实验二 控制系统的动态响应及其稳定性分析(优.选)

合集下载

系统响应及系统稳定性实验报告

系统响应及系统稳定性实验报告

系统响应及系统稳定性实验报告系统响应及系统稳定性实验报告引言:系统响应和系统稳定性是控制论中重要的概念。

在工程和科学领域中,我们经常需要对系统的响应和稳定性进行评估和分析,以便设计和优化控制系统。

本实验旨在通过实际测量和数据分析,探讨系统响应和系统稳定性的相关概念。

一、实验背景控制系统是由输入、输出和系统本身组成的。

系统响应是指系统对输入信号的反应。

而系统稳定性则是指系统在长时间运行中是否趋于稳定状态。

了解系统的响应和稳定性对于设计和优化控制系统至关重要。

二、实验目的1. 了解系统响应和系统稳定性的概念和定义。

2. 掌握测量系统响应和稳定性的方法和技巧。

3. 分析实验数据,评估系统的响应和稳定性。

三、实验装置和方法本实验使用了一个简单的电路系统作为示例。

实验装置包括一个信号发生器、一个电路板和一个示波器。

实验步骤如下:1. 将信号发生器连接到电路板的输入端,设置合适的频率和振幅。

2. 将示波器连接到电路板的输出端,用于测量输出信号。

3. 通过改变信号发生器的输入信号,观察并记录系统的响应。

四、实验结果与数据分析在实验中,我们通过改变信号发生器的输入信号频率和振幅,记录了系统的输出信号。

根据实验数据,我们可以绘制出系统的频率响应曲线和幅频特性曲线。

1. 频率响应曲线频率响应曲线是描述系统对不同频率输入信号的响应的曲线。

通过绘制频率响应曲线,我们可以观察到系统对于不同频率信号的增益和相位变化。

从实验数据中绘制的频率响应曲线中,我们可以观察到系统在低频时具有较高的增益,而在高频时增益逐渐降低。

2. 幅频特性曲线幅频特性曲线是描述系统对不同幅度输入信号的响应的曲线。

通过绘制幅频特性曲线,我们可以观察到系统对于不同幅度信号的增益变化。

从实验数据中绘制的幅频特性曲线中,我们可以观察到系统在低幅度信号时具有较高的增益,而在高幅度信号时增益逐渐饱和。

五、系统稳定性分析系统稳定性是指系统在长时间运行中是否趋于稳定状态。

实验2二阶系统的阶跃响应及稳定性分析实验

实验2二阶系统的阶跃响应及稳定性分析实验

实验室二二阶系统的阶跃响应及稳定性分析实验一.实验目的1.熟悉二阶模拟系统的组成。

2.研究二阶系统分别工作在等几种状态下的阶跃响应。

3.学习掌握动态性能指标的测试方法,研究典型系统参数对系统动态性能和稳定性的影响。

二,实验内容1.ZY17AutoC12BB自动控制原理实验箱。

2.双踪低频慢扫示波器。

四.实验原理典型二阶系统的方法块结构图如图2.1所示:图2.1其开环传递函数为,为开环增益。

其闭环传递函数为,其中取二阶系统的模拟电路如图2.2所示:该电路中该二阶系统的阶跃响应如图所示:图2.3.1,2.3.2,2.3.3,2.3.4和2.3.5分别对应二阶系统在过阻尼,临界阻尼,欠阻尼,不等幅阻尼振荡(接近于0)和零阻尼(=0)几种状态下的阶跃响应曲线。

改变元件参数Rx大小,可研究不同参数特征下的时域响应。

当Rx为50k时,二阶系统工作在临界阻尼状态;当Rx<50K时,二阶系统工作在过阻尼状态;当Rx>50K时,二阶系统工作在欠阻尼状态;当Rx继续增大时,趋近于零,二阶系统输出表现为不等幅阻尼振荡;当=0时,二阶系统的阻尼为零,输出表现为等幅振荡(因导线均有电阻值,各种损耗总是存在的,实际系统的阻尼比不可能为零)。

五. 实验步骤1.利用实验仪器,按照实验原理设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路。

此实验可使用运放单元(一),(二),(三),(五)及元器件单元中的可调电阻。

(1)同时按下电源单元中的按键开关S001,S002,再按下S003,调节可调电位器W001,使T006(-12V—+12V)输出电压为+1V,形成单位阶跃信号电路,然后将S001,S002再次按下关闭电源。

(2)按照图2.2连接好电路,按下电路中所用到运放单元的按键开关。

(3)用导线将连接好的模拟电路的输入端于T006相连接,电路的输出端与示波器相连接。

(4)同时按下按键开关S001,S002时,利用示波器观测该二阶系统模拟电路的阶跃特性曲线,并由实验测出响应的超调量和调节时间,将结果记录下来。

控制实验报告二典型系统动态性能和稳定性分析

控制实验报告二典型系统动态性能和稳定性分析

实验报告2报告名称:典型系统动态性能和稳定性分析一.实验目的K学习和掌出动态性能指标的测试方法.2藥研究典型系统参数对系统功态性能和稳疋H的影响实验内容1>观测二阶系统的阶跃响应.测出其超调试和调节时间,并研究其参数变化对动态性能和稳定性的影响.2.观测三阶系统的阶跃响应•测出其超调量和调节时间.并研究其参数变化对动态性能和稳定性的腦响三善实验过程及分析1.典型二阶系统结构图以及电路连接图如F所示’200*对电路连接图分析可以得到相关参数的农达式:7*o = /?oG: = 0 =矢K = ¥ =岛根据所连接的电路图的九件參数可以得到J (闭坏传递函故为 因此•调整比的用值•能够调节闭环传递函数中的阻尼系数•调节系统性能. 当为过阻尼系统*系统对阶跃响应不超调.响应速度慢•因此仃如卜的实验曲线当时,为临界阻尼系统,系统对阶跃响应恰好不超调.在不发生超调的 情况卜有说快的响应速度,因此有如下的实验曲线。

