非线性方程求根.
非线性方程求根

0 A a1 b1a2 b2
Bx
例 方程f(x)=x3-x-1=0 确定其有根区间 解:用试凑的方法,不难发现
f(0)<0 f(2)>0 在区间(0,2)内至少有一个实根 设从x=0出发,取h=0.5为步长向右进行根的 搜索,列表如下
x
0 0.5 1.0
1.5
2
f(x) – –
–
+
+
可以看出,在[1.0,1.5]内必有一根
仍取 x0 1.5 ,则有 x1 2.375 ,x2 12.39 显然结果越来越大,{xk } 是发散序列
迭代法的几何意义
通常将方程f(x)=0化为与它同解的方程 x (x) 的方法不止一种,有的收敛,有的不收敛,这取决于(x) 的性态,方程 x (x) 的求根问题在几何上就是确定曲
误差限为 x* xk
1 2 k 1
(b a)
只要取k满足
1 2 k 1 (b a)
1 103 2
即可,亦即
2k 103
k 3 lg 10 9.97 1g 2
所以需二分10次便可达到要求。
二分法的优点是不管有根区间 a, b 多大,总能求出
满足精度要求的根,且对函数f(x)的要求不高,只要连续即可,
线y= (x) 与直线y=x的交点P*的横坐标(如图所示)
y
Q1
Q2
P*
P1
P2
x*
x2
x1
0 (x* ) 1
(a)
y=x
y= ( x)
P0
x0
x
y
y= (x)
(x)P*
y=x
x1 x3 x*
第6章 非线性方程求根(1、二分法、迭代法)

(2) 如果将原方程化为等价方程 x = 仍取初值
x0 = 0
3
3
x+1 2
x1 =
x0 + 1 = 2
3
3
1 ≈ 0 .7937 2
1 .7937 ≈ 0 .9644 2
x2 =
依此类推,得 依此类推, x3 = 0.9940 同样的方程 x4 = 0.9990 不同的迭代格式 x5 = 0.9998 x6 = 1.0000 有不同的结果 x7 = 1.0000 已经收敛, 已经收敛,故原方程的解为 x = 1.0000
用一般迭代法求方程x lnx= 在区间( 例:用一般迭代法求方程x-lnx=2在区间(2,∞) 内的根,要求|x 内的根,要求|xk-xk-1|/|xk|<=10-8 f(x)=x-lnx解:令f(x)=x-lnx-2 f(2)<0,f(4)>0,故方程在 2,4) 故方程在( f(2)<0,f(4)>0,故方程在(2,4)内至少有一个根
y p1 p0
y=x y=g(x)
y p0
y=x
p1 x x0 y y=g(x) x1 x* y=x y y=g(x) p0 x0 x* x1
y=g(x)
x
y=x
p0 p1 x x1 x0 x* x0 x* x1 p1 x
f(x)=0化为等价方程x=g(x)的方式是不唯 f(x)=0化为等价方程x=g(x)的方式是不唯 化为等价方程x=g(x) 一的,有的收敛,有的发散. 一的,有的收敛,有的发散. example: For example:2x3-x-1=0
1 3 ( x + 1 ) = g ( x ) 进行迭代,则在 进行迭代,则在(1, 3
第四章 非线性方程求根

4.1 方程求根与二分法
当 f ( x) 为代数多项式时,根据代数基本定理可知, n 次方程在复数域有且只有 n 个根,因此可利用迭代 法求代数方程的根。 二分法 若 f ( x) C[a, b] ,且 f (a) f (b) 0 ,根据连续函数性质 可知 f ( x) 在 [a, b]内至少有一个实根,此时称[a, b]为方程 若 f ( x) 可表示为 f ( x) ( x x* )m g ( x),其中 m 为正整数,且 g ( x* ) 0 。当 m 1 时,称 x* 为单根,若m 1 称 x* 为 m 重 根,或 f ( x) 的 m 重零点。若 x* 是 f ( x) 的 m 重零点,且 g ( x) 充分光滑,则
4.1 方程求根与二分法
这样,我们得到了一个序列 xn ,为确定 xn 的收敛性 我们有如下的定理: 定理:设 f ( x) C[a, b], f (a) f (b) 0, 则二分算法产生的 序列 xn 满足 xn x* (b a) / 2n ,其中 x* [a, b]为方程的根。 证明:因为 [an , bn ] 由[an1 , bn1 ] 对分得到,所以对 n 1 bn1 bn , 否则取 an1 an , bn1 xn , 这样必有 f (an1 ) f (bn1 ) 0 所以 [an1 , bn1 ] 就是新的有根区间,继续此过程,即可得 到结果。 算法:(1)令 x (a b) / 2 (2) 若 f ( x) 或 b x ,则输出 x ,结束 (3) 若 f (a) f ( x) 0 ,则令 a x ,否则令 b x (4) 转向1)
非线性方程求根

