (x)
M + dM
N + dN
x
l
微分关系: 微分关系: dQ ( x ) / dx = − q ( x )
Q(x)
Q + dQ
dM ( x ) / dx = Q ( x ) d 2 M ( x ) / dx 2 = − q ( x ) Pl 1.无荷载分布段(q=0),Q图 1.无荷载分布段 无荷载分布段(q=0),Q图 为水平线,M图为斜直线 图为斜直线. 为水平线,M图为斜直线. M图
B
FBy = ql / 2(↑)
FAx FAy
l
FBy
∑ F = 0, N = 0 ∑ F = 0, Q = 0 ∑ M = 0, M = ql
x C y C c C
/8 (下侧受拉 下侧受拉) 下侧受拉
2
四、作内力图的基本方法 内力方程式: 内力方程式: M = M ( x) 弯矩方程式 Q = Q( x) 剪力方程式 例:作图示粱内力图 N = N ( x) 轴力方程式
例: 作内力图 铰支座有外 力偶, 力偶,该截面弯矩 等于外力偶. 等于外力偶.
M图 Q图 无剪力杆的 弯矩为常数. 弯矩为常数. M图 Q图 自由端有外 力偶, 力偶,弯矩等于外 力偶
练习: 利用上述关系作弯矩图, 练习: 利用上述关系作弯矩图,剪力图
练习: 利用上述关系作弯矩图, 练习: 利用上述关系作弯矩图,剪力图
图中: 段即为线弹性阶段 图中:OA段即为线弹性阶段 MB MA AB段为非线性弹性阶段 段为非线性弹性阶段

03静定梁

03静定梁

3 静定梁
3kN m
A
【例3.4】作图示伸臂梁的弯矩图。 【解】 (1)计算控制截面弯矩
M A 3kN m (上侧受拉)
4kN
C B
1kN/m
D
2.5m
3
(5)
2.5m
2
2m
M B 1 2 1 2kN m
(上侧受拉)
(0.5) 0.5
MD 0
(2)用分段叠加法作弯矩图
6 16 m) M (kN·
结构力学电子教程
3 静定梁
4kN m
【例】试求图示梁的弯矩图。 【解】 1、求支反力
RA 11kN( ) RD 23kN( )
10kN
B C
5kN/m
D E
4kN
A
2m
RA 11kN
4
2m
4m
2m
RD 23kN
8
2、定弯矩值
M A 4kN m (下侧受拉)
求支座反力:
ql M A 0, VB 2 ql M B 0, VA 2 X 0, H A 0
求内力:
结构力学电子教程
3 静定梁
结构力学电子教程
3 静定梁
1. 静定多跨梁的组成 承载的部分。
附属部分--不能独 立承载的部分。
3.4 静定多跨梁约束力计算与几何组成 基本部分--能独立
A
2.5
m) M (kN·
4kN
C
B
1kN/m
B D
1 M 4 5 5kN m 4
1 M 1 22 8 0.5kN m
结构力学电子教程
3 静定梁
16kN

结构力学课件-单跨静定梁的内力分析

结构力学课件-单跨静定梁的内力分析

FSK
ql 2
qx
cos
0
x
l
FNK
FAy sin
qx sin 0
FNK
ql 2
qx
sin
0
x
l
③作内力图
MK
ql 2
x
qx2 2
0
x
l
FSK
ql 2
qx
cos
0
x
l
ql sinFNKFra bibliotekql 2
qx
sin
0
x
l
2
ql 2 M图 8
ql cos 2
➢将斜梁与相应水平梁作比较:
q 'l
q 'l
2
2
q 'l tan 2
q 'l2
M图 8cos
FS图
q 'l tan
2
FN图
总结斜梁内力分析的特点:
➢截面内力的计算:截面法 ➢沿水平向布置的竖向荷载作用下,简支斜梁的支座反力和相应水平梁的
支座反力相同,弯矩图相同 ➢沿水平向布置的竖向荷载作用下,斜梁的剪力和轴力是相应水平梁剪力
13.805kN
M max 13.805kN.m
单选题 1分
静定结构在荷载作用下均会产生内力,而且内力大小与杆件截面尺 寸及截面材料均无关。
A 正确 B 错误
提交
四、 简支斜梁的计算 1、斜梁应用:楼梯、屋面斜梁、及具有斜杆的刚架结构中
简支斜梁
2、斜梁所受分布荷载
q q' A
沿水平方向均布荷 载q:活载(人群、 雪载)
Fy 0 FA 10 10 4 33.75 10 2 0 FA 36.25kN ()

