七年级数学上册专题训练三整式的加减运算 新人教版
最新人教版七年级数学上册整式的加减练习题
整式的加减专项练习一.化简(1)x x x 10415-+ ; (2)222p p p --- (3)b a b a --+762;(4)22246375x xy x xy x -++-; (5))42(5b a a --. (6))2(3222x x x -+(7))212(44622ab a ab a +--; (8))6(4)2(322-++--xy x xy x ;(9))4(23a a --+; (10))5()3(222x x --+ (11)6321+-st st ;(12))2(52)3(222ab a ab b a ab -----; (13))12()(22+---a a a a(14)b a b a b a b b a b 2322324)2(3)3(2----- (15))32()653(223y y y y +----(16)ab b a a ab 3)3()2(3+--+-; (17)ab ab a ab a 21]4)(21[2122-+--.(18)ab b a ab b a ab 733873722222--+++-; (19)]2)34(7[322x x x x ----;(20)2222863mn nm mn n m +-++; (21))32(3)32(2a b b a -+-;(22)求多项式2222264547ab b a ab b a b a +-+-的值,其中2,1=-=b a(23)求a a a a a a 4)2()12()34(222+-+-+--的值,其中2-=a(24)求)123()32(2++--y x y x 的值,其中5.0,2-==y x(25)求)]22(2[)43(22ab a a ab a +-+--的值,其中2-=a(26)有这样一道题目:“当 时,求多项式 的值”。
小敏指出,题中给出的条件 是多余的,她的说法有道理吗?为什么?(27)某校有A 、B 、C 三个课外活动小组,A 组有学生)(y x 2+人,B 组学生人数是A 组学生人数的3倍,C 组比B 组多3名学生,问A 、B 、C 三个课外活动小组共有多少名学生?(28)已知一个三角形的第一条边长为(a+2b )cm ,第二条边比第一条边短(b-2)cm ,第三条边比第二条边短3cm 。
新人教版七年级数学上册第2章:整式的加减测试题
七年级数学第2章:整式的加减测试题姓名_________ 评价___________一、填空题:1、单项式256x y-的系数是 ,次数是 ;2、多项式2324xy x y --的各项为 ,次数为 ;3、化简32()x x y --的结果是 ;4、已知单项式23m a b 与4112n a b --的和是单项式,那么= ,= ; 5、三个连续的偶数中,n 是最小的一个,这三个数的和为 ; 6、写出325x y -的一个同类项 ; 7、当a=-2时,-a 2-2a+1=______;8、已知轮船在静水中前进的速度是m 千米/时,水流的速度是2千米/时,则这轮船在逆水中航行的速度是 千米/时;二、选择题:1、下列说法正确的是( )A :23xyz 与23xy 是同类项 B :1x和2x 是同类项 C :320.5x y -和232x y 是同类项 D :25m n 和22nm -是同类项 2、下面计算正确的是( )A :2233x x -=B :235325a a a +=C :33x x +=D :10.2504ab ab -+= 3、下列各题去括号错误的是( )A :11(3)322x y x y --=-+ B :()m n a b m n a b +-+-=-+- C :1(463)2332x y x y --+=-++ D :112112()()237237a b c a b c +--+=++-4、已知622x y 和-313m n x y 是同类项,则29517m mn --的值是 ( )A :-1B :-2C :-3D :-45、甲乙两车同时同地同向出发,速度分别是x 千米/时,y 千米/时,3小时后两车相距( )千米。
A :3(x +y )B :3(x -y )C :3(y -x )D :以上答案都不对6、已知,2,3=+=-d c b a 则)()(d a c b --+的值是( )A :1-B :1C :5-D :15 7、-(m - n )去括号得 ( )A :n m -B :n m --C :n m +-D :n m +三、解答题: 1、化简:①3(2)(3)3ab a a b ab -+--+ ②22112()822a ab a ab ab ⎡⎤--+-⎢⎥⎣⎦2、化简再求值:()22463421x y xy xy x y ⎡⎤----+⎣⎦,其中12,2x y ==-。
人教版七年级上册数学复习练习卷:整式的加减之去括号(附答案)
七年级上册数学人教版整式的加减之去括号一、选择题1.李老师做了个长方形教具,其中一边长为2a+b,另一边为a-b,则该长方形周长为()A. 6a+bB. 6aC. 3aD. 10a-b2.如图,两个正方形的面积分别为9、4,两个阴影部分的面积分别为S1、S2,(S1>S),则S1-S2的值为()2A. 5B. 4C. 3D. 23.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+2xy)-(2x2+4xy)=-x2□,此空格的地方被钢笔水弄污了,那么空格中的一项是()A. -2xyB. 6xyC. -6xyD. 2xy4.一种商品每件进价为a元,按进价增加40%定出售价,后因库存积压降价,按售价的八折出售,每件还盈利()A. 0.15a元B. 0.12a元C. 1.25a元D. 0.32a元,n=−1时,代数式3mn-2m2+(2m2-2mn)-(3mn-n2)的值是()5.当m=32A. 3B. 4C. 5D. 66.已知A=2a2-3a,B=2a2-a-1,当a=-4时,A-B等于()A. 8B. 9C. -9D. -77.已知a+b=5,ab=4,则代数式(3ab+5a+8b)+(3a-4ab)的值为()A. 36B. 40C. 44D. 468.若(a+1)2+|b-2|=0,化简a(x2y+xy2)-b(x2y-xy2)的结果为()A. 3x2yB. -3x2y+xy2C. -3x2y+3xy2D. 3x2y-xy29.已知多项式(2ax2+3x-1)-(3x-2x2-3)的值与x的取值无关,试求2a3-[a2-2(a+1)+a]-2的值()A. 2B. 0C. -2D. -410.多项式2x3-8x2+x-1与多项式3x3+2mx2-5x+3的和不含二次项,则m为()A. 2B. -2C. 4D. -411.有理数a、b在数轴上的位置如图所示,则化简|a-b|+|a+b|的结果为()A. -2aB. 2aC. 2bD. -2b二、填空题12.三个小队植树,第一队种x棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树___________棵.13.如图是小明家的楼梯示意图,其水平距离(即:AB的长度)为(2a+b)米,一只蚂蚁从A点沿着楼梯爬到C点,共爬了(3a-b)米.问小明家楼梯的竖直高度(即:BC的长度)为___________米.14.某便民超市原有蒙牛牛奶(5a2+8a)箱,上午卖出(7a-5)箱,中午休息时又购进同样的牛奶(a2-a)箱,中午过后卖出牛奶(6a2-a).则超市下午满仓时有该种牛奶___________箱(用含有a的式子表示).15.如果代数式(3x2+mx-2y+4)-(3nx2-2x+6y-3)的值与字母x的取值无关,代数式m+n的值为___________.16.a 、b 在数轴上的位置如图所示,化简:|a +b |-2|b -a |=___________.17、当2,1p q ==时,分别求出下列各式的值.(1)221()2()()3()3p q p q q p p q -+-----;(2)2283569p q q p -+--18、已知关于x ,y 的代数式2213383x kxy y xy ----中不含xy 项,求k 的值.三、解答题19、已知:2263A x x =+-,213B x x =--,2451C x x =--,当32x =-时,求代数式32A B C -+的值.20、计算下式的值:其中114x ,y ,==-甲同学把14x =错抄成14x =-,但他计算的结果也是正确的,你能说明其中的原因吗?)4()2()242(33432242234y y x x y y x x y x y x x -+-++----答案解析1.【答案】B【解析】根据题意,长方形周长=2[(2a+b)+(a-b)]=2(2a+b+a-b)=2×3a=6a.2.【答案】A【解析】设空白部分的面积是S,因为两个正方形的面积分别为9,4,所以S1=9-S,S2=4-S,所以S1-S2=(9-S)-(4-S)=9-S-4+S=5.3.【答案】A【解析】左边=x2+2xy-2x2-4xy=-x2-2xy.4.【答案】B【解析】因为每件进价为a元,按进价增加40%定出售价,所以每件的售价为(1+40%)a元,所以按售价的八折出售时的价格是(1+40%)a×80%,所以每件盈利=(1+40%)a×80%-a=1.12a-a=0.12a(元).5.【答案】B【解析】3mn-2m2+(2m2-2mn)-(3mn-n2)=3mn-2m2+2m2-2mn-3mn+n2=-2mn+n2=-2×3×(-1)+(-1)22=4.6.【答案】B【解析】A-B=2a2-3a-(2a2-a-1)=2a2-3a-2a2+a+1=-2a+1,把a=-4代入原式,得-2a+1=-2×(-4)+1=9.7.【答案】A【解析】因为a+b=5,ab=4,所以原式=3ab+5a+8b+3a-4ab=8(a+b)-ab=40-4=36.8.【答案】B【解析】因为(a+1)2+|b-2|=0,所以a+1=0,b-2=0,即a=-1,b=2,则原式=-(x2y+xy2)-2(x2y-xy2)=-x2y-xy2-2x2y+2xy2=-3x2y+xy2.9.【答案】D【解析】(2ax2+3x-1)-(3x-2x2-3)=2ax2+3x-1-3x+2x2+3=2ax2+2x2+2=(2a+2)x2+2,多项式(2ax2+3x-1)-(3x-2x2-3)的值与x的取值无关,得2a+2=0.解得a=-1,2a3-[a2-2(a+1)+a]-2=2a3-(a2-2a-2+a)-2=2a3-a2+a,当a=-1时,原式=-2-1-1=-4.10.【答案】C【解析】因为多项式2x3-8x2+x-1与多项式3x3+2mx2-5x+3相加后不含x的二次项,所以-8x2+2mx2=(2m-8)x2,所以2m-8=0,解得m=4.11.【答案】A【解析】根据数轴上点的位置得a<-1<0<b<1,所以a-b<0,a+b<0,则原式=b-a-a-b=-2a.12.【答案】4x+6【解析】依题意得:第二队种的树的棵数为2x+8,(2x+8)-6=x-2,第三队种的树的棵数为12所以三队共种树x+(2x+8)+(x-2)=(4x+6)棵.13.【答案】a-2b【解析】(3a-b)-(2a+b)=3a-b-2a-b=(a-2b)米.故小明家楼梯的竖直高度(即:BC的长度)为(a-2b)米.14.【答案】a+5【解析】由题意得(5a2+8a)-(7a-5)+(a2-a)-(6a2-a)=5a2+8a-7a+5+a2-a-6a2+a=a+5.15.【答案】-1【解析】原式=3x 2+mx -2y +4-3nx 2+2x -6y +3=(3-3n )x 2+(m +2)x -8y +7,由结果与x 取值无关,得到3-3n =0,m +2=0, 解得m =-2,n =1,则m +n =-2+1=-1.16.【答案】-3a +b【解析】通过数轴可以得出结论:a >0,b <0,且|a |<|b |,则原式=-(a +b )-2(a -b )=-a -b -2a +2b=-3a +b .17、【答案与解析】(1)把()p q -当作一个整体,先化简再求值: 解:22221()2()()3()31(1)()(23)()32()()3p q p q q p p q p q p q p q p q -+-----=--+--=---- 又 211p q -=-=所以,原式=22222()()111333p q p q ----=-⨯-=- (2)先合并同类项,再代入求值.解:2283569p q q p -+-- 2(86)(35)9p q =-+-+-2229p q =+-当p =2,q =1时,原式=22229222191p q +-=⨯+⨯-=.18、【解析】解: 222222111338(3)38(3)38333x kxy y xy x kxy xy y x k xy y ----=+----=+---- 因为不含xy 项,所以此项的系数应为0,即有:1303k --=,解得:19k =-. ∴19k =-.19.【解析】解:∵222263,31,45 1.A x x B x x C x x ⎧=+-⎪=--+⎨⎪=--⎩ ∴ 222263,3393,2810 2.A x x B x x C x x ⎧=+-⎪⎪-=+-⎨⎪=--⎪⎩∴2321358A B C x x -+=+- 当32x =-时,32A B C -+33915117303213()5()81388132242444=⨯-+⨯--=⨯--=--=. 20. 【解析】解:∵化简结果与x 无关∴将x 抄错不影响最终结果.43224223433432242234333(242)(2)(4)242242y x x y x y x x y y x x y y x x y x y x x y y x x y y ----++-+-----+-- =+- = 。
人教版初中七年级数学上册第二章《整式的加减》经典习题(含答案解析)
1.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C解析:C【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案.【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意;B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意;C 选项、333541x x x x -++-+-=3724x x -++,符合题意;D 选项、337322724x x x x x -+---=-+-,不符合题意.故选:C .【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 2.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.3.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选:D.【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.4.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x),五月份的产量是100(1+x)2.故答案选B.考点:列代数式.5.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A.19 B.20 C.21 D.22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.6.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 7.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C【分析】 本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.8.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b c A .1,6,15a b c === B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c === B 解析:B【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可.【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=.故选:B .【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键. 9.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C 解析:C【分析】 分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.10.一个多项式与²21x x -+的和是32x -,则这个多项式为( )A .253x x -+B .21x x -+-C .253x x -+-D .2513x x -- C解析:C【分析】 根据题意列出关系式,去括号合并即可得到结果.【详解】∵一个多项式与x 2-2x+1的和是3x-2,∴这个多项式=(3x-2)-(x 2-2x+1)=3x-2-x 2+2x-1=253x x -+-.故选:C .【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 11.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = B 解析:B【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可.【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;故选:B.【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.12.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67D .0B 解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0,解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 13.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B 解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.14.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a ;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y 的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( )A .1个B .2个C .3个D .4个A解析:A【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦.【详解】字母可以表示任意数,当a <0时,-a >0,故①错误;0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误;若a=1,b=-2,a b >,但是22a b <,故④错误; 235x y 的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.15.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 1.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子. (4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n 个上字需用(4n+2)枚棋子故答解析:(4n+2).【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答.【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子,∴依次多4个∴第n 个“上”字需用(4n+2)枚棋子.故答案为:(4n+2).【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键.2.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, …则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101 【解析】试题1111++++13355799101⨯⨯⨯⨯ =111111111111)()()()23235257299101-+-+-++-(=111111111++)23355799101---++-( =111)2101-( =11002101⨯ =50101. 3.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案.【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌,A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7.【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.4.如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2解析:n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故答案为:n2+2.【点睛】本题考查规律型:图形的变化类.5.已知轮船在静水中的速度为(a+b)千米/时,逆流速度为(2a-b)千米/时,则顺流速度为_____千米/时3b【分析】顺流速度静水速度(静水速度逆流速度)依此列出代数式计算即可求解【详解】解:依题意有(千米时)故顺流速度为千米时故答案为:【点睛】本题主要考查了整式加减的应用整式的加减步骤及注意问题:1整解析:3b【分析】顺流速度=静水速度+(静水速度-逆流速度),依此列出代数式+++--计算即可求解.()[()(2)]a b a b a b【详解】解:依题意有+++--a b a b a b()[()(2)]=+++-+a b a b a b[2]=+++-+2a b a b a b=(千米/时).3b故顺流速度为3b千米/时.故答案为:3b.【点睛】本题主要考查了整式加减的应用,整式的加减步骤及注意问题:1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.6.有一列数:12,1,54,75,…,依照此规律,则第n个数表示为____.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n个数为故答案为:【点睛】本题考查了数字的变化规律找解析:211nn-+.【分析】根据分母是从2开始连续的自然数,分子是从1开始连续的奇数解答即可.【详解】这列数可以写为12,33,54,75,因此,分母为从2开始的连续正整数,分子为从1开始的奇数,故第n个数为211nn-+.故答案为:211nn-+.【点睛】本题考查了数字的变化规律,找出分子分母的联系,得出运算规律是解决问题的关键.7.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a,b的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab分子用ab表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子解析:ab-aa b+=ab×aa b+【分析】从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a,b,分子用a,b表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积.设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b +. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.8.在括号内填上恰当的项:22222x xy y -+-=-(_____________________).【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去解析:222x xy y -+【分析】根据添括号的法则解答.【详解】解:222222(2)x xy y x xy y -+-=--+.故答案是:222x xy y -+.【点睛】本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.9.求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键.10.图中阴影部分的面积为______. 【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积进行计算即可【详解】解:【点睛】本题考查圆的面积计算公式熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积解析:21π4R【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积,进行计算即可.【详解】解:2221=()224R R S R πππ-=阴影 【点睛】本题考查圆的面积计算公式,熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积是解题关键.11.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.1.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值. 解析:12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可.【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --, 当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.2.当0.2x =-时,求代数式22235735x x x x -+-+-的值。
