物理曲线运动练习题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理曲线运动练习题及答案
一、高中物理精讲专题测试曲线运动
1.如图所示,一箱子高为H.底边长为L,一小球从一壁上沿口A垂直于箱壁以某一初速度向对面水平抛出,空气阻力不计。设小球与箱壁碰撞前后的速度大小不变,且速度方向与箱壁的夹角相等。
(1)若小球与箱壁一次碰撞后落到箱底处离C点距离为,求小球抛出时的初速度v0;(2)若小球正好落在箱子的B点,求初速度的可能值。
【答案】(1)(2)
【解析】
【分析】
(1)将整个过程等效为完整的平抛运动,结合水平位移和竖直位移求解初速度;(2)若小球正好落在箱子的B点,则水平位移应该是2L的整数倍,通过平抛运动公式列式求解初速度可能值。
【详解】
(1)此题可以看成是无反弹的完整平抛运动,
则水平位移为:x==v0t
竖直位移为:H=gt2
解得:v0=;
(2)若小球正好落在箱子的B点,则小球的水平位移为:x′=2nL(n=1.2.3……)
同理:x′=2nL=v′0t,H=gt′2
解得:(n=1.2.3……)
2.如图所示,BC为半径r
2
2
5
m竖直放置的细圆管,O为细圆管的圆心,在圆管的末
端C连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m=0.5kg的小球从O点正上方某处A点以v0水平抛出,恰好能垂直OB从B点进入细圆管,小球过C点时
速度大小不变,小球冲出C点后经过9
8
s再次回到C点。(g=10m/s2)求:
(1)小球从O 点的正上方某处A 点水平抛出的初速度v 0为多大? (2)小球第一次过C 点时轨道对小球的支持力大小为多少?
(3)若将BC 段换成光滑细圆管,其他不变,仍将小球从A 点以v 0水平抛出,且从小球进入圆管开始对小球施加了一竖直向上大小为5N 的恒力,试判断小球在BC 段的运动是否为匀速圆周运动,若是匀速圆周运动,求出小球对细管作用力大小;若不是匀速圆周运动则说明理由。
【答案】(1)2m/s (2)20.9N (3)2N 【解析】 【详解】
(1)小球从A 运动到B 为平抛运动,有:r sin45°=v 0t 在B 点有:tan45°0
gt v =
解以上两式得:v 0=2m/s (2)由牛顿第二定律得: 小球沿斜面向上滑动的加速度: a 14545mgsin mgcos m μ︒+︒
=
=g sin45°+μg cos45°=22
小球沿斜面向下滑动的加速度: a 24545mgsin mgcos m
μ︒-︒
=
=g sin45°﹣μg cos45°=2m/s 2
设小球沿斜面向上和向下滑动的时间分别为t 1、t 2,
由位移关系得:12
a 1t 121
2=a 2t 22
又因为:t 1+t 29
8
=s
解得:t 138
=
s ,t 234=s
小球从C 点冲出的速度:v C =a 1t 1=2m/s
在C 点由牛顿第二定律得:N ﹣mg =m 2
C
v r
解得:N =20.9N
(3)在B 点由运动的合成与分解有:v B 0
45v sin =
=︒
2
因为恒力为5N 与重力恰好平衡,小球在圆管中做匀速圆周运动。设细管对小球作用力大小为F
由牛顿第二定律得:F =m 2B
v r
解得:F =52N
由牛顿第三定律知小球对细管作用力大小为52N ,
3.如图所示,在竖直平面内有一半径为R 的
1
4
光滑圆弧轨道AB ,与水平地面相切于B 点。现将AB 锁定,让质量为m 的小滑块P (视为质点)从A 点由静止释放沿轨道AB 滑下,最终停在地面上的C 点,C 、B 两点间的距离为2R .已知轨道AB 的质量为2m ,P 与B 点右侧地面间的动摩擦因数恒定,B 点左侧地面光滑,重力加速度大小为g ,空气阻力不计。
(1)求P 刚滑到圆弧轨道的底端B 点时所受轨道的支持力大小N 以及P 与B 点右侧地面间的动摩擦因数μ;
(2)若将AB 解锁,让P 从A 点正上方某处Q 由静止释放,P 从A 点竖直向下落入轨道,最后恰好停在C 点,求:
①当P 刚滑到地面时,轨道AB 的位移大小x 1;
②Q 与A 点的高度差h 以及P 离开轨道AB 后到达C 点所用的时间t 。
【答案】(1)P 刚滑到圆弧轨道的底端B 点时所受轨道的支持力大小N 为3mg ,P 与B 点右侧地面间的动摩擦因数μ为0.5;(2)若将AB 解锁,让P 从A 点正上方某处Q 由静止释放,P 从A 点竖直向下落入轨道,最后恰好停在C 点,①当P 刚滑到地面时,轨道AB 的位移大小x 1为3R ;②Q 与A 点的高度差h 为2
R
,P 离开轨道AB 后到达C 点所用的时间t 1326R g
【解析】 【详解】
(1)滑块从A 到B 过程机械能守恒,应用机械能守恒定律得:mgR =
2
12
B mv , 在B 点,由牛顿第二定律得:N -mg =m 2B
v R
,
解得:v B 2gR N =3mg ,
滑块在BC 上滑行过程,由动能定理得:-μmg •2R =0-
2
12
B mv ,
代入数据解得:μ=0.5;
(2)①滑块与轨道组成的系统在水平方向动量守恒,以向右为正方向,由动量守恒定律得: mv 1-2mv 2=0 m
1R x t --2
m 1x
t
=0, 解得:x 1=
3
R
; ②滑块P 离开轨道AB 时的速度大小为v B ,P 与轨道AB 组成的系统在水平方向动量守恒,以向右为正方向,由动量守恒定律得:mv B -2mv =0, 由机械能守恒定律得:mg (R +h )=2211
222
B mv mv +⋅, 解得:h =
2
R
; P 向右运动运动的时间:t 1=1
B
x v ,
P 减速运动的时间为t 2,对滑片,由动量定理得:-μmgt 2=0-mv B , 运动时间:t =t 1+t 2, 解得:t =
1326R
g
;
4.光滑水平轨道与半径为R 的光滑半圆形轨道在B 处连接,一质量为m 2的小球静止在B 处,而质量为m 1的小球则以初速度v 0向右运动,当地重力加速度为g ,当m 1与m 2发生弹性碰撞后,m 2将沿光滑圆形轨道上升,问:
(1)当m 1与m 2发生弹性碰撞后,m 2的速度大小是多少?
(2)当m 1与m 2满足21(0)m km k =>,半圆的半径R 取何值时,小球m 2通过最高点C 后,落地点距离B 点最远。
【答案】(1) 2m 1v 0/(m 1+m 2) (2) R =v 02/2g (1+k )2 【解析】 【详解】
(1)以两球组成的系统为研究对象, 由动量守恒定律得:m 1v 0=m 1v 1+m 2v 2, 由机械能守恒定律得:
12m 1v 02=12m 1v 12+1
2
m 2v 22,