第二章非线性方程求根线性方程是方程式中仅包含未知量的一次方项和常数项的方程,除此之外的方程都是非线性方程(nonlinear equation). 例如,大家熟知的“一元二次方程”就是一个非线性方程. 多元线性方程组的求解是数值计算领域的一个重要问题,在后续几章将专门讨论. 本章介绍求解非线性方程的数值方法,主要针对实数域,重点是单个非线性方程的求根问题.2.1引言2.1.1非线性方程的解记要求解的单变量非线性方程为f(x)=0(2.1)其中函数f: ℝ→ℝ. 一般而言,非线性方程的解的存在性和个数是很难确定的,它可能无解,也可能有一个或多个解.例2.1 (非线性方程的解):分析下列非线性方程的解是否存在和解的个数.(1) e x+1=0. 此方程无解.(2) e−x−x=0. 此方程有一个解.(3) x2−4sinx=0. 此方程有两个解.(4) x3−6x2+5x=0. 此方程有三个解.(5) cosx=0. 此方程有无穷多个解.在实际问题中,往往要求的是自变量在一定范围内的解,比如限定x∈[a,b]. 函数f一般为连续函数,则可记为f(x)∈C[a,b],C[a,b]表示区间[a,b]上所有连续实函数的集合. 假设在区间[a, b]上方程(2.1)的根为x∗,也称x∗为函数f(x)的零点. 方程的根可能不唯一,而且同一个根x∗也可能是方程(2.1)的多重根.定义2.1:对光滑函数f,若f(x∗)=f′(x∗)=⋯=f(m−1)(x∗)=0,但f(m)(x∗)≠0,则称x∗为方程(2.1)的m重根. 当m=1时,即f(x∗)=0,f′(x∗)≠0时,称x∗为单根.对于多项式函数f(x),若x∗为m重根,则f(x)可因式分解为f(x)=(x−x∗)m g(x)其中g(x)也是多项式函数,且g(x∗)≠0. 很容易验证,f(x∗)=f′(x∗)=⋯=f(m−1)(x∗)=0,但f(m)(x∗)≠0,即多项式方程重根的概念与定义2.1是一致的. 对一般的函数f,x∗是方程(2.1)的重根的几何含义是,函数曲线在x∗处的斜率为0,且在该点处与x轴相交.非线性方程的一个特例是n次多项式方程(n≥2),根据代数基本定理可知,n次方程在复数域上有n个根(m重根计为m个根). 当n=1, 2时,方程的求解方法是大家熟知的. 当n=3, 4时,虽然也有求根公式,但已经很复杂,在实际计算时并不一定适用. 当n≥5时,不存在一般的求根公式,只能借助数值求解方法来求根.2.1.2问题的敏感性根据问题敏感性的定义,这里需要考虑输入数据的扰动对方程的根有多大影响. 要分析敏感性首先应假设问题中的数据如何扰动,一种易于分析的情况是将非线性方程写成:f(x)=y的形式,然后讨论y在0值附近的扰动造成的问题敏感性. 此时,求根问题变成了函数求值问题:y =f (x )的反问题. 若函数值f (x )对输入参数x 不敏感(x 在解x ∗附近变化),则求根问题将很敏感;反之,若函数值对参数值敏感的话,求根则不敏感. 这两种情况如图2-1所示.下面分析y 发生扰动Δy 引起的方程的根的扰动Δx . 由于当x =x ∗时,y =0,我们使用绝对(而不是相对)条件数:cond =|Δx |≈1|| 条件数的大小反映方程求根问题(2.1)的敏感程度,若|f ′(x ∗)|很小,则问题很敏感,是一个病态问题;反之,若|f ′(x ∗)|很大,则问题不敏感.一种特殊情况是f ′(x ∗)=0,即x ∗为重根,此时求根问题很敏感,原问题的微小扰动将造成很大的解误差,甚至改变解的存在性和唯一性(如图2-2,问题的扰动可能使解不存在).对于敏感的非线性方程求根问题,f (x )≈0并不意味着x 很接近x ∗,在后面讨论迭代解法的判停准则时应注意这一点.2.2二分法数值求解非线性方程通常是一个迭代的过程,迭代开始之前要先有个初始的近似解,然后随着迭代步数的增多,近似解越来越接近准确解,当达到一定要求时即停止计算过程. 本节先介绍一种最基本的方法——二分法(interval bisection method).2.2.1 方法原理先介绍有根区间的概念,有根区间就是包含至少一个根的区间,它限定了根存在的范围. 如果能计算出一个非常小的有根区间,那么区间的中点就是一个很好的近似解. 下面的定理给出了有根区间的充分条件.定理2.1:若f (x )∈C[a,b],且f (a )f (b )<0,则区间(a,b )内至少有一实根.这里省略定理证明过程,只给出图2-3作为一个解释.定理2.1给出了一种获得有根区间的方法,即通过看f (a )、f (b )两个值是否符号相反来判断(a, b)是否为有根区图2-1 方程求根问题的敏感性:(a)不敏感;(b)敏感.(a) (b)图2-2 f . 图2-3 若f (a )f (b )<0,则在区间(a,b )内至少有一实根.间. 在实际操作时,可在一个较大的范围内取多个点计算f(x)函数值,从而得到一个或多个有根区间. 另外应注意,根据定理2.1得到的有根区间内不一定只有一个根,这从图2-3也可以看出.二分法的思想很简单,就是每次将有根区间一分为二,得到长度逐次减半的区间序列{(a k,b k)},则区间中点x k=(a k+b k)2⁄就是第k步迭代的近似解. 具体算法如下:算法2.1:二分法输入:a, b, 函数f(x) ; 输出:x.While(b−a)> εdox:= a+(b−a)/2;If sign(f(x))=sign(f(a))thena:= x;Elseb:= x;EndEndx:= a+(b−a)/2.在算法2.1中,sign()表示取符号的函数,而二分迭代结束的条件为有根区间(a, b)的长度小于某个阈值ε. 应注意,浮点运算中几乎不可能出现等于0的情况,所以sign()函数的结果只是正号、或负号.假设二分法得到的有根区间序列为{(a k,b k),k=0,1,⋯},若取解x k=(a k+b k)2⁄,则误差|x k−x∗|<(b k−a k)2⁄=(b0−a0)2k+1⁄,k=0,1,2,⋯.(2.2) 根据公式(2.2)和对解的准确度的要求,也可以事先估算出二分迭代执行的次数,以及相应的计算量. 这里每步迭代的计算量主要是计算一次函数f(x k).例2.2(二分法):求方程f(x)=x4−x−2=0在区间[1.0, 1.5]上的一个实根,要求准确到小数点后第2位(四舍五入后).[解] 首先验证(1.0, 1.5)是否是一个有根区间,易知f(1.0)<0,f(1.5)>0. 所以将(1.0, 1.5)作为二分法的初始区间. 利用(2.2)式我们可以估计,若(b−a)2k+1⁄≤0.5×10−2(2.3) 则|x k−x∗|<0.5×10−2,即结果准确到了小数点后第2位. 代入a=1.0, b=1.5,求解(2.3)得,k≥log20.50.5×10−2−1=5.6取最小的整数值k=6. 只需二分6次,可得到满足精度要求的解. 计算过程中的数据和结果列于表2-1. 从中看出,准确到小数点后两位的解为x=1.356(准确解为1.353210).表2-1 采用二分法求解例2.2的过程和结果2.2.2 算法稳定性和结果准确度算法的稳定性考察的是计算过程中的误差对结果的影响. 对于二分法来说,主要的计算步骤是计算函数值,一般采用双精度浮点数计算函数值的误差很小,而其他计算是少量的加减法,因此不至于对有根区间,以及最终结果的准确度造成多大影响. 另外,在计算过程中解的误差限逐次减半,这也说明二分法是稳定的.在实际的浮点算术体系中,二分法运行结果的准确度不可能随迭代过程一直提高. 首先看一个例子.例 2.3(二分法准确度的极限):编写程序用二分法来求解方程f(x)=x2−2=0,初始区间为[1, 2].下面是用MATLAB语言编写的程序:M =2; a = 1; b= 2; k = 0;while b-a > eps //Matlab中的eps为2倍的机器精度,即2− 2 x = a + (b-a)/2;if x^2 > Mb = x //输出belsea = x //输出aendk = k+1;end这个程序执行了52步就结束了,输出结果如下:b = 1.50000000000000a = 1.25000000000000a = 1.37500000000000b = 1.43750000000000………………a = 1.41421356237309a = 1.41421356237309b = 1.41421356237310b = 1.41421356237310为了看得更清楚,输入MATLAB命令”format hex”,使输出按16进制格式显示,再运行一遍上述程序,最后的四个输出结果为:a = 3ff6a09e667f3bc8a = 3ff6a09e667f3bccb = 3ff6a09e667f3bceb = 3ff6a09e667f3bcd可以看出,最终区间(a, b)的两个端点已经是两个相邻的浮点数,即使让二分过程继续执行下去,区间仍然不会改变(由于a和b平均值的计算结果就是其中的某一个). 也就是说迭代再多的次数,结果的准确度也无法提高了.上述例子说明了二分法结果准确度的极限情况. 一般地,二分法迭代过程中,有根区间缩小的极限情况是使它的端点a k, b k为两个相邻的机器浮点数. 此时,b k−a k=2⌊log2|x∗|⌋∙2εmacℎ其中εmacℎ为机器精度,⌊∙⌋为下取整符号,而2⌊log2|x∗|⌋为x∗的二进制表示中指数的那部分. 在这种极端情况下,解的误差限就是区间长度,即|e(x k)|=|x k−x∗|≤2⌊log2|x∗|⌋∙2εmacℎ .(2.4) 在IEEE双精度浮点数系统下,εmacℎ=2− 3,则|e(x k)|≤2⌊log2|x∗|⌋∙2εmacℎ≤|x∗|∙2− 2≈|x∗|∙2.22×10−16 .根据(2.4)式,也可得到相对误差的上限:|e r(x k)|=|x k−x∗||x∗|≤2εmacℎ .(2.5)这个相对误差限正好是计算机中用浮点数表示实数的误差限(定理1.5)的两倍.公式(2.4)给出了用二分法求解时绝对误差限可能达到的最小值,它说明在准确解较大的情况下,在执行二分法时无论迭代多少次都无法保证解的误差非常小. 综合上述讨论以及公式(2.2),得到如下定理.定理2.2:在实际的浮点算术体系下采用二分法解方程f(x)=0,设初始有根区间为(a, b),则:(1) 结果的误差限最小可达到2⌊log2|x∗|⌋∙2εmacℎ,其中x∗为准确解,相对误差限最小可达2εmacℎ.(2) 若误差阈值ε大于或等于2⌊log2|x∗|⌋∙2εmacℎ,需执行的迭代步数为k=⌈log2(b−a)−1⌉ .(2.6)定理2.2的结论(2)的证明留给读者思考.最后,对二分法说明几点:●二分法是求单变量方程f(x)=0的实根的一种可靠算法,一定能收敛.●二分法解的误差不一定随迭代次数增加一直减小,在实际的有限精度算术体系中,误差限存在最小值.●二分法的缺点是有时不易确定合适的初始有根区间(含两个初始值)、收敛较慢、且无法求解偶数重的根. 因此,实际应用中常将二分法与其他方法结合起来.2.3不动点迭代法二分法的计算效率不够高,在本章后续部分将介绍几种应用广泛、收敛较快的迭代法. 本节介绍不动点迭代法及其收敛性理论,为后续其他方法的讨论建立基础.2.3.1基本原理通过某种等价变换,可将非线性方程(2.1)改写为:x=φ(x)(2.7)其中φ(x)为连续函数. 给定初始值x0后,可构造迭代计算公式:x k+1=φ(x k),(k=0,1,⋯)(2.8) 从而得到近似解序列{x k}. 由于方程(2.1)和(2.7)的等价关系,很容易证明若序列{x k}收敛,其极限必为原方程(2.1)的解x∗. 由于解x∗满足x∗=φ(x∗),称它为函数φ(x)的不动点(fixed point),此方法为求解非线性方程(2.1)的不动点迭代法(fixed-point iterative method).不动点迭代法的求解过程如图2-4所示,而算法描述图2-4 采用不动点迭代法,近似∗在下面给出.算法2.2:基于函数φ(x)的不动点迭代法输入:x 0, 函数f (x ), φ(x) ; 输出:x .k:= 0 ;While |f (x k )|> ε1 或|x k −x k−1|> ε2 dox k+1:=φ(x k ) ;k:= k +1 ;Endx:= x k .其中ε1和ε2为用于判断迭代是否应停止的两个阈值. 关于迭代的判停准则,我们在2.4.3节详细讨论.例 2.4(不动点迭代法):求f (x )=x 4−x −2=0在x 0=1.5附近的根. 以不同的方式得到方程的等价形式,研究相应的不动点迭代法的收敛情况.[解] 将原方程改为等价的(A), (B)两种形式,得到下述两种不动点迭代法.方法(A):将方程改写为x =x 4−2. 得到的迭代法计算公式为:x 0=1.5, x k+1=x k 4−2,(k =0,1,⋯). 计算出结果如下:x 1=1.54−2=3.0625,x 2=2.3753−1=85.9639,… …从上述计算结果看,序列{x k }有趋于无穷大的趋势,迭代法不收敛,无法求出近似解. 方法(B):将方程改写为x =√x +24. 得到的迭代法计算公式为:x 0=1.5, x k+1=√x k +24,(k =0,1,⋯). 计算出结果如下:x 1=√1.5+24=1.3678,x 2=√1.3678+24=1.3547,x 3=√1.3547+24=1.3534,x 4=√1.3534+24=1.3532,x =√1.3532+24=1.3532,从上述计算结果看,x 4和x 前5位有效数字均为1.3532,可认为迭代过程是收敛的,要求的根为1.3532.通过例2.4可以看出,用不同的方式改造原方程,可得到多种不动点迭代法计算过程,其收敛性质也是不同的. 因此,判断一个不动点迭代法是否收敛至关重要.2.3.2全局收敛的充分条件下面的定理给出一个函数存在唯一不动点的充分条件.定理2.3:设φ(x)∈C[a,b],若满足如下两个条件:(1)对任意x ∈[a,b],有a ≤φ(x)≤b ,(2)存在正常数L ∈(0,1),使对任意x 1,x 2∈[a,b],|φ(x 1)−φ(x 2)|≤L |x 1−x 2|则φ(x)在[a,b]上存在不动点,且不动点是唯一的.在证明定理之前,先理解一下定理中两个条件的含义. 首先,采用不动点迭代法的计算公式为x k+1=φ(x k ), k =0, 1, 2, …,因此要使后续迭代步的计算合法,必须要求φ(x k )的值在函数的定义域内,(1)的条件保证了这一点. 其次,(2)中新加的条件表明,φ(x)曲线上任两点连线斜率的绝对值不超过L ,当两点非常靠近时它就是导数,因此φ(x)曲线上任意点的切线斜率的绝对值都小于1,这说明φ(x)曲线变化很平缓,在曲线上任意点处的斜率都比y =x 和y=−x两条直线小. 这个条件也称为L<1的李普希兹(Lipschitz)条件,L为李普希兹系数. [证明] 先证明不动点的存在性,分两种情况:1). 若φ(a)=a,或φ(b)=b,则a或b为不动点;2). 若φ(a)≠a且φ(b)≠b,则φ(a)>a,φ(b)<b. 令f(x)=φ(x)−x,则f(x)为连续函数,且f(a)>0,f(b)<0.根据连续函数性质,必有x∗∈(a,b),使f(x∗)=0,即φ(x∗)=x∗,x∗为不动点.再证明唯一性,采用反证法. 假设有两个不同的不动点x1∗,x2∗∈[a,b],它们满足φ(x1∗)=x1∗,φ(x2∗)=x2∗,x1∗≠x2∗ .根据(2)中的条件推出,|x1∗−x2∗|=|φ(x1∗)−φ(x2∗)|≤L|x1∗−x2∗|<|x1∗−x2∗| .产生矛盾!所以假设x1∗≠x2∗不成立,不动点是唯一的.应说明的是,上述证明不动点的存在性只使用了条件(1). 事实上,通过画函数曲线图的方式也可以形象地说明不动点的存在性,这一点留给感兴趣的读者思考.下面的定理给出不动点迭代法收敛的充分条件.定理2.4:设φ(x)∈C[a,b]满足定理2.3的两个条件,则对于任意初值x0∈[a,b],由不动点迭代法得到的序列{x k}收敛到φ(x)的不动点x∗,并有误差估计:|x k−x∗|≤L k1−L|x1−x0| .[证明] 首先注意到定理条件保证了不动点唯一存在,而且条件(1)保证了不动点迭代法可执行下去,从而得到序列{x k}. 下面证明序列{x k}收敛,其思路是考虑误差序列,证明其极限为0.|x k−x∗|=|φ(x k−1)−φ(x∗)|≤L|x k−1−x∗|≤⋯≤L k|x0−x∗|由于L为小于1的正常数,则lim k→∞L k|x0−x∗|=0,⟹limk→∞|x k−x∗|=0, ⟹limk→∞x k=x∗.这证明了不动点迭代法是收敛的. 剩下|x k−x∗|≤L k1−L|x1−x0|的证明,留给读者思考.定理2.4为判断不动点迭代法的收敛性提供了依据,这种收敛不依赖于初值x0的选取,因此称为全局收敛性. 为了方便应用,也可以将定理2.3, 2.4中的第2个条件替换为:对任意x∈[a,b],有|φ′(x)|≤L<1,其中L为常数,得到便于使用的定理2.5.定理2.5:设φ(x)∈C[a,b],且满足如下两个条件:(1)对任意x∈[a,b],有a≤φ(x)≤b;(2)存在正常数L<1,使对任意x∈[a,b],有|φ′(x)|≤L<1.则对于任意初值x0∈[a,b],由不动点迭代法得到的序列{x k}收敛到φ(x)的不动点x∗,并有误差估计:|x k−x∗|≤L k1−L|x1−x0| .此定理可看成定理2.4的推论,其证明留给读者思考.例2.5(不动点迭代法的收敛性):对于求f(x)=x4−x−2=0在x0=1.5附近的根的问题,使用定理2.5考察例2.4中两种方法的全局收敛性.[解]在区间[1, 2]上考察如下两种不动点迭代法的收敛性:方法(A):x k+1=x k4−2, (k=0,1,⋯).方法(B):x k+1=√x k+24, (k=0,1,⋯)很容易看出,方法(B)符合定理中的条件(1),而φ′(x)=14(x+2)−3/4,也符合条件(2),因此方法(B)具有全局收敛性. 而对于方法(A),它不符合定理中的条件(1),因此无法根据定理2.5说明其具有全局收敛性.关于全局收敛性再说明两点:●定理2.4, 2.5给出的都是不动点迭代法全局收敛的“充分条件”,也就是说,对一些满足条件的方法可以证明其具有全局收敛性,但根据它们并不说明某个方法不具有全局收敛性.●全局收敛性要求初始值x0为定义域内任意值时不动点迭代法都收敛,这常常是很难达到的要求.2.3.3局部收敛性不同于全局收敛性,下面给出重要的局部收敛性的概念.定义2.2:设函数φ(x)存在不动点x∗,若存在x∗的某个邻域D: [x∗−δ,x∗+δ],对于任意初值x0∈D,迭代法x k+1=φ(x k)产生的解序列{x k}收敛到x∗,则称迭代法局部收敛.这个定义中的邻域是以x∗为中心点的一个对称区间,局部收敛性的定义要求的是存在这样一个邻域,而不关心它的大小. 下面的定理给出迭代法局部收敛的充分条件.定理2.6:设x∗为函数φ(x)的不动点,若φ′(x)在x∗的某个邻域上连续,且|φ′(x∗)|<1,则不动点迭代法x k+1=φ(x k)局部收敛.[证明] 因为φ′(x)在x=x∗附近连续且|φ′(x∗)|<1,则存在x∗的某个邻域D,使得对于任意. 显然L<1, 的xϵD, |φ′(x)|≤L, 其中L是某个介于|φ′(x∗)|和1之间的数, 例如L=|φ′(x∗)|+12即满足定理2.5的条件(2). 另外,对∀x∈D,φ(x)−x∗=φ(x)−φ(x∗)=φ′(ξ)(x−x∗), ξ∈D, ⟹|φ(x)−x∗|≤L|x−x∗|<|x−x∗|, 即φ(x)∈D,满足定理2.5的条件(1).因此,根据定理2.5,此迭代法对区间D内的任意初值都收敛,根据定义2.2知,此迭代法局部收敛.对比定理2.6和定理2.4、2.5可以看出,定理2.6的条件较为宽松,它只需要考察函数φ(x)在x∗这一点上是否满足要求. 因此,不动点迭代法较容易具有局部收敛性,对局部收敛的判断也相对简单.最后说明一点,定理2.5说明李普希兹系数L越小迭代收敛的速度越快,而定理2.6的证明过程说明了L与|φ′(x∗)|的关系. 因此,若|φ′(x∗)|越小,迭代收敛的速度就越快.2.3.4稳定性与收敛阶与二分法类似,不动点迭代法的每步计算都可以通过判停准则(包括考察f(x k)是否接近0)来评估解的准确度,因此解的误差容易被及时发现和纠正. 只要迭代过程是收敛的,误差将随迭代步的增加逐渐趋于零,而不会像某些算法的舍入误差会随迭代过程逐渐累积. 因此收敛的不动点迭代法总是稳定的. 在本章后续算法的讨论中,我们将不再关心稳定性,而将重点放在收敛性的讨论上.对于收敛的迭代法,其收敛速度的快慢也很重要,它关系到达到特定的准确度需要多少步迭代,也就是需要多少计算量. 下面先看一个例子,然后给出收敛阶的概念用于衡量迭代收敛的速度.例2.6(迭代收敛速度):假设有(1)~(3)三个迭代求解过程,其迭代解的误差|e(x k)|=|x k−x∗|随迭代步变化情况分别为:(1) 10-2, 10-3, 10-4, 10-5, ……。
第7章 非线性方程求根

