高中物理试卷分类汇编物理相互作用(及答案)(1)

合集下载

高中物理相互作用题20套(带答案)及解析

高中物理相互作用题20套(带答案)及解析

高中物理相互作用题20套(带答案)及解析一、高中物理精讲专题测试相互作用1.质量为M 的木楔倾角为θ (θ < 45°),在水平面上保持静止,当将一质量为m 的木块放在木楔斜面上时,它正好匀速下滑.当用与木楔斜面成α角的力F 拉木块,木块匀速上升,如图所示(已知木楔在整个过程中始终静止).(1)当α=θ时,拉力F 有最小值,求此最小值; (2)求在(1)的情况下木楔对水平面的摩擦力是多少? 【答案】(1)min sin 2F mg θ= (2)1sin 42mg θ 【解析】 【分析】(1)对物块进行受力分析,根据共点力的平衡,利用正交分解,在沿斜面和垂直斜面两方向列方程,进行求解.(2)采用整体法,对整体受力分析,根据共点力的平衡,利用正交分解,分解为水平和竖直两方向列方程,进行求解. 【详解】木块在木楔斜面上匀速向下运动时,有mgsin mgcos θμθ=,即tan μθ= (1)木块在力F 的作用下沿斜面向上匀速运动,则:Fcos mgsin f αθ=+N Fsin F mgcos αθ+=N f F μ=联立解得:()2mgsin F cos θθα=-则当=αθ时,F 有最小值,2min F mgsin =θ(2)因为木块及木楔均处于平衡状态,整体受到地面的摩擦力等于F 的水平分力,即()f Fcos αθ='+当=αθ时,12242f mgsin cos mgsin θθθ='= 【点睛】木块放在斜面上时正好匀速下滑隐含动摩擦因数的值恰好等于斜面倾角的正切值,当有外力作用在物体上时,列平行于斜面方向的平衡方程,求出外力F 的表达式,讨论F 取最小值的条件.2.如图所示,置于水平面上的木箱的质量为m=3.8kg ,它与水平面间的动摩擦因数μ=0.25,在与水平方向成37°角的拉力F 的恒力作用下从A 点向B 点做速度V 1=2.0m /s 匀速直线运动.(cos37°=0.8,sin37°=0.6,g 取10N/kg ) (1)求水平力F 的大小;(2)当木箱运动到B 点时,撤去力F ,木箱在水平面做匀减速直线运动,加速度大小为2.5m/s 2,到达斜面底端C 时速度大小为v 2=1m/s ,求木箱从B 到C 的位移x 和时间t ; (3)木箱到达斜面底端后冲上斜面,斜面质量M=5.32kg ,斜面的倾角为37°.木箱与斜面的动摩擦因数μ=0.25,要使斜面在地面上保持静止.求斜面与地面的摩擦因数至少多大.、【答案】(1)10N (2)0.4s 0.6m (3)13(答0.33也得分) 【解析】(1)由平衡知识:对木箱水平方向cos F f θ=,竖直方向:sin N F F mg θ+= 且N f F μ=, 解得F=10N(2)由22212v v ax -=,解得木箱从B 到C 的位移x=0.6m ,21120.12.5v v t s s a --===- (3)木箱沿斜面上滑的加速度21sin 37cos378/mg mg a m s mμ︒+︒==对木箱和斜面的整体,水平方向11cos37f ma =︒竖直方向:()1sin37N M m g F ma +-=︒,其中11N f F μ=,解得113μ=点睛:本题是力平衡问题,关键是灵活选择研究对象进行受力分析,根据平衡条件列式求解.求解平衡问题关键在于对物体正确的受力分析,不能多力,也不能少力,对于三力平衡,如果是特殊角度,一般采用力的合成、分解法,对于非特殊角,可采用相似三角形法求解,对于多力平衡,一般采用正交分解法.3.如图所示,两足够长平行光滑的金属导轨MN 、PQ 相距为L ,导轨平面与水平面夹角θ=30°,导轨电阻不计.磁感应强度为B=2T 的匀强磁场垂直导轨平面向上,长为L=0.5m 的金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨电接触良好,金属棒ab 的质量m=1kg 、电阻r=1Ω.两金属导轨的上端连接右端电路,灯泡电阻R L =4Ω,定值电阻R 1=2Ω,电阻箱电阻R2=12Ω,重力加速度为g=10m/s2,现闭合开关,将金属棒由静止释放,下滑距离为s0=50m时速度恰达到最大,试求:(1)金属棒下滑的最大速度v m;(2)金属棒由静止开始下滑2s0的过程中整个电路产生的电热Q.【答案】(1)30m/s(2)50J【解析】解:(1)由题意知,金属棒匀速下滑时速度最大,设最大速度为v m,则有:mgsinθ=F安又 F安=BIL,即得mgsinθ=BIL…①ab棒产生的感应电动势为 E=BLv m…②通过ab的感应电流为 I=…③回路的总电阻为 R=r+R1+…④联解代入数据得:v m=30m/s…⑤(2)由能量守恒定律有:mg•2s0sinθ=Q+…⑥联解代入数据得:Q=50J…⑦答:(1)金属棒下滑的最大速度v m是30m/s.(2)金属棒由静止开始下滑2s0的过程中整个电路产生的电热Q是50J.【点评】本题对综合应用电路知识、电磁感应知识和数学知识的能力要求较高,但是常规题,要得全分.4.明理同学平时注意锻炼身体,力量较大,最多能提起m=50kg的物体.一重物放置在倾角θ=15°的粗糙斜坡上,重物与斜坡间的摩擦因数为试求该同学向上拉动的重物质量M的最大值?【答案】【解析】【详解】由题意可知,该同学的最大拉力:F=mg设该同学与斜面方向的夹角是β的时候拉动的物体的最大质量是M,对物体受力分析知:垂直于斜面的方向:F N+Fsinβ=Mgcosθ沿斜面的方向:Fcosβ=f+Mgsinθ若恰好拉动物体,则有:f=μF N联立解得:令μ=tanα,代入上式可得:要使该同学向上拉动的物体的质量最大,上式分子取最大值,即:cos(β﹣α)=1由μ=tanα=可得:α=30°联立以上各式得:M max=【点睛】该题中按照常规的步骤对物体进行受力分析即可,题目的难点是如何利用三角函数的关系,化简并得出正确的结论.5.如图所示,用内壁光滑的薄壁细管弯成的“S”形轨道固定于竖直平面内,弯曲部分是由两个半径均为R=0.2 m的半圆平滑对接而成(圆的半径远大于细管内径)。

高中物理相互作用题20套(带答案)含解析

高中物理相互作用题20套(带答案)含解析

高中物理相互作用题20套(带答案)含解析一、高中物理精讲专题测试相互作用1.如图所示,斜面倾角为θ=37°,一质量为m=7kg的木块恰能沿斜面匀速下滑,(sin37°=0.6,cos37°=0.8,g=10m/s2)(1)物体受到的摩擦力大小(2)物体和斜面间的动摩擦因数?(3)若用一水平恒力F作用于木块上,使之沿斜面向上做匀速运动,此恒力F的大小.【答案】(1)42N(2)0.75(3)240N【解析】【分析】【详解】(1)不受推力时匀速下滑,物体受重力,支持力,摩擦力,沿运动方向有:mg sinθ-f=0所以:f=mg sinθ=7×10×sin37°=42N(2)又:f=μmg cosθ解得:μ=tanθ=0.75(3)受推力后仍匀速运动则:沿斜面方向有:F cosθ-mg sinθ-μF N=0垂直斜面方向有:F N-mg cosθ-F sinθ=0解得:F=240N【点睛】本题主要是解决摩擦因数,依据题目的提示,其在不受推力时能匀速运动,由此就可以得到摩擦因数μ=tanθ.2.(18分)如图所示,金属导轨MNC和PQD,MN与PQ平行且间距为L,所在平面与水平面夹角为α,N、Q连线与MN垂直,M、P间接有阻值为R的电阻;光滑直导轨NC 和QD在同一水平面内,与NQ的夹角都为锐角θ。

均匀金属棒ab和ef质量均为m,长均为L,ab棒初始位置在水平导轨上与NQ重合;ef棒垂直放在倾斜导轨上,与导轨间的动摩擦因数为μ(μ较小),由导轨上的小立柱1和2阻挡而静止。

空间有方向竖直的匀强磁场(图中未画出)。

两金属棒与导轨保持良好接触。

不计所有导轨和ab棒的电阻,ef 棒的阻值为R,最大静摩擦力与滑动摩擦力大小相等,忽略感应电流产生的磁场,重力加速度为g。

(1)若磁感应强度大小为B,给ab棒一个垂直于NQ、水平向右的速度v1,在水平导轨上沿运动方向滑行一段距离后停止,ef棒始终静止,求此过程ef棒上产生的热量;(2)在(1)问过程中,ab棒滑行距离为d,求通过ab棒某横截面的电荷量;(3)若ab棒以垂直于NQ的速度v2在水平导轨上向右匀速运动,并在NQ位置时取走小立柱1和2,且运动过程中ef棒始终静止。

【物理】物理高考物理相互作用练习题含解析

【物理】物理高考物理相互作用练习题含解析

【物理】物理高考物理相互作用练习题含解析一、高中物理精讲专题测试相互作用1.如图所示,表面光滑的长方体平台固定于水平地面上,以平台外侧的一边为x 轴,在平台表面建有平面直角坐标系xoy ,其坐标原点O 与平台右侧距离为d=1.2m 。

平台足够宽,高为h=0.8m ,长为L=3.3m 。

一个质量m 1=0.2kg 的小球以v0=3m/s 的速度沿x 轴运动,到达O 点时,给小球施加一个沿y 轴正方向的水平力F 1,且F 1=5y (N )。

经一段时间,小球到达平台上坐标为(1.2m ,0.8m )的P 点时,撤去外力F1。

在小球到达P 点的同时,平台与地面相交处最内侧的M 点,一个质量m2=0.2kg 的滑块以速度v 在水平地面上开始做匀速直线运动,滑块与地面间的动摩擦因数μ=0.5,由于摩擦力的作用,要保证滑块做匀速运动需要给滑块一个外力F2,最终小球落在N 点时恰好与滑块相遇,小球、滑块均视为质点, 210/g m s =, sin370.6cos370.8︒=︒=,。

求:(1)小球到达P 点时的速度大小和方向; (2)M 、N 两点间的距离s 和滑块速度v 的大小; (3)外力F 2最小值的大小(结果可用根式表示)【答案】(1)5m/s 方向与x 轴正方向成53°(2)1.5m ;3.75m/s (325N 【解析】(1)小球在平台上做曲线运动,可分解为沿x 轴方向的匀速直线运动和沿y 轴方向的变加速运动,设小球在P 点受到p v 与x 轴夹角为α 从O 点到P 点,变力1F 做功50.80.8 1.62p y J J ⨯=⨯= 根据动能定理有221101122P W m v m v =-,解得5/p v m s = 根据速度的合成与分解有0cos p v v α=,得53α=︒,小球到达P 点时速度与x 轴正方向成53︒(2)小球离开P 点后做平抛运动,根据平抛运动规律有212h gt =,解得t=0.4s 小球位移在水平面内投影2p l v t m ==设P 点在地面的投影为P ',则 2.5P P M L y m ='=-由几何关系可得2222cos s P M l l P M θ=+-⋅⋅'',解得s=1.5m滑块要与小球相遇,必须沿MN 连线运动,由s vt =,得 3.75/v m s = (3)设外力2F 的方向与滑块运动方向(水平方向)的夹角为β,根据平衡条件 水平方向有: 2cos F f β=,其中f N μ=,竖直方向有22sin N F m g β+= 联立解得22cos sin m gF μβμβ=+由数学知识可得()2221sin F μβθ=++,其最小值22min 2251F N μ==+。