对比上下两张图片,町以发 现系统故厉的稳态误差都比较明显.应该与实骗仪器的粘密腹有关。

同时我们还 观察了这个系统对斜坡输入的响戒,其特点是输出曲线转折处之后有轻微的上凸 的部分,最后输出十分接近输入。

当0 vfv 1时.为欠IM 尼系统,系统对阶跃超调,响应速復很快.因此有如 下的实验曲线。

w(sr+2z 吠:其中从=5说;? = ^1000001.典型三阶系统结构图以及电路连接图如下所示:20C*"所连接的电路图可以知道其开环传递函数为:其屮.&的单•位为kQ,系统特征方程为S3+12S2+2O S+2O/C=O,根据劳斯判据诃以知道:系统稳定的条件为0<K<12・系统临界稳泄的条件为KJ2. 系统不稳定的条件为K>12,调节也可以调肯K,从而调节系统的性能。

具体实验图像如下:川软件仿真K典熨2阶系统取5-5.程序为:G=tf(5(Mh5Orqrt(2),5O]);step(G)调节时间为5s左右。

【自控原理实验】实验二 典型系统动态性能和稳定性分析

【自控原理实验】实验二  典型系统动态性能和稳定性分析

实验二典型系统动态性能和稳定性分析一.实验目的1.学习和掌握动态性能指标的测试方法。

2.研究典型系统参数对系统动态性能和稳定性的影响。

二.实验内容1.观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。

2.观测三阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。

三.实验步骤1.熟悉实验箱,利用实验箱上的模拟电路单元,参考本实验附录中的图2.1.1和图2.1.2,设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路(如用U9、U15、U11和U8连成)。

注意实验接线前必须对运放仔细调零(出厂已调好,无需调节)。

信号输出采用U3单元的O1、信号检测采用U3单元的I1、锁零接U3单元的G1。

2.利用实验设备观测该二阶系统模拟电路的阶跃特性,并测出其超调量和调节时间。

3.改变该二阶系统模拟电路的参数,观测参数对系统动态性能的影响。

4.利用实验箱上的模拟电路单元,参考本实验附录中的图2.2.1和图2.2.2,设计并连接由一个积分环节和两个惯性环节组成的三阶闭环系统的模拟电路(如用U9、U15、U11、U10和U8连成)。

5.利用实验设备观测该三阶系统模拟电路的阶跃特性,并测出其超调量和调节时间。

6.改变该三阶系统模拟电路的参数,观测参数对系统稳定性与动态指标的影响。

7.分析实验结果,完成实验报告。

软件界面上的操作步骤如下:①按通道接线情况:通过上位机界面中“通道选择”选择I1、I2路A/D通道作为被测环节的检测端口,选择D/A通道的O1(“测试信号1”)作为被测对象的信号发生端口.不同的通道,图形显示控件中波形的颜色将不同。

②硬件接线完毕后,检查USB口通讯连线和实验箱电源后,运行上位机软件程序,如果有问题请求指导教师帮助。

③进入实验模式后,先对显示模式进行设置:选择“X-t 模式”;选择“T/DIV ”为1s/1HZ 。

自动控制原理实验二系统的动态性能与稳态研究

自动控制原理实验二系统的动态性能与稳态研究

自动控制原理实验二系统的动态性能与稳态研究系统的动态性能与稳态是自动控制原理中的重要概念,对于系统的分析和设计具有重要意义。

本实验将通过实际的控制系统,研究动态性能与稳态的相关特性。

实验目的:1.理解系统的动态性能和稳态的概念。

2.通过实验研究不同参数对系统动态性能和稳态的影响。

3.掌握如何调节参数以改善系统的动态性能和稳态。

实验器材:1.控制系统实验装置。

2.控制器。

3.传感器。

4.计算机及相关软件。

实验步骤:1.将控制系统实验装置连接好,包括传感器和执行器。

2.设置基本的控制系统参数,如比例增益、积分时间和微分时间。

3.对系统进行稳态分析,记录输出信号的稳定值。

4.通过改变控制器的参数,观察系统的动态响应特性。

例如,改变比例增益,观察系统的超调量和调节时间的变化。

5.改变积分时间和微分时间,观察系统的超调量和调节时间的变化。

6.对不同参数组合进行实验,总结参数与系统性能之间的关系。

实验结果:通过实验可以得到一些重要的结论:1.比例增益的增大可以减小超调量,但同时也可能引起系统的震荡。

2.积分时间的增大可以减小偏差,但也可能导致系统的不稳定。

3.微分时间的增大可以提高系统的稳定性,但也可能引起系统的震荡。

实验结论:本实验通过实际的控制系统,研究了动态性能和稳态的相关特性。

通过改变控制器的参数,可以调节系统的动态性能和稳态。

在实际应用中,需要根据具体的控制要求,选择合适的参数组合,以达到系统的稳定性和性能要求。

实验结果对于掌握自动控制原理中的动态性能和稳态概念,以及参数调节方法具有重要意义。

实验二 二阶系统的动态特性与稳定性分析

实验二 二阶系统的动态特性与稳定性分析

实验二二阶系统的动态特性与稳定性分析自动控制原理实验报告实验名称:班级:姓名:学号:二阶系统的动态特性与稳定性分析一、实验目的1、掌握二阶系统的电路模拟方法及其动态性能指标的测试技术过阻尼、临界阻尼、欠阻尼状态2、分析二阶系统特征参量(ωn,ξ)对系统动态性能的影响;3、分析系统参数变化对系统稳定性的影响,加深理解“线性系统稳定性至于其结构和参数有关,与外作用无关”的性质;4、了解掌握典型三阶系统的稳定状态、临界稳定、不稳定状态;5、学习二阶控制系统及其阶跃响应的Matlab仿真和simulink实现方法。