人教版初中七年级数学上册第二章《整式的加减》经典练习题(含答案解析)
一、选择题1.(0分)下面用数学语言叙述代数式1a ﹣b ,其中表达正确的是( ) A .a 与b 差的倒数B .b 与a 的倒数的差C .a 的倒数与b 的差D .1除以a 与b 的差C 解析:C【分析】根据代数式的意义,可得答案.【详解】 用数学语言叙述代数式1a ﹣b 为a 的倒数与b 的差, 故选:C .【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.2.(0分)下列对代数式1a b -的描述,正确的是( ) A .a 与b 的相反数的差B .a 与b 的差的倒数C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C解析:C【分析】根据代数式的意义逐项判断即可.【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误;B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b --,该选项错误. 故选:C .【点睛】此题主要考查列代数式,注意掌握代数式的意义.3.(0分)如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1B解析:B【详解】 ∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+,…,2n n +,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.4.(0分)某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )B 解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.5.(0分)已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .6C 解析:C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩, 故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 6.(0分)一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( )A .1B .-1C .2020D .2020- A解析:A【分析】 首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案.【详解】 解: 11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A .【点睛】 本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 7.(0分)已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣1D 解析:D【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】 解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.8.(0分)下列各式中,符合代数书写规则的是( )A .273x B .14a ⨯ C .126p - D .2y z ÷ A解析:A 【分析】 根据代数式的书写要求判断各项.【详解】A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2y z,故选项D 错误; 故选:A .【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.9.(0分)若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( )A .17B .67C .-67D .0B解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0, 解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 10.(0分)一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64B .31,32,33C .31,62,63D .31,45,46C解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C .【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 二、填空题11.(0分)在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n 条直线相交最多有1+2+3+…+(n-1)=个解析:()12n n - 【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12n n-个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n-.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.12.(0分)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…,即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律. 13.(0分)用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .(1)10-y(2)(3)(4)(5)【分析】(1)乙数=和-甲数y 据此解答;(2)甲数x=2个乙数+4从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2据此解答;(4)利用:含盐率=解析:(1)10-y (2)42x - (3)2a b + (4)100a a b + (5)52y - 【分析】(1)乙数=和-甲数y ,据此解答;(2)甲数x=2个乙数+4,从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2,据此解答;(4)利用:含盐率=100%⨯盐的质量盐水的质量,据此解答, (5) 利用顺行速度-逆水速度=12水流速度列出式子即可. 【详解】(1) 甲数与乙数的和为10,设甲数为y ,则乙数为:10y -;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为:42x -; (3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为:2a b +cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为:100a a b+%; (5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是:52y - km/h . 故答案为:(1)1?0y -; (2) 42x -; (3) 2a b + ;(4) 100a a b +; (5) 52y -.本题考查了列代数式,比较简单,列代数式时,要先认真审题,抓住关键词语,并注意书写的规范性.14.(0分)观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 019个式子为__________.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n 表示其规律代入n =2016即可求解【详解】解:观察发现第n 个等式可以表示为:(3n-2)×3n +1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2【分析】观察等式两边的数的特点,用n 表示其规律,代入n =2016即可求解.【详解】解:观察发现,第n 个等式可以表示为:(3n -2)×3n +1=(3n -1)2,当n =2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.15.(0分)观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.【分析】根据题意给出的规律即可求出答案【详解】由题意可知:第n 个式子为2n-1an ∴第8个式子为:27a8=128a8故答案为:128a8【点睛】本题考查单项式解题的关键是正确找出题中的规律本题属于解析:8128a【分析】根据题意给出的规律即可求出答案.【详解】由题意可知:第n 个式子为2n-1a n ,∴第8个式子为:27a 8=128a 8,故答案为:128a 8.【点睛】本题考查单项式,解题的关键是正确找出题中的规律,本题属于基础题型.16.(0分)如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.【分析】根据多项式的次数的定义先求出n 的值然后代入计算即可得到答案【详解】解:∵多项式与多项式的次数相同∴∴;故答案为:【点睛】本题考查了求代数式的值以及多项式次数的定义解题的关键是正确求出n 的值解析:24-【分析】根据多项式的次数的定义,先求出n 的值,然后代入计算,即可得到答案.【详解】解:∵多项式42142mx x +-与多项式35n x x +的次数相同, ∴4n =,∴22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值. 17.(0分)如图,有一种飞镖游戏,将飞镖圆盘八等分,每个区域内各有一个单项式,现假设你的每支飞镖均能投中目标区域,如果只提供给你四支飞镖且都要投出,那么要使你投中的目标区域内的单项式之和为a+2b ,共有_____种方式(不考虑投中目标的顺序). 2【分析】根据整式的加减尝试进行即可求解【详解】解:当投中的目标区域内的单项式为ab ﹣b2b 时a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a2a02b 时﹣a+2a+0+2b =a+2b 故解析:2【分析】根据整式的加减尝试进行即可求解.【详解】解:当投中的目标区域内的单项式为a 、b 、﹣b 、2b 时,a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a 、2a 、0、2b 时,﹣a+2a+0+2b =a+2b .故答案为2.【点睛】本题考查了整式的加减,解题的关键是尝试进行整式的加减.18.(0分)已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.【分析】将已给的式子作恒等式进行变形表示a由于k≠0先将式子左右同时除以(-4k)再移项系数化1即可表示出a【详解】∵k≠0∴原式两边同时除以(-4x)得∴∴故答案为【点睛】本题考查的是代数式的表示解析:2248b kk+【分析】将已给的式子作恒等式进行变形表示a,由于k≠0,先将式子左右同时除以(-4k),再移项、系数化1,即可表示出a.【详解】∵k≠0,∴原式两边同时除以(-4x)得,22 4bk a k=--∴224ba kk=+,∴2224828b k b kak k+=+=,故答案为2248b kk+.【点睛】本题考查的是代数式的表示,能够进行合理变形是解题的关键.19.(0分)随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元后,又降价25%,现售价为n元,那么该电脑的原售价为______.【分析】根据题意列出代数式解答即可【详解】解:该电脑的原售价故填:【点睛】此题考查了列代数式关键是读懂题意找出题目中的数量关系列出代数式解析:43n m+【分析】根据题意列出代数式解答即可.【详解】解:该电脑的原售价4125%3nm n m+=+-,故填:43n m+.【点睛】此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式.20.(0分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m+n+p=_________;4【分析】根据约定的方法求出mnp 即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4【分析】根据约定的方法求出m ,n ,p 即可.【详解】解:根据约定的方法可得:18n -+= ,81m +=- ;∴7n = ,9m =- ;∴()716p =+-=∴9764m n p ++=-++=故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.三、解答题21.(0分)已知31A B x ,且3223A x x ,求代数式B .解析:2322x x -++【分析】将A 代入A-B=x 3+1中计算即可求出B .【详解】解:∵A-B=x 3+1,且A=-2x 3+2x+3,∴B=A-(x 3+1)=-2x 3+2x+3-x 3-1=-3x 3+2x+2.【点睛】本题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解题的关键.22.(0分)观察下列单项式:x -,23x ,35x -,47x ,…1937x -,2039x ,…写出第n 个单项式,为了解这个问题,特提供下面的解题思路.()1这组单项式的系数的符号,绝对值规律是什么?()2这组单项式的次数的规律是什么?()3根据上面的归纳,你可以猜想出第n 个单项式是什么?()4请你根据猜想,请写出第2014个,第2015个单项式.解析:()1 (1)n -(或:负号正号依次出现;),21n -(或:从1开始的连续奇数);()2从1开始的连续自然数;()3第n 个单项式是:()(1)21n n n x --;()4?2014个单项式是20144027x ;第2015个单项式是20154029x -.【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)和(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【详解】()1数字为1-,3,5-,7,9-,11,…,为奇数且奇次项为负数,可得规律:()(1)21n n --;故单项式的系数的符号是:(1)n-(或:负号正号依次出现;),绝对值规律是:21n -(或:从1开始的连续奇数); ()2字母因数为:x ,2x ,3x ,4x ,5x ,6x ,…,可得规律:n x ,这组单项式的次数的规律是从1开始的连续自然数.()3第n 个单项式是:()(1)21n n n x --.()4把2014n =、2015n =直接代入解析式即可得到:第2014个单项式是20144027x ;第2015个单项式是20154029x -.【点睛】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.23.(0分)已知多项式-13x 2y m +1+12xy 2-3x 3+6是六次四项式,单项式3x 2n y 2的次数与这个多项式的次数相同,求m 2+n 2的值.解析:13【解析】 试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m 的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n 的值,把m ,n 的值代入到m 2+n 2中,计算即可得到求解.试题根据题意得2+m +1=6,2n +2=6解得:m =3, n =2,所以m 2+n 2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项.24.(0分)已知a+b =2,ab =2,求32231122a b a b ab ++的值. 解析:4根据因式分解,首先将整式提取公因式12ab ,在采用完全平方公式合,在代入计算即可. 【详解】 解:原式=12a 3b +a 2b 2+12ab 3 =12ab (a 2+2ab +b 2) =12ab (a +b )2, ∵a +b =2,ab =2, ∴原式=12×2×4=4. 【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解.25.(0分)已知多项式2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,当k 为何值时,它与多项式3x 2+6xy+2y 2是相等的多项式.解析:k=2.【分析】根据两个多项式是相同的多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【详解】解:2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,=3x 2+(4+k )xy+2y 2,因为它与多项式3x 2+6xy+2y 2是相等的多项式,所以4+k=6,解得:k=2.【点睛】本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.26.(0分)已知2223,A x xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值解析:(1)-9;(2)x=-1【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy )=2x 2+xy+3y-2x 2+2xy∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B 的值与y 的值无关,即(3x+3)y 与y 的值无关,∴3x+3=0.解得x=-1.【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号.27.(0分)化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键. 28.(0分)如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】 本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简.。
人教版七年级上册数学第二章《整式的加减》计算题训练(含答案)
3.计算
(1) 2 x 5y 43x 4 y
(2) 4x2 y 3xy 23xy 2 2x2 y
4.计算:
(1) 3a2b 5 5b2 6a2b 7 5b2 4a3 ;
(2) 3ab2 2 2ab2 a2b 3 1 4a2b 10ab2 . 2
5.化简:
8.化简并求值: 2 ab2 2a2b 3 ab2 a2b 1 ,其中 a 2,b 1.
9.先化简,再求值: x2 y2 2xy 3x2 4xy y2 5xy ,其中, x= 1, Nhomakorabeay 2.
10.先化简,再求值 2
ab 3a2
5a2
4ab a2
14.已知 A 3a2 ab , B 5ab a2 (1)求 2A B 的值;
(2)若 2A 与 B C 互为相反数,a、b 满足 a 22 + b+1=0 ,求 C 的值.
15.已知 A 4x2 2xy 3y2, B 4x2 3y2 . (1)求 A B ; (2)当 x 3, y 1 时,求 A B 的值.
18.已知代数式 A 2x2 5xy 7 y 3 , B x2 xy 2
(1)求 3A 2A 3B 的值;
(2)若 A 2B 值与 x 的取值无关,求 y 的值.