高考物理相互作用真题汇编(含答案)含解析

高考物理相互作用真题汇编(含答案)含解析

不会滑动,则满足 f fm ,根据数学知识讨论。
【详解】
(1)将 C 的重力按照作用效果分解,如图所示:
根据平行四边形定则,有:
F1=F2=
1 mg 2 sin

mg 2sin
对物体 A 水平方向:
f
F1 cos
mg 2 tan
(2)当 A 与地面之间的摩擦力达到最大静摩擦力时: fm (Mg F1 sin )
解得:sinθ+cosθ=
解得:sinθ=0.6;或 sinθ=0.8 由图可知,夹角应小于 45°,故 0.8 舍去; 则由几何关系可知,BC 与水平方向的夹角也为 θ;
设 AB 绳的拉力为 T,则对整体分析可知:2Tcos37°=Mg+2mg
设 BC 绳的拉力为 N;则有:
对 B 球分析可知:Tsinθ=Ncosθ 联立解得:M=18Kg; 【点睛】 本题为较复杂的共点力的平衡条件问题,解题的关键在于把握好几何关系,正确选择研究 对象,再利用共点力的平衡条件进行分析即可求解.
解得:

(2)设球与挡板分离时位移为s,经历的时间为t,
从开始运动到分离的过程中,m受竖直向下的重力,垂直斜面向上的支持力FN,沿斜面向
上的挡板支持力F1和弹簧弹力F.
根据牛顿第二定律有:mgsinθ-F-F1=ma,
F=kx.
随着x的增大,F增大,F1减小,保持a不变,
当m与挡板分离时,F1减小到零,则有:
5.如图所示,B、C 两小球的重力均为 G,用细线悬挂于 A、D 两点,系统处于静止状 态.求:
(1)AB 和 CD 两根细线的拉力各为多大? (2)细线 BC 与竖直方向的夹角是多大?
【答案】(1) F1 3G 、 F2 G (2) 600

高中物理相互作用题20套(带答案)及解析

高中物理相互作用题20套(带答案)及解析

高中物理互相作用题20 套( 带答案 ) 及分析一、高中物理精讲专题测试互相作用1.以下图,质量的木块 A 套在水平杆上,并用轻绳将木块与质量的小球 B 相连 .今用跟水平方向成角的力,拉着球带动木块一同向右匀速运动,运动中 M、 m 相对地点保持不变,取.求:(1)运动过程中轻绳与水平方向夹角;(2)木块与水平杆间的动摩擦因数为.(3)当为多大时 ,使球和木块一同向右匀速运动的拉力最小?【答案】(1) 30°( 2)μ=( 3)α=arctan.【分析】【详解】(1)对小球 B 进行受力剖析,设细绳对N 的拉力为T 由均衡条件可得:Fcos30 ° =Tcos θFsin30 ° +Tsin θ =mg代入数据解得:T=10,tanθ= ,即:θ=30°(2)对 M 进行受力剖析,由均衡条件有F N=Tsin θ +Mgf=Tcos θf= μF N解得:μ=(3)对 M、 N 整体进行受力剖析,由均衡条件有:F N+Fsin α=(M+m ) gf=Fcos α =NμF联立得: Fcosα=μ( M+m ) g-μFsin α解得: F=令: sin β=,cosβ=,即:tanβ=则:因此:当α+β=90时°F 有最小值.因此: tan α=μ=时 F 的值最小.即:α=arctan 【点睛】此题为均衡条件的应用问题,选择好适合的研究对象受力剖析后应用均衡条件求解即可,难点在于研究对象的选择和应用数学方法议论拉力 F 的最小值,难度不小,需要细细品味.A B都是重物,A被绕过小滑轮P的细线悬挂,B放在粗拙的水平桌面2.以下图,、上,滑轮 P 被一根斜短线系于天花板上的O 点, O′是三根细线的结点,细线 bO′水平拉着物体 B,cO′沿竖直方向拉着弹簧.弹簧、细线、小滑轮的重力不计,细线与滑轮之间的摩擦力可忽视,整个装置处于静止状态.若重物 A 的质量为 2kg,弹簧的伸长量为 5cm ,∠cO′a=120,°重力加快度g 取 10m/s 2,求:(1)桌面对物体 B 的摩擦力为多少?(2)弹簧的劲度系数为多少?(3)悬挂小滑轮的斜线中的拉力F 的大小和方向?【答案】( 1)10 3N(2 )200N/m ( 3)203N ,方向在O′a与竖直方向夹角的角均分线上 .【分析】【剖析】(1)对结点 O′受力剖析,依据共点力均衡求出弹簧的弹力和bO′绳的拉力,经过 B 均衡求出桌面对 B 的摩擦力大小.( 2)依据胡克定律求弹簧的劲度系数.(3)悬挂小滑轮的斜线中的拉力 F 与滑轮双侧绳索拉力的协力等大反向.【详解】(1)重物 A 的质量为 2kg,则 O′a绳上的拉力为F O′a A=G =20N对结点 O′受力剖析,以下图,依据平行四边形定章得:水平绳上的力为:F ob=F O′a sin60 =10° 3 N物体 B 静止,由均衡条件可得,桌面对物体 B 的摩擦力f=F ob=10 3 N(2)弹簧的拉力大小为 F 弹 =F O′a cos60 °=10N.依据胡克定律得 F 弹 =kxF弹10得 k===200N/mx0.05(3)悬挂小滑轮的斜线中的拉力 F 与滑轮双侧绳索拉力的协力等大反向,则悬挂小滑轮的斜线中的拉力 F 的大小为: F=2F O′a×3cos30 =2°× 20N=20 3 N2方向在 O′a与竖直方向夹角的角均分线上3.以下图,斜面倾角为θ=37,° 一质量为m=7kg的木块恰能沿斜面匀速下滑,(s in37 °=0.6, cos37°=0.8, g=10m/s 2)(1)物体遇到的摩擦力大小(2)物体和斜面间的动摩擦因数?(3)若用一水平恒力 F 作用于木块上,使之沿斜面向上做匀速运动,此恒力 F 的大小.【答案】(1) 42N( 2) 0.75(3) 240N【分析】【剖析】【详解】(1)不受推力时匀速下滑,物体受重力,支持力,摩擦力,沿运动方向有:mgsinθ-f=0因此:f=mgsinθ=7× 10× sin37=42N°(2)又:f=μ mgcosθ解得:μ=tanθ=0.75(3)受推力后仍匀速运动则:沿斜面方向有:Fcosθ-mg sinθ-μF N=0垂直斜面方向有:F N-mgcosθ-Fsinθ=0解得:F=240N【点睛】此题主假如解决摩擦因数,依照题目的提示,其在不受推力时能匀速运动,由此就能够获取摩擦因数μ=tanθ.4.以下图,竖直轻弹簧 B 的下端固定于水平面上,上端与 A 连结,开始时A静止。

(压轴题)高中物理必修一第三章《相互作用》测试卷(含答案解析)(1)

(压轴题)高中物理必修一第三章《相互作用》测试卷(含答案解析)(1)

一、选择题1.如图所示,一个质量为m的钢球,放在倾角为θ的固定斜面上,用一垂直于斜面的挡板挡住,处于静止状态。

各个接触面均光滑,重力加速度为g,则挡板从该位置缓慢放平的过程中,球对挡板的压力和球对斜面的压力()A.球对挡板的压力增大,球对斜面的压力增大B.球对挡板的压力减小,球对斜面的压力减小C.球对挡板的压力增大,球对斜面的压力减小D.球对挡板的压力减小,球对斜面的压力增大2.下列关于力的说法,正确的是()A.重力的方向总是垂直向下B.重力的方向总是竖直向下C.两个物体之间有弹力,则它们之间一定有摩擦力D.两个物体之间发生了相对运动或有相对运动趋势,则它们之间一定有摩擦力3.如图所示,一质量为m的物块静止在倾角为θ的斜面上,物块与斜面间的滑动摩擦因数为μ,重力加速度为g,则()A.物块受到一个沿斜面向下的力,大小为m gsinθB.物块所受摩擦力的大小为0C.物块所受摩擦力的大小为μmg cosθD.物块所受摩擦力的大小为mg sinθ4.下列关于力的作用效果的叙述中,错误的说法是()A.物体的运动状态发生改变,则物体必定受到力的作用B.物体运动状态没有发生改变,物体也可能受到力的作用C.力的作用效果不仅取决于力的大小和方向,还与力的作用点有关D.力作用在物体上,必定同时出现形变和运动状态的改变5.如图所示,两块相同的竖直木板之间有质量均为m的四块相同的砖,用两个大小均为F 的水平压力压木板,使砖静止不动,设所有接触面均粗糙,则第三块砖对第二块砖的摩擦力大小为()A.0B.mgC.μFD.2mg6.如图所示,物a和物b表面均光滑,都处于静止状态(图A、图B中两个接触面相互垂直),则下图中物a受到弹力最多的是()A.B.C.D.7.物体在四个共点力F1、F2、F3、F4的作用下处于平衡状态,其中F1=5N。

若将F1沿顺时针方向旋转60 ,求此时物体所受合力的大小()A.0N B.5N C.52N D.10N8.下列选项中,物体A受力示意图正确的是()A.B. C.D.9.如图,水平地面上质量为m的物体A在斜向上的拉力F的作用下,向右做匀速直线运动,拉力F与水平面夹角为θ,物块与地面间动摩擦因数为μ。

高中物理试卷分类汇编物理相互作用(及答案)含解析

高中物理试卷分类汇编物理相互作用(及答案)含解析

高中物理试卷分类汇编物理相互作用(及答案)含解析一、高中物理精讲专题测试相互作用1.如图所示,斜面倾角为θ=37°,一质量为m=7kg的木块恰能沿斜面匀速下滑,(sin37°=0.6,cos37°=0.8,g=10m/s2)(1)物体受到的摩擦力大小(2)物体和斜面间的动摩擦因数?(3)若用一水平恒力F作用于木块上,使之沿斜面向上做匀速运动,此恒力F的大小.【答案】(1)42N(2)0.75(3)240N【解析】【分析】【详解】(1)不受推力时匀速下滑,物体受重力,支持力,摩擦力,沿运动方向有:mg sinθ-f=0所以:f=mg sinθ=7×10×sin37°=42N(2)又:f=μmg cosθ解得:μ=tanθ=0.75(3)受推力后仍匀速运动则:沿斜面方向有:F cosθ-mg sinθ-μF N=0垂直斜面方向有:F N-mg cosθ-F sinθ=0解得:F=240N【点睛】本题主要是解决摩擦因数,依据题目的提示,其在不受推力时能匀速运动,由此就可以得到摩擦因数μ=tanθ.2.如图所示,竖直轻弹簧B的下端固定于水平面上,上端与A连接,开始时A静止。