结构力学二3-静定结构的内力计算

结构力学二3-静定结构的内力计算

以例说明如下
例 绘制刚架的弯矩图。 解:
E 5kN
由刚架整体平衡条件 ∑X=0 得 HB=5kN← 此时不需再求竖向反力便可 绘出弯矩图。 有:
30
20 20 75 45
40
0
MA=0 , MEC=0 MCE=20kN· m(外) MCD=20kN· m(外) MB=0 MDB=30kN· m(外) MDC=40kN· m(外)
有突变
铰或 作用处 自由端 (无m)
m
Q图
M图
水平线

⊖㊀
Q=0 处 突变值为P 如变号 无变化
有极值 尖角指向同P 有极值 有突变 M=0 有尖角
斜直线


利用上述关系可迅速正确地绘制梁的内力图(简易法)
简易法绘制内力图的一般步骤:
(1)求支反力。 (2)分段:凡外力不连续处均应作为分段点, 如集中力和集中力偶作用处,均布荷载两端点等。 (3)定点:据各梁段的内力图形状,选定控制 截面。如集中力和集中力偶作用点两侧的截面、均 布荷载起迄点等。用截面法求出这些截面的内力值, 按比例绘出相应的内力竖标,便定出了内力图的各 控制点。
说明:
(a)M图画在杆件受拉的一侧。 (b)Q、N的正负号规定同梁。Q、N图可画在杆的 任意一侧,但必须注明正负号。 (c)汇交于一点的各杆端截 面的内力用两个下标表示,例如: MAB表示AB杆A端的弯矩。 MAB
例 作图示刚架的内力图
RB↑
←HA
VA→
CB杆:
由∑ X=0 可得: M = CD RB=42kN↑ HA=48kN←, H (左) A=6×8=48kN← 由∑M144 VA=22kN↓ 48 A=0 可得: MEB=MEC=42×3 ↑ (2)逐杆绘M图 R=126kN = 126 · m (下) B 192 MDC=0 CD杆: M =42 × 6-20 × 3 由 ∑Y=0 可得: CB MCD=48kN·m(左) =192kN· m(下) VA=42-20=22kN↓

结构力学静定结构的内力计算图文

结构力学静定结构的内力计算图文

dM
q(x)
(1)微分关系 dx FQ
dx
dFQ q dx
q
FQ
M+d M
M d x FQ+d FQ
MA FQA
d 2M
q
Fy
dx2
FQ
m0 M
dx
M+ M
(2)增量关系
FQ+F Q
FQ Fy M m0
(3)积分关系 由dFQ = – q·d x
qy
FQB FQA
xB xA
q
y
dx
ቤተ መጻሕፍቲ ባይዱMB
静定结构内力计算过程中需注意的几点问题: (1)弯矩图习惯画在杆件受拉边、不用标注正负号,轴力图和剪力图可画 在杆件任一边,需要标注正负号。 (2)内力图要写清名称、单位、控制截面处纵坐标的大小,各纵坐标的长 度应成比例。 (3)截面法求内力所列平衡方程正负与内力正负是完全不同的两套符号系 统,不可混淆。
四、 分段叠加法作弯矩图
MA
q
MB
P
M
MA
M
MA
M
+
M
M M M
A
MA
MB
FNA
FyA MA
MB
Fy0A
MA
q q q
M M
B MB
FNB FyB
MB
Fy0B
MB
例:4kN·m
4kN
3m
3m
(1)集中荷载作用下
6kN·m
(2)集中力偶作用下
4kN·m 2kN·m
(3)叠加得弯矩图
4kN·m
4kN·m
§3-2 静定梁
❖ 静定梁分为静定单跨梁和静定多跨梁。单跨梁的结构形式有水平梁、斜

03结构力学1-静定梁2

03结构力学1-静定梁2
第三章 静定结构受力分析
什么是静定结构?
问题:静定结构受力还需要介绍?
qF
A
B
C
l/2
l/2
什么是静定结构?
问题:静定结构受力还需要介绍?
ql
q
ql
l l 2l
4l
2l l l
什么是静定结构?
问题:静定结构受力还需要介绍?
什么是静定结构?
问题:静定结构受力还需要介绍?
第三章
§3-1 静定梁受力分析 §3-2 静定钢架受力分析 §3-3 三角拱受力分析 §3-4 静定桁架受力分析 §3-5 组合结构受力分析 §3-6 静定结构总论
FQ ( x ) 1 ql 2
Fy

0, FQ(x)