1.(1) 1 x2 - 3x + 2 5
(2) 1 a2b 4
2.(1) 2x2 x 1 (2) 3a2 33a 18
3.(1) 6 y 10x (2) 2x2 y 3xy 4
4.(1) 3a2b 4a3 2 (2) 4ab2 6
5.(1) a2b 8ab2 (2) x2 4x
6.(1) 2a2 7b2 ab (2)12a 10b
7. 3x2 4xy 12 , 24 8. ab2 a2b 3 , 5 9. 4x2 xy ;6 10. 2ab ;1 11. 3x2 y 5xy , 2 12. 5x2 xy ,18 13. a2b 6ab2 3 , 89 14.(1) 5a2 3ab (2) 14
【精选习题】人教版七年级数学上册单元试题:第2章整式的加减(含答案).doc
人教版初中数学七年级上册第2章《整式加减》单元测试题一、选择题:1.式子222a b +表示的意义是( )A. a 与2b 平方的和B. a 与2b 和的平方C. a 的平方与2个b 平方的和D. 2b 与a 的平方和 2. 下列运算正确的是( )A .xy y x 532=+B .2325a a a += C.()a a b b --= D .422x x x =+ 3. 如果213n m xy -与35m x y -的和是单项式,则m 和n 的值分别是( )A .3和-2B .-3和2C .3和2D .-3和-2 4.下列判断中正确的是 ( )A.23a bc 与2bca 不是同类项B. 单项式32x y -的系数是-1C. 52n m 不是整式 D.2235x y xy -+是二次三项式5.若M 和N 都是四次多项式,则M N +一定是( )A.四次多项式B.八次多项式C.次数不高于四次的整式D.次数一定是低于四次的整式 6.化简()2x x y x y x ⎡⎤-----⎣⎦等于( )A. 0B.2xC.x y -D.3x7. 若代数式2231x x -+的值是8,则代数式2463x x --的值是( )A.10B.11C.12D.138. 某人靠墙围成一块梯形园地,三面用篱笆围成.设一腰为a ,另一腰为b ,与墙面相对的一边比两腰的和还大b ,则此篱笆的总长是( ) A.2a b + B.23a b + C.22a b + D.3a b + 9.已知一个多项式与279x x +的和等于2741x x +-,则这个多项式是( )A .51x --B .51x +C .131x --D .131x +10. 若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式.下列三个代数式:①2)(b a -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( )A .①②B .①③C . ②③D .①②③ 二、填空题:11. 今年的香蕉价格比去年贵了许多,已知现在香蕉的价格是去年的2倍还多0.5元,如果今年香蕉的价格为a 元,那么去年香蕉的价格可表示为 .12. 一个多项式减去212x -得到223x x +-,那么这个多项式是 .13. 对于有理数a 、b ,定义b a b a 32-=*,则)()(x y y x -*-的结果是 . 14. 若35,a b a c -=+=,则(2)()a b c a b c ++---= .15. 观察下列单项式:0,23x -,38x -,415x -,524x -,……,按此规律写出第n 个单项式是_____. 16. 若()23214x x b x bx -+---化简后不含x 的一次项,则b = . 17. 如图所示是用棋子摆成的“巨”字,那么第4个“巨”字续摆下去,第n 个“巨”字所需要的棋子_________________.18. 如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数.例如,6的不包括自身的所有因数为1,2,3.而且6123=++,所以6是完全数.大约2200多年前,欧几里德提出:如果21n -是质数,那么12(21)n n --是一个完全数,请你根据这个结论写出6之后的下一个完全数是 . 三、解答题:19. 已知5=+y x ,3-=xy ,求代数式)4()232(xy y x xy y x +----的值.20. 某县城的房价近两年有了大幅的上涨,前年上升了50%,去年又上升了40%.人教版数学七年级上册第2章《整式的加减》单元检测试题及答案一、选择题(每小题3分,共18分) 1.计算3a 3+a 3,结果正确的是( )A .3a 6B .3a 3C .4a 6D .4a 32.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( )A . 6B . -6C . 12D . -123.已知多项式ax 5+bx 3+cx ,若当x=1时该多项式的值为2,则当x=-1时该多项式的值为( )A .-2B .2 4.下列运算正确的是( )A .-2(3x-1)=-6x-1B .-2(3x-1)=-6x+1C .-2(3x-1)=-6x+2D .-2(3x-1)=-6x-2 5.化简a+a 的结果为( )A .2B .a 2C .2a 2D .2a 6.在下列式子3ab ,-4x ,75abc -,π,2m n-,0.81,1y,0中,单项式共有( ) A .5个 B .6个 C .7个D .8个二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式的系数与次数之积为 .8.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.9.已知多项式x |m |+(m -2)x +8(m 为常数)是二次三项式,则m 3=________. 10.如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2016的值为________.11.如图所示,点A 、B 、C 分别表示有理数a 、b 、c ,O 为原点,化简:|a -c |-|b -c |=________________.12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2017个格子中的整数是_________.三、(本大题共5小题,每小题6分,共30分) 13.化简:(1)a+2b+3a ﹣2b . (2)(3a ﹣2)﹣3(a ﹣5)14.列式计算:整式(x -3y )的2倍与(2y -x )的差.15.先化简再求值:-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1.16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:-(a 2b -2ab 2)+ab 2=2(a 2b +ab 2).试问老师用手捂住的多项式是什么?17.给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并求当x =-2时该式的结果.四、(本大题共3小题,每小题8分,共24分)18.若多项式4x n +2-5x 2-n +6是关于x 的三次多项式,求代数式n 3-2n +3的值.19.已知A=2x2+xy+3y-1,B=x2-xy.(1)若(x+2)2+|y-3|=0,求A-2B的值;(2)若A-2B的值与y的取值无关,求x的值.20.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a元,学生每人b元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,问共需交旅游费多少元(用含字母a、b 的式子表示)?并计算当a=300,b=200时的旅游费用.五、(本大题共2小题,每小题9分,共18分)21.已知A=5a+3b,B=3a2﹣2a2b,C=a2+7a2b﹣2,当a=1,b=2时,求A﹣2B+3C的值(先化简再求值).22.阅读材料:“如果代数式5a+3b的值为-4,那么代数式2(a+b)+4(2a+b)的值是多少?”我们可以这样来解:原式=2a+2b+8a+4b=10a+6b.把式子5a+3b=-4两边同乘以2,得10a+6b=-8.仿照上面的解题方法,完成下面的问题:(1)已知a2+a=0,求a2+a+2017的值;(2)已知a-b=-3,求3(a-b)-a+b+5的值;(3)已知a2+2ab=-2,ab-b2=-4,求2a2+5ab-b2的值.六、(本大题共12分)23.探究题.用棋子摆成的“T”字形图,如图所示:(1)填写下表:(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?).参考答案:一、选择题1.D2.D3.A4.C5.D6.B二、填空题7.﹣238.111a+809.-810.111.2c-a-b解析:由图可知a<c<0<b,∴a-c<0,b-c>0,∴原式=c-a-(b-c)=c-a-b+c=2c-a-b.故答案为2c-a-b.12.-4解析:∵任意三个相邻格子中所填整数之和都相等,∴-4+a+b=a+b+c,解得c=-4,a+b+c=b+c+6,解得a=6,∴数据从左到右依次为-4、6、b、-4、6、b、-4、6、-2.由题意易得第9个数与第6个数相同,即b=-2,∴每3个数“-4、6、-2”为一个循环组依次循环.∵2017÷3=672……1,∴第2017个格子中的整数与第1个格子中的数相同,为-4.故答案为-4.三、解答题13.解:解:(1)原式=4a;(3分)(2)原式=3a﹣2﹣3a+15=13;(6分)14.解:2(x-3y)-(2y-x)=2x-6y-2y+x=3x-8y.(6分)15.解:原式=-9y+6x2+3y-2x2=4x2-6y.(3分)当x=2,y=-1时,原式=4×22-6×(-1)=22.(6分)16.解:设该多项式为A,∴A=2(a2b+ab2)+(a2b-2ab2)-ab2=3a2b-ab2,(5分)∴捂住的多项式为3a2b-ab2.(6分)17.解:情况一:12x 2+2x -1+12x 2+4x +1=x 2+6x ,(3分)当x =-2时,原式=(-2)2+6×(-2)=4-12=-8.(6分)情况二:12x 2+2x -1+12x 2-2x =x 2-1,(3分)当x =-2时,原式=(-2)2-1=4-1=3.(6分)情况三:12x 2+4x +1+12x 2-2x =x 2+2x +1,(3分)当x =-2时,原式=(-2)2+2×(-2)+1=4-4+1=1.(6分)18.解:由题意可知该多项式最高次数项为3次,当n +2=3时,此时n =1,∴n 3-2n +3=1-2+3=2;(3分)当2-n =3时,即n =-1,∴n 3-2n +3=-1+2+3=4.(6分)综上所述,代数式n 3-2n +3的值为2或4.(8分)19.解:(1)∵A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy+3y -1.∵(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(4分)(2)∵A -2B =y (3x +3)-1,又∵A -2B 的值与y 的取值无关,∴3x +3=0,解得x =-1.(8分)20.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(4分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(8分) 21.解:∵A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2, ∴A ﹣2B+3C=(5a+3b )﹣2(3a 2﹣2a 2b )+3(a 2+7a 2b ﹣2) =5a+3b ﹣6a 2+4a 2b+3a 2+21a 2b ﹣6 =﹣3a 2+25a 2b+5a+3b ﹣6,当a=1,b=2时,原式=﹣3×12+25×12×2+5×1+3×2﹣6=52. 22.解:(1)∵a 2+a =0,∴a 2+a +2017=0+2017=2017.(3分)(2)∵a -b =-3,∴3(a -b )-a +b +5=3×(-3)-(-3)+5=-1.(6分)(3)∵a 2+2ab =-2,ab -b 2=-4,∴2a 2+5ab -b 2=2a 2+4ab +ab -b 2=2×(-2)+(-4)=-8.(9分)人教版初中数学七年级上册第二章《整式的加减》 单元测试一、选择题(每题3分,共30分) 1.下列说法正确的是( ) A.a 的系数是0 B.1y是一次单项式 C.-5x 的系数是5 D.0是单项式2.下列单项式:①312a 2b ;②-2x 1y 2;③-32x 2;④-1a 2b .其中书写不正确的有( ) A.1个 B.2个 C.3个 D.4个3.下列各组中的两项,不是同类项的是( ) A.a 2b 与-6ab 2 B.-5x 3y 与934yx 3C.2πR 与π2RD.-35与53 4.下列说法正确的是( )A.整式就是多项式B.π是单项式C.x 4+2x 3是七次二项次D.315x 是单项式 5.不改变多项式3b 3-2ab 2+4a 2b -a 3的值,把后三项放在前面是“-”号的括号中,正确的是( )A.3b 3-(2ab 2-4a 2b +a 3)B.3b 3-(2ab 2+4a 2b +a 3)C.3b 3-(-2ab 2+4a 2b -a 3)D.3b 3-(2ab 2+4a 2b -a 3) 6.若m ,n 都是正整数,多项式x m +y n +3m +n 的次数是( )A.2m +2nB.m 或nC.m +nD.m ,n 中的较大数7.张老板以每颗a 元的单价买进水蜜桃100颗,现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低b 元的价格将剩下的30颗卖出,那么全部水蜜桃共卖( )元A.70a +30(a -b )B.70×(1+20%)×a +30bC.100×(1+20%)×a -30(a -b )D.70×(1+20%)×a +30(a -b )8.在一定条件下,若物体运动的路程s (m)与时间t (s)的关系式为s =5t 2+2t ,则当t =6秒时,该物体所经过的路程为( )A.198mB.192mC.188mD.182m9.明明在今天数学课上学习了整式的加减知识,放学后,明明见妈妈的午饭没有做好,拿出课堂笔记,认真地复习课上学习的内容,他突然发现一道题:(-x 2+3xy -12y 2)-(-12x 2+4xy -32y 2)=-12x 2y 2,被钢笔墨水弄污了,那么被弄污的地方应填( ) A.-7xy B.7xy C.-xy D.xy10.多项式-3x 2y -10x 3+3x 3+6x 3y +3x 2y -6x 3y +7x 3-2020的值是( ) A.与x ,y 都无关 B.只与x 有关 C.只与y 有关 D.与x ,y 都有关 二、填空题(每题3分,共24分)11.把多项式3x 2y -4xy 2+x 3-5y 3按y 的降幂排列是___.12.两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍,设第一堆原有a 个棋子,第二堆原有___个棋子.13.如果x 表示一辆火车行驶的速度,那么1.5x 可以解释为___.14.大家知道53是一个两位数,个位数字是3,十位数字是5,若将53写成5×10+3,如果一个两位数的个位数字是b ,十位数字是a ,用含a 、b 的式子表示这个两位数是___.15.化简:―[―(2a ―b )]=___.16.的结果是___.17.小颖在计算a +N 时,误将“+”看成“―”,结果得3a ,则a +N =___. 18.数学家发明了一个魔术盒,当任意实数对...(a ,b )进入其中时,•会得到一个新的实数:a 2+b +1.例如把(3,-2)放入其中,就会得到32+(-2)+1=8,现将实数对...(-2,3)放入其中得到实数m,再将实数对...(m,1)放入其中后,得到的实数是___.三、解答题(共66分)19.化简:(1)-0.8a2b-6ab-3.2a2b+5ab+a2b.(2)5(a-b)2-3(a-b)2-7(a-b)-(a-b)2+7(a-b).20.先化简,再求值:(1)5a2-4a2+a-9a-3a2-4+4a,其中a=-1 2 .(2)5ab-92a2b+12a2b-(114ab+a2b+5),其中a=1,b=-2.(3)2a2-(3ab+b2+a2-ab)-2b2,其中a2-b2=2,ab=-3.21.小明研究汽车行驶时油箱里的剩油量与汽车行驶的路程之间的关系如下表:n=150千米时,A 是多少?22.有这样一道题:“当a=2020,b=-2019时,求多项式7a3-6a3b+3a2b+3a3+6a3b -3a2b-10a3+2019的值.”小明说:本题中a=2020,b=-2019是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.23.按照下列步骤做一做:第一步:任意写一个两位数;第二步:交换这个两位数的十位数字和个位数字,得到一个新数;第三步:求这两个两位数的差.再写几个两位数重复上面的过程,这些差有什么规律?这个规律对任意一个两位数都成立吗?为什么?24. 甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的8折优惠;在乙超市购买商品超出200元之后,超出部分按原价的8.5折优惠,设某顾客预计累计购物x元(x >300元).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)当该顾客累计购物500元时在哪个超市购物合算.25.永丰学校七年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m名学生,用代数式表示两种优惠方案各需多少元?(2)当m=70时,采用哪种方案优惠?当m=100时,采用哪种方案优惠?26.在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为x cm,请用x来表示这个无盖长方体的容积.(2)当剪去的小正方体的边长x的容积的大小.参考答案:一、1.D;2.C;3.A;4.B;5.A;6.D;7.D;8B;9.C;10.A.点拨:-3x2y-10x3+3x3+6x3y+3x2y -6x3y+7x3-2012=-2012.二、11.-5y3-4xy2+3x2y+x3;12.2a-6;13.这辆火车行驶了1.5小时的路程;14.10a+b;15.2a-b;16.m2-m+1;17.-a;18.66.三、19.(1)-3a2b-ab.(2)(a-b)2.20.(1)5a2-4a2+a-9a-3a2-4+4a=-2a2-4a-4,当a=-12时,原式=-52.