A 的质量为m=2kg,弹簧B的劲度系数为k1=200N/m。

用细绳跨过定滑轮将物体A与另一根劲度系数为k2的轻弹簧C连接,当弹簧C处在水平位置且未发生形变时,其右端点位于a位置,此时A上端轻绳恰好竖直伸直。

将弹簧C的右端点沿水平方向缓慢拉到b位置时,弹簧B对物体A的拉力大小恰好等于A的重力。

已知ab=60cm,求:(1)当弹簧C处在水平位置且未发生形变时,弹簧B的形变量的大小;(2)该过程中物体A上升的高度及轻弹簧C的劲度系数k2。

【答案】(1)10cm;(2)100N/m。

【解析】【详解】(1)弹簧C处于水平位置且没有发生形变时,A处于静止,弹簧B处于压缩状态;根据胡克定律有:k1x1=mg代入数据解得:x1=10cm(2)当ab=60cm时,弹簧B处于伸长状态,根据胡克定律有:k1x2=mg代入数据求得:x2=10cm故A上升高度为:h=x1+x2=20cm由几何关系可得弹簧C的伸长量为:x3=ab﹣x1﹣x2=40cm根据平衡条件与胡克定律有:mg+k1x2=k2x3解得k2=100N/m3.明理同学平时注意锻炼身体,力量较大,最多能提起m=50kg的物体.一重物放置在倾角θ=15°的粗糙斜坡上,重物与斜坡间的摩擦因数为试求该同学向上拉动的重物质量M的最大值?【答案】【解析】【详解】由题意可知,该同学的最大拉力:F=mg设该同学与斜面方向的夹角是β的时候拉动的物体的最大质量是M,对物体受力分析知:垂直于斜面的方向:F N+Fsinβ=Mgcosθ沿斜面的方向:Fcosβ=f+Mgsinθ若恰好拉动物体,则有:f=μF N联立解得:令μ=tanα,代入上式可得:要使该同学向上拉动的物体的质量最大,上式分子取最大值,即:cos(β﹣α)=1由μ=tanα=可得:α=30°联立以上各式得:M max=【点睛】该题中按照常规的步骤对物体进行受力分析即可,题目的难点是如何利用三角函数的关系,化简并得出正确的结论.4.水平传送带以v=1.5m/s速度匀速运动,传送带AB两端距离为6.75m,将物体轻放在传送带的A端,它运动到传送带另一端B所需时间为6s,求:(1)物块和传送带间的动摩擦因数?(2)若想使物体以最短时间到达B端,则传送带的速度大小至少调为多少?(g=10m/s2)【答案】(1);(2)【解析】试题分析:(1)对物块由牛顿第二定律:,则经过时间的速度为:首先物块做匀加速然后做匀速则:由以上各式解得:(2)物块做加速运动的加速度为:物体一直做匀加速直线运动到B点的速度:v2=2ax解得:考点:牛顿运动定律综合【名师点睛】物体放上传送带先做匀加速直线运动,结合牛顿第二定律和运动学公式求出匀加速直线运动的时间和位移,当物体的速度达到传送带的速度时,一起做匀速直线运动.根据时间求出匀速运动的位移,从而得出物体的总位移,即传送带AB的长度;若想使物体以最短时间到达B端,物体需一直做匀加速直线运动,则传送带的速度需大于等于物体从A点匀加速到B点的速度。

高中物理相互作用试题(有答案和解析)及解析.docx

高中物理相互作用试题(有答案和解析)及解析.docx

高中物理相互作用试题( 有答案和解析 ) 及解析一、高中物理精讲专题测试相互作用1.如图所示,质量M=2kg 的物块 A 放在水平地面上,滑轮固定在天花板上,细绳跨过滑轮,一端与物块 A 连接,另一端悬挂质量 m=1kg 的物块 B,细绳竖直, A、 B 处于静止状态。

现对物体 A 施加向左的水平外力 F,使 A 沿水平面向左缓慢移动。

物块 A 刚开始移动时水平外力 F1= 3N,不计绳与滑轮间的摩擦,重力加速度g 取 10 m/s 2,最大静摩擦力等于滑动摩擦力,求:(1)物块 A 与水平地面间的动摩擦因数μ;(2)当连接物块 A 的细绳与竖直方向的夹角β=37°时,水平外力F2的大小。

(已知sin37 =0°.6, cos37 °=0.8)【答案】( 1) 0.3( 2) 9.6N【解析】【分析】(1) 活结绳竖直时张力相等,由平衡知识求解.(2) 抓住两物体的联系点:倾斜的活结绳上的张力依然相等,由受力分析求外力.【详解】(1)设物块 A 刚开始移动时,绳子的拉力为T,地面对A的支持力为N1,由平衡条件得,对: T mg B对A:Mg N1T F1 f1 N1代入数据得0.3(2)设当细线与竖直方向夹角为37°时,地面对A的支持力为N2由平衡条件得:F2N 2T sinN2T cos Mg代入数据,得F29.6?N【点睛】绳连接体的关键是掌握活结绳上的五同规律:沿绳张力相同,沿绳加速度相同,沿绳瞬时速度相等,沿绳的拉力功率相等;沿绳的拉力做功相等.2.如图所示,劲度系数为的轻质弹簧 B 的两端分别与固定斜面上的挡板及物体 A 相连, A 的质量为 m,光滑斜面倾角为θ.用轻绳跨过定滑轮将物体 A 与另一根劲度系数为的轻质弹簧 C 连接.当弹簧 C 处在水平位置且未发生形变时,其右端点位于 a 位置.现将弹簧 C 的右端点用力沿水平方向缓慢拉到 b 位置时,弹簧 B 对物体 A 的拉力大小恰好等于 A 的重力.求:⑴当弹簧 C 处在水平位置且未发生形变时,弹簧 B 的形变量大小;⑵在将弹簧的右端由 a 缓慢拉到 b 的过程中,物体 A 移动的距离;⑶ab 间的距离.【答案】(1)(2)(3)【解析】【分析】(1)对 A 进行受力分析,根据平衡条件和胡克定律即可求出;(2)将弹簧 C 的右端点用力沿水平方向缓慢拉到 b 位置时,弹簧 B 对物体 A 的拉力大小恰好等于 A 的重力,说明 A 受到弹簧 B 的拉力,对 A 进行受力分析,结合胡克定律和几何关系即可求出;(3)先求出弹簧 c 的力,由胡克定律求出弹簧 c 的伸长量,最后求出ab 之间的距离.【详解】(1)当弹簧 C 未发生形变时弹簧 B 处于压缩状态,设弹簧 B 对于物体 A 而言的压缩量为;根据平衡条件和胡克定律有:(2)当弹簧 C 的右端点沿水平缓慢拉到,解得:b 位置时,因弹簧 B 对物体;A 的拉力大小恰好等于 A 的重力,说明弹簧 B 处于伸长状态,且伸长量,所以物体 A 上升的高度为;(3)由( 2)问可得:绳中张力,则弹簧C的伸长量,故 ab 间的距离为:;3.如图所示,水平面上有一个倾角为m,用绳子悬挂起来,绳子与斜面的夹角为的斜劈,质量为m.一个光滑小球,质量也,整个系统处于静止状态.(1)求出绳子的拉力T;(2)若地面对斜劈的最大静摩擦力保持静止, k 值必须满足什么条件?等于地面对斜劈的支持力的k 倍,为了使整个系统【答案】(1)(2 )【解析】【分析】【详解】试题分析: (1)以小球为研究对象,根据平衡条件应用正交分解法求解绳子的拉力T;(2) 对整体研究,根据平衡条件求出地面对斜劈的静摩擦力f,当 f ≤f时,整个系统能始终m保持静止.解: (1) 对小球:水平方向: N1sin30 =Tsin30°°竖直方向: N1cos30 +Tcos30°=mg°代入解得:;(2)对整体:水平方向: f=Tsin30 °竖直方向: N2+Tcos30 =2mg°而由题意: f m =kN2为了使整个系统始终保持静止,应该满足:f m≥f解得:.点晴:本题考查受力平衡的应用,小球静止不动受力平衡,以小球为研究对象分析受力情况,建立直角坐标系后把力分解为水平和竖直两个方向,写x 轴和 y 轴上的平衡式,可求得绳子的拉力大小,以整体为研究对象,受到重力、支持力、绳子的拉力和地面静摩擦力的作用,建立直角坐标系后把力分解,写出水平和竖直的平衡式,静摩擦力小于等于最大静摩擦力,利用此不等式求解.4.如图所示,电动机通过其转轴上的绝缘细绳牵引一根原来静止的长为L=1m,质量m=0.1 ㎏的导体棒ab,导体棒紧贴在竖直放置、电阻不计的金属框架上,导体棒的电阻R=1Ω,磁感强度B=1T 的匀强磁场方向垂直于导体框架所在平面,当导体棒在电动机牵引下上升 h=3.8m 时,获得稳定速度,此过程导体棒产生热量Q=2J.电动机工作时,电压表、电流表的读数分别为7V 和 1A,电动机的内阻r=1 Ω,不计一切摩擦,g=10m/s2,求:(1)导体棒所达到的稳定速度是多少?(2)导体棒从静止到达稳定速度的时间是多少?【答案】( 1)m/s ( 2)s【解析】:(1)导体棒匀速运动时,绳拉力T,有 T-mg-F=0( 2 分),其中 F=BIL, I= ε/R,ε=BLv,(3分)此时电动机输出功率与拉力功率应相等,即Tv=UI/ -I/2r(2 分),(U、 I/、 r 是电动机的电压、电流和电阻),化简并代入数据得v=2m/s ( 1 分).(2)从开始达匀速运动时间为t ,此过程由能量守恒定律,UI/ t-I/2rt=mgh+mv 2+Q( 4 分),t=1s(2 分).5.如图甲所示,表面绝缘、倾角θ =30的°斜面固定在水平地面上,斜面所在空间有一宽度D=0.40m 的匀强磁场区域,其边界与斜面底边平行,磁场方向垂直斜面向上.一个质量m=0.10kg 、总电阻 R=0.25W 的单匝矩形金属框abcd,放在斜面的底端,其中ab 边与斜面底重合, ab L=0.50m.从 t=0 刻开始,框在垂直 cd 沿斜面向上大小恒定的拉力作用下,从静止开始运,当框的 ab 离开磁区域撤去拉力,框向上运,框向上运程中速度与的关系如乙所示.已知框在整个运程中始未脱离斜面,且保持ab 与斜面底平行,框与斜面之的摩擦因数,重力加速度 g 取 10 m/s 2.求:(1)框受到的拉力 F 的大小;(2)匀磁的磁感度 B 的大小;(3)框在斜面上运的程中生的焦耳Q.【答案】( 1) F="1.5" N (2)(3)【解析】分析:( 1)由 v-t 象可知,在0~ 0.4s 内框做匀加速直运,入磁的速度 v1=2.0m/s ,所以:⋯⋯⋯⋯⋯⋯①⋯⋯⋯⋯⋯⋯②解①②代入数据得:F="1.5" N⋯⋯⋯⋯⋯⋯③(2)由 v-t 象可知,框入磁区域后以速度定律和欧姆定律有:E=BLv1⋯④v1做匀速直运,由法拉第磁感由欧姆定律得:⋯⑤于框匀速运的程,由力的平衡条件有:解④⑤⑥代入数据得:⋯⑦(3)由 v-t 象可知,框入磁区域后做匀速直运,并以速度明框的度等于磁的度,即:⑧框在减速零,有:⋯⑥v1匀速穿出磁,所以框不会下滑,框穿磁的t,:⋯⑨⋯⑩解④⑤⑥代人数据得:⋯(11)考点:体切割磁感的感;力的合成与分解的运用;共点力平衡的条件及其用;合路的欧姆定律.6.如图所示,一质量为m= 2kg 的滑块从半径为 R= 0.2m 的光滑四分之一圆弧轨道的顶端A 处由静止滑下, A 点和圆弧对应的圆心O 点等高,圆弧的底端B 与水平传送带平滑相接.已知传送带匀速运行的速度为v0= 4m/s ,B 点到传送带右端C 点的距离为 L= 2m.当滑块滑到传送带的右端 C 时,其速度恰好与传送带的速度相同.(g= 10m/s2 ),求:(1)滑块到达底端 B 时对轨道的压力;(2)滑块与传送带间的动摩擦因数μ;(3)此过程中,由于滑块与传送带之间的摩擦而产生的热量Q.【答案】( 1) 60 N(2 )0. 3( 3) 4 J【解析】试题分析:(1)滑块从 A 运动到 B 的过程中,由机械能守恒定律得1mgR=mv B22解得 v B= 2gR=2m / s在 B 点:F N-mg=m v B2R代入解得, F N= 60 N由牛顿第三定律可知,滑块对轨道的压力大小为F N N′= F =60 N,方向竖直向下。