k 且区间长度逐次减半, bk ak (b a) 2 .
非线性方程求根的二分法
二分法基本步骤: 随着k的增大,有根区间长度趋于零,区间端点向 * lim a lim b lim x x . 一点收缩, k k k k k k 显然x*即为f(x)=0的根。而x0, x1, …,xk,…为近似根 * 序列。设要求精度为ε ,即 x xk ,
x1 x* ( )(x0 x* ) M ( x0 x* ), x2 ( x1 ), x2 x M ( x1 x ).
* *
加速迭代法
消去M得
x1 x* x0 x* , * * x2 x x1 x
2
2 x x x ( x x ) 1 0 x* x1 0 2 1 x0 , x2 2 x1 x0 x0 2 x1 x2
斯蒂芬森迭代法
结合埃特金加速法和不动点迭代法形成斯 蒂芬森迭代法:
yk ( xk ), z k ( yk ), ( y k xk ) xk 1 xk z k 2 y k xk
2
(k 0,1, ).
斯蒂芬森迭代法几何意义
定义x点关于方程 x ( x) 的误差为: ( x) ( x) x. * * * * ( x ) ( x ) x 0. 则该方程的根x 的误差
非线性方程的迭代法求根
基本概念 非线性方程f(x)=0的根(解) x*,也称为非线性 函数f(x)的零点,f(x*)=0。 f(x)=0的m重根定义:f(x)=(x-x*)mg(x), g(x*)≠0,则称x*为f(x)=0的m重根,或f(x)的 m重零点。 m重根的判定条件: x*为f(x)=0的m重根当 且仅当 * * ( m1) * ( m) * f (x ) f (x ) f ( x ) 0; f ( x ) 0.
第2章非线性方程求根