二、实验内容1、构成各二阶控制系统模拟电路,计算传递函数,明确各参数物理意义。

2、用Matlab和simulink仿真,分析其阶跃响应动态性能,得出性能指标。

3、搭建典型二阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量σ%、峰值时间tp以及调节时间ts,研究其参数变化对典型二阶系统动态性能和稳定性的影响;4、搭建典型三阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量σ%、峰值时间tp以及调节时间ts,研究其参数变化对典型三阶系统动态性能和稳定性的影响;5、将软件仿真结果与模拟电路观测的结果做比较。

三、实验步骤1、二阶系统的模拟电路实现原理将二阶系统:G(s)=可分解为一个比例环节,一个惯性环节和一个积分环节+2ξsωns+ωn2nG(s)=0236(+s+R1R3R6R2R4R5C1R2R4R5C1C2s)3 2n24512==3+s+s2s+2ξωns+ωnR2R4R5C1C2R6C2(s)=Ui(s)2、研究特征参量ξ对二阶系统性能的影响将二阶系统固有频率ωn=12.5保持不变,测试阻尼系数ξ不同时系统的特性,搭建模拟电路,改变电阻R6可改变ξ的值当R6=50K时,二阶系统阻尼系数ξ=0.8当R6=100K时,二阶系统阻尼系数ξ=0.4当R6=200K时,二阶系统阻尼系数ξ=0.2(1)用Matlab软件仿真实现二阶系统的阶跃响应,计算超调量σ%、峰值时间tp以及调节时间ts。

控制系统的稳定性分析实验报告范文

控制系统的稳定性分析实验报告范文

控制系统的稳定性分析实验报告范文下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!控制系统的稳定性分析实验报告1. 引言控制系统的稳定性分析是控制工程领域的重要研究方向之一。

自控实验报告二典型系统的时域响应和稳定性分析

自控实验报告二典型系统的时域响应和稳定性分析

自控实验报告二典型系统的时域响应和稳定性分析实验二典型系统的时域响应和稳定性分析一、实验目的1.研究二阶系统的特征参量(ξ、ωn) 对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。

二、实验设备PC 机一台,TD-ACC+(或 TD-ACS)教学实验系统一套。

三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图 1.2-1 所示。

(2) 对应的模拟电路图:如图 1.2-2 所示。

(3) 理论分析系统开环传递函数为:G(s)=k1T0S(T1S+1)=K1T0S(T1S+1); 开环增益K=K1T0(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

在此实验中(图 1.2-2)2.典型的三阶系统稳定性分析(1) 结构框图:如图 1.2-3 所示。

(2) 模拟电路图:如图 1.2-4 所示。

(3) 理论分析系统的开环传函为:G(s)H(s)=500RS(0.1S+1)(0.5S+1)(其中K=500R)系统的特征方程为: 1 +G(s)H(s)=0 S3+12S2+20S+20K=0。

(4) 实验内容实验前由 Routh 判断得 Routh 行列式为:四、实验步骤1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。

由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。

将开关设在“方波”档,分别调节调幅和调频电位器,使得“OUT”端输出的方波幅值为 1V,周期为 10s 左右。

2. 典型二阶系统瞬态性能指标的测试(1) 按模拟电路图 1.2-2 接线,将 1 中的方波信号接至输入端,取 R = 10K。

(2) 用示波器观察系统响应曲线 C(t),测量并记录超调 MP、峰值时间 tp 和调节时tS。

自动控制原理实验 控制系统稳定性分析和时域响应分析

自动控制原理实验 控制系统稳定性分析和时域响应分析

实验二 控制系统稳定性分析和时域响应分析一、实验目的与要求1、熟悉系统稳定性的Matlab 直接判定方法和图形化判定方法;2、掌握如何使用Matlab 进行控制系统的动态性能指标分析;3、掌握如何使用Matlab 进行控制系统的稳态性能指标分析。

二、实验类型设计三、实验原理及说明1. 稳定性分析 1)系统稳定的概念经典控制分析中,关于线性定常系统稳定性的概念是:若控制系统在初始条件和扰动共同作用下,其瞬态响应随时间的推移而逐渐衰减并趋于原点(原平衡工作点),则称该系统是稳定的,反之,如果控制系统受到扰动作用后,其瞬态响应随时间的推移而发散,输出呈持续震荡过程,或者输出无限偏离平衡状态,则称该系统是不稳定的。

2)系统特征多项式以线性连续系统为例,设其闭环传递函数为nn n n mm m m a s a s a s a b s b s b s b s D s M s ++++++++==----11101110......)()()(φ 式中,n n n n a s a s a s a s D ++++=--1110...)(称为系统特征多项式;0...)(1110=++++=--n n n n a s a s a s a s D 为系统特征方程。

3)系统稳定的判定对于线性连续系统,其稳定的充分必要条件是:描述该系统的微分方程的特征方程具有负实部,即全部根在左半复平面内,或者说系统的闭环传递函数的极点均位于左半s 平面内。

对于线性离散系统,其稳定的充分必要条件是:如果闭环系统的特征方程根或者闭环传递函数的极点为n λλλ,...,21,则当所有特征根的模都小于1时,即),...2,1(1n i i =<λ,该线性离散系统是稳定的,如果模的值大于1时,则该线性离散系统是不稳定的。

4)常用判定语句2.动态性能指标分析系统的单位阶跃响应不仅完整反映了系统的动态特性,而且反映了系统在单位阶跃信号输入下的稳定状态。

实验二控制系统动态响应及其稳定性分析(优.选)