高中物理相互作用真题汇编(含答案)及解析

高中物理相互作用真题汇编(含答案)及解析

高中物理相互作用真题汇编(含答案)及解析一、高中物理精讲专题测试相互作用1.如下图,水平细杆上套有一质量为M的小环A,用轻绳将质量为m=1.0kg的小球B与A相连,B受到始终与水平成53o角的风力作用,与A一起向右匀速运动,此时轻绳与水平方向的夹角为37o,运动过程中B球始终在水平细杆的正下方,且与A的相对位置不变.已知细杆与环A间的动摩擦因数为,(g=10m/s2,sin37°=0.6,cos37°=0.8)求:(1)B对绳子的拉力大小(2)A环的质量.【答案】(1)6.0N;(2)1.08kg【解析】【详解】(1)对小球B受力分析如图,得:F T=mgsin37°代入数据解得:F T=6.0N(2)环A做匀速直线运动,受力如图,有:F T cos37°-f=0F N=Mg+F T sin37°又:f=μF N代入数据解得:M=1.08kg2.如图所示,一质量m=4.0kg的小球在轻质弹簧和细线的作用下处于静止状态,细线AO与竖直方向的夹角θ=370,弹簧BO水平并处于压缩状态,小球与弹簧接触但不粘连,已知弹簧的劲度系数k=100N/m,取sin370=0.6,cos370=0.8,求:(1)小球静止时,细线中的拉力T 和弹簧的压缩量x ; (2)剪断细线AB 瞬间,小球的加速度a 。

【答案】(1)50N , 0.3m (2)12.5m/s 2【解析】试题分析:(1)小球的受力图如图,根据平衡条件可知:弹簧的弹力F=mgtanθcos mgT θ=而F=kx解得:T=50N ,x=0.3m(2)剪断细线的瞬间,小球受到重力、弹力不变;合力与原细线中的拉力T 等大反向,则212.5/Ta m s m==方向与竖直方向成角370,斜向下沿原细线AB 方向。

考点:胡克定律;牛顿第二定律的应用【名师点睛】本题考查了共点力平衡和牛顿第二定律的基本运用,知道剪断细线的瞬间,弹簧的弹力不变。

高中物理相互作用题20套(带答案)

高中物理相互作用题20套(带答案)

高中物理相互作用题20套(带答案)一、高中物理精讲专题测试相互作用1.如图所示,质量为M=5kg的物体放在倾角为θ=30º的斜面上,与斜面间的动摩擦因数为/5,最大静摩擦力等于滑动摩擦力,M用平行于斜面的轻绳绕过光滑的定滑轮与不计质量的吊盘连接,两个劲度系数均为k=1000N/m的轻弹簧和两个质量都是m的物体均固连,M刚好不上滑,取g=10m/s2。

问:(1)m的质量是多大?(2)现将上面的m物体向上提,使M刚要开始下滑,上面的m物体向上提起的高度是多少?(吊盘架足够高)【答案】(1)m=2kg;(2)h=0.06m【解析】【详解】(1)对M和m的系统,由平衡知识可知:解得m=2kg;(2)使M刚要开始下滑时,则绳的拉力为T:解得T=10N;此时吊盘中下面弹簧的弹力应为10N,因开始时下面弹簧的弹力为2mg=40N,可知下面弹簧伸长了;对中间的物体m受力分析可知,上面的弹簧对之间物体应该是向上的拉力,大小为10N,即上面的弹簧应该处于拉长状态,则上面弹簧的伸长量应该是;可知上面的m物体向上提起的高度是.【点睛】此题的难点在第2问;关键是通过分析两部分弹簧弹力的变化(包括伸长还是压缩)求解弹簧的长度变化,从而分析上面物体提升的高度.2.如图所示,一质量为m的金属球,固定在一轻质细绳下端,能绕悬挂点O在竖直平面内转动.整个装置能自动随着风的转向而转动,使风总沿水平方向吹向小球.无风时细绳自然下垂,有风时细绳将偏离竖直方向一定角度,求:(1)当细绳偏离竖直方向的角度为θ,且小球静止时,风力F及细绳对小球拉力T的大小.(设重力加速度为g)(2)若风向不变,随着风力的增大θ将增大,判断θ能否增大到90°且小球处于静止状态,说明理由.【答案】(1)cos mg T θ=,F=mgtanθ (2)不可能达到90°且小球处于静止状态 【解析】【分析】【详解】 (1)对小球受力分析如图所示(正交分解也可以)应用三角函数关系可得:F=mgtanθ(2)假设θ=90°,对小球受力分析后发现合力不能为零,小球也就无法处于静止状态,故θ角不可能达到90°且小球处于静止状态.3.如图所示,粗糙的地面上放着一个质量M =1.5 kg 的斜面,底面与地面的动摩擦因数μ=0.2,倾角θ=37°.用固定在斜面挡板上的轻质弹簧连接一质量m =0.5 kg 的小球(不计小球与斜面之间的摩擦力),已知弹簧劲度系数k =200 N/m ,现给斜面施加一水平向右的恒力F ,使整体以a =1 m/s 2的加速度向右匀加速运动.(已知sin 37°=0.6、cos 37°=0.8,g =10 m/s 2)(1)求F 的大小;(2)求出弹簧的形变量及斜面对小球的支持力大小.【答案】(1)6N (2)0.017m ;3.7N【解析】试题分析:(1)以整体为研究对象,列牛顿第二定律方程(2)对小球受力分析,水平方向有加速度,竖直方向受力平衡解:(1)整体以a 匀加速向右运动,对整体应用牛顿第二定律:F﹣μ(M+m)g=(M+m)a得F=6N(2)设弹簧的形变量为x,斜面对小球的支持力为F N对小球受力分析:在水平方向:Kxcosθ﹣F N sinθ=ma在竖直方向:Kxsinθ+F N cosθ=mg解得:x=0.017mF N=3.7N答:(1)F的大小6N;(2)弹簧的形变量0.017m斜面对小球的支持力大小3.7N【点评】对斜面问题通常列沿斜面方向和垂直于斜面方向的方程,但本题的巧妙之处在于对小球列方程时,水平方向有加速度,竖直方向受力平衡,使得解答更简便.4.明理同学平时注意锻炼身体,力量较大,最多能提起m=50kg的物体.一重物放置在倾角θ=15°的粗糙斜坡上,重物与斜坡间的摩擦因数为试求该同学向上拉动的重物质量M的最大值?【答案】【解析】【详解】由题意可知,该同学的最大拉力:F=mg设该同学与斜面方向的夹角是β的时候拉动的物体的最大质量是M,对物体受力分析知:垂直于斜面的方向:F N+Fsinβ=Mgcosθ沿斜面的方向:Fcosβ=f+Mgsinθ若恰好拉动物体,则有:f=μF N联立解得:令μ=tanα,代入上式可得:要使该同学向上拉动的物体的质量最大,上式分子取最大值,即:cos(β﹣α)=1由μ=tanα=可得:α=30° 联立以上各式得:M max =【点睛】 该题中按照常规的步骤对物体进行受力分析即可,题目的难点是如何利用三角函数的关系,化简并得出正确的结论.5.如图所示,倾角为θ=45°的粗糙平直导轨与半径为R 的光滑圆环轨道相切,切点为B ,整个轨道处在竖直平面内.一质量为m 的小滑块从导轨上离地面高为h =3R 的D 处无初速下滑进入圆环轨道.接着小滑块从圆环最高点C 水平飞出,恰好击中导轨上与圆心O 等高的P 点,不计空气阻力.求:(1)滑块运动到圆环最高点C 时的速度的大小(2)滑块运动到圆环最低点时对圆环轨道压力的大小(3)滑块与斜轨之间的动摩擦因数.【答案】(1)0v Rg(2)6mg (3)0.18【解析】 试题分析:对滑块进行运动过程分析,要求滑块运动到圆环最低点时对圆环轨道压力的大小,我们要知道滑块运动到圆环最低点时的速度大小,小滑块从圆环最高点C 水平飞出,恰好击中导轨上与圆心O 等高的P 点,运用平抛运动规律结合几何关系求出最低点时速度.在对最低点运用牛顿第二定律求解.从D 到最低点过程中,再次运用动能定理求解μ.解:(1)小滑块从C 点飞出来做平抛运动,水平速度为v 0.R=gt 2R=v 0t解得:v 0=(2)小滑块在最低点时速度为V 由机械能守恒定律得mv 2=mg•2R+mv 02v=根据牛顿第二定律:F N ﹣mg=mF N =6mg根据牛顿第三定律得:F N ′=6mg(3)DB 之间长度L=(2+1)R从D 到最低点过程中,由动能定理:mgh ﹣μmgcosθL=mv 2 μ==0.18答:(1)滑块运动到圆环最高点C 时的速度的大小为;(2)滑块运动到圆环最低点时对圆环轨道压力的大小为6mg ;(3)滑块与斜轨之间的动摩擦因数为0.18.6.如图所示,轻绳绕过定滑轮,一端连接物块A ,另一端连接在滑环C 上,物块A 的下端用弹簧与放在地面上的物块B 连接,A 、B 两物块的质量均为m ,滑环C 的质量为M ,开始时绳连接滑环C 部分处于水平,绳刚好拉直且无弹力,滑轮到杆的距离为L ,控制滑块C ,使其沿杆缓慢下滑,当C 下滑L 时,释放滑环C ,结果滑环C 刚好处于静止,此时B 刚好要离开地面,不计一切摩擦,重力加速度为g .(1)求弹簧的劲度系数;(2)若由静止释放滑环C ,求当物块B 刚好要离开地面时,滑环C 的速度大小.【答案】(1)3mg k L =(25542gL 【解析】试题分析:(1)设开始时弹簧的压缩量为x ,则kx=mg设B 物块刚好要离开地面,弹簧的伸长量为x′,则 kx′=mg 因此mg x x k'== 由几何关系得22162293x L L L L =+= 求得3L x =得3mg k L= (2)弹簧的劲度系数为k ,开始时弹簧的压缩量为13mg L x k ==当B 刚好要离开地面时,弹簧的伸长量23mg L x k == 因此A 上升的距离为1223L h x x =+=C 下滑的距离224()3H L h L L =+-= 根据机械能守恒222211()22MgH mgh m v Mv H L -=++ 又2mgcos370=Mg联立求得(2)55 10487542M m gL v gL m M -==+ 考点:胡克定律;机械能守恒定律【名师点睛】对于含有弹簧的问题,是高考的热点,要学会分析弹簧的状态,弹簧有三种状态:原长、伸长和压缩,含有弹簧的问题中求解距离时,都要根据几何知识研究所求距离与弹簧形变量的关系.7.如图所示,在一倾角为30°固定斜面上放一个质量为2kg 的小物块,一轻绳跨过两个轻滑轮一端固定在墙壁上,一端连接在物块上,且物块上端轻绳与斜面平行,动滑轮下方悬挂质量为3kg 的重物,整个装置处于静止状态。