1 2
ql
qx
8 1 ql
M 0, M (x) 1 qlx qx x
2
2
2
4.弯矩,剪力,荷载集度之间的微分关系
q FP
A
C
l/2
l/2
pdx
B
M(x) qdx
M(x)dM(x)
FN (x)
FN(x)dFN(x)
微分关系: dFQ (x) / dx q(x)
且凸向与荷载指向相同. 3.集中力作用处, FQ图有突变,且突变量等于力值; M图有尖点,且指向与荷载相同 4.集中力偶作用处
M图有突变,且突变量等于力偶值; FQ图无变化.
M图
Q图
例: 作内力图
铰支座有外 力偶,该截面弯矩 等于外力偶.
M图
FQ图
无剪力杆的 弯矩为常数.
M图 FQ图
自由端有外力偶, 弯矩等于外力偶
4
4

结构力学二三四章总结

结构力学二三四章总结

第二章静定梁与静定刚架§2-1 单跨静定梁一、概述1、单跨静定梁的结构形式:水平梁、斜梁及曲梁简支梁、悬臂梁及伸臂梁。

2、3个内力分量的规定:图示(注:1、附加增量;2、成对出现:作用力与反作用力;3、正负号统一)轴力N(截面上应力沿杆轴切线方向的合力):拉力+,压力-剪力Q(截面上应力沿杆轴法线方向的合力):以绕截面邻近小段隔离体顺时针旋转为+,反之为-弯矩M(截面上应力对截面形心的力矩):弯矩使杆件下部受拉时为正,上侧受拉时为负3、截面法、分离体、平衡方程:求指定截面的内力的基本方法。

图示将指定截面假想截开,切开后截面的内力暴露为外力,取任一局部作为隔离体,作隔离体受力图(荷载、反力、内力组成平面一般力系或平面汇交力系),由隔离体的平衡条件可以确定所求截面的三个内力。

平面一般力系平衡方程的三种形式。

注意:平衡方程的正负和内力的正负是完全不同性质的两套符号系统。

受力平衡条件:平面一般力系,平衡方程不同形式(正负号:同方向同符号)轴力=截面一边的所有外力沿杆轴切线方向的投影代数和;剪力=截面一边的所有外力沿杆轴法线方向的投影代数和;弯矩=截面一边的所有外力对截面形心的力矩代数和。