实验二控制系统动态响应及其稳定性分析(优.选)

实验二控制系统的动向响应及其稳固性剖析一、实验目的1.学习瞬态性能指标的测试技术;2.记录不一样开环增益时二阶系统的阶跃响应曲线,并测出系统的超调量σ%、峰值时间 t p和调理时间 t s;3.熟习闭环控制系统的稳固和不稳固现象,并加深理解线性系统的稳固性只与其构造和参量相关,而与外作用没关的性质。

二、实验仪器1.MATLAB 软件三、实验原理对一个二阶系统加入一个阶跃信号时,系统就有一个输出响应,其响应将跟着系统参数变化而变化。

二阶系统的特征由两个参数来描绘:一个为系统的阻尼比ξ,一个为系统的无阻尼自然频次ω。

当两个参数变化时,都会惹起系统的调理时间、超调量、振荡次数的变化。

在系统其余参数不变时,可经过改变系统增益系数K 来实现ξ、ωn的变化,二阶系统构造图如图 3-1。

R( s) 1 1 C( s)K 1 T 2sT s+ 1图 3-1二阶系统的构造原理图其闭环传达函数的标准形式为KC ( s) K T1T 2 2 ,nR ( s) T 2 s( T1 s 1) K 2 1 K s 2 2 n s 2s nsT1T2T1无阻尼自然频次nK阻尼比T2,,4KT1T1T2当ξ =1 时,系统为临界阻尼,此时可求出K 为 0.625,ω为 2.5。

若改变 K 值,就能够改变ξ值:当K >0.625 时,ξ< 1 为过阻尼;当K < 0.625 时,ξ> 1 为过阻尼。

三阶系统的构造图如图3- 2 所示。

R(s)K1 1 1 C(s)1s+ 12 T 3sT T s+ 1图 3-2三阶系统的构造原理图其开环传达函数为K,G (s)T3 (T1 s 1)(T2s 1)改变惯性时间常数 T 2和开环增益 K ,能够获得不一样的阶跃响应。

若调理K 值大小,可改变系统的稳固性,且用劳斯(Routh )判据考证。

用劳斯判据能够求出:系统临界稳固的开环增益为7.5。

即 K < 7.5 时,系统稳固; K >7.5 时,系统不稳固。

实验二 典型系统动态性能和稳定性分析

实验二  典型系统动态性能和稳定性分析

实验二典型系统动态性能和稳定性分析一.实验目的1.学习和掌握动态性能指标的测试方法。

2.研究典型系统参数对系统动态性能和稳定性的影响。

二.实验内容1.观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。

2.观测三阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。

三.实验步骤1.熟悉实验装置,利用实验装置上的模拟电路单元,参考本实验附录中的图2.1.1和图2.1.2,设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路(如用U9、U15、U11和U8连成)。

注意实验接线前必须对运放仔细调零(出厂已调好,无需调节)。

信号输出采用U3单元的O1、信号检测采用U3单元的I1、运放的锁零接U3单元的G1。

2.利用实验设备观测该二阶系统模拟电路的阶跃特性,并测出其超调量和调节时间。

3.改变该二阶系统模拟电路的参数,观测参数对系统动态性能的影响。

4.利用实验装置上的模拟电路单元,参考本实验附录中的图2.2.1和图2.2.2,设计并连接由一个积分环节和两个惯性环节组成的三阶闭环系统的模拟电路(如用U9、U15、U11、U10和U8连成)。

5.利用实验设备观测该三阶系统模拟电路的阶跃特性,并测出其超调量和调节时间。

6.改变该三阶系统模拟电路的参数,观测参数对系统稳定性与动态指标的影响。

7.分析实验结果,完成实验报告。

软件界面上的操作步骤如下:①按通道接线情况:通过上位机界面中“通道选择”选择I1、I2路A/D通道作为被测环节的检测端口,选择D/A通道的O1(“测试信号1”)作为被测对象的信号发生端口.不同的通道,图形显示控件中波形的颜色将不同。

②硬件接线完毕后,检查USB口通讯连线和实验装置电源后,运行上位机软件程序,如果有问题请求指导教师帮助。

③进入实验模式后,先对显示模式进行设置:选择“X-t模式”;选择“T/DIV”为1s/1HZ。

控制系统的稳定性分析实验报告

控制系统的稳定性分析实验报告

控制系统的稳定性分析实验报告引言控制系统的稳定性是指系统在扰动作用下,能否保持稳定运行的能力。

在实际应用中,对于控制系统的稳定性分析具有重要的意义。

本实验旨在通过实际实验,分析控制系统的稳定性,并对结果进行报告。

实验设备和方法设备本实验使用的设备如下:1.一台控制系统稳定性分析实验设备2.一台电脑方法1.将实验设备接通电源,等待设备启动完毕。

2.打开电脑,运行实验软件。

3.在实验软件中设置实验参数,包括控制系统的传递函数、采样时间等。

4.开始实验,并记录实验过程中的数据。

5.分析实验结果,得出控制系统的稳定性结论。

6.撰写实验报告。

实验结果与分析在本次实验中,我们选择了一个二阶惯性系统作为被控对象,传递函数为$G(s)=\\frac{1}{(s+1)(s+2)}$。

我们使用了PID控制器进行控制,并设置了合适的参数。

实验过程中,我们输入了一个单位阶跃信号,观察系统的响应。

通过记录实验数据并进行分析,我们得到了以下实验结果:1.系统的超调量为5%;2.系统的稳态误差为0.1;3.系统的调节时间为2秒。

根据实验结果,我们可以得出以下结论:1.系统的超调量很小,说明系统具有较好的动态性能;2.系统的稳态误差较小,说明系统具有较好的稳定性;3.系统的调节时间较短,说明系统的响应速度较快。

综上所述,实验结果表明控制系统具有较好的稳定性。

结论通过本次实验,我们通过实际实验和数据分析,得出了控制系统的稳定性结论。

实验结果表明控制系统具有较好的稳定性。

控制系统的稳定性是保证系统正常运行的重要指标,对于工程应用具有重要的意义。

参考文献无。

实验二 二阶系统的动态特性与稳定性分析.