高中物理相互作用题20套(带答案)含解析

高中物理相互作用题20套(带答案)含解析

高中物理相互作用题20套(带答案)含解析一、高中物理精讲专题测试相互作用1.一轻弹簧的一端固定在倾角为θ的固定光滑斜面的底部,另一端和质量为m 的小物块a 相连,如图所示.质量为35m 的小物块b 紧靠a 静止在斜面上,此时弹簧的压缩量为x 0,从t=0时开始,对b 施加沿斜面向上的外力,使b 始终做匀加速直线运动.经过一段时间后,物块a 、b 分离;再经过同样长的时间,b 距其出发点的距离恰好也为x 0.弹簧的形变始终在弹性限度内,重力加速度大小为g .求:(1)弹簧的劲度系数; (2)物块b 加速度的大小;(3)在物块a 、b 分离前,外力大小随时间变化的关系式.【答案】(1)08sin 5mg x θ (2)sin 5g θ(3)22084sin sin 2525mg F mg x θθ=+【解析】 【详解】(1)对整体分析,根据平衡条件可知,沿斜面方向上重力的分力与弹簧弹力平衡,则有:kx 0=(m+35m )gsinθ 解得:k=8 5mgsin x θ(2)由题意可知,b 经两段相等的时间位移为x 0;由匀变速直线运动相邻相等时间内位移关系的规律可知:1014x x = 说明当形变量为0010344x x x x =-=时二者分离; 对m 分析,因分离时ab 间没有弹力,则根据牛顿第二定律可知:kx 1-mgsinθ=ma 联立解得:a=15gsin θ(3)设时间为t ,则经时间t 时,ab 前进的位移x=12at 2=210gsin t θ则形变量变为:△x=x 0-x对整体分析可知,由牛顿第二定律有:F+k △x-(m+35m )gsinθ=(m+35m )a解得:F=825mgsinθ+22425mg sinxθt2因分离时位移x=04x由x=04x=12at2解得:052xtgsinθ=故应保证0≤t<052xgsin θ,F表达式才能成立.点睛:本题考查牛顿第二定律的基本应用,解题时一定要注意明确整体法与隔离法的正确应用,同时注意分析运动过程,明确运动学公式的选择和应用是解题的关键.2.如图所示,两足够长平行光滑的金属导轨MN、PQ相距为L,导轨平面与水平面夹角θ=30°,导轨电阻不计.磁感应强度为B=2T的匀强磁场垂直导轨平面向上,长为L=0.5m的金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨电接触良好,金属棒ab的质量m=1kg、电阻r=1Ω.两金属导轨的上端连接右端电路,灯泡电阻R L=4Ω,定值电阻R1=2Ω,电阻箱电阻R2=12Ω,重力加速度为g=10m/s2,现闭合开关,将金属棒由静止释放,下滑距离为s0=50m时速度恰达到最大,试求:(1)金属棒下滑的最大速度v m;(2)金属棒由静止开始下滑2s0的过程中整个电路产生的电热Q.【答案】(1)30m/s(2)50J【解析】解:(1)由题意知,金属棒匀速下滑时速度最大,设最大速度为v m,则有:mgsinθ=F安又 F安=BIL,即得mgsinθ=BIL…①ab棒产生的感应电动势为 E=BLv m…②通过ab的感应电流为 I=…③回路的总电阻为 R=r+R1+…④联解代入数据得:v m=30m/s…⑤(2)由能量守恒定律有:mg•2s0sinθ=Q+…⑥联解代入数据得:Q=50J…⑦答:(1)金属棒下滑的最大速度v m是30m/s.(2)金属棒由静止开始下滑2s0的过程中整个电路产生的电热Q是50J.【点评】本题对综合应用电路知识、电磁感应知识和数学知识的能力要求较高,但是常规题,要得全分.3.如图所示,质量M=10 kg、上表面光滑、下表面粗糙的足够长木板在F="50" N的水平拉力作用下,以初速度v0=5 m/s沿水平地面向右做匀速直线运动。

高考物理试卷分类汇编物理相互作用(及答案)

高考物理试卷分类汇编物理相互作用(及答案)

高考物理试卷分类汇编物理相互作用(及答案)一、高中物理精讲专题测试相互作用1.如图所示,质量为M=5kg的物体放在倾角为θ=30º的斜面上,与斜面间的动摩擦因数为/5,最大静摩擦力等于滑动摩擦力,M用平行于斜面的轻绳绕过光滑的定滑轮与不计质量的吊盘连接,两个劲度系数均为k=1000N/m的轻弹簧和两个质量都是m的物体均固连,M刚好不上滑,取g=10m/s2。

问:(1)m的质量是多大?(2)现将上面的m物体向上提,使M刚要开始下滑,上面的m物体向上提起的高度是多少?(吊盘架足够高)【答案】(1)m=2kg;(2)h=0.06m【解析】【详解】(1)对M和m的系统,由平衡知识可知:解得m=2kg;(2)使M刚要开始下滑时,则绳的拉力为T:解得T=10N;此时吊盘中下面弹簧的弹力应为10N,因开始时下面弹簧的弹力为2mg=40N,可知下面弹簧伸长了;对中间的物体m受力分析可知,上面的弹簧对之间物体应该是向上的拉力,大小为10N,即上面的弹簧应该处于拉长状态,则上面弹簧的伸长量应该是;可知上面的m物体向上提起的高度是.【点睛】此题的难点在第2问;关键是通过分析两部分弹簧弹力的变化(包括伸长还是压缩)求解弹簧的长度变化,从而分析上面物体提升的高度.2.如图所示,一质量为m的金属球,固定在一轻质细绳下端,能绕悬挂点O在竖直平面内转动.整个装置能自动随着风的转向而转动,使风总沿水平方向吹向小球.无风时细绳自然下垂,有风时细绳将偏离竖直方向一定角度,求:(1)当细绳偏离竖直方向的角度为θ,且小球静止时,风力F及细绳对小球拉力T的大小.(设重力加速度为g)(2)若风向不变,随着风力的增大θ将增大,判断θ能否增大到90°且小球处于静止状态,说明理由.【答案】(1)cos mg T θ=,F=mgtanθ (2)不可能达到90°且小球处于静止状态 【解析】【分析】【详解】 (1)对小球受力分析如图所示(正交分解也可以)应用三角函数关系可得:F=mgtanθ(2)假设θ=90°,对小球受力分析后发现合力不能为零,小球也就无法处于静止状态,故θ角不可能达到90°且小球处于静止状态.3.如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L=0.2m ,长为2d ,d=0.5m ,上半段d 导轨光滑,下半段d 导轨的动摩擦因素为3μ=,导轨平面与水平面的夹角为θ=30°.匀强磁场的磁感应强度大小为B=5T ,方向与导轨平面垂直.质量为m=0.2kg 的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接在两导轨间的电阻为R=3Ω,导体棒的电阻为r=1Ω,其他部分的电阻均不计,重力加速度取g=10m/s 2,求:(1)导体棒到达轨道底端时的速度大小;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q;(3)整个运动过程中,电阻R产生的焦耳热Q.【答案】(1)2m/s(2)0.125C(3)0.2625J【解析】试题分析:(1)导体棒在粗糙轨道上受力平衡:mgsin θ="μmgcos" θ+BILE=BLv解得:v=2m/s(2)进入粗糙导轨前:解得:q=0.125C(3)由动能定理得:考点:法拉第电磁感应定律;物体的平衡;动能定理【名师点睛】本题实质是力学的共点力平衡与电磁感应的综合,都要求正确分析受力情况,运用平衡条件列方程,关键要正确推导出安培力与速度的关系式,分析出能量是怎样转化的.4.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距lm,导轨平面与水平面成θ=37°角,下端连接阻值为R的电阻.匀强磁场方向与导轨平面垂直.质量为0.2kg、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.求:(1)金属棒沿导轨由静止开始下滑时的加速度大小;(2)当金属棒下滑速度达到稳定时,电阻R消耗的功率为8W,求该速度的大小;(3)在上问中,若R=2Ω,金属棒中的电流方向由a到b,求磁感应强度的大小与方向.(g=10rn/s2,sin37°=0.6, cos37°=0.8)【答案】(1)4m/s2(2)10m/s(3)0.4T,方向垂直导轨平面向上【解析】试题分析:(1)金属棒开始下滑的初速为零,根据牛顿第二定律:①由①式解得=10×(O.6-0.25×0.8)m/s2=4m/s2②(2)设金属棒运动达到稳定时,速度为,所受安培力为F,棒在沿导轨方向受力平衡③此时金属棒克服安培力做功的功率等于电路中电阻消耗的电功率:④由③、④两式解得⑤(3)设电路中电流为I,两导轨间金属棒的长为l,磁场的磁感应强度为B⑥⑦由⑥、⑦两式解得⑧磁场方向垂直导轨平面向上考点:导体切割磁感线时的感应电动势;牛顿第二定律【名师点睛】本题主要考查了导体切割磁感线时的感应电动势、牛顿第二定律。

高中物理相互作用题20套(带答案)

高中物理相互作用题20套(带答案)
【解析】 【分析】 【详解】 (1)对 B、C 整体研究,如图所示:
由图可得 AB 线的拉力为:
(2)对 C 球研究,如图所示:
可得:


【考点定位】 考查了共点力平衡条件的应用
,CD 线的拉力为: ,
【点睛】 在处理共点力平衡问题时,关键是对物体进行受力分析,然后根据正交分解法将各个力分 解成两个方向上的力,然后列式求解,如果物体受到三力处于平衡状态,则可根据矢量三 角形法,将三个力移动到一个三角形中,然后根据角度列式求解,
高中物理相互作用题 20 套(带答案)
一、高中物理精讲专题测试相互作用
1.如图,两条间距 L=0.5m 且足够长的平行光滑金属直导轨,与水平地面成 30 角固
定放置,磁感应强度 B=0.4T 的匀强磁场方向垂直导轨所在的斜面向上,质量
mab 0.1kg 、 mcd 0.2kg 的金属棒 ab、cd 垂直导轨放在导轨上,两金属棒的总电阻
16 0.8
N
20N
Fc FPO sin 37 20 0.6N 12N
水平方向根据共点力的平衡条件可得木块 B 与水平面间的摩擦力大小
f FC cos 53 12 0.6N 7.2N
9.如图所示,质量为m1的物体甲通过三段轻绳悬挂,三段轻绳的结点为O.轻绳OB水平且B端 与放置在水平面上的质量为m2的物体乙相连,轻绳OA与竖直方向的夹角θ=37°,物体甲、乙均 处于静止状态.(已知sin 37°=0.6,cos 37°=0.8,tan 37°=0.75,g取10 m/s2.设最大静摩擦力等于滑动摩擦力)求:
由几何关系得 2x L2 16 L2 L 2 L
9
3
求得 x L 3
得 k 3mg L

高中物理必修1《相互作用》试题(含答案)

高中物理必修1《相互作用》试题(含答案)

高中物理必修1《相互作用》试题一.选择题1.一本书放在水平桌面上,下列说法正确的是: ( )A .桌面受到的压力实际就是书的重力B .桌面受到的压力是由桌面形变形成的C .桌面对书的支持力与书的重力是一对平衡力D .桌面对书的支持力与书对桌面的压力是一对作用力与反作用力2.人握住旗杆匀速上爬,则下列说法正确的是 ( )A .人受的摩擦力的方向是向下的B .人受的摩擦力的方向是向上的C .人握旗杆用力越大,人受的摩擦力也越大D .人所受到的合力向上3、下列说法中正确的是 ( )A 、一个2N 的力可以分解为7N 和6N 的两个力;B 、一个2N 的力可以分解为8N 和12N 的两个力;C 、一个5N 的力可以分解为两个5N 的力;D 、一个8N 的力可以分解为4N 和3N 的两个力;4.如图所示,物体A 和B 的重力分别为10N 和3N ,不计弹簧秤和细线的重力和一切摩擦,则弹簧秤的读数为 ( )A 、3NB 、6NC 、10ND 、13N5.如图所示,在倾角为θ的斜面上有一质量为m 的光滑球被竖直的挡板挡住,则球对斜面的压力为 ( )A cos mg θB tan mg θC cos mg θD mg6.如图所示,一木块放在水平地面上,受推力F1=10N,F2=2N作用,木块处于静止状态。

若撤去力F1,则木块在水平方向受到的合力为()A、10N,方向水平向左B、6N,方向水平向右C、2N,方向水平向左D、零7.如图所示,在水平力F的作用下,重为G的物体保持沿竖直墙壁下滑,物体与墙之间的动摩擦因数为μ,物体所受摩擦力大小为:()A.μF B.μ(F+G) C.μ(F-G) D.G8.下列关于分力与合力的说法,错误..的是:()A .两个力的合力,可能小于一个分力B .5N、2N、6N三个共点力最大合力为13N,最小合力为1NC .两个分力的大小和方向都被确定,则合力也被确定D .合力是分力等效替代的结果,其大小随着两分力夹角的增大而减小9.如图所示,在水平力F作用下,A、B保持静止.若A与B的接触面是水平的,且F ≠ 0。

高中物理第三章相互作用-力基础知识题库(带答案)