迭代收敛的加速方法
对于收敛的迭代过程,只要迭代足够多次,就可以 使结果达到任意的精度。 但是 收敛缓慢 计算量变大 x1 ( x0 ), x* ( x* )
* * (( L x ) x1 x* ( x0 ) ( x* ) x )( x x 0 0
§ 二分法 /* Bisection Method */
原理:若 f C[a, b],且 f (a) ·f (b) < 0,则 f 在 (a, b) 上必 有一根。
When to stop?
a a x10
x*
x1 b b b1
若取区间[an , bn]的中点 1 xn (an bn ) 2 作为x*的近似值,则有下述误差估计式
定理
考虑方程 x = g(x), g(x)C[a, b], 若
( I ) 当 x[a, b] 时, g(x)[a, b]; ( II ) 0 L < 1 使得 | g’(x) | L < 1 对 x[a, b] 成立。 则任取 x0[a, b],由 xk+1 = g(xk) 得到的序列 x k k 0 收 敛于g(x) 在[a, b]上的唯一不动点。并且有误差估计式:
如果仅取6位数字,那么结果 x7与 x8完全相同, 这时可以认为 x7实际上已满足方程,即为所求的根.
表2 k 0 1 2 3 4 xk 1.5 1.35721 1.33086 1.32588 1.32494 k 5 6 7 8 xk 1.32476 1.32473 1.32472 1.32472
但若采用方程的另一种等价形式 建立迭代公式
二分法的优点是算法简单,且总是收敛的,缺 点是收敛的太慢,故一般不单独将其用于求根,只 是用其为根求得一个较好的近似值.
第2章非线性方程求根