画隔离体受力图时,注意:(1)隔离体与其周围约束要全部截断,而以相应的约束力代替;(2)约束力要符合约束的性质。

截断链杆以轴力代替,截断受弯构件时以轴力、剪力及弯矩代替,去掉支座时要以相应的支座反力代替。

(3)隔离体是应用平衡条件进行分析的对象。

在受力图中只画隔离体本身所受到的力,不画隔离体施给周围的力;(4)不要遗漏力。

包括荷载及截断约束处的约束力;(5)未知力一般假设为正号方向,已知力按实际方向画。

(6)“三清”:截面左右分清、外力清楚、正负号清楚4、内力图:图示1)定义:表示结构上各截面的内力随横截面位置变化规律的图形。

内力方程式:内力与x(表示横截面位置的变量)之间的函数表达式。

2)几点注意(1)弯矩图画在受拉边、不标明正负,轴力图剪力图画在任一边,标明正负。

结构力学静定梁和静定刚架资料

结构力学静定梁和静定刚架资料

结构力学静定梁和静定刚架资料结构力学是工程力学的一个分支,研究物体在外力作用下的变形和内力分布规律。

其中,静定梁和静定刚架是结构力学的重要内容之一静定梁是指在不受外力作用时,能够完全确定所有节点位移和反力的梁结构。

静定梁有简支梁、悬臂梁和梁端固定支座等形式。

简支梁两端支座可以完全阻止梁端的旋转和位移;悬臂梁一端支座可以完全阻止梁端的旋转和位移,另一端自由;梁端固定支座可以完全阻止梁端的旋转和位移。

静定梁的位移和反力可以通过平衡方程和变形方程来确定。

平衡方程是指梁在平衡状态下,受力平衡的方程;变形方程是指弹性力学中描述梁变形规律的方程。

通过求解平衡方程和变形方程,可以得到静定梁的位移和反力。

静定刚架是指在不受外力作用时,能够完全确定所有节点位移和反力的结构。

静定刚架有平面静定刚架和空间静定刚架两种形式。

平面静定刚架的节点位移约束包括平移约束和转动约束,能够通过平衡方程和变形方程来确定。

空间静定刚架的节点位移约束包括平移约束和转动约束,能够通过平衡方程和变形方程来确定。

求解静定刚架的位移和反力,也可以利用平衡方程和变形方程来进行。

静定梁和静定刚架在工程结构设计中具有重要的应用价值。

在结构静力学分析中,静定梁和静定刚架是最基本的结构,能够为后续的结构分析提供重要的参考。

在建筑、桥梁、机械以及其他各种工程结构中,都广泛应用了静定梁和静定刚架的理论和方法。

通过对静定梁和静定刚架的分析和设计,可以提高结构的稳定性和安全性,确保工程的正常运行。

总之,静定梁和静定刚架是结构力学中的重要内容,研究物体在外力作用下的变形和内力分布规律。

静定梁和静定刚架在工程结构设计中具有广泛的应用,是结构静力学分析的基础。

通过对静定梁和静定刚架的研究和设计,可以提高结构的稳定性和安全性,确保工程的正常运行。

3静定结构的受力分析-梁结构力学

3静定结构的受力分析-梁结构力学

1 结构力学多媒体课件◆几何特性:无多余约束的几何不变体系◆静力特征:仅由静力平衡条件可求全部反力和内力◆常见静定结构:梁、刚架、三铰拱、桁架和组合结构。

◆静定结构受力分析的内容:反力和内力的计算,内力图的绘制和受力性能分析。

◆静定结构受力分析的基本方法:选取脱离体,建立平衡方程。

◆注意静力分析(拆)与构造分析(搭)的联系◆学习中应注意的问题:多思考,勤动手。

本章是后面学习的基础,十分重要,要熟练掌握!容易产生的错误认识:“静定结构内力分析无非就是选取隔离体,建立平衡方程,以前早就学过了,没有新东西”一、反力的计算4kN1kN/mDCBA2m2m 4mCB A20kN/m 4m4m2m6mDCB A(1)上部结构与基础的联系为3个时,对整体利用3个平衡方程,就可求得反力。

(2)上部结构与基础的联系多于三个时,不仅要对 整体建立平衡方程,而且必须把结构打开, 取隔离体补充方程。

1、内力分量及正负规定轴力F N :截面上应力沿杆轴法线方向的合力。

以拉力为正,压力为负。

剪力F Q :截面上应力沿杆轴切线方向的合力。

以绕隔离体顺时针转为正,反之为负。

弯矩M :截面应力对截面中性轴的力矩。

不规定正负,但弯矩图画在受拉侧。

在水平杆中, 当弯矩使杆件下部纤维受拉时为正。

A 端B 端杆端内力 F Q ABF N ABM AB正 F N BA F Q BAM BA 正2、内力的计算方法K截面法:截开、代替、平衡。

内力的直接算式(截面内力代数和法)=截面一边所有外力沿截面法线方向投影的代数和。

轴力FN外力背离截面投影取正,反之取负。

剪力F=截面一边所有外力沿截面切线方向投影代数和。

Q外力绕截面形心顺时针转动,投影取正,反之取负。

弯矩M =截面一边所有外力对截面形心的外力矩之和。

外力矩和弯矩使杆同侧受拉时取正,反之取负。

2、内力的计算方法【例】如图所示简支梁,计算截面C 、D 1、D 2的内力。

2m 4m 2mA2kN/mCBD 1 D 210kN0.2m10kN3.75kN0.25kN3、绘制内力图的规定内力图是表示结构上各截面的内力各杆件轴线分布规律的图形, 作图规定:弯矩图一律绘在受拉纤维一侧,图上不注明正负号;剪力图和轴力图可绘在杆轴线的任一侧(对水平杆件通常把正号的剪力和轴力绘于上方),但必须注明正负号,且正负不能绘在同一侧。

结构力学第2章习题及参考答案

结构力学第2章习题及参考答案

2-8 (b)
解(1)荷载分组。将荷载与支座反力分解成对称和反对称情况。
(2)求指定杆轴力。对称情况1、2、3杆轴力为零。反对称情况4杆轴力为零。由A结点的平衡条件,得

由对称性得
由E结点的平衡条件,得
2-9选用较简捷的方法计算图示桁架中指定杆的轴力。
解Ⅰ—Ⅰ截面(图(a))
, ; ,

Ⅱ—Ⅱ截面(图(b)):将 滑移到B点
解(1)求支座反力。这是一个基——附结构的桁架。先由附属部分开始计算。取D结点以左部分为隔离体

取整体为对象
(2)求指定杆轴力。
Ⅰ—Ⅰ截面(图(b)

Ⅱ-Ⅱ截面(图(c))


2-6试判断图示桁架中的零杆并求1、2杆轴力。
解:(1)判断零杆。如图(a)所示。
(2)求支座反力



(3)求指定杆轴力
由I结点的平衡条件,得
第2章习题
2-1试判断图示桁架中的零杆。
2-1(a)
解静定结构受局部平衡力作用,平衡力作用区域以外的构件均不受力。所有零杆如图(a-1)所示。
2-1 (b)
解从A点开始,可以依次判断AB杆、BC杆、CD杆均为无结点荷载作用的结点单杆,都是零杆。同理,从H点开始,也可以依次判断HI杆、IF杆、FD杆为零杆。最后,DE杆也变成了无结点荷载作用的结点D的单杆,也是零杆。所有零杆如图(b-1)所示。
`
解(1)AB部分(图(a-1)):
, ; ,
(2)BC部分((图(a-2)):
, ; ,