高中物理第三章相互作用-力基础知识题库(带答案)

高中物理第三章相互作用-力基础知识题库单选题1、如图所示,用轻绳系住一质量为2m的匀质大球,大球和墙壁之间放置一质量为m的匀质小球,各接触面均光滑。

系统平衡时,绳与竖直墙壁之间的夹角为α,两球心连线O1O2与轻绳之间的夹角为β,则α、β应满足()A.绳子的拉力可能小于墙壁的支持力B.墙壁的支持力一定小于两球的重力C.3tanα=tan(α+β)D.3tanα=3tan(α+β)答案:CA.设绳子拉力为F,墙壁支持力为N,两球之间的压力为T,将两个球作为一个整体进行受力分析,如图1所示。

根据图1中几何关系可得绳子的拉力大于墙壁的支持力,故A错误;B.根据平衡条件可得N=3mg tanα由于α大小不确定,所以墙壁的支持力不一定小于两球的重力,故B错误;CD.对小球进行受力分析,如图2所示,根据平衡条件可得N=mg tanθ根据几何关系可得θ=α+β则N=mg tan(α+β)联立得3tanα=tan(α+β)故C正确,D错误。

故选C。

小提示:2、物块在轻绳的拉动下沿倾角为30°的固定斜面向上匀速运动,轻绳与斜面平行。

已知物块与斜面之间的动摩擦因数为√33,重力加速度取10m/s2。

若轻绳能承受的最大张力为1500N,则物块的质量最大值是()A.30kgB.50kgC.100kgD.150kg答案:D物块沿斜面向上匀速运动,根据平衡条件F=F f+mgsin30°又F f=μF N,F N=mgcos30°解得m=Fgsin30°+μgcos30°将F max=1500N代入得m=150kg故选D。

3、如图所示,质量m1=kg的物块A被沿着斜面的轻质细绳系住放在倾角的斜面上。

物块A与斜面之间的动摩擦因数μ=√36,细绳绕过定滑轮O,右端固定在天花板上,将质量为m2的重物B 通过动滑轮挂在30α=︒细绳上。

当物块A与重物B都保持静止时,细绳与竖直方向的夹角θ=60°。

高中物理相互作用试题(有答案和解析)及解析

高中物理相互作用试题(有答案和解析)及解析

高中物理相互作用试题(有答案和解析)及解析一、高中物理精讲专题测试相互作用1.如图所示,A、B都是重物,A被绕过小滑轮P的细线悬挂,B放在粗糙的水平桌面上,滑轮P被一根斜短线系于天花板上的O点,O′是三根细线的结点,细线bO′水平拉着物体B,cO′沿竖直方向拉着弹簧.弹簧、细线、小滑轮的重力不计,细线与滑轮之间的摩擦力可忽略,整个装置处于静止状态.若重物A的质量为2kg,弹簧的伸长量为5cm,∠cO′a=120°,重力加速度g取10m/s2,求:(1)桌面对物体B的摩擦力为多少?(2)弹簧的劲度系数为多少?(3)悬挂小滑轮的斜线中的拉力F的大小和方向?【答案】(1)103N(2)200N/m(3)203N,方向在O′a与竖直方向夹角的角平分线上.【解析】【分析】(1)对结点O′受力分析,根据共点力平衡求出弹簧的弹力和bO′绳的拉力,通过B平衡求出桌面对B的摩擦力大小.(2)根据胡克定律求弹簧的劲度系数.(3)悬挂小滑轮的斜线中的拉力F与滑轮两侧绳子拉力的合力等大反向.【详解】(1)重物A的质量为2kg,则O′a绳上的拉力为 F O′a=G A=20N对结点O′受力分析,如图所示,根据平行四边形定则得:水平绳上的力为:F ob=F O′a sin60°=103N物体B静止,由平衡条件可得,桌面对物体B的摩擦力 f=F ob=103N(2)弹簧的拉力大小为 F弹=F O′a cos60°=10N.根据胡克定律得 F弹=kx得 k=Fx弹=100.05=200N/m(3)悬挂小滑轮的斜线中的拉力F与滑轮两侧绳子拉力的合力等大反向,则悬挂小滑轮的斜线中的拉力F的大小为:F=2F O′a cos30°=2×20×3N=203N方向在O′a与竖直方向夹角的角平分线上2.如图所示,粗糙的地面上放着一个质量M=1.5 kg的斜面,底面与地面的动摩擦因数μ=0.2,倾角θ=37°.用固定在斜面挡板上的轻质弹簧连接一质量m=0.5 kg的小球(不计小球与斜面之间的摩擦力),已知弹簧劲度系数k=200 N/m,现给斜面施加一水平向右的恒力F,使整体以a=1 m/s2的加速度向右匀加速运动.(已知sin 37°=0.6、cos37°=0.8,g=10 m/s2)(1)求F的大小;(2)求出弹簧的形变量及斜面对小球的支持力大小.【答案】(1)6N(2)0.017m;3.7N【解析】试题分析:(1)以整体为研究对象,列牛顿第二定律方程(2)对小球受力分析,水平方向有加速度,竖直方向受力平衡解:(1)整体以a 匀加速向右运动,对整体应用牛顿第二定律:F﹣μ(M+m)g=(M+m)a得F=6N(2)设弹簧的形变量为x,斜面对小球的支持力为F N对小球受力分析:在水平方向:Kxcosθ﹣F N sinθ=ma在竖直方向:Kxsinθ+F N cosθ=mg解得:x=0.017mF N=3.7N答:(1)F的大小6N;(2)弹簧的形变量0.017m斜面对小球的支持力大小3.7N【点评】对斜面问题通常列沿斜面方向和垂直于斜面方向的方程,但本题的巧妙之处在于对小球列方程时,水平方向有加速度,竖直方向受力平衡,使得解答更简便.3.如图所示,一倾角为θ=30°的光滑足够长斜面固定在水平面上,其顶端固定一劲度系数为k=50N/m的轻质弹簧,弹簧的下端系一个质量为m=1kg的小球,用一垂直于斜面的挡板A挡住小球,此时弹簧没有发生形变,若挡板A以加速度a=4m/s2沿斜面向下匀加速运动,弹簧与斜面始终保持平行,g取10m/s2.求:(1)从开始运动到小球速度达最大时小球所发生位移的大小;(2)从开始运动到小球与挡板分离时所经历的时间.【答案】(1)从开始运动到小球速度达最大时小球所发生位移的大小是0.1m;(2)从开始运动到小球与挡板分离时所经历的时间是0.1s【解析】(1)球和挡板分离后做加速度减小的加速运动,当加速度为零时,速度最大,此时物体所受合力为零.即 kx m=mgsinθ,解得:.(2)设球与挡板分离时位移为s,经历的时间为t,从开始运动到分离的过程中,m受竖直向下的重力,垂直斜面向上的支持力F N,沿斜面向上的挡板支持力F1和弹簧弹力F.根据牛顿第二定律有:mgsinθ-F-F1=ma,F=kx.随着x的增大,F增大,F1减小,保持a不变,当m与挡板分离时,F1减小到零,则有:mgsinθ-kx=ma,又 x= at2联立解得:mgsinθ-k•at2=ma,所以经历的时间为:.点睛:本题分析清楚物体运动过程,抓住物体与挡板分离时的条件:小球与挡板间的弹力为零是解题的前提与关键,应用牛顿第二定律与运动学公式可以解题。

高考物理力学知识点之相互作用真题汇编附答案解析(1)

高考物理力学知识点之相互作用真题汇编附答案解析(1)

高考物理力学知识点之相互作用真题汇编附答案解析(1)一、选择题1.如图,光滑的四分之一圆弧轨道A、B固定在竖直平面内,A端与水平面相切,穿在轨道上的小球在拉力F的作用下,缓慢地由A向B运动,F始终沿轨道的切线方向,轨道对球的弹力为N。

在运动过程中A.F增大,N减小B.F减小,N减小C.F增大,N增大D.F减小,N增大2.一质量为中的均匀环状弹性链条水平套在半径为R的刚性球体上,已知不发生形变时环状链条的半径为R/2,套在球体上时链条发生形变如图所示,假设弹性链条满足胡克定律,不计一切摩擦,并保持静止.此弹性链条的弹性系数k为A.3(31)mg+B.3(31)mg-C.3(31)mg+D.3(31)mg+3.某小孩在广场游玩时,将一氢气球系在了水平地面上的砖块上,在水平风力的作用下,处于如图所示的静止状态.若水平风速缓慢增大,不考虑气球体积及空气密度的变化,则下列说法中正确的是A.细绳受到拉力逐渐减小B.砖块受到的摩擦力可能为零C.砖块一定不可能被绳子拉离地面D.砖块受到的摩擦力一直不变4.杂技演员有高超的技术,能轻松地顶接从高处落下的坛子,关于他顶坛时头顶受到的压力,产生的直接原因是()A.坛的形变B.头的形变C.物体受到的重力D.人受到的重力5.重为10N的物体放在水平地面上,今用8N的力竖直向上提物体,则物体所受到的合力为()A.2N 向下B.2N 向上C.18N 向上D.06.如图所示,质量为m的小球用水平轻质弹簧系住,并用倾角θ=37°的木板托住,小球处于静止状态,弹簧处于压缩状态,则( )A.小球受木板的摩擦力一定沿斜面向上B.弹簧弹力不可能为34 mgC.小球可能受三个力作用D.木板对小球的作用力有可能小于小球的重力mg7.如图所示,小球用细绳系住,绳的另一端固定于O点,现用水平F缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平,此过程中斜面对小球的支持力F N,以及绳对小球的拉力F T的变化情况是()A.F N保持不变,F T不断增大B.F N不断增大,F T不断减小C.F N保持不变,F T先增大后减小D.F N不断增大,F T先减小后增大8.如图所示,用三根轻绳将A、B两小球以及水平天花板上的固定点O之间两两连接.然后用一水平方向的力F作用于A球上,此时三根轻绳均处于直线状态,且OB绳恰好处于竖直方向,两球均处于静止状态.已知三根轻绳的长度之比为OA∶AB∶OB=3∶4∶5,两球质量关系为m A=2m B=2m,则下列说法正确的是A.OB绳的拉力大小为2mgB.OA绳的拉力大小为103 mgC.F的大小为43 mgD.AB绳的拉力大小为mg9.一物体m受到一个撞击力后沿不光滑斜面向上滑动,如图所示,在滑动过程中,物体m受到的力是()A.重力、沿斜面向上的冲力、斜面的支持力B.重力、沿斜面向下的滑动摩擦力、斜面的支持力C.重力、沿斜面向上的冲力、沿斜面向下的滑动摩擦力D.重力、沿斜面向上的冲力、沿斜面向下的摩擦力、斜面的支持力10.如图所示,某球用一根轻绳悬在空中,球的重量为G,轻绳对球的拉力大小为F1,墙壁对球的支持力大小为F2,则()A.若增加悬绳的长度,则F1、F2都增大B.若增加悬绳的长度,则F1、F2都减小C.若增大球的半径,则F1增大、F2减小D.若增大球的半径,则F1减小、F2增大11.倾角为30°的固定斜面上有一质量m=1.0kg的物体,细绳跨过光滑的滑轮,一端与物体相连且平行于斜面,另一端与弹簧秤相连,如图所示。