解:设最多需要迭代n次。
∵要求精确到小数点后3位,
∴误差限≤ 12×10-3,
∴由定理2.1得:
n=
lg(1
0)
lg( lg 2
1 2
103 )
1
=
0
( lg 2 lg 2
3)
1
=
0.301 0.301
3
1= 10 .97
1
=10,即最多需要迭代10次。
用对分法求f(x)=0在某区间的单根,最多迭代次数与函数f(x)曲线形状无 关。一般情况下,对分法的最多迭代次数比其他的变步长逐步搜索法要 少,因此对分法是用得最多的变步长逐步搜索法。
if(f(b)==0) x=b;
else for(begin=a,end=a+h;begin<b;begin=end,end+=h)
{
if(end>b)end=b;
if(f(begin)==0)
{x=begin;break; }
if(f(begin)*f(end)<0)
{x=(begin+end)/2;break; }}
Y
N
x=begin;
break;
f(begin)*f(end)<0
Y
N
(end-begin)/2<=ε
Y
N
x=(begin+end)/2;
h/=hnumber;
break;
end=begin;
输出方程f(x)=0的根x。
8
2.3 根的搜索
变步长逐步搜索法对应的程序
#include <stdio.h> double f(double x);
计算方法非线性方程求根

计算方法非线性方程求根第十章非线性方程求根知识点:求根的基本概念,对分法,迭代法,误差,编程停机判断,算法说明1.概念(1)根的概念方程f(x)=0的解叫做方程的根或f(x)的零点。
例如x-cosx=0,x-e x=0求方程的根是数值计算的任务之一,当不易求得f(x)=0的解析解时,可以考虑求其近似根。
求实根问题包括:根的存在性;根的分布;根的精确化.(2)根的存在性如果f(x)是[a,b]上的连续函数,且f(a) f(b)<0,则f(x)=0在(a,b)至少有一个根;若单调,则f(x)=0在(a,b)有惟一根。
(3)根的分布若有根区间的根多于一个,为了得到根的数值解,可以将该有根区间分割若干个子区间,使每个子区间只包含f(x)=0的一个根,这个过程称根的隔离,每个子区间称为隔根区间。
一般情形下,隔根区间内任一点都可作为相应根的近似值,隔根区间越小,近似程度越好。
(4)根的精确化在隔根区间内得到方程f(x)=0相应根的初步近似值后,为使近似值程度更好、符合预先期望,通常应继续逐步精确化根的近似值,直到满足规定的精度要求为止。
精确化方法有很多,常见的有二分法,迭代法等。
2.二分法二分法是利用隔根区间的两个端点来逐步求得满足预先给定精度的近似根。
(1)基本思想对分有根区间,判断f(x)的符号,逐步将有根区间缩小,使得在足够小的区间内取得满足预先给定精度要求的近似值。
(2)具体做法设区间[a,b]为有根区间,记α是f(x)=0在(a,b)的惟一根,二等分区间[a,b]。
令x0=(a+b)/2,如果f(x0)=0,则求得实根α=(a+b)/2。
否则,若f(a)f(x0)<0,则α∈[a,x0],取a1=a,b1=x0;若f(b)f(x0)<0,则α∈[x0,b],取a1=x0,b1=b。
在新的有根区间上重复二等分过程,得有根区间套序列[a,b]? [a1,b1]? [a2,b2] ?…? [a k,b k] ?…b-a>b1-a1>b2-a2>…>b k-a k…,a k≤α≤b k其中每个区间为前一个区间的一半,经过k次二分后,有根区间的长度为如此无限二等分区间[a,b](k→∞)有b k- a k→0(k→∞)或lim a k=lim b k=α(k→∞)。
第2章非线性方程求根

y
y=x
p1
x (x)
p0
✓
y
x (x)
p0
y=x
p1
x
x0
x1
x
x0 x1
说明在根 附近,曲线的切线不能太陡! 17
例2.2.1 求方程 f (x) x3 x 1 0 在x0 1.5附近的根.
解 (1) 将方程改写为 x 3 x 1
由此建立迭代公式 xk1 3 xk 1 得
k0 1
(Lp1
Lp2
...1) |
xk 1
xk
|
1 1 L
|
xk 1
xk
|,
令p ,得
|
xk
|
1 1 L
|
xk 1
xk
|.
因而可通过检查 | xk1 xk | 来判断迭代过程应否终止。
24
例2.2.3 求 f (x) 9x2 sin x 1 0 在[0,1]内的一个根。
解 由于 f (0) 1 0,
(bk 1
ak1)
...
1 2k
(b
a).
因此,当
k
足够大时,我们可以用
xk
ak
bk 2
作为函数
f (x)的一个根 的近似值。
此时有误差估计:
xk
bk ak 2
ba. 2k 1
常用来估计k的值
9
四、算法的优点与缺点
优点:计算简单且必收敛,是一种可靠的算法;对函数性质要 求低,只要求函数f(x)连续就可以了。
(2). 若 f (x0 ) f (a) 0,则令a1 a,b1 x0; 若 f (x0 ) f (b) 0,则令a1 x0,b1 b.
第二章 非线性方程求根

01 第二章 非线性方程求根2.1 引言我们很熟悉一次、二次代数方程以及某些特殊的高次方程或超越方程的解法。
这些方法都是代数解法,也是精确法。
对于生产实际和科学技术中,常遇到较一般的高次代数方程或超越方程,例如: 0tg =+x x0sin 8889.4tg 25.0=-+x x0245=--x x以上这些方程叫非线性方程。
这些方程看起来很简单,却不容易求得精确解。
另一方面,在实际应用中,只要能获得具有预先给定的误差限内的近似值就可以了。
因此,需要引进能够达到一定精度要求的求方程的根近似值的方法。
设非线性方程f (x )=0 (2.1)其中f (x )是变量x 的非线性函数。
若有x * 使 f (x*)=0,则称x * 为方程(2.1)的根或函数f (x )的零点。
定义2.1 设x * 是方程(2.1)的根,则 f (x*)=0。
若存在正整数m ,使)()()(*x g x x x f m -= (2.2)且 +∞<<*)(0x g ,则称x *为(2.1)式的m 重根;当m =1时,x *为单根;定理2.1 若f (x )是连续函数,且f (x )的m 阶导数连续,,则x *为(2.1)式m 重根的充要条件是: x *满足0*)(*)(*)(*)()1(==='='=-x f x f x f x f m 且0*)()(≠x f m求方程(2.1)根的近似值包括以下三方面内容: 1.根的存在性。
方程有没有根?如果有根,有几个根? 2.这些根大致在哪里?如何把根隔离开来? 3.根的精确化具体求根的工作通常分为两步走:(1) 用大范围搜索确定出根的存在区间[a, b ],称为根的隔离;(2) 在有根区间[a, b ],上用确定的数值方法进行根的精确化计算,称为近似值的精化 (或逼近)。
定理 2.2 (代数基本定理)设 f (x )=0 为具有复系数n c c c c ,,,210的代数方程 0)(2210=++++=n n x c x c x c c x f则 f (x ) 与复平面上恰有n 个根(m 重根按m 个根算)。
5非线性方程的求根