(2)5ab-92a2b+12a2b-(114ab+a2b+5)=5ab-92a2b+12a2b-114ab-a2b-5=94ab-5a2b-5,当a=1,b=-2时,原式=12.(3)2a2-(3ab+b2+a2-ab)-2b2=2a2-3ab-b2-a2+ab-2b2=a2-b2-2ab,当a2-b2=2,ab=-3时,原式=8.21.依题意,得A=20-Q,A=20-0.04n,当n=150时,A=20-0.04×150=14(升).22.因为7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+2019=2019,所以a=2020,b=-2019是多余的条件,故小明的观点正确.23.第一步:如,24;第二步:得42;第三步:42-24=18,是9的倍数.猜想:这些差的规律是都能被9整除.理由:第一步:设原两位数的十位数字为b,个位数字为a(b>a),则原两位数为10b+a;第二步:交换后的两位数为10人教版七年级数学上册第二章整式的加减单元测试题一、选择题(本大题共7小题,每小题3分,共21分;在每小题列出的四个选项中,只有一项符合题意)1.下列各组中的两项,属于同类项的是( )A.-2x2y与xy2B.x2y与x2zC.3mn与4nmD.-0.5ab与abc2.已知苹果的单价为a元/千克,香蕉的单价为b元/千克,则购买2千克苹果和3千克香蕉共需( )A .(a +b )元B .(3a +2b )元C .(2a +3b )元D .5(a +b )元3.下列说法错误的是( ) A .2x 2-3xy -1是二次三项式 B .-x +1不是单项式 C .-22xab 2的次数是6 D .-23πxy 2的系数是-23π4.下面是小林做的4道作业题:(1)2ab +3ab =5ab ;(2)2ab -3ab =-ab ;(3)2ab -3ab =6ab ;(4)-2(a -b )=-2a +2b .做对一题得2分,做错不扣分,则他一共得到( )A .2分B .4分C .6分D .8分5.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( ) A .-5x -1B .5x +1C .-13x -1D .13x +16.如果2<x <3,那么化简|2-x |-|x -3|的结果是( ) A .-2x +5 B .2x -5 C .1D .-57.某月的月历表如图1所示,任意圈出一横行或一竖列相邻的三个数,这三个数的和不可能是( )图1A .24B .43C .57D .69二、填空题(本大题共5小题,每小题4分,共20分) 8.单项式5x 2y ,-6x 2y ,34x 2y 的和是________.9.去括号:6x 3-[3x 2-(x -1)]=____________.10.一根铁丝的长为5a +4b ,剪下一部分围成一个长为a ,宽为b 的长方形,则这根铁丝还剩下__________.11.如果A =3x 2-2xy +1,B =7xy -6x 2-1,那么A -B =______________. 12.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m 人,则该班同学共有________人.(用含m 的式子表示)三、解答题(本大题共6小题,共59分) 13.(12分)化简:(1)2a -(5a -3b )+(7a -b );(2)5a 2-[4a 2-(a 2+1)];(3)(3x 2-xy -2y 2)-2(x 2+xy -2y 2);(4)5(a 2b -2ab 2+c )-4(2c +3a 2b -ab 2).14.(8分)若(x +2)2+⎪⎪⎪⎪⎪⎪y -12=0,求5x 2-[2xy -3(13xy +2)+4x 2]的值.15.(8分)已知A =2x 2+3xy -2x -1,B =-x 2+xy -1. (1)求3A +6B ;(2)若3A +6B 的值与x 的取值无关,求y 的值.16.(9分)图2中的图案是某大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,求:图2(1)第1个图中所贴剪纸的个数为________个;第2个图中所贴剪纸的个数为________个;第3个图中所贴剪纸的个数为________个.(2)第n个图中所贴剪纸的个数为多少?求第500个图中所贴剪纸的个数.17.(10分)某名同学做一道题:已知两个多项式A,B,求2A-B的值.他误将2A-B 看成A-2B,求得结果为3x2-3x+5,已知B=x2-x-1.(1)求多项式A;(2)求2A-B的正确答案.18.(12分)某土特产公司组织20辆汽车装运甲、乙、丙三种土特产去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,根据下表提供的信息,解答以下问题:(1)求这20辆汽车共装运了多少吨土特产;(2)求销售完装运的这批土特产后所获得的总利润是多少万元.1. C 2.C. 3.C 4. C. 5. A. 6. B. 7. B. 8.[答案] -14x 2y 9.[答案] 6x 3-3x 2+x -1 10.[答案] 3a +2b 11.[答案] 9x 2-9xy +2 12.[答案] (2m +3)13.解:(1)原式=2a -5a +3b +7a -b =4a +2b. (2)原式=5a 2-(4a 2-a 2-1)=5a 2-4a 2+a 2+1=2a 2+1. (3)原式=3x 2-xy -2y 2-2x 2-2xy +4y 2=x 2-3xy +2y 2.(4)原式=5a 2b -10ab 2+5c -8c -12a 2b +4ab 2=-7a 2b -6ab 2-3c. 14.解:由题意得x =-2,y =12. 原式=5x 2-2xy +xy +6-4x 2=x 2-xy +6. 当x =-2,y =12时,原式=4+1+6=11.15.[解析] (1)把A ,B 代入3A +6B ,再按照去括号规律去掉整式中的小括号,再合并整式中的同类项,将3A +6B 化到最简即可.(2)根据3A +6B 的值与x 无关,令含x 的项的系数为0,即可求得y 的值. 解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6=15xy -6x -9.(2)3A +6B =15xy -6x -9=(15y -6)x -9,要使3A +6B 的值与x 的取值无关,则15y -6=0,解得y =25.16.解:(1)5 8 11(2)第n 个图中所贴剪纸个数为(3n +2). 当n =500时,3n +2=3×500+2=1502. 17.解:(1)A =(3x 2-3x +5)+2(x 2-x -1) =3x 2-3x +5+2x 2-2x -2 =5x 2-5x +3.(2)因为A =5x 2-5x +3,B =x 2-x -1, 所以2A -B=2(5x 2-5x +3)-(x 2-x -1) =10x 2-10x +6-x 2+x +1 =9x 2-9x +7.18.解:(1)8x +6y +5(20―x ―y)=(3x +y +100)吨. 答:这20辆汽人教版数学七年级上册第二章整式的加减单元测试题一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。
人教版七年级上册数学第二章《 整式的加减》试题带答案
七年级数学上册第二章《整式的加减》试题 姓名: 学号: 分数:一、 选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中,正确的是( )A .24m n 不是整式B .32abc-的系数是﹣3,次数是3 C .3是单项式D .多项式2x 2y ﹣xy 是五次二项式2.下列说法中,正确的个数有( ) ①有理数包括整数和分数;②一个代数式不是单项式就是多项式;③几个有理数相乘,若负因数的个数是偶数个,则积为正数; ④倒数等于本身的数有﹣1. A .1个B .2个C .3个D .4个3.下列运算正确的是( ) A .2325a a a += B .333a b ab += C .533-=a a a D .2222-=a bc a bc a bc4.()2ab 2ab 3a b --的计算结果是( )A .23a b 3ab +B .23a b ab --C .23a b ab -D .23a b 3ab -+5.已知:关于x 、y 的多项式mx 3+3nxy 2﹣2x 3﹣xy 2+y 中不含三次项,则代数式2m+3n 值是( ) A .2B .3C .4D .56.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长 为acm ,宽为bcm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是( )A .4acmB .4bcmC .2(a+b )cmD .4(a-b )cm7.2351a a -+与2234a a ---的和为 ( ) A .2523a a --B .283a a --C .235a a ---D .285a a -+8.如果单项式33m x y 和5n xy -是同类项,则m 和n 的值是( ) A .1-,3 B .3,1C .1,3D .1,3-9.已知622x y 和312m nx y -是同类项,那么2m+n 的值( ) A .3B .4C .5D .610.已知221,a ab -= 212ab b -=-,则代数式222a ab b -+的值是( ) A .9 ;B .33;C .7;D .3011.若要使多项式()222352x x x mx -+-+化简后不含x 的二次项,则m 等于( )A .1B .1-C .5D .5-12.如图,图中的三角形是有规律地从里到外逐层排列的,设N 为第n 层(n 为自然数)三角形的个数,则下列函数表达式中正确的是( )A .44N n =-B .4N n =C .44N n =+D .2N n =二、 填空题(本大题共6小题,每小题3分,共18分) 13.观察一列数:32,74,118,1516,…,按此规律,这列数的第n 个数是________.14.若23x y -=,则412x y +-的值是_____.15.若式子()2222351x ax y b bx x y +-+--+-的值不含2x 和x ,则2a b +的值为__________.16.已知229x xy +=,23216xy y +=,则225251x xy y ++-=_________. 17.若a 、b 互为相反数,则()2a b --的值为______. 18.多项式112m x -﹣3x 2-7是关于x 的四次三项式,则m 的值是________. 三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.如图所示,把一块正方形纸板剪去四个相同的三角形后留下了阴影部分的图形,已知正方形的边长为a ,三角形的高为h .(1)用含a ,h 的式子表示阴影部分的面积; (2)当10a =,3h =时,求阴影部分的面积.20.若关于,x y 的多项式23m x nx y x --是一个三次三项式,且最高次项的系数是3-,求m n -的值.21.(1)若3x 3y m 与﹣2x n y 2是同类项,求m n 的值;(2)若﹣x a y 4与4x 4y 4b 的和单项式,求(﹣1)a b 2012的值.22.合并同类项:(1)222p p p --- (2)4523x y y x -+-(3)23233542x x x x x ---++ (4)224()2()5()3()a b a b a b a b ---+-+-23.有理数a ,b ,c 在数轴上的位置如图所示.若|||1|||n b c c b a =+----,|1||1|||m a b a b =-+----,化简:n ,m .24.(1)试说明代数式(23)(32)6(3)516x x x x x ++-+++的值与x 的值无关.(2)若()()233nx x x m +-+的展开式中不含2x 项和x 项,求m 、n 的值分别是多少?答案三、选择题(本大题共12小题,每小题3分,共36分。
人教版七年级数学上册第二章 整式的加减 专题练习试题(含答案)
人教版七年级数学上册第二章整式的加减专题练习试题专题一、与整式加减相关的新定义问题方法指导:新定义问题,即给出一个新的数学符号标记,规定一种新的运算规则,并按新规定的运算规则进行计算.解题的关键是看懂规定的运算,将新规定的运算转化为整式加减运算问题,在转化过程中,要特别注意括号的作用.1.定义新运算:a#b=3a-2b,则(x+y)#(x-y)=x+5y.2.定义一种新运算:a⊕b=2a-b,a b=b-a,求(x⊕y)⊕(y x)=3x-y.专题二、利用数轴去绝对值符号化简1.有理数a,b在数轴上的位置如图所示,试解决下列问题:(1)因为a<0,所以|a|=-a;(2)因为b>0,-b<0,所以|b|=b;|-b|=b;(3)因为1+a>0,所以|1+a|=1+a;(4)因为1-b <0,所以|1-b|=-(1-b)=b-1;(5)因为a+b>0,所以|a+b|=a+b;(6)因为a-b <0,所以|a-b|=-(a-b)=b-a.2.有理数a,b在数轴上的位置如图所示,则化简式子|a+b|+a的结果是-b.3.有理数a,b在数轴上的位置如图所示,化简|a-b|-|b-a|的结果是(C)A.2a+2b B.2bC.0 D.2a4.有理数a,b在数轴上的位置如图所示,则化简|a-b|-2|a+b|的结果为(A)A.a+3b B.-3a-bC.3a+b D.-a-3b5.已知有理数a ,b ,c 在数轴上的对应点分别是A ,B ,C ,其位置如图所示,化简:2|b +c|-3|a -c|-4|a +b|.解:由数轴知,a <b <0<c ,且|b|<|c|,所以b +c >0,a -c <0,a +b <0,所以原式=2(b +c)-[-3(a -c)]-[-4(a +b)]=2b +2c +3(a -c)+4(a +b)=2b +2c +3a -3c +4a +4b=7a +6b -c.专题三、 整体思想在整式求值中的运用方法指导:整式的化简求值中,当单个字母的值不易求出或化简后的结果与已知值的式子相关联时,需要将已知式子的值整体代入计算.1.已知x -2y =5,那么5(x -2y)2-4(x -2y)-60的值为(B )A .55B .45C .80D .402.已知式子3y 2-2y +6的值是8,那么32y 2-y +1的值是(B ) A .1 B .2C .3D .43.若m -n =-1,则(m -n)2-2m +2n 的值为(A )A .3B .2C .1D .-14.若式子2x 2+3x +7的值是8,则式子4x 2+6x -9的值是(C )A .2B .-17C .-7D .75.已知x 2+2x -1=0,则3x 2+6x -2=1.6.如果m ,n 互为相反数,那么(3m -2n)-(2m -3n)=0.7.已知x =2y +3,则式子4x -8y +9的值是21.8.若2a -b =2,则6+4b -8a =-2.9.若a 2-5a -1=0,则5(1+2a)-2a 2的值为3.10.已知a 2+b 2=6,ab =-2,求(4a 2+3ab -b 2)-(7a 2-5ab +2b 2)的值.解:原式=-3a 2+8ab -3b 2=-3(a 2+b 2)+8ab ,因为a 2+b 2=6,ab =-2,所以原式=-3×6+8×(-2)=-34.专题四、 整式的化简与求值类型1 整式的加减运算1.计算:(1)6a 2+4b 2-4b 2-7a 2;解:原式=(6-7)a 2+(4-4)b 2=-a 2.(2)3(m 2-2m -1)-2(m 2-3m)-3;解:原式=3m 2-6m -3-2m 2+6m -3=m 2-6.(3)-12(4x 2-2x -2)+13(-3+6x 2); 解:原式=-2x 2+x +1-1+2x 2=x.(4)3x2y-[2xy-2(xy-23x2y)+xy].解:原式=3x2y-(2xy-2xy+43x2y+xy)=3x2y-2xy+2xy-43x2y-xy=53x2y-xy.2.已知A=x2-2x+1,B=2x2-6x+3.求:(1)A+2B;(2)2A-B.解:(1)A+2B=x2-2x+1+2(2x2-6x+3)=x2-2x+1+4x2-12x+6=5x2-14x+7.(2)2A-B=2(x2-2x+1)-(2x2-6x+3)=2x2-4x+2-2x2+6x-3=2x-1.类型2整式的化简求值3.先化简,再求值:(1)2(a2+3a-2)-3(2a+2),其中a=-2;解:原式=2a2+6a-4-6a-6=2a2-10.当a =-2时,原式=2×(-2)2-10=-2.(2)2x -y +(2y 2-x 2)-(x 2+2y 2),其中x =-12,y =-3; 解:原式=2x -y +2y 2-x 2-x 2-2y 2=-2x 2+2x -y.当x =-12,y =-3时, 原式=-2×14-1-(-3)=32. (3)2(a 2b -ab 2)-3(a 2b -1)+2ab 2+1,其中a =2,b =14; 解:原式=2a 2b -2ab 2-3a 2b +3+2ab 2+1=-a 2b +4.当a =2,b =14时, 原式=-22×14+4=3. (4)(5a 2+3a -1)-3(a +a 2),其中a 2-2=0;解:原式=5a 2+3a -1-3a -3a 2=2a 2-1.因为a 2-2=0,即a 2=2,所以原式=2×2-1=3.(5)3x 2y -[2xy 2-2(xy -32x 2y)+xy]+3xy 2,其中|x -3|+(y +13)2=0. 解:原式=3x 2y -2xy 2+2xy -3x 2y -xy +3xy 2=xy +xy 2.因为|x -3|+(y +13)2=0, 所以x =3,y =-13.所以原式=-1+13=-23.专题五、与整式的化简有关的说理题1.是否存在数m ,使化简关于x ,y 的多项式(mx 2-x 2+3x +1)-(5x 2-4y 2+3x)的结果中不含x 2项?若不存在,说明理由;若存在,求出m 的值.解:原式=mx 2-x 2+3x +1-5x 2+4y 2-3x=(m -6)x 2+4y 2+1.由题意,得m -6=0,所以m =6.2.有一道题“先化简,再求值:17x 2-(8x 2+5x)-(4x 2+x -3)+(5x 2+6x -1)-3,其中x =2 020.”小明做题时把“x =2 020”错抄成了“x =-2 020”.但他计算的结果却是正确的,请你说明这是什么原因.解:17x 2-(8x 2+5x)-(4x 2+x -3)+(5x 2+6x -1)-3=17x 2-8x 2-5x -4x 2-x +3+5x 2+6x -1-3=10x 2-1.因为当x =2 020和x =-2 020时,x 2的值相同,所以他计算的结果是正确的.3.