(3)CA部分的弯矩图可以从C点开始画。
2-19(b)
解(1)取整体结构为隔离体:

《结构力学》静定结构的内力分析(上)

《结构力学》静定结构的内力分析(上)

解:(1)先计算支座反力 (2)求控制截面弯矩值
RA 17 kN
RB 7kN
M D 17 2 81 26 kN m
M F 7 2 16 30 kN m
取GB部分为隔离体, 可计算得:
MGr 71 7 kN m
M
l G

7 1 16

23kN m
M m
(3)积分关系 由d Q = – q·d x
q(x)
MA
MB
QB
QA
xBq(x) dx
xA
由d M = Q·d x
QA
QB
M B
MA
xBQ(x) dx
xA
几种典型弯矩图和剪力图
q
P
m
l /2
P 2
l /2
P 2
Pl 4
1、集中荷载作用点 M图有一夹角,荷载向 下夹角亦向下; Q 图有一突变,荷载 向下突变亦向下。
主要任务 :要求灵活运用隔离体的平衡条件,熟练掌握静定 梁内力图的作法。 分析方法:按构造特点将结构拆成杆单元,把结构的受力分析 问题转化为杆件的受力分析问题。
一、截面上内力符号的规定
轴力:截面上应力沿杆轴切线方
向的合力,使杆产生伸长变形为
N
N 正,画轴力图要注明正负号;
剪力:截面上应力沿杆轴法线
结论:截面上内力求解简单方法
1、轴力等于该截面任一侧所有外力沿该截面轴线方向投影的 代数和。外力背离截面投影取正,指向该截面投影为负。
2、剪力等于该截面任一侧所有外力沿该截面切线方向投影的 代数和。如外力使隔离体对该截面有顺时针转动趋势,其投影取 正,反之为负。
3、弯矩等于该截面任一侧所有外力对该截面形心之矩代数和。 如外力矩产生的弯矩标在拉伸变形侧。

结构力学课件-多跨静定梁的内力分析

结构力学课件-多跨静定梁的内力分析

三、多跨静定梁的计算
ቤተ መጻሕፍቲ ባይዱ
①计算次序与几何构造次序相反
②计算关键:基本部分和附属部分之间相互连接力(作用力和反作用力), 求出这些连接力后,各部分当作单跨静定梁来计算。
q
F1
F2
A①
B C ② D E③F
F2
E ③F
F1
FE
C ②D
q
FC
基本部分不仅承受本身所 受的外荷载,还承受其附 属部分传递来的铰约束力 作用。
M E 6 21 12kN.m(上拉)
M图(kN.m)
10
4kN 10kN AB
H
2m 2m 2m
CD 2m
G 2m
6kN/m
E
F
2m 2m
10kN
B
C
H
FBy 5kN
5kN AB
4kN
9 5
FCy 5kN
5kN
6kN/m
C
DG E
F
FDy 7.5kN
FEy 21.5kN
12
2.5
③ 作 FS 图 : 由 附 属 部 分 到 基本部分依次分析
2、几何构造次序 先固定基本部分,后固定附属部分

A
BC
A

C B


DE
F
②E D
③ F
层次图
3、力的传递特点
基本部分上所 受到的荷载对 其附属部分受 力没有影响
F1 ①
A
BC


DE
F
F1 A
C ①B
E ②
D
③ F
附属部分上 作用的外荷 载必然传递 到其基本部 分

结构力学 静定结构——梁

结构力学 静定结构——梁
A
q B

L Mk
q FNk FQk
A
FYA x
k
q
M F YA
0 0 k
F
0 Qk
§3-2 斜梁
d、画内力图
2
B
A qLcosα 2

qL 2
弯矩图 qL sinα

B

2 B
A
qLcosα 2

剪力图
A qL sinα 2
轴力图
§3-3 多跨静定梁
1)多跨静定梁(statically determinate multi-span beam) 的组成 由若干根梁用铰联接后跨越几个相连跨度的静定结 构——称为多跨静定梁,如图所示:
第3章 静定结构内力计算
主要内容
§3-1 梁的内力计算回顾 §3-2 斜梁 §3-3 多跨静定梁 §3-4 静定刚架 §3-5 桁架 §3-6 组合结构 §3-7 三铰拱
§3-1 梁的内力计算回顾
首先回顾一下梁的内力计算。 1、计算方法
利用力的平衡原理,对每个隔离体可建立三个平衡方程:
FX 0, FY 0,
Fp q(x) M
y
p(x)
dx
x
dFQ dFN dM FQ , q( x ) , p( x ) dx dx dx
M FN
q(x)
M+dM
dx
FQ
FN+d FN P(x) F +dF Q Q
§3-1 梁的内力计算回顾
无何载区段 均布荷载区段
↓↓↓↓↓↓
集中力作用处 发生突变
集中力偶作用处
A C 26 E 30 8 8 G
2
弯矩图