(3)迭代25次后 (4)迭代9次后 (5)迭代3次后
x3 1.36523001 若采用二分法则有 x25 1.364990235 , x27 1.36523001
迭代格式构造的不同,可能会出现发散或无意义的情形,即使 是收敛的,收敛的速度也有快慢之分。 9
单点迭代法
计算第k+1个近似值 xk 1 时仅用到第k个点处 的信息,如(5.1) 多点迭代法 计算 xk 1 时需要用到前面P个点处的信息 一般形式为
§2
迭代法
x g ( x)
设方程 f ( x) 0 可以转化为等价的形式 从某个初值
xk 1 g ( xk ) k 0,1, 2, (5.1) 得到序列 {xk } 。当 g ( x) 连续,且序列 {xk } 收敛时,有
lim xk 1 lim g ( xk ) g (lim xk )
k k k
x0
出发令
即
即序列 {xk } 的极限 是方程 f ( x) 0 的根。 称(5.1)为迭代格式,函数 g ( x) 为迭代函数。构造迭代 格式的方法称为迭代法。 7
g ( )
例5.2 构造不同的迭代格式,求方程 x3 4 x 2 10 0 在(1,2)内的近似根。
当 n 充分大时就有 误差估计式为
k 1, 2, , n.
1 (an bn ) 2
an bn b a | | n 1 2 2
3
算法(二分法)
输入 f ( x ),区间 [ a, b] ,精度 0,最大的迭代次数N 1.对 2. 3. 4.若
k 1, 2,, N ,
对迭代方程 x g ( x) ,若迭代函数 g ( x) 满足
数值分析课件第二章_非线性方程求根

| xn x || ( xn 1 ) ( x ) |
* *
| ( ) || xn 1 x* |
*
| xn x | L | xn1 x | | xn x | L | x0 x |
* n *
lim | xn x | lim L | x0 x | 0
x*即为不动点。
不动点存在的唯一性证明:
设有 x1*≠ x2*, 使得
* 1 * 2 * 1
(x ) x
* 1
* 1
(x ) x
* 2
* 2
* * 则 | x x || ( x ) ( x ) || ( ) || x1 x2 | * 2
其中,ξ介于 x1* 和 x2* 之间。
由于
计法
Ln xn x * x1 x0 1 L
很难估计,采用事后估
| xn x* |
1 | xn 1 xn || xn 1 xn | ,L大误差大。 1 L
不动点迭代法可以求方程的复根和偶数重根。
例 用不同方法求 x 2 3 0 在x=2附近的根。 解: 格式(1)
则对任意x0 [a, b],由xn+1=(xn )得到的迭代序 列{xn }收敛到(x)的不动点x *,并有误差估计:
1 | xn x | | xn 1 xn | 1 L
*
L xn x * x1 x0 1 L
n
证明:
xn ( xn1 ) * * x ( x )
x0
O
x1
x3 x * x2
x0
y ( x)
发散
y ( x)
O
第4章_非线性方程求根 计算方法

解: 从[-4,4]区间以步长为1计算f(x)=x3-3x+1的函数值, 列如下表
4 结束
表2-1
x
计 算 方 法 课 件
-4
-3
-2
-1 3
0 1
1 -1
2 3
3 19
4 53
f(x) -51 -17 -1
可见,在[-2,-1]区间、[0,1]区间、[1,2]区间各有一实根,
下面求[0,1]区间上的实根,列表略: 可见x∊[0.347167968,0.347412109] 若取=0.005,由表可知,当k=13时, bk-ak=0.000244141<0.005,此时过程结束,取 xk=(0.347167968+0.347412109)/2=0.3472900380.347 5 结束
y x y g ( x)
它的解(x*,y *)中的x *就是x=g(x)的根.如图: 图2-3 图2-4 图2-5 10 图2-6 结束
计 算 方 法 课 件
不动点迭代算法: %input:初始解x0;最大迭代次数N;精度tol. %output:近似根x,迭代次数k. 1. k=1; 2. While k<N 2.1 x= g(x0) ; %函数g需要事先定义; 2.2 if abs(x-x0)<tol break end 2.3 k=k+1; x0=x; end 3. disp(x); disp(k)
此方程还可以有另外的迭代形式:
xk 1
计 算 方 法 课 件
1 , 2 3 xk
k 0,1,2,3,
xk 1 3 3xk 1,
4.2.2 迭代法的几何解释
k 0,1,2,3,
非线性方程求根方法

第12章非线性方程求根方法二分法二分法算法1.计算[a, b]区间的中点存放在变量x0中,x0 ⇐(a+b)/2;2.如果函数值f(x0)=0, 则x0是f(x)=0的实根x* ,输出根x0, 终止;3.如果函数值f(a)f(x0)<0,则b ⇐ x0 ,否则a ⇐ x0;4.如果b-a≤ε(ε为给定的精度),则输出根的近似值(a+b)/2,终止,否则转1。
二分法程序Clear[x]f[x_]=Input[“键入函数f(x)=”];a= Input[“键入左端点a=”];b=Input[“键入右端点b=”];Print[“a=”,a, “b=”,b, “ f(x)=”,f[x]]e1=10^(-10);eps=Input[“键入根的误差限eps=”];n=0;While[b-a>eps,x=(a+b)/2;n=n+1;w=f[x];If[Abs[w]<e1,Print[“n=”,n, “x=”,x, “ f[x]=”,w];Break[]];p=f[a]*w//N;If[p<0,b=x,a=x];Print[“n=”,n, “x=”,x//N, “eps=”,b-a//N]]说明:本程序用于求非线性方程f(x)=0在区间[a, b]内的根,这里要求f(x)在区间[a, b]连续,且f(a)f(b)<0。
程序执行后,先通过键盘输入函数f(x)和区间左端点a和右端点b及根的精度要求e,程序即可给出每次二分的次数和对应的点列{x k},其中最后输出的结果即为所求的根。
程序中变量说明x:存放初值x0和二分法中的x k;a:存放含根区间的左端点a k;b:存放含根区间的右端点b k;e1: 描述f(x k)=0的微小值, 这里用|f(x k)|<e1表示f(x k)=0;n: 存放二分次数。
注:语句“If[p<0,b=x,a=x]”中“p”的一定要是算出的数值,否则会出现错误。
非线性方程求根的常见方法及其应用

非线性方程求根的常见方法及其应用对于一个非线性方程,其解不一定是唯一的,而且很多情况下解根难以直接求得。
因此,寻找一种可靠、有效的方法来求解非线性方程根是非常重要的。
本文将介绍几种常见的非线性方程求根方法,并且介绍它们的应用场景及求解精度。
一、二分法二分法是一种最基本且易于实现的方法,它能够求解任何单峰函数(函数图像中仅有一个极大值或极小值的函数)的根。
该方法的主要思想是不断缩小根的区间,直到找到根。
具体而言,对于一个单峰函数f(x),在区间[a,b]上寻找其根。
首先,取中点c=(a+b)/2,计算f(c)。
如果f(c)≈0,则找到了根;否则,根位于[a,c]或[c,b]中的一个区间上,重复上述步骤,直到找到根。
该方法的主要优点是简单易用,适用于大部分单峰函数,并且收敛速度相对较快。
但是,该方法需要区间起点和终点具有异号,否则无法找到根。
二、牛顿迭代法牛顿迭代法是一种高效的方法,可用于求解任何无奇点的连续可微函数的根。
该方法的主要思想是将一个复杂的函数不断逼近于一条直线,然后通过直线和x轴的交点来不断逼近函数的根。
具体而言,对于一个连续可微函数f(x),在初始点x0处进行求解。
首先,通过f(x)在x=x0处的导数f'(x0)来确定函数的切线。
然后,找到x轴上离该点最近的交点x1处,并将其作为新的起点,迭代上述过程,直到找到根。
该方法的主要优点在于速度快、精度高,并且可适用于大多数函数。
但是,该方法可能会出现迭代过程不稳定的问题,因此需要谨慎选择初值。
三、割线法割线法是一种类似于牛顿迭代法的方法,其主要思想是通过一条割线来逼近函数的根。
相比于牛顿迭代法,割线法更加适用于函数的导数难以求得的情况。
具体而言,对于一个函数f(x),在初始点x0和x1处进行求解。
首先,通过f(x)在x=x0处和x=x1处的取值来确定割线,找到x轴上与割线交点x2处,并将其作为新的起点,重复上述步骤,直到找到根。
该方法的主要优点在于速度快、精度高,并且可适用于大多数函数。
计算方法2非线性方程求根