高中物理相互作用真题汇编(含答案).docx

高中物理相互作用真题汇编(含答案).docx

高中物理相互作用真题汇编( 含答案 )一、高中物理精讲专题测试相互作用1.如图所示,倾角为θ=30°、宽度为d= 1 m、长为 L= 4 m 的光滑倾斜导轨,导轨C D 、 C D顶端接有定值电阻 R = 15 Ω,倾斜导轨置于垂直导轨平面斜向上的匀强磁场11220中,磁感应强度为B= 5 T, C1A1、 C2A2是长为 s=4.5 m 的粗糙水平轨道,A1B1、 A2B2是半径为 R=0.5 m 处于竖直平面内的 1/4 光滑圆环 (其中 B1、 B2为弹性挡板 ),整个轨道对称.在导轨顶端垂直于导轨放一根质量为m=2 kg、电阻不计的金属棒 MN ,当开关 S 闭合时,金属棒从倾斜轨道顶端静止释放,已知金属棒到达倾斜轨道底端前已达到最大速度,当金属棒刚滑到倾斜导轨底端时断开开关S, (不考虑金属棒 MN 经过 C12、 C 处和棒与B 、 B 处弹性挡板碰撞时的机械能损失,整个运动过程中金属棒始终保持水平,水平导轨12与金属棒MN 之间的动摩擦因数为μ=0.1,g=10 m/s2).求:(1)开关闭合时金属棒滑到倾斜轨道底端时的速度大小;(2)金属棒 MN 在倾斜导轨上运动的过程中,电阻R0上产生的热量Q;(3)已知金属棒会多次经过圆环最低点A1A2,求金属棒经过圆环最低点A1A2时对轨道压力的最小值.【答案】( 1 ) 6m/s ;( 2) 4J;( 3) 56N【解析】试题分析:( 1)开关闭时,金属棒下滑时切割磁感线运动,产生感应电动势,产生感应电流,受到沿斜面向上的安培力,做加速度逐渐减小的加速运动,当加速度为 0 时,速度最大.根据牛顿第二定律和安培力与速度的关系式结合,求解即可.(2)下滑过程中,重力势能减小,动能增加,内能增加,根据能量守恒求出整个电路产生的热量,从而求出电阻上产生的热量.(3)由能量守恒定律求出金属棒第三次经过 A1A2时速度,对金属棒进行受力分析,由牛顿定律求解.(1)金属棒最大速度时,电动势,电流,安培力金属棒最大速度时加速度为0,由牛顿第二定律得:所以最大速度(2)金属棒 MN 在倾斜导轨上运动的过程中,由能量守恒定律得:代入数据,得(3)金属棒第三次经过A1A2时速度为V A,由动能定理得:金属棒第三次经过A1A2时,由牛顿第二定律得由牛顿第三定律得,金属棒对轨道的压力大小2.明理同学平时注意锻炼身体,力量较大,最多能提起m=50kg 的物体.一重物放置在倾角θ=15的°粗糙斜坡上,重物与斜坡间的摩擦因数为试求该同学向上拉动的重物质量M 的最大值?【答案】【解析】【详解】由题意可知,该同学的最大拉力:F=mg设该同学与斜面方向的夹角是β的时候拉动的物体的最大质量是M ,对物体受力分析知:垂直于斜面的方向: F N+Fsin β =Mgcosθ沿斜面的方向: Fcosβ=f+Mgsin θ若恰好拉动物体,则有: f= μF N联立解得:令μ=tan α,代入上式可得:要使该同学向上拉动的物体的质量最大,上式分子取最大值,即:cos(β﹣α) =1由μ=tan α=可得:α=30°联立以上各式得:M max =【点睛】该题中按照常规的步骤对物体进行受力分析即可,题目的难点是如何利用三角函数的关系,化简并得出正确的结论.3.如图所示,倾角为θ=45°的粗糙平直导轨与半径为R 的光滑圆环轨道相切,切点为B,整个轨道处在竖直平面内.一质量为m 的小滑块从导轨上离地面高为h =3R 的 D 处无初速下滑进入圆环轨道.接着小滑块从圆环最高点 C 水平飞出,恰好击中导轨上与圆心O 等高的P 点,不计空气阻力.求:( 1)滑块运动到圆环最高点 C 时的速度的大小(2)滑块运动到圆环最低点时对圆环轨道压力的大小(3)滑块与斜轨之间的动摩擦因数.【答案】( 1)v0Rg (2)6mg(3)0.18【解析】试题分析:对滑块进行运动过程分析,要求滑块运动到圆环最低点时对圆环轨道压力的大小,我们要知道滑块运动到圆环最低点时的速度大小,小滑块从圆环最高点 C 水平飞出,恰好击中导轨上与圆心 O 等高的 P 点,运用平抛运动规律结合几何关系求出最低点时速度.在对最低点运用牛顿第二定律求解.从 D 到最低点过程中,再次运用动能定理求解μ.解:( 1)小滑块从 C 点飞出来做平抛运动,水平速度为v0.2R=v0t解得: v0=(2)小滑块在最低点时速度为V 由机械能守恒定律得mv2=mg?2R+ mv02v=根据牛顿第二定律:F N﹣ mg=mF N=6mg根据牛顿第三定律得:F N′ =6mg(3) DB 之间长度 L=( 2 +1)R从 D 到最低点过程中,由动能定理:mgh﹣μ mgcosθ L=mv2μ= =0.18答:( 1)滑块运动到圆环最高点 C 时的速度的大小为;(2)滑块运动到圆环最低点时对圆环轨道压力的大小为6mg;(3)滑块与斜轨之间的动摩擦因数为0.18.4.水平传送带以v=1.5m/s速度匀速运动,传送带AB 两端距离为 6.75m, 将物体轻放在传送带的 A 端,它运动到传送带另一端 B 所需时间为6s,求:(1)物块和传送带间的动摩擦因数?(2)若想使物体以最短时间到达 B 端,则传送带的速度大小至少调为多少?(g=10m/s 2)【答案】( 1);(2)【解析】试题分析:(1)对物块由牛顿第二定律:,则经过时间的速度为:首先物块做匀加速然后做匀速则:由以上各式解得:(2)物块做加速运动的加速度为:物体一直做匀加速直线运动到 B 点的速度: v2=2ax解得:考点:牛顿运动定律综合【名师点睛】物体放上传送带先做匀加速直线运动,结合牛顿第二定律和运动学公式求出匀加速直线运动的时间和位移,当物体的速度达到传送带的速度时,一起做匀速直线运动.根据时间求出匀速运动的位移,从而得出物体的总位移,即传送带AB 的长度;若想使物体以最短时间到达 B 端,物体需一直做匀加速直线运动,则传送带的速度需大于等于物体从 A 点匀加速到 B 点的速度。

高中物理相互作用题20套(带答案)含解析

高中物理相互作用题20套(带答案)含解析

高中物理相互作用题20套(带答案)含解析一、高中物理精讲专题测试相互作用1.如图所示,竖直轻弹簧B的下端固定于水平面上,上端与A连接,开始时A静止。

A 的质量为m=2kg,弹簧B的劲度系数为k1=200N/m。

用细绳跨过定滑轮将物体A与另一根劲度系数为k2的轻弹簧C连接,当弹簧C处在水平位置且未发生形变时,其右端点位于a位置,此时A上端轻绳恰好竖直伸直。

将弹簧C的右端点沿水平方向缓慢拉到b位置时,弹簧B对物体A的拉力大小恰好等于A的重力。

已知ab=60cm,求:(1)当弹簧C处在水平位置且未发生形变时,弹簧B的形变量的大小;(2)该过程中物体A上升的高度及轻弹簧C的劲度系数k2。

【答案】(1)10cm;(2)100N/m。

【解析】【详解】(1)弹簧C处于水平位置且没有发生形变时,A处于静止,弹簧B处于压缩状态;根据胡克定律有:k1x1=mg代入数据解得:x1=10cm(2)当ab=60cm时,弹簧B处于伸长状态,根据胡克定律有:k1x2=mg代入数据求得:x2=10cm故A上升高度为:h=x1+x2=20cm由几何关系可得弹簧C的伸长量为:x3=ab﹣x1﹣x2=40cm根据平衡条件与胡克定律有:mg+k1x2=k2x3解得k2=100N/m2.质量m=5kg的物体在20N的水平拉力作用下,恰能在水平地面上做匀速直线运动.若改用与水平方向成θ=37°角的力推物体,仍要使物体在水平地面上匀速滑动,所需推力应为多大?(g=10N/kg,sin37°=0.6,cos37°=0.8)【答案】35.7N;【解析】解:用水平力拉时,物体受重力、支持力、拉力和滑动摩擦力,根据平衡条件,有:f mg μ= 解得:200.450f mg μ=== 改用水平力推物体时,对物块受力分析,并建正交坐标系如图:由0X F =得:cos F f θ= ① 由0Y F =得:sin N mg F θ=+ ② 其中:f N μ= ③ 解以上各式得:35.7F N =【点睛】本题关键是两次对物体受力分析,然后根据共点力平衡条件列方程求解,注意摩擦力是不同的,不变的是动摩擦因数.3.如图所示,在倾角=30°的斜面上放一木板A,重为G A =100N,板上放一重为G B =500N 的木箱B,斜面上有一固定的挡板,先用平行于斜面的绳子把木箱与挡板拉紧,然后在木板上施加一平行斜面方向的拉力F,使木板从木箱下匀速抽出此时,绳子的拉力T=400N 。

高中物理相互作用题20套(带答案)含解析

高中物理相互作用题20套(带答案)含解析

高中物理相互作用题20套(带答案)含解析一、高中物理精讲专题测试相互作用1.如图所示,AB、BC、CD和DE为质量可忽略的等长细线,长度均为5m,A、E两端悬挂在水平天花板上,AE=14m,B、D是质量均为m=7kg的相同小球,质量为M的重物挂于C点,平衡时C点离天花板的垂直距离为7m,试求重物质量M.【答案】18kg【解析】【分析】分析几何关系根据给出的长度信息可求得两绳子的夹角;再分别对整体和B、C进行受力分析,根据共点力的平衡条件分别对竖直方向和水平方向分析,联立即可求得M.【详解】设AB与竖直方向的夹角为θ,则由几何关系可知:(7﹣5sinθ)2+(7﹣5cosθ)2=52解得:sinθ+cosθ=解得:sinθ=0.6;或sinθ=0.8由图可知,夹角应小于45°,故0.8舍去;则由几何关系可知,BC与水平方向的夹角也为θ;设AB绳的拉力为T,则对整体分析可知:2Tcos37°=Mg+2mg设BC绳的拉力为N;则有:对B球分析可知:Tsinθ=Ncosθ联立解得:M=18Kg;【点睛】本题为较复杂的共点力的平衡条件问题,解题的关键在于把握好几何关系,正确选择研究对象,再利用共点力的平衡条件进行分析即可求解.2.如图所示,水平面上有一个倾角为的斜劈,质量为m.一个光滑小球,质量也m,用绳子悬挂起来,绳子与斜面的夹角为,整个系统处于静止状态.(1)求出绳子的拉力T;(2)若地面对斜劈的最大静摩擦力等于地面对斜劈的支持力的k倍,为了使整个系统保持静止,k值必须满足什么条件?【答案】(1)(2)【解析】【分析】【详解】试题分析:(1)以小球为研究对象,根据平衡条件应用正交分解法求解绳子的拉力T;(2)对整体研究,根据平衡条件求出地面对斜劈的静摩擦力f,当f≤f m时,整个系统能始终保持静止.解:(1)对小球:水平方向:N1sin30°=Tsin30°竖直方向:N1cos30°+Tcos30°=mg代入解得:;(2)对整体:水平方向:f=Tsin30°竖直方向:N2+Tcos30°=2mg而由题意:f m=kN2为了使整个系统始终保持静止,应该满足:f m≥f解得:.点晴:本题考查受力平衡的应用,小球静止不动受力平衡,以小球为研究对象分析受力情况,建立直角坐标系后把力分解为水平和竖直两个方向,写x轴和y轴上的平衡式,可求得绳子的拉力大小,以整体为研究对象,受到重力、支持力、绳子的拉力和地面静摩擦力的作用,建立直角坐标系后把力分解,写出水平和竖直的平衡式,静摩擦力小于等于最大静摩擦力,利用此不等式求解.3.用质量为m、总电阻为R的导线做成边长为l的正方形线框MNPQ,并将其放在倾角为的平行绝缘导轨上,平行导轨的间距也为l ,如图所示,线框与导轨之间是光滑的,在导轨的下端有一宽度为l (即ab l =)、磁感应强度为B 的有界匀强磁场,磁场的边界'aa 、'bb 垂直于导轨,磁场的方向与线框平面垂直,线框从图示位置由静止释放,恰能匀速穿过磁场区域,重力加速度为g ,求:(1)线框通过磁场时的速度v ;(2)线框MN 边运动到'aa 的过程中通过线框导线横截面的电荷量q ; (3)通过磁场的过程中,线框中产生的热量Q 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理试卷分类汇编物理相互作用(及答案)(1)一、高中物理精讲专题测试相互作用1.如图所示,在倾角=30°的斜面上放一木板A,重为G A=100N,板上放一重为G B=500N的木箱B,斜面上有一固定的挡板,先用平行于斜面的绳子把木箱与挡板拉紧,然后在木板上施加一平行斜面方向的拉力F,使木板从木箱下匀速抽出此时,绳子的拉力T=400N。