第2章 静定结构受力分析 结构力学

第2章   静定结构受力分析  结构力学

2-1 桁架受力分析
例题2-4 试求图2-7(a)所示桁架各杆件的轴力。 解:应用上述有关零杆的判断结论,依此类推(图2-7(c) 、(d)、(e)、(f))得到图2-7(f)所示体系。取C结 点为隔离体,很容易求出CB杆和CA杆的轴力
2-1 桁架受力分析
2-1-3 截面法
所谓截面法,就是截取桁架的一部分为隔离体,求解杆件
2-2 静定梁受力分析
(3)绘制内力图 在结构力学中,通常先求出指定截面
取D点为隔离体,如图2-10(c)所示。求1杆轴力
2-1 桁架受力分析
2)用Ⅱ-Ⅱ截面从第三节间将桁架截开,取左边部分隔离 体如图 2-10 ( d )所示。注意,结点 E 同样为“ K ”结点, 即FN3=-FN4,二者对F点的力矩等值反向。求2杆轴力
求5杆轴力 求3杆和4杆轴力
考虑 得
2-1 桁架受力分析
2-1 桁架受力分析
解法二 (1)求支座反力,同解法一。
(2)截取各结点做为隔离体,求解杆件内力。
结点A:隔离体如图2-3(j)所示,求AF杆的竖向分力.
2-1 桁架受力分析
然后,由比例关系求其水平分力和合力
求AC杆的轴力
结点C:隔离体如图2-3(k)所示,求CD杆和FC杆的轴力
2-1 桁架受力分析
2-1-5 各类平面梁式桁架的比较
通过对桁架的内力分析可知,弦杆的外形对桁架的内力分
布影响很大。下面就常用的四种梁式桁架(平行弦桁架、
三角形桁架、抛物线形桁架、折线形桁架)的内力分布情 况加以说明。
FP/2
FP
FP
FP
FP
FP
FP/2
(a)简支梁 -4.0 -2.5 -3.0 -4.5 d 3.54 -2.5 2.12 -1.5 0.71 -1.0 2.5 4.0 (b)平行弦桁架

结构力学2-静定结构内力分析知识重点及习题解析

结构力学2-静定结构内力分析知识重点及习题解析
(1)为求解静定结构位移作准备。求解静定结构位移时,首先要求出外荷载和单 位荷载作用下的内力,然后用虚功原理(单位荷载法)进行求解。
(2)为求解超静定结构作准备。无论是位移法还是力法都要用到力的平衡条件。 (3)为求解移动荷载乃至动力荷载作用下结构的内力与位移作准备。例如影响线 和结构动力分析。 根据结构的形式及受力特点,静定结构内力分析可以分为: (1)梁与刚架的内力分析。梁与刚架由受弯杆件组成,杆件内力一般包含轴力、 剪力和弯矩,内力分析的结果是画出各杆的 N 图、Q 图及 M 图。通常做法是“逐杆绘制, 分段叠加”,并要求能做到快速准确地画出内力图。 (2)桁架结构的内力分析。桁架由只受轴力的杆件组成,因此内力分析的结果是 给出各杆件轴力。基本分析方法是结点法、截面法以及二者的联合应用。根据特殊结点 准确而快速地判断零杆,并要善于识别结点单杆和截面单杆。 (3)三铰拱的内力分析。拱是在竖向荷载作用下具有水平支座反力的结构,主要 受压,一般同时具有轴力、剪力和弯矩。对于三铰平拱可以由相应的简支梁进行快速分 析,且弯矩为 M=M0-FHy。 (4)组合结构的内力分析。组合结构由链杆和梁式杆件组成,链杆部分只受轴力, 而梁式杆除受轴力外,还受弯矩和剪力作用。因此求解的首要问题是识别链杆和梁式杆, 正确选取隔离体进行分析,为简化分析,一般尽最避免截断梁式杆。 虽然静定结构的结构形式干在万别,但其内力分析万变不离其宗,基本过程是“选 隔离体→列平衡方程→解方程求未知力”,熟练应用这一基本过程是解决复杂问题关键。 因此过程的关键一步在于选隔离体,也就是“如何拆”原结构的问题,这是问题的切入点。 值得注意的是拆原结构要以相应的内力或支座反力代替,因此要充分掌握上述各类结构
《结构力学》 静定结构内力分析知识重点及习题解析
一、知识重点 在任意荷载作用下,结构的全部反力和内力都可以由静力平衡条件确定,这样的结