实验二 二阶系统的动态特性与稳定性分析.

自动控制原理实验报告实验名称:二阶系统的动态特性与稳定性分析班级:姓名:学号:实验二 二阶系统的动态特性与稳定性分析一、实验目的1、 掌握二阶系统的电路模拟方法及其动态性能指标的测试技术过阻尼、临界阻尼、欠阻尼状态2、 分析二阶系统特征参量(ξω,n )对系统动态性能的影响;3、 分析系统参数变化对系统稳定性的影响,加深理解“线性系统稳定性至于其结构和参数有关,与外作用无关”的性质;4、 了解掌握典型三阶系统的稳定状态、临界稳定、不稳定状态;5、 学习二阶控制系统及其阶跃响应的Matlab 仿真和simulink 实现方法。

二、实验内容1、 构成各二阶控制系统模拟电路,计算传递函数,明确各参数物理意义。

2、 用Matlab 和simulink 仿真,分析其阶跃响应动态性能,得出性能指标。

3、 搭建典型二阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型二阶系统动态性能和稳定性的影响;4、 搭建典型三阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型三阶系统动态性能和稳定性的影响;5、 将软件仿真结果与模拟电路观测的结果做比较。

三、实验步骤1、 二阶系统的模拟电路实现原理 将二阶系统:ωωξω22)(22nn s G s s n++=可分解为一个比例环节,一个惯性环节和一个积分环节ωωξω)()()()(2C C C C s C C 22262154232154232154215426316320nn s s s s s G s s s C R R R R R R R R R R R R C R R R R R R R R R U U n i ++=++=++== 2、 研究特征参量ξ对二阶系统性能的影响将二阶系统固有频率5.12n =ω保持不变,测试阻尼系数ξ不同时系统的特性,搭建模拟电路,改变电阻R6可改变ξ的值当R6=50K 时,二阶系统阻尼系数ξ=0.8 当R6=100K 时,二阶系统阻尼系数ξ=0.4 当R6=200K 时,二阶系统阻尼系数ξ=0.2(1)用Matlab 软件仿真实现二阶系统的阶跃响应,计算超调量%σ、峰值时间tp 以及调节时间ts 。

系统响应及系统稳定性实验报告

系统响应及系统稳定性实验报告

系统响应及系统稳定性实验报告系统响应及系统稳定性实验报告引言:在现代科技的快速发展下,系统响应及系统稳定性成为了各个领域研究的热点。

系统响应是指系统对于外部刺激的反应速度和质量,而系统稳定性则是指系统在长时间运行中是否能够保持稳定的状态。

本实验旨在通过实际操作和数据分析,探究系统响应和系统稳定性的相关因素,并对结果进行评估和总结。

实验一:系统响应1. 实验目的通过改变输入信号的频率和幅度,观察系统的响应速度和质量,并分析其影响因素。

2. 实验步骤首先,我们选取了一个简单的电路系统作为实验对象。

接下来,我们分别改变输入信号的频率和幅度,记录系统的响应时间和稳定状态。

3. 实验结果通过实验数据的收集和整理,我们发现系统的响应速度与输入信号的频率和幅度密切相关。

当频率较高时,系统的响应速度更快;而当幅度较大时,系统的响应质量更高。

4. 结果分析系统响应速度受到信号传输路径的影响,包括信号传输介质的特性和系统内部元件的响应速度等。

而系统响应质量则与信号的幅度和噪声等因素有关。

因此,在设计系统时需要综合考虑这些因素,以达到最佳的响应效果。

实验二:系统稳定性1. 实验目的通过改变系统的参数和工作条件,观察系统的稳定性,并分析其影响因素。

2. 实验步骤我们选择了一个机械系统作为实验对象,并通过改变系统的参数和工作条件,观察系统的稳定性。

同时,我们记录了系统的稳定时间和稳定状态。

3. 实验结果通过实验数据的统计和分析,我们发现系统的稳定性与系统参数和工作条件密切相关。

当参数调整到合适的范围内,系统能够在较短的时间内达到稳定状态;而当参数偏离合适范围时,系统的稳定性会受到影响。

4. 结果分析系统稳定性受到系统内部元件的特性和外部环境的影响。

例如,系统的摩擦力、阻尼系数和负载等因素都会对系统的稳定性产生影响。

因此,在设计系统时需要考虑这些因素,并进行合理的调整和优化,以提高系统的稳定性。

总结:通过本次实验,我们对系统响应和系统稳定性的相关因素有了更深入的了解。

典型系统动态性能和稳定性分析

典型系统动态性能和稳定性分析

实验二 典型系统动态性能和稳定性分析一.实验目的:l 、学习和掌握动态性能指标的测试方法(如.σ s t p t n 等)。

2、研究典型系统参数对系统动态性能和稳定性的影响。

二. 实验内容:l 、观测不同参数下二阶、三阶系统的阶跃响应,测试出时域性能指标(如.σ s t p t n 等),并分析其参数变化对动态性能和稳定性的影响。

2. 观测增益对三阶系统稳定性的影响,找出临界稳定的增益值。

三. 实验原理:二阶系统,如图(2-1)所示:图(2-1)三阶系统,如图(2-2)所示:图(2-2)四.实验步骤:利用MATLAB 中的Simulink 仿真软件。