已知关于x ,y 的多项式x 2+ax -y +b 与多项式bx 2-3x +6y -3的和的值与x 的取值无关,求式子3(a 2-2ab +b 2)-[4a 2-2(12a 2+ab -32b 2)]的值. 解:(x 2+ax -y +b)+(bx 2-3x +6y -3)=(b +1)x 2+(a -3)x +5y +b -3.因为该多项式的值与x 的取值无关,所以b +1=0,a -3=0.所以b =-1,a =3.原式=3a 2-6ab +3b 2-(3a 2-2ab +3b 2)=3a2-6ab+3b2-3a2+2ab-3b2=-4ab=12.4.嘉淇在计算一个多项式A减去多项式2b2-3b-5的差时,因一时疏忽忘了将两个多项式用括号括起来,因此得到的差是b2+3b-1.(1)求这个多项式A;(2)求这两个多项式运算的正确结果;(3)当b=-1时,求(2)中结果的值.解:(1)由题意,得A-2b2-3b-5=b2+3b-1,则A=(b2+3b-1)+(2b2+3b+5)=b2+3b-1+2b2+3b+5=3b2+6b+4.(2)这两个多项式运算的正确结果为(3b2+6b+4)-(2b2-3b-5)=3b2+6b+4-2b2+3b+5=b2+9b+9.(3)当b=-1时,原式=(-1)2+9×(-1)+9=1-9+9=1.5.已知一个两位数,其十位数字是a,个位数字是b.(1)写出这个两位数;(2)若a≠b,把这个两位数的十位数字与个位数字对换,得到一个新的两位数,则原两位数与新两位数的和能被11整除吗?为什么?其差又一定是哪个数的倍数?为什么?解:(1)10a+b.(2)由题意得,这两个数的和为(10a+b)+(10b+a)=11a+11b=11(a+b),因为a,b都是整数,所以a+b也是整数.所以这两个数的和能被11整除.这两个数的差为(10a+b)-(10b+a)=10a+b-10b-a=9a-9b=9(a-b),因为a,b都是整数,所以a-b也是整数.所以这两个数的差一定是9的倍数.专题六、规律探究类型1数式规律1.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,那么请你推测第n组取的种子数是(2n+1)粒.2.按规律写出空格中的数:-2,4,-8,16,-32,64.3.已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是13a+21b.4.观察下列各等式:第一个等式3=2+1,第二个等式5=3+2,第三个等式9=5+4,第四个等式17=9+8,…,按此规律猜想第六个等式是65=33+32.5.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上述规律,第n个等式应表示为(n+1)2-1=n(n+2).6.观察以下图案和算式,解答问题:(1)1+3+5+7+9=25;(2)1+3+5+7+9+…+19=100;(3)猜想:1+3+5+7+…+(2n -1)=n 2.7.a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数11-(-1)=12,已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数…,依此类推,a 2 019的值是(D )A .5B .-14C .43D .458.观察下列等式:70=1,71=7,72=49,73=343,74=2 401,75=16 807,…,根据其中的规律可得70+71+72+…+72 019的结果的个位数字是(A )A .0B .1C .7D .89.观察下列单项式:-x ,3x 2,-5x 3,7x 4,…,-37x 19,39x 20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n 个单项式是什么?(4)请你根据猜想,写出第2 019,2 020个单项式.解:(1)这组单项式的系数的符号规律是(-1)n ,系数的绝对值规律是2n -1.(2)这组单项式的次数的规律是从1开始的连续自然数.(3)第n 个单项式是(-1)n (2n -1)x n .(4)第2 019个单项式是-4 037x 2 019,第2 020个单项式是4 039x 2 020.类型2图形规律10.用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为(D)A.3n B.6nC.3n+6 D.3n+311.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2 019个图形中共有6_058个〇.…12.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为3n+2.…。
2023-2024年人教版七年级上册数学期末复习:第二章整式的加减的应用解答题专题训练
2023-2024年人教版七年级上册数学期末复习:第二章整式的加减的应用解答题专题训练1.如图所示,池塘边有一块长为30m,宽为15m的长方形土地,现在将其余三面留出(1)m=_____________,n=_____________(请用含x的代数式表示m和n)(2)求购买100件奖品所需的总费用(需要解题过程,用含x的代数式表示,需要化简);(3)若一等奖奖品购买了10件,求总共需花费的钱数.x的小正方形、两个不同的大正方形和1个长方形(阴影部3.如图,用三个边长为cm(1)做这两个纸盒共用料多少平方厘米? (2)做大纸盒比做小纸盒多用料多少平方厘米?7.如图,把五个宽为a 、长为b 的小长方形,按图1和图2两种方式摆放在一个宽为m 的大长方形上(相邻的小长方形既无重叠,又不留空隙).设图1中两块阴影部分的周长和为1C ,图2中阴影部分的周长为2C ,若大长方形的长比宽大()5a -,请判断1C ,2C 的大小,并说明理由.8.李老师新购买的住房平面结构如图所示(1)李老师打算把卧室铺实木地板,其它房间铺地砖,则他需要买实木地板和地砖各多少平方米?(x 、y 单位:米)(2)若3x =米,2y =米,并且每平方米实木地板的价格是200元,每平方米地砖的价格是60元,则李老师购买实木地板和地砖共需要多少元?9.阳光小区在一块长方形土地上修建两个如图所示的扇形水池,其余面积(阴影部分)进行绿化处理.(结果保留π)(1)用含a ,b 的代数式表示长方形的长:____________;(2)用含a ,b 的代数式表示绿化土地(阴影部分)的面积S ;(3)当4a =米,6b =米时,求绿化土地(阴影部分)的面积S .10.已知一个等腰梯形院墙,上底长为2a b +,腰比上底长a b -,下底比腰长3a b +.(1)求这个等腰梯形的周长(用含有a 、b 的式子表示).(2)求当3a =米,1b =米时,这个梯形的周长是多少米?(3)在(2)的条件下,围成院墙的材料30米以内,每米收费200元,超过的部分每米只收费180元,请问围成这个等腰梯形的院墙至少花费多少钱?11.有一块长48米,宽40米的长方形场地,现规划在场地中间铺设横纵两条道路(图中空白部分),剩余部分修建成花坛,如图1所示,横向道路的宽是纵向道路宽的2倍,设纵向道路的宽是x 米(0x >)(1)求图1中花坛(阴影部分)的面积;(2)若把纵向道路的宽改为原来的2.2倍,横向道路的宽改为原来的一半,如图2所示,设图1与图2的花坛面积分别为1S 、2S .试比较1S 与2S 的大小.12.如图,两叠规格相同的杯子整齐地叠放在桌面上.(1)按如图所示叠放时,相邻两个杯子杯口之间的高度相差______cm ;(2)若x 个杯子按如图所示方式整齐叠放在桌面上.①求这些杯子的顶部距离桌面的高度;(用含x 的代数式表示)①当12x =时,求这些杯子的顶部距离桌面的高度.13.如图,这是依依家的一把椅子的侧面示意图,用含a 的式子表示这把椅子的侧面的面积(图中长度单位:dm )14.某养殖场计划用96米的竹篱笆围成如图所示的①、①、①三个养殖区域,其中区域①是正方形,区域①和①是长方形,且32AG BG =∶∶.设BG 的长为2x 米.(1)用含x 的代数式表示AF = ;(2)用含x 的代数式表示DF ,并求当1x =时,区域①的面积.15.下图是某居民小区的一块长为a 米,宽为2b 米的长方形空地.为了美化环境,准备在这个长方形空地的四个顶点处分别修建一个半径为b 米的扇形花台,然后在花台内种花,其余种草.如果建造花台及种花的费用为每平方米120元,种草的费用为每平方米60元.(1)求美化这块空地共需多少元.(用含有a ,b ,π的式子表示)(2)当5a =,2b =,π取3时,美化这块空地共需多少元?16.为改善居民居住条件,让人民群众生活更方便更美好,国家出台了改造提升城镇老旧小区政策.在我县“老城换新颜”小区改造中,某小区规划修建一个广场(平面图形如图所示):(1)用含m ,n 的代数式表示广场(阴影部分)的面积S ;(2)若50m =米,40n =米,求出该广场的面积.17.如图所示,有一块长为()3m n +米和宽()2m n +,现准备在这块土地上修建一个长为()2m n +米,宽为m n 的游泳池,剩余部分修建成休息区域.(1)请用含m 和n 的代数式表示休息区域的面积;(2)若10m =,5n =,求休息区域的面积.20.探究活动:(1)将图①中阴影部分裁剪下来,重新拼成图①一个长方形,则图①长方形的长表示为______,宽为______.(2)则图①中阴影部分周长表示为______知识应用:运用(2)题你得到的代数式解决以下问题(3)计算:已知53,35a m n b n m =+=-,则阴影部分周长是多少?参考答案:(2)整个施工所需的造价为660元19.(1)大纸盒用料为()2301220cm a b ab ++;小纸盒用料为()25820cm ab b a ++ (2)做1个大纸盒比做2个小纸盒多用料()210410cm a b ab --+ (3)222cm20.(1)()a b +,()a b -(2)4a(3)2012m n +。
人教版七年级数学上册第二章《整式的加减》测试题(含答案)
人教版七年级数学上册第二章《整式的加减》测试题(含答案)(考试时间:90分钟,赋分:100分)姓名:________ 班级:________ 分数:________一、选择题(本大题共10小题,每小题3分,满分30分)1.下列四个式子:①3π;②a +b 2;③2x ;④15.其中不是整式的是 A .①B .②C .③D .④2.下列语句错误的是A.数字0是单项式B.单项式-a 的系数与次数都是1C.12xy 是二次单项式 D.-2ab 3的系数是-233.下列运算正确的是 A.3a 2b -3ba 2=0 B.5a 2-3a 2=2 C.3a 3+2a 3=5a 6D.3a +2b =5ab4.若单项式x m y 3与4x 2y n 的和仍是单项式,则m -n 的值是 A .5B .1C .0D .-15.有一个数值转换器,其原理如图所示.若开始输入的x 值是5,发现第1次输出的结果是16,第2次输出的结果是8,第3次输出的结果是4,……依次继续下去,第101次输出的结果是A .2B .1C .4D .86.【合肥高新区期末】若整式3x 2-4x +6的值为9,则x 2-43x +6的值为 A .5B .6C .7D .87.一个多项式A 减去多项式2x 2+5x -3,某同学将减号抄成了加号,运算结果为-x 2+3x -5,那么正确的运算结果是 A .-3x 2-2x -4B .-x 2+3x -7C .-5x 2-7x +1D .无法确定8.若多项式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为 A .2B .-2C .-1D .09.如图,点A ,B 表示的数分别是a ,b ,点A 在数轴上0和1两点(不包括这两点)之间移动,点B 在数轴上-3和-2两点之间移动.下列四个代数式的值可能比2 021大的是A.a 6b 6B.b 6+a 6C.a 12bD.ab 1210.一个含有多个字母的整式,如果把其中任意两个字母互换位置,所得的结果与原式相同,那么称此整式是对称整式.例如,x 2+y 2+z 2是对称整式,x 2-2y 2+3z 2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式; ②一个多项式是对称整式,那么该多项式中各项的次数必相同; ③单项式不可能是对称整式;④若某对称整式只含字母x ,y ,z ,且其中有一项为x 2y ,则该多项式的项数至少为3. 以上结论中错误的个数是 A.4B.3C.2D.1二、填空题(本大题共6小题,每小题3分,满分18分)11.如果在数轴上表示a ,b 两个实数的点的位置如图所示,那么|a -b |+|a +b |化简的结果为 .12.七年级(1)班有学生a 人,七年级(2)班的人数比七年级(1)班的人数的一半多25人,那么七年级(2)班有 人.13.把四张形状、大小完全相同的小长方形卡片(如图1,卡片长为x 、宽为y ,且x >y )不重叠地放在一个底面为长方形(长为a 、宽为b )的盒子底部(如图2),盒底面未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分周长的和是 .(用只含b 的代数式表示)14.已知有理数a ,b ,c 在数轴上的位置如图所示,化简||a +b -||b -2-||c -a -||2-c = .15.现规定一种运算a *b =ab +a -b ,其中a ,b 为实数,则a *b +(b -a )*b = . 16.已知代数式ax 4+bx 3+cx 2+dx +3.当x =2时,代数式的值为20;当x =-2时,代数式的值为16,则当x =2时,代数式ax 4+cx 2+3的值为 .三、解答题(第21题12分,其余每题10分,共52分) 17.已知M =2x 2-2xy +y 2,N =3x 2+xy -2y 2,求2M -3N 的值.18.一根绳长a 米(a >6),第一次用掉了全长的13多1米,第二次用掉了余下的23少2米,最后还剩多少米?19.已知多项式-5x2y m+1+xy2-3x3-6是六次四项式,且单项式3x2n y5-m的次数与此多项式的次数相同.(1)求m,n的值;(2)求该多项式的常数项以及各项的系数和.20.观察下列等式:13+23=1×22×32;4×32×42;13+23+33=14×42×52;13+23+33+43=14…根据上述规律,解决下列问题:(1)若n为正整数,猜想:13+23+33+…+n3=;(2)利用(1)的结论,比较13+23+33+…+1003与50552的大小.21.将7张完全相同的小长方形纸片(如图1)按图2所示的方式不重叠地放在长方形ABCD内,未被覆盖的部分恰好被分割成两个长方形,面积分别为S1和S2.已知小长方形纸片的长为a、宽为b,且a>b.(1)当a=9,b=3,AD=30时,长方形ABCD的面积是,S2-S1的值为;(2)当AD=40时,请用含a,b的式子表示S2-S1的值;(3)若AB的长度为定值,AD变长,将这7张小长方形纸片还按照同样的方式放在新的长方形ABCD内,而S2-S1的值总保持不变,求a,b满足的关系.参考答案一、选择题(本大题共10小题,每小题3分,满分30分)题 号 1 2345678910答 案 CBADBCCADB1.下列四个式子:①3π;②a +b 2;③2x ;④15.其中不是整式的是 A .①B .②C .③D .④2.下列语句错误的是A.数字0是单项式B.单项式-a 的系数与次数都是1C.12xy 是二次单项式 D.-2ab 3的系数是-233.下列运算正确的是 A.3a 2b -3ba 2=0 B.5a 2-3a 2=2 C.3a 3+2a 3=5a 6D.3a +2b =5ab4.若单项式x m y 3与4x 2y n 的和仍是单项式,则m -n 的值是 A .5B .1C .0D .-15.有一个数值转换器,其原理如图所示.若开始输入的x 值是5,发现第1次输出的结果是16,第2次输出的结果是8,第3次输出的结果是4,……依次继续下去,第101次输出的结果是A .2B .1C .4D .86.【合肥高新区期末】若整式3x 2-4x +6的值为9,则x 2-43x +6的值为 A .5B .6C .7D .87.一个多项式A 减去多项式2x 2+5x -3,某同学将减号抄成了加号,运算结果为-x 2+3x -5,那么正确的运算结果是 A .-3x 2-2x -4B .-x 2+3x -7C .-5x 2-7x +1D .无法确定8.若多项式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为 A .2B .-2C .-1D .09.如图,点A ,B 表示的数分别是a ,b ,点A 在数轴上0和1两点(不包括这两点)之间移动,点B 在数轴上-3和-2两点之间移动.下列四个代数式的值可能比2 021大的是A.a 6b 6B.b 6+a 6C.a 12bD.ab 1210.一个含有多个字母的整式,如果把其中任意两个字母互换位置,所得的结果与原式相同,那么称此整式是对称整式.例如,x 2+y 2+z 2是对称整式,x 2-2y 2+3z 2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式; ②一个多项式是对称整式,那么该多项式中各项的次数必相同;③单项式不可能是对称整式;④若某对称整式只含字母x ,y ,z ,且其中有一项为x 2y ,则该多项式的项数至少为3. 以上结论中错误的个数是 A.4B.3C.2D.1二、填空题(本大题共6小题,每小题3分,满分18分)11.如果在数轴上表示a ,b 两个实数的点的位置如图所示,那么|a -b |+|a +b |化简的结果为 -2a .12.七年级(1)班有学生a 人,七年级(2)班的人数比七年级(1)班的人数的一半多25人,那么七年级(2)班有 (12a +25) 人.13.把四张形状、大小完全相同的小长方形卡片(如图1,卡片长为x 、宽为y ,且x >y )不重叠地放在一个底面为长方形(长为a 、宽为b )的盒子底部(如图2),盒底面未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分周长的和是 4b .(用只含b 的代数式表示)14.已知有理数a ,b ,c 在数轴上的位置如图所示,化简||a +b -||b -2-||c -a -||2-c = -4 .15.现规定一种运算a *b =ab +a -b ,其中a ,b 为实数,则a *b +(b -a )*b = b 2-b . 16.已知代数式ax 4+bx 3+cx 2+dx +3.当x =2时,代数式的值为20;当x =-2时,代数式的值为16,则当x =2时,代数式ax 4+cx 2+3的值为 18 .三、解答题(第21题12分,其余每题10分,共52分) 17.已知M =2x 2-2xy +y 2,N =3x 2+xy -2y 2,求2M -3N 的值. 解:原式=2(2x 2-2xy +y 2)-3(3x 2+xy -2y 2) =4x 2-4xy +2y 2-9x 2-3xy +6y 2 =-5x 2-7xy +8y 2.18.一根绳长a 米(a >6),第一次用掉了全长的13多1米,第二次用掉了余下的23少2米,最后还剩多少米?解:由题可知a -(13a+1)-{23[a -(13a+1)]-2}=a -13a -1-[23(23a -1)-2]=a -13a -1-49a +23+2=(29a+53)米.答:最后还剩(29a+53)米.19.已知多项式-5x2y m+1+xy2-3x3-6是六次四项式,且单项式3x2n y5-m的次数与此多项式的次数相同.(1)求m,n的值;(2)求该多项式的常数项以及各项的系数和.解:(1)因为该多项式为六次四项式,所以2+m+1=6,所以m=3.因为单项式3x2n y5-m的次数也是6,所以2n+5-m=6,所以n=2.(2)该多项式为-5x2y4+xy2-3x3-6,常数项为-6,各项系数为-5,1,-3,-6,故系数和为-5+1-3-6=-13.20.观察下列等式:×22×32;13+23=1413+23+33=1×32×42;4×42×52;13+23+33+43=14…根据上述规律,解决下列问题:(1)若n为正整数,猜想:13+23+33+…+n3=1n2(n+1)2;4(2)利用(1)的结论,比较13+23+33+…+1003与50552的大小.×1002×1012=502×1012=50502.解:(2)根据(1)可知13+23+33+…+1003=14因为50502<50552,所以13+23+33+…+1003<50552.21.将7张完全相同的小长方形纸片(如图1)按图2所示的方式不重叠地放在长方形ABCD内,未被覆盖的部分恰好被分割成两个长方形,面积分别为S1和S2.已知小长方形纸片的长为a、宽为b,且a>b.(1)当a=9,b=3,AD=30时,长方形ABCD的面积是630,S2-S1的值为-63;(2)当AD=40时,请用含a,b的式子表示S2-S1的值;(3)若AB的长度为定值,AD变长,将这7张小长方形纸片还按照同样的方式放在新的长方形ABCD内,而S2-S1的值总保持不变,求a,b满足的关系.解:(2)因为S1=4b(40-a),S2=a(40-3b),所以S2-S1=a(40-3b)-4b(40-a)=40a-160b+ab.(3)S2-S1=a(AD-3b)-4b(AD-a),整理,得S2-S1=(a-4b)AD+ab.因为若AB的长度不变,AD变长,而S2-S1的值总保持不变, 所以a-4b=0,即a=4b,所以a,b满足的关系是a=4b.。