结构力学静定梁

结构力学静定梁
问题:静定结构受力还需要介绍?
结构力学静定梁
第三章
➢§3-1 静定梁受力分析 ➢§3-2 静定钢架受力分析 ➢§3-3 三角拱受力分析 ➢§3-4 静定桁架受力分析 ➢§3-5 组合结构受力分析 ➢§3-6 静定结构总论
结构力学静定梁
本章的要求:
运用基本原理熟练、准确地解决 各种静定结构的内力计算问题。
FP
FP
2FP
FP
FPl FP
FP
FPl
FP
FP
结构力学静定梁
2FP
练习: 利用上述关系作弯矩图,剪力图
FPl
FPl
FP
FP
FP
M
M
结构力学静定梁
5.叠加法作弯矩图
1 ql 2
4
1 ql 2 8
注意:
是竖标相加,不是 图形的简单拼合.
结构力学静定梁
应熟记常用单跨梁的弯矩图
F
A
B
FablΒιβλιοθήκη ablq
1 ql 2
B
4
C
l8
1 ql 2
2
q
1 ql
2
ql
l
1 ql 2
l8
l
ql 2
结构力学静定梁
§2-1 静定梁受力分析
一.单跨梁
1.单跨梁支反力 2.截面法求指定截面内力 3.作内力图的基本方法 4.弯矩,剪力,荷载集度之间的微分关系 5.叠加法作弯矩图 6.分段叠加法作弯矩图
二.多跨静定梁
结构力学静定梁
切忌:浅尝辄止
结构力学静定梁
§3-1 静定梁受力分析
一.单跨梁
1.单跨梁支反力 2.截面法求指定截面内力 3.作内力图的基本方法 4.内力与荷载之间的微分关系 5.叠加法作弯矩图 6.分段叠加法作弯矩图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2kN/m
3m
3m
(1)悬臂段分布荷载作用下
2kN·m
4kN·m
(2)跨中集中力偶作用下
4kN·m
4kN·m
(3)叠加得弯矩图
6kN·m
4kN·m
2kN·m
分段叠加法作弯矩图的方法:
(1)选定外力的不连续点(集中力作用点、集中力偶作用点、分布荷载的 始点和终点)为控制截面,首先计算控制截面的弯矩值;
计算控制截面位置的弯矩值
P=8kN q=4 kN/m m=16kN.m
A
B
C D E FG
1m 1m 2m 2m 1m 1m
解:(1)先计算支座反力
(2)求控制截面弯矩值
RA 17 kN
取AC部分为隔离体,可计算得: M C 17 1 17kN 取GB部分为隔离体,可计算得: MGr 7 1 7kN
RB 7kN
A CMC 17 QC l
P=8kN
A
D
QC l 17 M C 17
4
MGr
GB
QG 7
QG 7 MGr 7
m=16kN.m
G
B
8
P=8kN q=4 kN/m m=16kN.m
A
B
C D E FG
1m 1m 2m 2m 1m 1m
A C D E FG B
13 17
26 8
7 15 23 30
3
1
截面 2 上的三个未知力:
2
1.5a P
1.5a
P 也可取截面 2 右边隔离体计算
(a)
P
P 1.5a
P
2Pa 1.5a
(d)
M2
2
Q2
N2 N2
M2 a Q2 P
N2 P, Q2 P, M 2 Pa.
P
a
Q3
M3
N3
N3 0, Q3 P, M 3 Pa.
计算截面 3 的内力
此时应取截面 3 以上的隔离体进行 分析比较简单。
Q
U 1
计算右截面的内力,也可取截面பைடு நூலகம்以左隔 离体进行分析。在这个隔离体上有集
中力矩 2Pa,三个未知力为:
x0
N1U P
y 0 Q1U P 0 Q1U P
M1 0
M
U 1
2Pa
P 1.5a
0
M
U 1
0.5Pa
计算截面 2 的内力
P
现取截面 2 左边的隔离体进行
P
2Pa
a
分析,根据三个平衡条件就可得出
(2)分段求作弯矩图。当控制截面间无荷载时,弯矩图为连接控制截面弯 矩值的直线;当控制截面间存在荷载时,弯矩图应在控制截面弯矩值作出的 直线上在叠加该段简支梁作用荷载时产生的弯矩值。
例:利用叠加法求作图示梁结构的内力图。
[分析] 该梁为简支梁,弯矩控制截 面为:C、D、F、G 叠加法求作弯矩图的关键是
第二章
静定梁