l. 典型二阶系统瞬态响应指标的测试。

(1) 参考实验一,建立如图(2-1)所示的实验方块图进行仿真。

(2) 单击工具栏中的 图标,开始仿真,观测在阶跃输入信号下,典型二阶系统的输出值)(0t U 。

根据输出波形)(0t U 调整“Gain ”模块的增益,使)(0t U 的波形呈现衰减比n:1分别为4:1和10:1时的衰减振荡状态。

然后记录超调量σ,峰值时间p t ,上升时间r t ,调节时间s t 及此时的增益值,分析系统参数对动态性能的影响。

(3) 调整“Gain ”模块的增益,使)(0t U 呈现临界振荡时的波形,记录此时“Gain ”模块的增益值,与计算的理论值相比较。

2. 典型三阶系统瞬态响应指标的测试及稳定性分析。

(1) 在典型二阶系统实验方块图的基础上,将对象串联一个惯性环节,重新连接模块,建立如图(2-2)所示的实验方块图进行仿真。

(2) 单击工具栏中的图标,开始仿真,观测阶跃输入信号下典型三阶系统的输出值)(0t U ,根据)(0t U 的波形,调整“Gain ”模块的增益,使)(0t U 的波形呈现2:1衰减振荡状态。

然后记录超调量σ,峰值时间p t ,上升时间r t ,调节时间s t 及此时的“Gain ”模块的增益值,分析系统参数对动态性能的影响。

控制系统的稳定性分析实验报告

控制系统的稳定性分析实验报告
四、实验步骤
1.连接被测量典型环节的模拟电路。电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入,将纯积分电容两端连在模拟开关上。检查无误后接通电源。
2.启动计算机,在桌面双击图标[自动控制实验系统]运行软件。
3.在实验项目的下拉列表中选择实验三[控制系统的稳定性分析]控Βιβλιοθήκη 系统的稳定性分析一、实验目的
1.观察系统的不稳定现象。
2.研究系统开环增益和时间常数对稳定性的影响。
二、实验仪器
1.自动控制系统实验箱一台
2.计算机一台
三、实验内容
系统模拟电路图如图
系统模拟电路图
其开环传递函数为:
G(s)=10K/s(0.1s+1)(Ts+1)
式中K1=R3/R2,R2=100K,R3=0~500K;T=RC,R=100K,C=1f或C=0.1f两种情况。
五、实验数据
1模拟电路图
2.画出系统增幅或减幅振荡的波形图。
C=1uf时:
R3=50K K=5:
R3=100KK=10
R3=200KK=20:
等幅振荡:R3=220k:
增幅振荡:R3=220k:
R3=260k:
C=0.1uf时:
R3=50k:
R3=100K:
R3=200K:
5.取R3的值为50K,100K,200K,此时相应的K=10,K1=5,10,20。观察不同R3值时显示区内的输出波形(既U2的波形),找到系统输出产生增幅振荡时相应的R3及K值。再把电阻R3由大至小变化,即R3=200k,100k,50k,观察不同R3值时显示区内的输出波形,找出系统输出产生等幅振荡变化的R3及K值,并观察U2的输出波形。

实验二 控制系统的阶跃响应及稳定性分析

实验二 控制系统的阶跃响应及稳定性分析

实验二 控制系统的阶跃响应及稳定性分析一、实验目的及要求:1.掌握控制系统数学模型的基本描述方法;2.了解控制系统的稳定性分析方法;3.掌握控制时域分析基本方法。

二、实验内容:1.系统数学模型的几种表示方法(1)传递函数模型G(s)=tf()(2)零极点模型G(s)=zpk(z,p,k)其中,G(s)=将零点、极点及K值输入即可建立零极点模型。

z=[-z1,-z …,-z m]p=[-p1,-p …,-p]k=k(3)多项式求根的函数:roots ( )调用格式: z=roots(a)其中:z — 各个根所构成的向量 a — 多项式系数向量(4)两种模型之间的转换函数:[z ,p ,k]=tf2zp(num , den) %传递函数模型向零极点传递函数的转换[num , den ]=zp2tf(z ,p ,k) %零极点传递函数向传递函数模型的转换(5)feedback()函数:系统反馈连接调用格式:sys=feedback(s1,s2,sign)其中,s1为前向通道传递函数,s2为反馈通道传递函数,sign=-1时,表示系统为单位负反馈;sign=1时,表示系统为单位正反馈。

2.控制系统的稳定性分析方法(1)求闭环特征方程的根(用roots函数);判断以为系统前向通道传递函数而构成的单位负反馈系统的稳定性,指出系统的闭环特征根的值:可编程如下:numg=1; deng=[1 1 2 23];numf=1; denf=1;[num,den]= feedback(numg,deng,numf,denf,-1);roots(den)(2)化为零极点模型,看极点是否在s右半平面(用pzmap);3.控制系统根轨迹绘制rlocus() 函数:功能为求系统根轨迹rlocfind():计算给定根的根轨迹增益sgrid()函数:绘制连续时间系统根轨迹和零极点图中的阻尼系数和自然频率栅格线4.线性系统时间响应分析step( )函数---求系统阶跃响应impulse( )函数:求取系统的脉冲响应lsim( )函数:求系统的任意输入下的仿真三、实验报告要求:编出程序并运行,完成下面的练习题:1.写出表示下列传递函数模型的MATLAB程序,并运行实现:(1)(2) (3)>>num=4*conv([1,2],conv([1, 6, 6],[1, 6, 6]));>>den=conv([1,0],conv([1,1],conv([1,1],conv([1,1],[1,3,2,5]))));2.判断以为系统前向通道传递函数而构成的单位负反馈系统的稳定性,指出系统的闭环特征根的值。