人教版七年级上册数学 整式的加减 计算题专项训练
人教版七年级上册数学整式的加减 计算题专项训练一.化简(1)(5a-3b )-3(a 2-2b ) (2)8a+2b+(5a-b )(3)()()()y x y x y x 3242332+--+-- (4)()[]1253---a a a(5)()()43537422+-----x x x x(6))(2)(2b a b a a +-++(7)3a -[-2b +(4a -3b)] (8))32(2[)3(1yz x x xy +-+--(9)4xy ﹣3x 2﹣3xy+2x 2 (10)﹣3(2x 2﹣xy )﹣(x 2+xy ﹣6)(11)3(2x 2﹣y 2)﹣2(3y 2﹣2x 2) (12)2(x 2y+xy 2)﹣(2x 2y+xy 2)二.化简求值(1)先化简,再求值:2(a 2b+3ab )-(2ab-a 2b ),其中a=-2,b=1.(2)求()()xy y x y x 745352222+++-的值,其中.2,1=-=y x(3)先化简,再求值:已知A=4x2y-5xy2,B=3x2y-4xy2,当x=-2,y=1时,求2A-B的值.(5)已知:A=2x2+3xy-5x+1,B=-x2+xy+2.1、求A+2B.2、若A+2B的值与x的值无关,求y的值.(6)求5(3a2b﹣ab2)﹣(ab2+3a2b)的值,其中a=,b=.(7)求(﹣x2+5x+4)+(5x﹣4+2x2)的值,其中x=﹣2.(8)一个整式A与x2﹣x﹣1的和是﹣3x2﹣6x+21、求整式A;2、当x=2时,求整式A的值.(9)若代数式 2x+3y 的值为﹣5,求代数式 4x+6y+3 的值(10). 已知M=3a2﹣2ab+1,N=2a2+ab﹣2,求M﹣N的值。
(11). 已知 A=3x2﹣5x+1,B=﹣2x+3x2﹣5,求当x=时,A﹣B 的值.(12)大刚计算“一个整式A减去2ab﹣3bc+4ac”时,误把“减去”算成“加上”,得到的结果是2bc+ac﹣2ab.请你帮他求出正确答案.(13). 先化简再求值:﹣2(3a2﹣ab+2)﹣(5ab﹣6a2)+4,其中a=2,b=﹣1.(14). 已知A=2x2﹣3x﹣1,B=3x2+mx+2,且3A﹣2B的值与x无关,求m的值.(15).先化简,再求值:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=2017.(16).如果关于x的多项式5x2﹣(2y n+1﹣mx2)﹣3(x2+1)的值与x的取值无关,且该多项式的次数是三次.求m,n的值.(17).某同学做一道数学题,“已知两个多项式A、B,B=2x2+3x﹣4,试求A﹣2B”.这位同学把“A﹣2B”误看成“A+2B”,结果求出的答案为5x2+8x﹣10.请你替这位同学求出“A ﹣2B”的正确答案.。
人教版(2024数学七年级上册 第四章 《整式的加减》专题
B. -2x + 6y = -2(x - 6y)
C. a - b = +(a - b)
D. x - y - 1 = x - (y - 1)
4. 添括号: (1) (x + y)2 - 10x - 10y + 25 = (x + y)2 - 10( x + y ) + 25. (2) (a - b + c - d)(a + b - c + d)
a-b+c
添括号 去括号
a - (b - c)
相互检验正误
例3 在各式的括号中填上适当的项,使等式成立. (1) 2x + 3y - 4z + 5t
= -( -2x - 3y + 4z - 5t ) = +( 2x + 3y - 4z + 5t ) = 2x - ( - 3y + 4z - 5t ) = 2x + 3y - ( 4z - 5t );
= [a - ( b - c + d )][a + ( b - c + d )].
◆类型四 整体代入 例4 (赣州期末) 阅读材料: 我们知道,2x + 3x - x = (2 + 3 - 1)x = 4x,类似地,我们 把 (a + b) 看成一个整体,则 2(a + b) + 3(a + b) - (a + b) = (2+3-1)(a + b) = 4(a + b). “整体思想” 是中学数学解 题中的一种重要的思想方法,它在多项式的化简与求值 中应用极为广泛.
= 3a2 - 6ab - 3a2 + 2b - 2ab - 2b
人教版七年级数学上册《2.2.3整式的加减》同步专题练习(含参考答案)
七年级数学上册——整式的加减专题练习(满分120分,90分钟完卷)学校:班级:七()班姓名:___________1.化简:(1)3(x-y)-2(x+y)-5(x-y)+4(x+y)+3(x-y)(4分); (2)y-{y-2x+[5x-3(y+2x)+6y]} (4分).2.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和.(7分)3.先化简,再求值:3(y+2x)-[3x-(x-y)]-2x,其中x,y互为相反数.(6分)4.求4x2+3xy+2y2与x2-5xy+2y2的差.(6分)5.已知A=x2+xy+y2,B=x2-xy+y2,x2+3xy+4y2=2,4x2-2xy+y2=3,求4A+B-(A-B)的值.(7分)6.如果关于x的多项式(3x2+2mx-x+1)+(2x2-mx+5)-(5x2-4mx-6x)的值与x的取值无关,试确定m的值,并求m2+(4m-5)+m的值.(6分)1.(2016·山东济南一模)化简(2x-3y)-3(4x-2y)的结果为()(4分)A.-10x-3yB.-10x+3yC.10x-9yD.10x+9y2.(2015·江苏镇江中考)计算-3(x-2y)+4(x-2y)的结果是()(4分)A.x-2yB.x+2yC.-x-2yD.-x+2y3.(2016·河北邢台二模)设A,B,C均为多项式,小方同学在计算“A-B”时,误将符号抄错而计算成了“A+B”,得到结果是C,其中A=x2+x-1,C=x2+2x,那么A-B=()(4分)A.x2-2xB.x2+2xC.-2D.-2x4.(2016·福建厦门一模)多项式2x2+3x-2与下列一个多项式的和是一个一次二项式,则这个多项式可以是() (4分)A.-2x2-3x+2B.-x2-3x+1C.-x2-2x+2D.-2x2-2x+15.(2016·辽宁辽阳月考)如果b=2a-1,c=3b,则a+b+c等于() 4分)A.9a-4B.9a-1C.9a-2D.9a-36 (2015·山东淄博模拟)若A=x2-5x+2,B=x2-5x-6,则A与B的大小关系是()(4分)A.A>BB.A=BC.A<BD.无法确定7.(4分)(2016·湖南株洲中考)计算:3a-(2a-1)=.8.(4分)(2016·河北中考)若mn=m+3,则2mn+3m-5mn+10=.9.(4分)(2016·辽宁沈阳期中)若(a+1)2+|b-2|=0,则化简a(x2y+xy2)-b(x2y-xy2)的结果为.10.(4分)2016·江苏东台市期中)定义新运算“*”为a*b=则当x=3时,计算2*x-4*x的结果为.11.(2016·江苏无锡期中)小黄做一道题“已知两个多项式A,B,计算A-B”.小黄误将A-B看作A+B,求得结果是9x2-2x+7.若B=x2+3x-2,请你帮助小黄求出A-B的正确答案.(6分)12.(2015·湖北武汉期中)某商店有一种商品每件成本a元,原来按成本增加b元定出售价,售出40件后,由于库存积压减价,按售价的80%出售,又销售60件.(8分)(1)销售100件这种商品后的总销售额为多少元?(2)销售100件这种商品共盈利多少元?13. (2016·吉林农安县期末)已知:A-2B=7a2-7ab,且B=-4a2+6ab+7.(8分)(1)求A; (2)若|a+1|+(b-2)2=0,计算A的值.14.已知式子A=2x2+3xy+2y-1,B=x2-xy+x-.(9分)(1)求A-2B; (2)若A-2B的值与x的取值无关,求y的值.15.已知A=2x2-3x-1,B=x2-3x-5, (1)计算2A+3B; (2)通过计算比较A与B的大小.(9分)七年级数学上册——整式的加减专题练习(参考答案)1.化简:-2(x+y)-5(x-y)+4(x+y)+3(x-y); (2)y-{y-2x+[5x-3(y+2x)+6y]}.x-y)-2(x+y)-5(x-y)+4(x+y)+3(x-y) (2)y-{y-2x+[5x-3(y+2x)+6y]}=3(x-y)-5(x-y)+3(x-y)-2(x+y)+4(x+y)=y-[y-2x+(5x-3y-6x+6y)]=(x-y)+2(x+y)=x-y+2x+2 =y-(y-2x+5x-3y-6x+6y)y=3x+y. =y-y+2x-5x+3y+6x-6y=3x-3y.2.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和.(2m-4)岁,小华的年龄为岁,则这三名同学的年龄的和为m+(2m-4)+=m+2m-4+(m-2+1)=4m-5(岁).答:这三名同学的年龄的和是(4m-5)岁.,再求值:3(y+2x)-[3x-(x-y)]-2x,其中x,y互为相反数.y+2x)-[3x-(x-y)]-2x=3y+6x-3x+x-y-2x=2(x+y).因为x,y互为相反数,所以x+y=0.所以3(y+2x)-[3x-(x-y)]-2x=2(x+y)=2×0=0.4x2+3xy+2y2与x2-5xy+2y2的差.x2+3xy+2y2)-(x2-5xy+2y2)=4x2+3xy+2y2-x2+5xy-2y2=3x2+8xy.A=x2+xy+y2,B=x2-xy+y2,x2+3xy+4y2=2,4x2-2xy+y2=3,求4A+B-(A-B)的值.A+B-(A-B)=4A+B-A+B=3A+2B.∵∴∴3A+2B=5x2+xy+5y2=(x2+3xy+4y2)+(4x2-2xy+y2)=2+3=5.∴4A+B-(A-B)=5.6.如果关于x的多项式(3x2+2mx-x+1)+(2x2-mx+5)-(5x2-4mx-6x)的值与x的取值无关,试确定m的值,并求m2+(4m-5)+m的值.x2+2mx-x+1)+(2x2-mx+5)-(5x2-4mx-6x)=(2m-m+4m+6-1)x+6=(5m+5)x+6.因为它的值与x的取值无关,所以5m+5=0,所以m=-1.因为m2+(4m-5)+m=m2+5m-5,所以当m=-1时,m2+(4m-5)+m=(-1)2+5×(-1)-5=-9.1.(2016·山东济南一模)化简(2x-3y)-3(4x-2y)的结果为(B)A.-10x-3yB.-10x+3yC.10x-9yD.10x+9y2.(2015·江苏镇江中考)计算-3(x-2y)+4(x-2y)的结果是(A)A.x-2yB.x+2yC.-x-2yD.-x+2y3.(2016·河北邢台二模)设A,B,C均为多项式,小方同学在计算“A-B”时,误将符号抄错而计算成了“A+B”,得到结果是C,其中A=x2+x-1,C=x2+2x,那么A-B=(C)A.x2-2xB.x2+2xC.-2D.-2x4.(2016·福建厦门一模)多项式2x2+3x-2与下列一个多项式的和是一个一次二项式,则这个多项式可以是(D)A.-2x2-3x+2B.-x2-3x+1C.-x2-2x+2D.-2x2-2x+15.(2016·辽宁辽阳月考)如果b=2a-1,c=3b,则a+b+c等于(A)A.9a-4B.9a-1C.9a-2D.9a-36.导学号19054071(2015·山东淄博模拟)若A=x2-5x+2,B=x2-5x-6,则A与B的大小关系是(A)A.A>BB.A=BC.A<BD.无法确定7.(2016·湖南株洲中考)计算:3a-(2a-1)=a+1.8.(2016·河北中考)若mn=m+3,则2mn+3m-5mn+10=1.9.(2016·辽宁沈阳期中)若(a+1)2+|b-2|=0,则化简a(x2y+xy2)-b(x2y-xy2)的结果为-3x2y+xy2.10.导学号19054072(2016·江苏东台市期中)定义新运算“*”为a*b=则当x=3时,计算2*x-4*x的结果为8.11.(2016·江苏无锡期中)小黄做一道题“已知两个多项式A,B,计算A-B”.小黄误将A-B看作A+B,求得结果是9x2-2x+7.若B=x2+3x-2,请你帮助小黄求出A-B的正确答案.A+B=9x2-2x+7,B=x2+3x-2,∴A=9x2-2x+7-(x2+3x-2)=9x2-2x+7-x2-3x+2=8x2-5x+9.∴A-B=8x2-5x+9-(x2+3x-2)=8x2-5x+9-x2-3x+2=7x2-8x+11.12.(2015·湖北武汉期中)某商店有一种商品每件成本a元,原来按成本增加b元定出售价,售出40件后,由于库存积压减价,按售价的80%出售,又销售60件.(1)销售100件这种商品后的总销售额为多少元?(2)销售100件这种商品共盈利多少元?解(1)根据题意得40(a+b)+60(a+b)×80%=88a+88b(元),则销售100件这种商品后的总销售额为(88a+88b)元;(2)根据题意,得88a+88b-100a=-12a+88b(元),则销售100件这种商品后共盈利(-12a+88b)元.13.导学号19054073(2016·吉林农安县期末)已知:A-2B=7a2-7ab,且B=-4a2+6ab+7.(1)求A;(2)若|a+1|+(b-2)2=0,计算A的值.解(1)由题意得A=2(-4a2+6ab+7)+7a2-7ab=-8a2+12ab+14+7a2-7ab=-a2+5ab+14.(2)根据题意及绝对值与平方的非负性可得a=-1,b=2,故A=-a2+5ab+14=3.14.已知式子A=2x2+3xy+2y-1,B=x2-xy+x-.(1)求A-2B; (2)若A-2B的值与x的取值无关,求y的值.解(1)A-2B=2x2+3xy+2y-1-2=2x2+3xy+2y-1-2x2+2xy-2x+1=5xy+2y-2x;(2)由(1)得A-2B=5xy+2y-2x=(5y-2)x+2y,因为A-2B的值与x的取值无关,所以5y-2=0,即y=.15.导学号19054074已知A=2x2-3x-1,B=x2-3x-5,2A+3B; (2)通过计算比较A与B的大小.解(1)因为A=2x2-3x-1,B=x2-3x-5,所以2A+3B=2(2x2-3x-1)+3(x2-3x-5)=4x2-6x-2+3x2-9x-15=7x2-15x-17;(2)因为A-B=(2x2-3x-1)-(x2-3x-5)=2x2-3x-1-x2+3x+5=x2+4≥4>0,所以A>B.。
人教版初中七年级数学上册第二章《整式的加减》经典练习(含答案解析)