关键词: 截面法、分段叠加法 内力图
主要任务 :要求灵活运用隔离体的平衡条件,熟练掌握静定 梁内力图的作法。 分析方法:按构造特点将结构拆成杆单元,把结构的受力分析 问题转化为杆件的受力分析问题。
§2-1 单跨静定梁的内力分析
一、截面上内力符号的规定: 轴力—截面上应力沿杆轴切线方向的
分析下列多跨连续梁结构几何构造关系,并确定内力计算顺序。
P
q
A
B
CD
P
A
B
P
CD
E
F
E
F
GH
q
GH
q
A
BC
D
E
F
P
q
A
BC
D
E
F
注意: 从受力和变形方面看:基本部分上的荷载仅能在其自身上产生内力和
A
C
EA
C
E
A
E C
(a)
(b)
(c)
二、分析多跨静定梁的一般步骤
对如图所示的多跨静定梁,应先从附属部分CE开始分析:将支座C 的支反
力求出后,进行附属部分的内力分析、画内力图,然后将支座 C 的反力反向
加在基本部分AC 的C 端作为荷载,再进行基本部分的内力分析和画内力图,
将两部分的弯矩图和剪力图分别相连即得整个梁的弯矩图和剪力图 。
m l
m 2
m 2
2、集中力矩作用点 M图有一突变,力矩 为顺时针向下突变; Q 图没有变化。
l
ql 2
ql 2
ql 2 8
3、均布荷载作用段 M图为抛物线,荷载向 下曲线亦向下凸; Q 图为斜直线,荷载向 下直线由左向右下斜
§2-2 分段叠加法作弯矩图
MA
q
MB
P
q
A
YA
YB
MA
q
M假分A 定段:叠在加外法荷的载理MM作论用依下据,:结MB构 NA
M图(kN.m)
17
9
A+ CD
E FG B _
7
Q图(kN)
§2-3 多跨静定梁 一、多跨静定梁的几何组成特性
多跨静定梁常用于桥梁结构。从几何组成特点看,它的组成可以区分 为基本部分和附属部分。
如图所示梁,其中 AC 部分不依赖于其它部分,独立地与大地组成一个 几何不变部分,称它为基本部分;而CE部分就需要依靠基本部分AC才能保 证它的几何不变性,相对于AC 部分来说就称它为附属部分。
B
YA
A
构件材料均处于线弹性阶段。
MA
q
图中:OA段即为线弹性阶段MB
MA
AB段为非线性弹性阶段
M
+
O
YA
M
M M M
MA
M
M
B MB
NB
YB MB
YB
MB
4kN·m
4kN
3m
3m
(1)集中荷载作用下
6kN·m
(2)集中力偶作用下
4kN·m 2kN·m
(3)叠加得弯矩图
4kN·m
4kN·m
8kN·m
三、荷载、内力之间的关系(平衡条件的几种表达方式)
水平杆件下侧
q(x)
(1)微分关系 dQ q dx
受拉为正; 竖向杆件右侧
dx
dM Q 受拉为正。
dx
q
Q
M+d M
P
Q
M+ M
d 2M dx2
q
M d x Q+d Q
m
(2)增量关系 Q P
M
d x Q+ Q
M m
(3)积分关系 由d Q = – q·d x
合力,使杆产生伸长变形为正,画轴力图
N
N
要注明正负号;
剪力—截面上应力沿杆轴法线方向的
Q
Q
合力, 使杆微段有顺时针方向转动趋势的
为正,画剪力图要注明正负号;
弯矩—截面上应力对截面形心的力矩
M
M 之和, 不规定正负号。弯矩图画在杆件受
拉一侧,不注符号。
二、用截面法求指定截面内力
P
2Pa
a
P
1
1.5a P
1.5a P
计算如图所示结构截面 1 的内力
先计算左截面的内力,可取截面1以左 隔离体进行分析。
根据静力平衡条件求截面未知力:
x0 y0
N1Z P Q1Z P 0
Q1Z P
M1 0
M
Z 1
P 1.5a
0
M
Z 1
1.5Pa
P P
P P
1.5a
M
Z 1
N
Z 1
Q
Z 1
M
U 1
2Pa
N
U 1
1.5a
q(x)
MA QA
MB
QB QA
xBq(x) dx
xA
由d M = Q·d x
QB
M B
MA
xBQ(x) dx
xA
几种典型弯矩图和剪力图
P
m
q
l /2
l /2
P
2
P
2
Pl 4
1、集中荷载作用点 M图有一夹角,荷载向 下夹角亦向下; Q 图有一突变,荷载 向下突变亦向下。
l /2
l /2
相关文档
最新文档