控制系统的瞬态响应及其稳定性分析-002

控制系统的瞬态响应及其稳定性分析-002

实验二 控制系统的瞬态响应及其稳定性分析一. 实验目的1•了解掌握典型二阶系统的过阻尼、临界阻尼、欠阻尼状态; 2•了解掌握典型三阶系统的稳定状态、临界稳定、不稳定状态; 3 .研究系统参数变化对系统动态性能和稳定性的影响。

二. 实验内容1•搭建典型二阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量b %、峰值时间tp 以及调节时间ts ,研究其参数变化对典型二阶系统动态性能 和稳定性的影响;2•搭建典型三阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量b %、峰值时间tp 以及调节时间ts ,研究其参数变化对典型三阶系统动态性能 和稳定性的影响。

三. 实验步骤1. 典型二阶系统的响应曲线图1-2-1是典型二阶系统原理方块图,其中T o =1S ,「=。

开环传函:G(S)K K 1其中K=K/T o =K=开环增益S(T 1S 1)S(0.2S 1)闭环传函:W(S)2—n2 其中 n'K 1/T 1T 0 S 2 2 n S n1 ■. T 0/K 1T 1 2表1-2-1列出有关二阶系统在三种情况(欠阻尼,临界阻尼,过阻尼)下具体参数的表达上式,以便计算理论值。

至于推导过程请参照有关原理书。

R(SC(S)表1-2-1图1-2-2典型二阶系统模拟电路图中:R1=100K R2=100K R3=100K R4=500K R6=200K R7=10K R8=10K C1= C2=R5为可选电阻:R5 = 16K时,二阶系统为欠阻尼状态R5= 160K时,二阶系统为临界阻尼状态R5= 200K时,二阶系统为过阻尼状态输入阶跃信号,通过示波器观测不同参数下输出阶跃响应曲线,并记录曲线的超调量b 峰值时间tp以及调节时间ts。

2. 典型三阶系统的响应曲线典型三阶系统的方块图:见图1-2-3图1-2-3典型三阶系统原理方块图开环传递函数为:KG(S)H(S) ,其中K K1K2/T0 (开环增益)S(T i S 1)(T2S 1)典型三阶系统模拟电路如图1-2-4 所示R8=500K R9=10K R10=10K C 仁、C2=输入阶跃信号,仔细调节电位器,可以得到三阶系统处于不稳定、 临界稳定和稳定的三种状态时的波形,通过示波器观测不同参数下阶跃响应曲线 ,并记录曲线的超调量b %、峰值时间tp 以及调节时间ts 。

实验二二阶系统地动态特性与稳定性分析报告

实验二二阶系统地动态特性与稳定性分析报告

自动控制原理实验报告实验名称:二阶系统的动态特性与稳定性分析班级:姓名:学号:实验二 二阶系统的动态特性与稳定性分析一、实验目的1、 掌握二阶系统的电路模拟方法及其动态性能指标的测试技术过阻尼、临界阻尼、欠阻尼状态2、 分析二阶系统特征参量(ξω,n )对系统动态性能的影响;3、 分析系统参数变化对系统稳定性的影响,加深理解“线性系统稳定性至于其结构和参数有关,与外作用无关”的性质;4、 了解掌握典型三阶系统的稳定状态、临界稳定、不稳定状态;5、 学习二阶控制系统及其阶跃响应的Matlab 仿真和simulink 实现方法。

二、实验内容1、 构成各二阶控制系统模拟电路,计算传递函数,明确各参数物理意义。

2、 用Matlab 和simulink 仿真,分析其阶跃响应动态性能,得出性能指标。

3、 搭建典型二阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型二阶系统动态性能和稳定性的影响;4、 搭建典型三阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型三阶系统动态性能和稳定性的影响;5、 将软件仿真结果与模拟电路观测的结果做比较。

三、实验步骤1、 二阶系统的模拟电路实现原理 将二阶系统:ωωξω22)(22nn s G s s n++=可分解为一个比例环节,一个惯性环节和一个积分环节ωωξω221)()()()(2C C C C s C C 222621542321542322154215426316320nn s s s s s G s s s C R R R R R R R R R R R R C R R R R R R R R R U U n i ++=++=++== 2、 研究特征参量ξ对二阶系统性能的影响将二阶系统固有频率5.12n =ω保持不变,测试阻尼系数ξ不同时系统的特性,搭建模拟电路,改变电阻R6可改变ξ的值 当R6=50K 时,二阶系统阻尼系数ξ=0.8 当R6=100K 时,二阶系统阻尼系数ξ=0.4 当R6=200K 时,二阶系统阻尼系数ξ=0.2(1)用Matlab 软件仿真实现二阶系统的阶跃响应,计算超调量%σ、峰值时间tp 以及调节时间ts 。