设木板与斜面间的动摩擦因数,求:(1)A、B间的摩擦力和摩擦因素;(2)拉力F的大小。

【答案】(1)A、B间的摩擦力f B为150N;摩擦因数μ2=;(2)拉力F的大小为325N。

【解析】【详解】(1)对B受力分析如图由平衡条件,沿斜面方向有为:G B sinθ+f B=T…①代入数据,解得A、B间摩擦力为:f B=150N方向沿斜面向下,垂直斜面方向:N B=G B cosθ=500×=250N…②A、B动摩擦因数为:(2)以AB整体为研究对象,受力分析如图,由平衡条件得:F=f A+T-(G A+G B)sinθ…③N A=(G A+G B)cosθ…④f A=μ1N A…⑤联立③④⑤解得:F=325 N【点睛】本题考查共点力平衡条件的应用,要注意在解题时能正确选择研究对象,作出受力分析即可求解,本题要注意虽然两A 运动B 静止,但由于二者加速度均零,因此可以看作整体进行分析。

2.将质量0.1m kg =的圆环套在固定的水平直杆上,环的直径略大于杆的截面直径,环与杆的动摩擦因数0.8μ=.对环施加一位于竖直平面内斜向上与杆夹角53θ=o 的恒定拉力F ,使圆环从静止开始运动,第1s 内前进了2.2m (取210/g m s =,sin530.8=o ,cos530.6=o ).求:(1)圆环加速度a 的大小; (2)拉力F 的大小.【答案】(1)24.4m/s (2)1N 或9N 【解析】(1)小环做匀加速直线运动,由运动学公式可知:21x 2at = 解得:2a 4.4m /s =(2)令Fsin53mg 0︒-=,解得F 1.25N = 当F 1.25N <时,环与杆的上部接触,受力如图:由牛顿第二定律,Fcos θμN F ma -=,Fsin θN F mg += 联立解得:()F m a g cos sin μθμθ+=+代入数据得:F 1N =当F 1.25N >时,环与杆的下部接触,受力如图:由牛顿第二定律,Fcos θμN F ma -=,Fsin θN mg F =+ 联立解得:()F m a g cos sin μθμθ-=-代入数据得:F 9N =3.如图所示,表面光滑的长方体平台固定于水平地面上,以平台外侧的一边为x 轴,在平台表面建有平面直角坐标系xoy ,其坐标原点O 与平台右侧距离为d=1.2m 。

平台足够宽,高为h=0.8m ,长为L=3.3m 。

一个质量m 1=0.2kg 的小球以v0=3m/s 的速度沿x 轴运动,到达O 点时,给小球施加一个沿y 轴正方向的水平力F 1,且F 1=5y (N )。

经一段时间,小球到达平台上坐标为(1.2m ,0.8m )的P 点时,撤去外力F1。

在小球到达P 点的同时,平台与地面相交处最内侧的M 点,一个质量m2=0.2kg 的滑块以速度v 在水平地面上开始做匀速直线运动,滑块与地面间的动摩擦因数μ=0.5,由于摩擦力的作用,要保证滑块做匀速运动需要给滑块一个外力F2,最终小球落在N 点时恰好与滑块相遇,小球、滑块均视为质点, 210/g m s =, sin370.6cos370.8︒=︒=,。

求:(1)小球到达P 点时的速度大小和方向; (2)M 、N 两点间的距离s 和滑块速度v 的大小; (3)外力F 2最小值的大小(结果可用根式表示)【答案】(1)5m/s 方向与x 轴正方向成53°(2)1.5m ;3.75m/s (325N 【解析】(1)小球在平台上做曲线运动,可分解为沿x 轴方向的匀速直线运动和沿y 轴方向的变加速运动,设小球在P 点受到p v 与x 轴夹角为α 从O 点到P 点,变力1F 做功50.80.8 1.62p y J J ⨯=⨯= 根据动能定理有221101122P W m v m v =-,解得5/p v m s = 根据速度的合成与分解有0cos p v v α=,得53α=︒,小球到达P 点时速度与x 轴正方向成53︒(2)小球离开P 点后做平抛运动,根据平抛运动规律有212h gt =,解得t=0.4s 小球位移在水平面内投影2p l v t m ==设P 点在地面的投影为P ',则 2.5P P M L y m ='=- 由几何关系可得2222cos s P M l l P M θ=+-⋅⋅'',解得s=1.5m滑块要与小球相遇,必须沿MN 连线运动,由s vt =,得 3.75/v m s = (3)设外力2F 的方向与滑块运动方向(水平方向)的夹角为β,根据平衡条件 水平方向有: 2cos F f β=,其中f N μ=,竖直方向有22sin N F m g β+= 联立解得22cos sin m gF μβμβ=+由数学知识可得()2221sin F μβθ=++,其最小值22min 2251F N μ==+。

4.如下图,水平细杆上套有一质量为M 的小环A ,用轻绳将质量为m=1.0kg 的小球B 与A 相连,B 受到始终与水平成53o 角的风力作用,与A 一起向右匀速运动,此时轻绳与水平方向的夹角为37o ,运动过程中B 球始终在水平细杆的正下方,且与A 的相对位置不变.已知细杆与环A 间的动摩擦因数为,(g=10m/s 2,sin37°=0.6,cos37°=0.8)求:(1)B 对绳子的拉力大小 (2)A 环的质量.【答案】(1)6.0N ;(2)1.08kg 【解析】 【详解】(1)对小球B 受力分析如图,得:F T =mgsin37° 代入数据解得:F T =6.0N(2)环A做匀速直线运动,受力如图,有:F T cos37°-f=0F N=Mg+F T sin37°又:f=μF N代入数据解得:M=1.08kg5.(14分)如图所示,木板与水平地面间的夹角θ可以随意改变,当θ=30°时,可视为质点的一小木块恰好能沿着木板匀速下滑。

若让该小木块从木板的底端以大小恒定的初速率v0=10m/s的速度沿木板向上运动,随着θ的改变,小物块沿木板滑行的距离x将发生变化,重力加速度g=10m/s2。

(结果可用根号表示)(1)求小物块与木板间的动摩擦因数;(2)当θ角满足什么条件时,小物块沿木板滑行的距离最小,并求出此最小值。

【答案】(1)(2)θ=60°;m【解析】试题分析:(1)当时,对木块受力分析:…(2分)……(2分)则动摩擦因素:…(2分)(2)当变化时,木块的加速度a为:…(2分)木块的位移S为:…(2分)则令,则当时s最小,即…(2分)S最小值为考点:考查了牛顿第二定律的应用点评:做本题的关键是对物体受力分析,找出临界状态,较难6.如图甲所示,表面绝缘、倾角θ=30°的斜面固定在水平地面上,斜面所在空间有一宽度D=0.40m的匀强磁场区域,其边界与斜面底边平行,磁场方向垂直斜面向上.一个质量m=0.10kg、总电阻R=0.25W的单匝矩形金属框abcd,放在斜面的底端,其中ab边与斜面底边重合,ab边长L=0.50m.从t=0时刻开始,线框在垂直cd边沿斜面向上大小恒定的拉力作用下,从静止开始运动,当线框的ab边离开磁场区域时撤去拉力,线框继续向上运动,线框向上运动过程中速度与时间的关系如图乙所示.已知线框在整个运动过程中始终未脱离斜面,且保持ab边与斜面底边平行,线框与斜面之间的动摩擦因数,重力加速度g取10 m/s2.求:(1)线框受到的拉力F的大小;(2)匀强磁场的磁感应强度B的大小;(3)线框在斜面上运动的过程中产生的焦耳热Q.【答案】(1)F="1.5" N(2)(3)【解析】试题分析:(1)由v-t图象可知,在0~0.4s时间内线框做匀加速直线运动,进入磁场时的速度为v1=2.0m/s,所以:………………①………………②联解①②代入数据得:F="1.5" N ………………③(2)由v-t图象可知,线框进入磁场区域后以速度v1做匀速直线运动,由法拉第电磁感应定律和欧姆定律有:E=BLv1…④由欧姆定律得:…⑤对于线框匀速运动的过程,由力的平衡条件有:…⑥联解④⑤⑥代入数据得:…⑦(3)由v-t图象可知,线框进入磁场区域后做匀速直线运动,并以速度v1匀速穿出磁场,说明线框的宽度等于磁场的宽度,即为:⑧线框在减速为零时,有:所以线框不会下滑,设线框穿过磁场的时间为t ,则:…⑨…⑩联解④⑤⑥代人数据得: (11)考点:导体切割磁感线时的感应电动势;力的合成与分解的运用;共点力平衡的条件及其应用;闭合电路的欧姆定律.7.如图所示,水平面上有两根相距0.5m 的足够长的光滑平行金属导轨MN 和PQ ,之间有一导体棒ab ,导轨和导体棒的电阻忽略不计,在M 和P 之间接有阻值为R=2Ω的定值电阻。

质量为0.2kg 的导体棒ab 长l =0.5m ,与导轨接触良好。

整个装置处于方向竖直向上的匀强磁场中,磁感应强度B =0.4T 。

现在在导体棒ab 上施加一个水平向右,大小为0.02N 的恒力F ,使导体棒ab 由静止开始运动,求:⑴当ab 中的电流为多大时,导体棒ab 的速度最大? ⑵ab 的最大速度是多少?⑶若导体棒从开始到速度刚达到最大的过程中运动的位移s=10m ,则在此过程中R 上产生的热量是多少?【答案】(1)0.1A (2)1m/s (3)0.1J 【解析】试题分析:(1)当金属棒上所受的拉力等于安培力时,加速度为零,速度最大,则F=BIL ,解得:I=0.1A(2)根据E=BLv m ;E=IR 可解得:s m BLIRv m /1.0== (3)由能量守恒关系可得:Q mv FS m +=221 解得:Q=0.1J 考点:法拉第电磁感应定律;能量守恒定律.8.质量为5kg 的物体静止在粗糙水平面上,在0~4s 内施加一水平恒力F ,使物体从静止开始运动,在4~12s 内去掉了该恒力F ,物体因受摩擦力作用而减速至停止,其速度时间图象()如图所示.求:(1)在0~12s内物体的位移;(2)物体所受的摩擦力大小;(3)此水平恒力F的大小.【答案】(1)96m(2)10N(3)30N【解析】试题分析:(1)根据速度图象与坐标轴围成的面积表示位移得x=×12×16=96m(2)4s~12s内,加速度根据牛顿第二定律,有f=ma2=5×2=10N(3)0~4s内,加速度根据牛顿第二定律,有F−f=ma1代入数据:F-10=5×4解得:F=30N考点:牛顿第二定律的应用;v-t图线9.半圆形支架BAD,两细绳OA和OB结于圆心O,下端悬挂重为10 N的物体,OA与水平成60 ,使OA绳固定不动,将OB绳的B端沿半圆支架从水平位置逐渐向竖直的位置C 移动的过程中,如图所示,请画出OB绳上拉力最小时O点的受力示意图,并标明各力的大小。

相关文档
最新文档