1.下列用代数式表示正确的是( )A .a 是一个数的8倍,则这个数是8aB .2x 比一个数大5,则这个数是2x +5C .一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为(50-a )元D .小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元D解析:D【分析】根据题中叙述列出代数式即可判断.【详解】A 、a 是一个数的8倍,则这个数是8a ,错误,不符合题意; B 、2x 比一个数大5,则这个数是25x -,错误,不符合题意;C 、一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为( 50a -)元,错误,不符合题意;D 、小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元,正确,符合题意;故选:D .【点睛】本题考查了列代数式,要注意语句中的关键字,解决问题的关键是读懂题意,找到所求的量的等量关系.2.下列代数式的书写,正确的是( )A .5nB .n5C .1500÷tD .114x 2y A 解析:A【分析】直接利用代数式书写方法分析得出答案.【详解】解:A 、5n ,书写正确,符合题意;B 、n5,书写错误,不合题意;C 、1500÷t ,应为1500t ,故书写错误,不合题意; D 、114x 2y=54x 2y ,故书写错误,不合题意; 故选:A .【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键.3.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.4.若 3x m y 3 与﹣2x 2y n 是同类项,则( )A .m=1,n=1B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2B 解析:B【分析】根据同类项是字母相同且相同字母的指数也相,可得答案.【详解】 33m x y 和22n x y ﹣是同类项,得m=2,n=3,所以B 选项是正确的.【点睛】本题考查了同类项,利用了同类项的定义.5.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-4B解析:B【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩ 则()()5711n m +-=14- 故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.6.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( )A .2n n xB .(1)2n n n x -C .2n n x -D .1(1)2n n n x +- B 解析:B【分析】 要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n .【详解】因为第一个单项式是1112(1)2x x -=-⨯;第二个单项式是222222(1)2x x =-⨯;第三个单项式是333332(1)2x x -=-⨯,…,所以第n 个单项式是(1)2n n n x -.故选:B .【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.7.大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .55C解析:C【分析】 观察可知,分裂成的奇数的个数与底数相同,然后求出到m 3的所有奇数的个数的表达式,再求出奇数2019的是从3开始的第1008个数,然后确定出1008所在的范围即可得解.【详解】∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m 3分裂成m 个奇数,所以,到m 3的奇数的个数为:2+3+4+…+m=()()212m m +-, ∵2n+1=2019,n=1009,∴奇数2019是从3开始的第1009个奇数,当m=44时,()()4424419892+-=,当m=45时,()()4524511342+-=, ∴第1009个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选:C .【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.8.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( )A .2-B .13C .23D .32A 解析:A【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值.【详解】 ∵a 1=-2, ∴2111(3)3a ==--,3131213a ==-, 412312a ==-- ∴每3个结果为一个循环周期∵2020÷3=673⋯⋯1,∴202012a a ==-故选:A.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.9.下列说法正确的是( )A .单项式34xy -的系数是﹣3B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6C 解析:C【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误;故选:C .【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.10.点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A .2x -+B .2x --C .2x +D .-2A解析:A 【分析】由BC=2,C 点所表示的数为x ,求出B 表示的数,然后根据OA=OB ,得到点A 、B 表示的数互为相反数,则问题可解.【详解】解:∵BC=2,C 点所表示的数为x ,∴B 点表示的数是x-2,又∵OA=OB ,∴B 点和A 点表示的数互为相反数,∴A 点所表示的数是-(x-2),即-x+2.故选:A .【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题.11.探索规律:根据下图中箭头指向的规律,从2013到2014再到2015,箭头的方向是( )A .B .C .D . D解析:D【分析】根据图中规律可得,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可.【详解】解:由图可知,每4个数为一个循环组依次循环,2013÷4=503余1,即0到2011共2012个数,构成前面503个循环,∴2012是第504个循环的第1个数,2013是第504个循环组的第2个数,∴从2013到2014再到2015,箭头的方向是.故选:D .【点睛】本题考查了数字变化规律,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键.12.多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( )A .2和8B .4和8-C .6和8D .2-和8- D 解析:D【分析】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,以及单项式系数、常数项的定义来解答.【详解】多项式6a-2a 3x 3y-8+4x 5中,最高次项的系数和常数项分别为-2,-8.故选D .【点睛】本题考查了同学们对多项式的项和次数定义的掌握情况.在处理此类题目时,经常用到以下知识:(1)单项式中的数字因数叫做这个单项式的系数;(2)多项式中不含字母的项叫常数项;(3)多项式里次数最高项的次数,叫做这个多项式的次数.13.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b +元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元 C .赚了(5a-5b )元D .亏了(5a-5b )元C解析:C【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-23020302222a b a b a b a a b a a b ++++-+-=⨯+⨯)() =10(b-a )+15(a-b )=10b-10a+15a-15b=5a-5b ,则这次买卖中,张师傅赚5(a-b )元.故选C .【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.14.下列各对单项式中,属于同类项的是( )A .ab -与4abcB .213x y 与212xyC .0与3-D .3与a C解析:C【分析】根据同类项的定义逐个判断即可.【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项;D .3与a 不是同类项.故选C .【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键.15.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a + A解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元.故选A .【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.1.已知整数a1,a2,a3,a4…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此类推,则a2016的值为_______.﹣1008【解析】a2=−|a1+1|=−|0+1|=−1a3=−|a2+2|=−|−1+2|=−1a4=−|a3+3|=−|−1+3|=−2a5=−|a4+ 4|=−|−2+4|=−2…所以n是奇数解析:﹣1008【解析】a2=−|a1+1|=−|0+1|=−1,a3=−|a2+2|=−|−1+2|=−1,a4=−|a3+3|=−|−1+3|=−2,a5=−|a4+4|=−|−2+4|=−2,…,所以n是奇数时,a n=−12n;n是偶数时,a n=−2n;a2016=−20162=−1008.故答案为-1008.点睛:此题考查数字的变化规律,根据所给出的数,观察出n为奇数与偶数时的结果的变化规律是解题的关键. 探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x,再利用它们之间的关系,设出其它未知数,然后列方程.2.如图,阴影部分的面积用整式表示为_________.x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和【详解】如图:阴影部分的面积为:x·x+3x+3×2=x2+3x+6故答案为x2+3x +6【点睛】本题考查了列代数式和代数式求值解决这类问题解析:x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和.【详解】如图:阴影部分的面积为:x·x+3x+3×2= x 2+3x +6. 故答案为x 2+3x +6【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.3.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A 则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+解析:2234m m +-【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果.【详解】解:设这个多项式为A,则A=(3m 2+m-1)-(m 2-2m+3)=3m 2+m-1-m 2+2m-3=2m 2+3m-4,故答案为2m 2+3m-4.【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.4.写出一个系数是-2,次数是4的单项式________.答案不唯一例:-2【解析】解:系数为-2次数为4的单项式为:-2x4故答案为-2x4点睛:本题考查了单项式的知识单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数解析:答案不唯一,例:-24x .【解析】解:系数为-2,次数为4的单项式为:-2x 4.故答案为-2x 4.点睛:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.5.将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____.﹣2b3+3ab2+4a2b+a3【分析】找出a 的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b 3+3ab 2+4a 2b+a 3.【分析】找出a 的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b 3+3ab 2+4a 2b+a 3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.6.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a ,b 的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab 分子用ab 表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子 解析:a b -a a b +=a b ×a a b+ 【分析】从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a ,b ,分子用a ,b 表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积. 设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b +. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.7.单项式20.8a h π-的系数是______.【分析】根据单项式系数的定义进行求解即可【详解】单项式的系数是故答案为:【点睛】本题考查了单项式的系数问题掌握单项式系数的定义是解题的关键解析:0.8π-【分析】根据单项式系数的定义进行求解即可.【详解】单项式20.8a h π-的系数是0.8π-故答案为:0.8π-.【点睛】本题考查了单项式的系数问题,掌握单项式系数的定义是解题的关键.8.一列数a 1,a 2,a 3…满足条件a 1=12,a n =111n a --(n ≥2,且n 为整数),则a 2019=_____.-1【分析】依次计算出a2a3a4a5a6观察发现3次一个循环所以a2019=a3【详解】a1=a2==2a3==﹣1a4=a5==2a6==﹣1…观察发现3次一个循环∴2019÷3=673∴a20解析:-1【分析】依次计算出a 2,a 3,a 4,a 5,a 6,观察发现3次一个循环,所以a 2019=a 3.【详解】a 1=12,a 2=111-2 =2,a 3=11-2 =﹣1,a 4=11=1--12(),a 5=111-2=2,a 6=11-2=﹣1… 观察发现,3次一个循环,∴2019÷3=673,∴a 2019=a 3=﹣1,故答案为﹣1.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.9.多项式223324573x x y x y y --+-按x 的降幂排列是______。
人教版七年级上册数学 第二章 整式的加减 单元训练题 (3)(有解析)
第二章 整式的加减 单元训练题 (3)一、单选题1.下列式子中去括号错误的是( ).A .5x -(x -2y +5z )=5x -x +2y -5zB .2a 2+(-3a -b )-(3c -2d )=2a 2-3a -b -3c +2dC .3x 2-3(x +6)=3x 2-3x -6D .-(x -2y )-(-x 2+y 2)=-x +2y +x 2-y 22.下列说法不正确的是( )A .单项式一定是整式B .多项式一定是整式C .单独的一个字母一定是整式D .整式中一定不含有除法运算3.观察图中正方形四个顶点所标的数字规律,可知数2011应标在( )A .第502个正方形的左下角B .第502个正方形的右下角C .第503个正方形的左上角D .第503个正方形的右下角 4.按某种标准,多项式232a a +-与23ab b +-属于同一类,则下列符合此类标准的多项式是( )A .22x y -B .231a abx +-C .234a x +-D .22a y ab +- 5.如图1,将一个边长为a 的正方形纸片剪去两个小矩形,得到一个“S ”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则“S”形的周长可表示为( )A .8a-4bB .8a-5bC .4a+5bD .4a+4b6.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O 点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A 1,第2次移动到A 2,第3次移动到A 3,……,第n 次移动到A n ,则△OA 2A 2019的面积是( )A .504B .10092C .10112D .1009 7.下列代数式中:1x ,2x y +,213a b ,x y π-,54y x ,0,整式有( ) 个 A .3个B .4个C .5个D .6个 8.如果213a x +与35x 是同类项,那么a 的值是( ). A .0B .1C .2D .3 9.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m 、n 的关系是A .M=mnB .M=n(m+1)C .M=mn+1D .M=m(n+1) 10.下列说法不正确的是( )A .0是单项式B .单项式﹣235x 的系数是﹣35 C .单项式a 2b 的次数为2D .多项式1﹣xy +2x 2y 是三次三项式11.下列计算正确的是( )A .﹣2x 2y+x 2y =﹣x 2yB .4y ﹣y =4C .3a+4a =7a 2D .m 2+3m 3=4m 512.下列各组中的两个单项式,属于同类项的一组是A .23a b 与23abB .2x 与2xC . 23与2aD .4与12- 二、填空题13.计算:2223a b a b -=__________.14.如图(1),在边长为acm 的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个如图(2)所示的无盖的长方体.设剪去的小正方形的边长为4cm ,则这样折成的无盖长方体的容积是__________3cm .图(1)图(2)15.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.+=示例:即437则(1)用含x的式子表示m=______;y=-时,x=______,n的值为______.(2)当716.已知1+2+1=4=22,1+2+3+2+1=9=32,1+2+3+4+3+2+1=16=42,1+2+3+4+5+4+3+2+1=25=52.根据上面四式的计算规律求:1+2+3+…+2014+2015+2016+2015+2014+…+3+2+1=________(写出某数的平方即可).17.若A是一个单项式,B是一个多项式,且A+B=1,请写出一组符合条件的 A、B,A =_________,B=__________.18.如图,下列各图形中的三个数之间均具有相同的规律,依此规律,那么第4个图形中的x=_____,一般地,用含有m,n的代数式表示y,即y=_____.三、解答题19.如图,是某住宅的平面结构图,图中标注有关尺寸(单位:米),房子的主人计划把卧室以外的地面都铺上地砖.()1请你帮他计算一下要铺地砖的面积是多少?()2如果选用地砖的价格是30元2/m ,当2x =时,问他买地砖需用多少钱?20.