自动控制原理实验-典型系统的瞬态响应和稳定性分析

自动控制原理实验-典型系统的瞬态响应和稳定性分析

6、 误差分析 (1)对二阶系统分析可知,当0<ξ<1时,峰值时间tp和上升时间理
论计算值与实际测量值接近,误差较小;调节时间ts的理论计算值与实 际测量值有一定的误差,这是因为理论上当曲线在终值的2%以内就可 以,但实验中较难取到系统曲线刚好到达2%处的点,所以是以刚好达 到终值时的时间作为调节时间,此结果比计算值大些。
(2)典型三阶系统
R(s) E(s)
C(s)
开环传递函数为:G(S)H(S)== 其中:K=K1K2(开环增益),用劳斯判据可得出系统的稳定、临界稳 定、不稳定时的开环增益的范围。 五、实验结果及数据分析 (1)二阶系统
① ξ>1的情况
图一
已知条件:ξ=2 ωn=4 K=1 T=1/16 由图可知: c(tp)=1.003 c(∞)=1.003 tp=5s tr=2.2174s ts:测量值为5s 计算值为4.732s
④ ξ=0的情况
图八 已知条件:ξ=0 ω=0 K=0 T=1 由图可知是一条与横轴重合的直线
(2)三阶系统 令开环传递函数中的T1=1,T2=2,来分析该系统的稳定性 开环传递函数为G(s)H(s)== 特征方程为:s(s+1)(2s+1)+k=0
2s^3+3s^2+s+k=021 3k0源自k有劳斯判据可知:
微分环节:增加系统的阻尼比ξ,使超调量下降,调节时间也下 降,不影响系统的稳态误差和自然振荡频率。
比例环节:是开环增益增大从而减小稳态误差。 测速反馈环节:降低了开环增益,加大了斜坡信号输入时的稳态 误差,不影响自然振荡频率,提高了阻尼比ξ。 3、 根据实验结果,分析二阶系统ts、δ%与ξ、ωn之间的关系。 答:有已知公式可知其关系为: 超调量。 调节时间 4、考虑当二阶振荡环节的阻尼系数ξ<0和ξ<-1时,系统会出现什 么样的情况? 答:当ξ<0和ξ<-1时系统特征方程根实部为正数,特征根在s平 面的右半平面,系统为不稳定的系统。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二 控制系统的动态响应及其稳定性分析
一、实验目的
1. 学习瞬态性能指标的测试技术; 2. 记录不同开环增益时二阶系统的阶跃响应曲线,并测出系统的超调量σ%、峰
值时间t p 和调节时间t s ;
3. 熟悉闭环控制系统的稳定和不稳定现象,并加深理解线性系统的稳定性只与其
结构和参量有关,而与外作用无关的性质。

二、实验仪器
1. MATLAB 软件 三、实验原理
对一个二阶系统加入一个阶跃信号时,系统就有一个输出响应,其响应将随着系统参数变化而变化。

二阶系统的特性由两个参数来描述:一个为系统的阻尼比ξ,一个为系统的无阻尼自然频率ω。

当两个参数变化时,都会引起系统的调节时间、超调量、振荡次数的变化。

在系统其它参数不变时,可通过改变系统增益系数K 来实现ξ、ωn 的变化,二阶系统结构图如图3-1。

图3-1 二阶系统的结构原理图
其闭环传递函数的标准形式为
22
22
112211221)1()()(n
n n s s T T K s T s T T K
K s T s T K s R s C ωξωω++=+
+=++=, 无阻尼自然频率21T T K
n =
ω, 阻尼比1
2
4KT T =ξ, 当ξ=1时,系统为临界阻尼,此时可求出K 为0.625,ω为2.5。

若改变K 值,就可以改变ξ值:当K >0.625时,ξ<1为过阻尼;当K <0.625时,ξ>1为过阻尼。

三阶系统的结构图如图3-2所示。

图3-2 三阶系统的结构原理图
其开环传递函数为
)
1)(1()(213++=
s T s T T K
s G ,
改变惯性时间常数T 2和开环增益K ,可以得到不同的阶跃响应。

若调节K 值大小,可改变系统的稳定性,且用劳斯(Routh )判据验证。

用劳斯判据可以求出:系统临界稳定的开环增益为7.5。

即K <7.5时,系统稳定;K >7.5时,系统不稳定。

四、实验内容
1、观察二阶系统在单位阶跃信号作用下的响应曲线,按)
12.0(5.0)(+=
s s K
s G 的单位
负反馈系统,设计好实验线路,加入单位跃阶(1V )信号,从示波器上观察不同开环增益时系统的响应曲线。

并记录K 分别为10,5,2,1时的四条响应曲线,从响应曲线上求得超调量σ%、调整时间t s 和峰值时间t p 。

2. 选择某个稳定时刻,分别使用速度反馈控制和比例微分控制改善系统性能(比例系数为1,自己选择微分系数及速度反馈系数),记录改善前的单位阶跃输出机改善后的单位阶跃输出波形。

分析改善的原因。

3、观察三阶系统(单位负反馈)在单位阶跃信号作用下的系统响应曲线。

)
1)(1()(213++=
s T s T T K
s G
(1)按K=10,T 1=0.2s ,T 2=0.05s ,T 3=0.5s 设计实验线路,观察并记录单位阶跃响应
曲线,用劳斯判据求出系统临界稳定的开环增益。

(2)按T 1=0.2s ,T 2=0.1s ,T 3=0.5s 设计实验线路,观察并记录K 分别为5、7.5、10
三条响应曲线。

六、实验思考
1. 开环增益K 和惯性环节时间常数对系统的性能有什么影响? 如何观察三阶系统的发散振荡响应曲线?为什么最后出现等幅振荡现象?
答:由于ωn 、ζ由T 和K 值决定,因此它们将影响系统的响应曲线,从而将影响系统的稳定性能。

当K>7.5的时候,三阶系统的响应曲线已经不再是理论发散的振荡响应曲线,而是恒为等幅振荡,这可能是由于放大器本身电源幅值的限制。

实验数据记录如下:
K=10,T 1=0.2s ,T 2=0.05s ,T 3=0.5
K=5,T 1=0.2s ,T 2=0.1s ,T 3=0.5s
K=7.5,T1=0.2s,T2=0.1s,T3=0.5s K=10,T1=0.2s,T2=0.1s,T3=0.5s
K=0.625 ξ=1时,系统为临界阻尼K=1
K=2 K=5
K=10
K=5 微分系数0.05 K=10 微分系数0.05
速度反馈系统
K=5 微分系数0.005 PD反馈
最新文件---------------- 仅供参考--------------------已改成word文本--------------------- 方便更改。

相关文档
最新文档