收敛性
牛顿-拉夫逊方法具有局部收敛性,当初始值选取合适时,可以迅 速收敛到方程的根。同时,该方法对单根和重根均有效。
05
数值稳定性与误差分析
数值稳定性概念
数值稳定性
指算法在计算过程中,对于输入数据的微小变化,输出结果的变化也是微小的,即算法对输入误差的 敏感性较低。
算法设计与实现过程
算法设计
针对所选择的非线性方程,设计一种有效的 求根算法。常见的求根算法包括二分法、牛 顿法、割线法等。在选择算法时,需要考虑 算法的收敛性、稳定性和计算效率等因素。
算法实现
根据所设计的算法,编写相应的计算机程序。 程序应包括输入、计算和输出三个主要部分。 输入部分用于接收用户输入的非线性方程和 初始值等信息;计算部分用于执行求根算法 的计算过程;输出部分用于显示计算结果和 相关信息。
研究不足与展望
对于某些特殊类型的非线性方程,如高 次方程、多元方程等,本文算法可能存 在一定的局限性和不足,需要进一步研 究和改进。
在实际应用中,非线性方程的求解往往受到 各种因素的影响,如噪声、误差等,本文算 法在处理这些问题时可能需要进一步完善和 优化。
未来可以进一步探索非线性方程求 根的新方法和新技术,如基于深度 学习的求解方法、基于高性能计算 的并行化技术等,以提高求解效率 和精度。
高斯-赛德尔迭代法
在雅可比迭代法的基础上,采 用逐次超松弛技术加速收敛。
牛顿-拉夫逊迭代法
将非线性方程组转化为等价的 线性方程组,然后利用牛顿拉夫逊方法进行迭代求解。
牛顿-拉夫逊方法
基本思想
将非线性方程在根的附近用泰勒级数展开,忽略高阶项,得到近似 线性方程,然后求解该线性方程得到根的近似值。
第7章非线性方程求根(数值分析)

第一节 方程求根与二分法
本章主要讨论单变量的非线性方程求根问题
1
非线性方程根的不同情况
设非线性方程为: f (x)=0 当f (x)为多项式时,非线性方程是
一种特殊形式的方程,即多项式方程,
也叫n 次代数方程 。
f ( x) a0 a1 x an xn an 0
若x*使得f (x*)=0,则称x*为方程f (x)=0的根 或函数 f (x)的零点。
6
非线性方程的有根区间
例:判断方程 f(x)=x4-4x3+1=0 有几
个实根,有根区间是什么?
由 f (x)= 4 x2(x-3)=0 得驻点 x1=0, x2=3。
因此将实轴分为三个区间来讨论: (-∞,0), (0,3),(3, +∞)
f (x) 在此三区间的符号分别为“ -”、“ - ”、“+”
11
1.求方程 的有根区间.
解 根据有根区间定义,对方程的根进行搜索计算, 结果如下表:
方程的三个有根区间为[1,2],[3,4],[5,6].
12
二分法
应用二分法的前提:已经确定了非
线性方程的有根区间[a,b]。
设方程 f (x)=0 在区间[a,b ]内有且只有一 个实根 x* 。
即 f (x) 满足条件:
7
非线性方程的有根区间
所以 f(x) 在(-∞,0), (0,3),(3, +∞)
区间上分别单调减、单调减、单调增。
分析计算可得:
f (–∞)>0, f (0)=1>0, f (3)=-26<0, f (+∞)>0
可见 f(x)仅有两个实根, 分别位于(0, 3) , (3,+∞)
第二章 非线性方程求根

所以可取 x 1.93 .
注 二分法算法简单,编制程序容易,缺点是不能求偶数重根
和复数根,故而一般常用此方法求根的初始近似值,再用其
他的求根方法精确化。
8
缺点: 1.收敛速度不快,仅与公比为 1 的等比级数的收敛速度 相同。 即是线性收敛的。 2.不能用于求偶重根、复根;不能推广到多元方程组求解;
ak
2 2 2 2 2.0625 2.09375
bk
3 2.5 2.25 2.12Fra bibliotek 2.125 2.125
xk
2.5 2.25 2.125 2.0625 2.09375 2.109375
f xk 的符号
+ + +
+
2.09375
2.109375
2.1015625
6
若取 x x6 2.1015625, 其误差为 1 x x6 7 3 2 0.078125 2 (可求得根的精确值为 x 2.0945515)。 x2 0 的非零实根的近似值, 例2 用二分法求方程 f x sin x 4 y 2 使其误差不超过10 。 解 如图,可确定
k
1 xk 1 xk ② x xk 1 L
(2.1)
(2.2)
③
Lk x xk x1 x0 1 L
16
证明 ①先证方程 x g x 在 a , b 上存在实根 x ∵在 a , b上 g x 存在, ∴ g x 连续,令 x x g x , 由条件⑵,有 则 x 在a , b 上也连续, a a ga 0 , b b gb 0 故必 x a , b, 使得 x 0 , 即 x g x x 的唯一性 再证 x g x 在 a , b 上存在两个实根 x1、x 2 , 设方程 则由拉格朗日定理,有 x1 x 2 g x1 g x 2 g x1 x 2 L x1 x 2
非线性方程求根

若 (x)C1[a,b] 且对任意 x[a,b] 有
|’(x)|L<1
则上述定理中的结论成立。
收敛性结论表明:收敛性与初始值的选取无关
全局收敛
Numerical Analys求 f(x) = x3 – x – 1=0 在区间 [1, 2] 中的根
( x) ( y) L x y
则对任意初始值 x0[a,b],不动点迭代 xk+1=(xk) 收敛,且
k L L xk x xk xk 1 x1 x0 1 L 1 L
证明:P217
14
05:29:38
Numerical Analysis
收敛性分析
| e k 1 | lim C p k | e | k
其中常数 C>0,则称该迭代为 p 阶收敛。
(1) 当 p =1 时称为线性收敛,此时 C < 1
(2) 当 p =2 时称为二次收敛,或平方收敛 (3) 当 p >1 时称为超线性收敛
二分法是线性收敛的
05:29:38
若 ’(x*) 0,则不动点迭代 xk+1 = (xk) 线性收敛 Numerical Analysis
则(x) 在 [a,b] 上存在唯一的不动点 x* 证明:P216
05:29:38
Numerical Analysis
13
收敛性分析
不动点迭代的收敛性 定理:设 (x) C[a,b] 且满足
(1) 对任意的 x[a,b] 有 (x)[a,b]
(2) 存在常数 0<L<1,使得任意的 x, y[a,b] 有
y=x y= (x)
y p0
y=x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
类推可得
~ xk xk
( xk 1 xk ) xk 2 xk 1 xk 2
2
上式即为Aitken加速收敛方法的迭代格式。
function [root,n]=AtkenStablePoint(f,x0,eps) if(nargin==2) eps=1.0e-4; while(tol>eps) end tol=1; root=x0; x(1:2)=0; n=0; m=0; a2=x0;
其中,P是气体压力,V是气体提及,T是绝对温度,R是气体常数。
如果已知某气体的温度T及压力P,那么求体积V的方程为:
f ( x) ( P a )(V b) RT 0 2 V
a ( P 2 )(V b) RT V
V
RT a P 2 V
b g (V )
假定`(x )改变不大,近似取某个近似值L,则有
x1 x* L( x0 x*)
同理
x2 x* L( x1 x*)
x1 x * x0 x * x2 x * x1 x *
两式相比,得
故
x0 x2 x ( x1 x0 ) ~ x* x0 x0 x2 2 x1 x0 x2 2 x1 x0
2、方程求根的二分法
定理1(介值定理)设函数f(x)在区间[a,b]连续,且f(a)f(b)<0, 则方程f(x)=0在区间[a,b]内至少有一个根。 2.1 二分法的基本思想: 假定f(x)=0在[a,b]内有唯一单实根x*,考察有根区间 [a,b],取中点x0=(a+b)/2,若f(x0)=0,则x*= x0 ,否则, • (1)若f(x0)f(a)>0,则x*在x0右侧,令a1=x0, b1=b; • (2)若f(x0)f(a)<0,则x*在x0左侧,令a1=a, b1= x0。
例:用二分法求方程x^3-3x+1=0在区间[0,1]上的一个根。
3、迭代法
3.1 基本思想 迭代法是一种逐次逼近的方法,用某个固定公 式反复校正根的近似值,使之逐步精确化,最 后得到满足精度要求的结果。
例:求方程 x3-x-1=0 在 x=1.5 附近的一个根。
将所给方程改写成 假设初值x0=1.5是其根,代入得
x0
y ( x)
发散
y ( x)
O
x2
x1
x0 x *
O
x3 x1 x * x0 x2
( x)在x * 附近较陡峭
程序设计
function [root,n]=StablePoint(f,x0,eps) if(nargin==2) eps=1.0e-4;
end
tol=1; root=x0; n=0; while(tol>eps) n=n+1; r1=root; root=subs(sym(f),findsym(sym(f)),r1)+r1; tol=abs(root-r1); end
function [root,n]=StevenStablePoint(f,x0,eps) if(nargin==2) eps=1.0e-4; end tol=1; root=x0; n=0; while(tol>eps) n=n+1; r1=root; y=subs(sym(f),findsym(sym(f)),r1)+r1; z=subs(sym(f),findsym(sym(f)),y)+y; root=r1-(y-r1)^2/(z-2*y+r1); tol=abs(root-r1); end
非线性方程的一般形式: f(x)=0
• 代数方程: f(x)=a0+a1x+……+anxn (an0) • 超越方程 :f(x)中含三角函数、指数函数、或其他超 越函数。
用数值方法求解非线性方程的步骤:
• (1)找出有根区间;(只含一个实根的区间称隔根 区间) • (2)近似根的精确化。从隔根区间内的一个或多个 点出发,逐次逼近,寻求满足精度的根的近似值。
xk 1 3 xk 1
输入
x1 , , N 0
k 1,2, , N 0
计算
xk 1 x g x1
是 输出
x x1
否
k, x
x1 x k N0
输出
迭代N 0 次还没有达到
精度要求信息
3.2 不动点迭代法
将连续函数方程f(x)=0改写为等价形式:x=(x) 其中(x)也是连续函数,称为迭代函数。 不动点:若x*满足f(x*)=0,则x*=(x*);反之,若 x*=(x*) ,则f(x*)=0 ,称x*为(x)的一个不动点。 不动点迭代: xk 1 ( xk ) (k=0,1,……) 若对任意 x0[a,b],由上述迭代得序列{xk},有极限
第八讲
非线性方程求根
内容提要
引言 二分法 迭代法 Newton迭代法 MATLAB的非线性方程求根函数 小结
1、引言
在工程和科学技术中许多问题常常归结为求解非线性方程式问 题,例如在控制系统的设计领域,研究人口增长率等。 例 关于真实气体的状态方程(Van der waals方程)为
f ( x) 1
或 h 2 否 是
k 1,2, N 0
计算
输出
k , x, f ( x )
stop
xk x (b a ) / 2
f ( x) f max
否
是
输出 : “function approaching infinity for x=”;x
f (a) f ( x) 0
x 3 x 1
x1≠x0,再将x1代入得
x1 3 x0 1 3 1.5 1 1.35721
x2≠x1,再将x2代入得
x2 3 x1 1 3 1.35721 1 1.33086
x3 3 x2 1 3 1.330861 1.32588
如此下去,这种逐步校正的过程称为迭代过程。这里用的 公式称为迭代公式,即 k=0,1,2,…… 迭代结果见下表。仅取六位数字,x7与x8相同,即认为x8 是方程的根。 xk xk x*≈x8=1.32472 k k 0 1.5 5 1.32476 1 1.35721 6 1.32473 2 1.33086 7 1.32472 3 1.32588 8 1.32472 4 1.32494
建迭代公式: xk 1 x 1 仍取初值x0=1.5,则有x1=2.375, x2=12.396,x3=1904, 结果越来越大。此时称迭代过程发散。
yx
yx
y ( x) y ( x)
收敛
O x * x2 x1
( x)在x * 附近较平缓
yx yx
x0
O
x1
x3 x * x2
例:用不动点迭代法、 Aitken加速收敛方法和Steffensen迭代 法分别求方程,并比较这三种方法。 1
x
>> [r,n]=StablePoint('1/sqrt(x)+x-2',0.5) r = 0.3820 n= 4 [r,n]=AtkenStablePoint('1/sqrt(x)+x-2',0.5) r = 0.3820 n= 4 >> [r,n]=AtkenStablePoint('1/sqrt(x)+x-2',0.999) r = 1.0000 n= 4 >> [r,n]=StablePoint('1/sqrt(x)+x-2',0.999) r = 0.3820 n = 21 >> [r,n]=StevenStablePoint('1/sqrt(x)+x-2',0.999) r = 1.0000 n= 2 >> [r,n]=StevenStablePoint('1/sqrt(x)+x-2',0.5) r = 0.3820 n= 4
r = Inf
n=
1028
>> [r,n]=StablePoint('1/sqrt(x)+x-2',0.5)
r= n=
0.3820 4
3.3 迭代收敛的加速方法
1、Aitken加速收敛方法: 由微分中值定理,有
x1 x* ( x0 ) ( x*) ( )(x0 x*)
以[a1, b1]为新的隔根区间,且仅为[a,b]的一半,对[a1, b1]重复前过程,得新的隔根区间[a2, b2],如此二分下去,得 一系列隔根区间: [a,b] [a1, b1] [a2, b2] …… [ak, bk] …… 其中每个区间都是前一区间的一半,故[ak, bk] 的长度:
否
是
bx
ax
k N0
否
输出
分半 N 0次还没有到 达精度要求信息
2.3 MATLAB实现
function root=HalfInterval(f,a,b,eps) if(nargin==3) eps=1.0e-4; end f1=subs(sym(f),findsym(sym(f)),a); f2=subs(sym(f),findsym(sym(f)),b); if(f1==0) root=a; end if(f2==0) root=b; end if(f1*f2>0) disp('两端点函数值乘积大于0!'); return; else root=FindRoots(f,a,b,eps); end function r=FindRoots(f,a,b,eps) f_1=subs(sym(f),findsym(sym(f)),a); f_2=subs(sym(f),findsym(sym(f)),b); mf=subs(sym(f),findsym(sym(f)),(a+b)/2); if(f_1*mf>0) t=(a+b)/2; r=FindRoots(f,t,b,eps); else if(f_1*mf==0) r=(a+b)/2; else if(abs(b-a)<=eps) r=(b+3*a)/4; else s=(a+b)/2; r=FindRoots(f,a,s,eps); end end end