已知:2221,31,M x x N x x =--=--求6-4M N 的值,其中12x =. 21.求下列各式的值:(1)(5a 2﹣a +4)﹣(4﹣2a +4a 2),其中a =﹣23 (2)13(﹣3ax 2﹣ax +3)﹣(﹣ax 2﹣12ax ﹣1),其中a =﹣2,x =3 22.已知22332A x y xy =+-,2222B xy y x =--.(1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.23.先化简,再求值:(1)2m 2-4m +1-2(m 2+2m -12),其中m =-1; (2)5xy 2-[2x 2y -(2x 2y -3xy 2)],其中(x -2)2+|y +1|=0.24.已2232A x xy y =-+,22234B x xy y =+-,求:(1)2A B -;(2)2A B +.25.某公园的门票价格是:成人票每张10元,学生票每张5元,一个旅游团有成人x 人,学生y 人.(1)该旅游团应付多少门票费?(2)如果该旅游团有30个成人和15个学生,那么他们应付多少门票费?26.先化简,再求值: ()()()221x x x x -+--,其中3x =.【答案与解析】一、单选题1.C解析:C利用去括号法则逐项排除,即可解答.解:A. 5x -(x -2y +5z )=5x -x +2y -5z ,正确;B. 2a 2+(-3a -b )-(3c -2d )=2a 2-3a -b -3c +2d ,正确;C. 3x 2-3(x +6)=3x 2-3x -18,错误;D. -(x -2y )-(-x 2+y 2)=-x +2y +x 2-y 2,正确;故答案为C.【点睛】本题主要考查了去括号法则,即括号外是正号的,去括号后每一项都不变号;括号外是负号的,去括号后每一项都变号;括号外有系数的,括号内每一项都要乘除.2.D解析:D根据整式、单项式的定义来求解.解:A 、正确,整式包括单形式和多项式,故单项式一定是整式;B 、正确,整式包括单形式和多项式,故多项式一定是整式;C 、正确,单独的一个字母是单项式,一定是整式;D 、错误,整式有除法运算.故选D.【点睛】本题考查了整式、单项式的定义.单项式和多项式统称整式;表示数与字母乘积的代数式叫做单项式,单独一个数或字母也是单项式,分母中不含字母;所有字母的指数和叫做这个单项式的次数.3.C解析:C略4.C解析:C由多项式232a a +-与23ab b +-都是二次三项式解答即可.多项式232a a +-与23ab b +-都是二次三项式,A. 22x y -是二次二项式,故不符合题意;B. 231a abx +-是三次三项式,故不符合题意;C. 234a x +-是二次三项式,符合题意;D. 22a y ab +-是三次三项式,故不符合题意;故选C.【点睛】本题考查了多项式的概念,几个单项式的和叫做多项式,多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数.5.A解析:A根据题意列出关系式,去括号合并即可得到结果.根据题意得:44a-b 8a a b +=-()4 ,故选:A【点睛】此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.6.B解析:B观察图形可知:2n OA n =,由2016OA 1008=,推出2019OA 1009=,由此即可解决问题.观察图形可知:点2n A 在数轴上,2n OA n =,2016OA 1008=, 2019OA 1009∴= ,点2019A 在数轴上,22019OA A 11009S1009122∴=⨯⨯=, 故选B .【点睛】本题考查三角形的面积,数轴等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.7.B解析:B 试题解析:212,,,03πx y x y a b -+是整式,共4个. 故选B.点睛:分母中不含字母的式子即为整式. 8.B解析:B解:∵213a x +与35x 是同类项,∴23a +=,∴1a =.故选B . 9.D解析:D试题分析:寻找规律:∵3=(2+1)×1, 15=(4+1)×3,35=(6+1)×5,∴根据数的特点,上边的数与比左边的数大1的数的积正好等于右边的数。
2023-2024学年人教版七年级数学上册第二章【整式的加减】训练卷附答案解析
2023-2024学年七年级数学上册第二章【整式的加减】训练卷(满分120分)一、选择题(本大题共10小题,共30分)1.下列各式中,与3x2y3是同类项的是()A.2x5B.3x3y2C.−12x2y3D.−13y52.下列说法正确的是()A.13πx2的系数为13B.12xy2的系数为12xC.−5x2的系数为5D.3x2的系数为33.下列说法中,正确的是()A.x2−3x的项是x2,3xB.a+b3是单项式C.12,πa,a2+1都是整式D.3a2bc−2是二次多项式4.下列计算正确的是()A.2a+3b=5abB.2x2y−x2y=2C.b2+4b3=5b5D.−4a2b+2ba2=−2a2b5.如图是一长条型链子,其外型由边长为1 cm的正六边形排列而成.其中每个黑色六边形与6个白色六边形相邻.若链子上有100个黑色六边形,则此链子上的白色六边形个数为()A.394B.398C.402D.4066.若3x m y2与−x4y n是同类项,则m n的值为()A.−16B.16C.−116D.1167.如图所示,边长为a的正方形中阴影部分的面积为()A.a2−π(a2)2B.a2−πa2C.a2−πaD.a2−2πa8.鸿星尔克某件商品的成本价为a元,按成本价提高10%后标价,又以八折销售,这件商品的售价()A.比成本价低了0.12a元B.比成本价低了0.08a元C.比成本价高了0.1a元D.与成本价相同9.已知M=3x2−2x+4,N=2x2+4x−5,则代数式M,N的大小关系是()A.M≥NB.M≤NC.M>ND.M<N10.有依次排列的两个整式A=x−1,B=x+1,用后一个整式B与前一个整式A作差后得到新的整式记为C1,用整式C1与前一个整式B求和操作得到新的整式C2,用整式C2与前一个整式C1作差后得到新的整式C3,用整式C3与前一个整式C2求和操作得到新的整式C4,……,依次进行作差、求和的交替操作得到新的整式.下列说法:①整式C3=x+1;②整式C5=x+3;③整式C2、整式C5和整式C8相同;④C2024C2023=C2021C2023+2.正确的个数是()A.1B.2C.3D.4二、填空题(本大题共5小题,共15分)11.用不等式表示“x的3倍与20的和小于或等于7”为.12.已知单项式−14x3y a+2与3x b−5y的和是单项式,则a b=.13.已知x2−3x+1=0,则3x2−9x+5=______.14.已知关于x,y的多项式mx2+4xy−7x−3x2+2nxy−5y合并后不含有二次项,则n m=.15.有理数a、b、c在数轴上表示的点如图所示,化简|a+b|−|a−c|−2|b+c|=.三、解答题题(本大题共8小题,共75分)16.化简:(1)4a2+3b2+2ab−4a2−4b2;(2)2(x2+xy−5)−4(2x2−xy).17.(8分)已知多项式2x2+25x3+x−5x4−13.(1)把这个多项式按x的降幂重新排列.(2)请指出该多项式的次数,并写出它的最高次项、二次项和常数项.18.(8分)如图是某小区的一块长为b米、宽为2a米的长方形草地,现在在该长方形的四个顶点处分别修建一个半径为a米的扇形花台.(1)求修建后剩余草坪(阴影部分)的面积:(用含a,b的式子表示)(2)当a=10,b=40时,草坪的面积是多少平方米?(π取3.14)19.(9分)若x,y满足|x+2|+(y−32)2=0,求代数式12x−2(x−13y2)+(−32x+13y2)的值.20.(10分)当x=1时,代数式ax3+bx3+ax+bx+5的值是8.当x=−1时,求代数式ax3+bx3+ax+bx+5的值.21.(10分)已知A=2a2+3ab−2a−1,B=−a2+12ab+23.(1)当a=−1,b=2时,求代数式A+2B的值.(2)若代数式A+2B的值与a的取值无关,求b的值.22.(10分)阅读下列材料,解决相应问题:“友好数对”已知两个两位数,将它们各自的十位数字和个位数字交换位置后,得到两个与原两个两位数均不同的新数,若这两个两位数的乘积与交换位置后两个新两位数的乘积相等,则称这样的两个两位数为“友好数对”.例如43×68=34×86=2924,所以43和68与34和86都是“友好数对”.(1)36和84______“友好数对”.(填“是”或“不是”)(2)为探究“友好数对”的本质,可设“友好数对”中一个数的十位数字为a,个位数字为b,且a≠b;另一个数的十位数字为c,个位数字为d,且c≠d,则a,b,c,d之间存在一个等量关系,其探究和说理过程如下,请你将其补充完整.解:根据题意,“友好数对”中的两个数分别表示为10a+b和10c+d,将它们各自的十位数字和个位数字交换位置后两个数依次表示为______和______.因为它们是友好数对,所以(10a+b)(10c+d)=______.并试求a,b,c,d的等量关系.(3)若有一个两位数,十位数字为x+2,个位数字为x,另一个两位数,十位数字为x+2,个位数字为x+8.且这两个数为“友好数对”,直接写出这两个两位数.23.(11分)先阅读下列材料,然后解答问题.材料:从4张不同的卡片中选取2张,有6种不同的选法,抽象成数学问题就是从4个不同元素中选取2个元素的组合,组合数记为C42=4×32×1=6.一般地,从n个不同元素中选取m个元素的组合数记作C n m,C n m=n(n−1)(n−2)⋅⋯⋅(n−m+1)m(m−1)(m−2)⋅⋅⋅⋅×2×1(m≤n).例如:从6个不同元素中选3个元素的组合,组合数记作C63=6×5×43×2×1=20.问题:(1)学校将举办小型书画展览.王老师在班级8幅优秀书画中选取3幅,共有多少种选法?(2)探索发现:计算:C32=,C33=,C43=,C53=,C54=,C64=.由上述计算,猜想C n k,C n k+1,C n+1k+1之间有什么关系.(只写结论,不需说明理由) (3)请你直接利用(2)中猜想的结论计算:C43+C42+C52+C62+⋯+C102.答案和解析1.【答案】C解:A.2x5与3x2y3不是同类项,故本选项错误;B.3x3y2与3x2y3不是同类项,故本选项错误;C.−12x2y3与3x2y3是同类项,故本选项正确;D.−13y5与3x2y3不是同类项,故本选项错误;故选C.2.【答案】D解:A、13πx2的系数为13π,本选项说法错误;B、12xy2的系数为12,本选项说法错误;C、−5x2的系数为−5,本选项说法错误;D、3x2的系数为3,本选项说法正确;故选:D.3.【答案】C4.【答案】D解:2a+3b≠5ab,故A错误;2x2y−x2y=x2y,故B错误;b2+4b3≠5b5 ,故C错误;−4a2b+2ba2=−2a2b,故D正确5.【答案】C解:根据图形分析可得规律:每增加一个黑色六边形,则需增加4个白色六边形,即可得若链子上有n 个黑色六边形,则此链子共有6+4(n−1)个白色六边形.若链子上有100个黑色六边形,则链子共有白色六边6+99×4=402(个).故选C.6.【答案】B【解析】解:3x m y2与−x4y n是同类项,则m=4,n=2,则m n=42=16,故选B.7.【答案】A解:由图可得,阴影部分的面积为:a2−π⋅(a2)2,故选:A.8.【答案】A解:该商品的售价为:(1+10%)a×0.8=1.1a×0.8=0.88a(元),0.88a−a=−0.12a(元),则比成本价低了0.12a元,故选:A.9.【答案】A解:M−N=3x2−2x+4−(2x2+4x−5)=x2−6x+9=(x−3)2≥0,故M≥N.故选A.10.【答案】C解:由题意依次计算可得:C1=(x+1)−(x−1)=2,C2=2+(x+1)=x+3,C3=x+1,C4=2x+4,C5=x+3,C6=3x+7,C7=2x+4,C8=5x+11,C9=3x+1,⋯,根据6个一循环的规律可得:C2021=x+3,C2023=2,C2024=x+3,因此C2024C2023=x+32=C2021C2023,所以①、②、④正确,故选:C.11.【答案】3x+20≤712.【答案】113.【答案】2解:因为x2−3x+1=0,所以x2−3x=−1,则原式=3(x2−3x)+5=−3+5=2.故答案为:2.14.【答案】−8解:mx2+4xy−7x−3x2+2nxy−5y=(m−3)x2+(4+2n)xy−7x−5y,∵合并后不含二次项,∴m−3=0,4+2n=0,∴m=3,n=−2,∴n m=(−2)3=−8.故答案为:−8.15.【答案】−3b−3c由数轴得a<b<0<c,|b|<|c|,所以a+b<0,a−c<0,b+c>0,所以|a+b|−|a−c|−2|b+c|=−(a+b)+a−c−2(b+c)=−a−b+a−c−2b−2c=−3b−3c.16.【答案】解:(1)原式=(4−4)a2+(3−4)b2+2ab=−b2+2ab;(2)原式=2x2+2xy−10−8x2+4xy=−6x2+6xy−10.17.【答案】解:(1)修建后剩余草坪的面积为2ab−4×14πa2 =2ab−πa2(平方米).(2)当a=10,b=40时,2ab−πa2=2×10×40−3.14×102 =800−314=486(平方米).18.【答案】【小题1】按x降幂排列为−5x4+25x3+2x2+x−13.【小题2】该多项式的次数是4,它的最高次项是−5x4,二次项是2x2,常数项是−13.19.【答案】因为|x+2|+(y−32)2=0,所以|x+2|=0,(y−32)2=0,所以x=−2,y=32,所以原式=12x−2x+23y2−32x+13y2=−3x+y2=−3×(−2)+(32)2=334.20.【答案】221.【答案】【小题1】A+2B=2a2+3ab−2a−1+2(−a2+12ab+23)=2a2+3ab−2a−1−2a2+ab+43=4ab−2a+13.当a=−1,b=2时,A+2B=4×(−1)×2−2×(−1)+13=−8+2+13=−173.【小题2】∵A+2B=4ab−2a+13=a(4b−2)+13,A+2B的值与a的取值无关,∴4b−2=0,∴b=12.22.【答案】是10b+a10d+c(10b+a)(10d+c)解:(1)∵36×84=3024,63×48=3024,∴36×84=63×48,∴36和84是友好数对,故答案为:是;(2)∵一个数的十位数字为a,个位数字为b;另一个数的十位数字为c,个位数字为d,∴交换后十位数字为b,个位数字为a,另一个的十位数字为d,个位数字为c,∴两个数依次表示为10b+a,10d+c,∵这两个数是友好数对,∴(10a+b)(10c+d)=(10b+a)(10d+c),化简得:ac=bd.故答案为:10b+a;10d+c;(10b+a)(10d+c);ac=bd;(3)由(2)得:(x+2)(x+2)=x(x+8),解得:x=1,∴两个两位数为:31和39.23.【答案】【小题1】C83=8×7×63×2×1=56.答:共有56种选法.【小题2】C32=3,C33=1,C43=4,C53=10,C54=5,C64=15,因为C32+C33=C43,C53+C54=C64,所以C n k+C n k+1=C n+1k+1.【小题3】C43+C42+C52+C62+⋯+C102 =C53+C52+C62+⋯+C102 =C63+C62+⋯+C102 =C113=11×10×93×2×1=165.。
人教版七年级数学上册第2章《整式的加减》解答题专项训练
人教版七年级数学上册第2章《整式的加减》解答题专项训练1.(2020春•顺义区期末)计算:9m 2﹣4(2m 2﹣3mn +n 2)+4n 2. 2.(2019秋•密云区期末)已知a ﹣2b =3,求代数式2(3a 2b +a ﹣b )﹣3(2a 2b ﹣a +b )﹣5b 的值. 3.(2019秋•通州区期末)先化简再求值:(1)3a 2b +2ab 2﹣5﹣3a 2b ﹣5ab 2+2,其中a =1,b =﹣2; (2)3m 2﹣[5m ﹣2(2m ﹣3)+4m 2],其中m =﹣4. 4.(2019秋•海淀区期末)如图是一个运算程序:(1)若x =﹣2,y =3,求m 的值;(2)若x =4,输出结果m 的值与输入y 的值相同,求y 的值. 5.(2019秋•海淀区期末)在数轴上,四个不同的点A ,B ,C ,D 分别表示有理数a ,b ,c ,d ,且a <b ,c <d .(1)如图1,M 为线段AB 的中点,①当点M 与原点O 重合时,用等式表示a 与b 的关系为 ; ①求点M 表示的有理数m 的值(用含a ,b 的代数式表示); (2)已知a +b =c +d ,①若三点A ,B ,C 的位置如图所示,请在图中标出点D 的位置; ①a ,b ,c ,d 的大小关系为 (用“<”连接)6.(2019秋•门头沟区期末)先化简,再求值:已知a =1,b =﹣3,求2(a 2b +ab 2)﹣2(a 2b ﹣1)﹣ab 2﹣2的值. 7.(2019秋•延庆区期末)自开展全区读书宣传活动以来,某书店出租生意非常火爆,为此开设两种租书方式,方式一:零星租书,每本收费1元;方式二:会员卡租书,会员每月交会员费12元,租书费每本0.4元.小彬经常来该店租书,若小彬每月租书数量为x 本.(1)分别写出两种租书方式下,小彬每月应付的租书金额(用含x 的代数式表示); (2)若小彬在一月内为班级租24本书,试问选用哪种租书方式合算?(3)小彬每月如何根据租书的情况选择省钱的租书方式?请通过计算验证你的看法. 8.(2019秋•西城区期末)点O 为数轴的原点,点A 、B 在数轴上的位置如图所示,点A 表示的数为5,线段AB 的长为线段OA 长的1.2倍.点C 在数轴上,M 为线段OC 的中点.(1)点B 表示的数为 ;(2)若线段BM 的长为4.5,则线段AC 的长为 ;(3)若线段AC 的长为x ,求线段BM 的长(用含x 的式子表示). 9.(2019秋•东城区期末)一般情况下,对于数a 和b ,a 2+a 4≠a +a 2+4(“≠”不等号),但是对于某些特殊的数a 和b ,a2+a 4=a +a2+4.我们把这些特殊的数a 和b ,称为“理想数对”,记作<a ,b >.例如当a =1,b =﹣4时,有12+−44=1+(−4)2+4,那么<1,﹣4>就是“理想数对”.(1)<3,﹣12>,<﹣2,4>可以称为“理想数对”的是 ;(2)如果<2,x >是“理想数对”,那么x = ;(3)若<m ,n >是“理想数对”,求3[(9a −4a )−8(a −76a )]−4a −12的值.10.(2019秋•大兴区期末)先化简,再求值:2(x 2y +xy )﹣(x 2y ﹣xy )﹣3x 2y ,其中x =﹣1,y =1. 11.(2019秋•朝阳区期末)计算:2(a 2−13ab )−13(9a 2﹣2ab ).12.(2019秋•东城区期末)先化简,再求值:4(3a 2b ﹣ab 2)﹣2(3ab 2﹣a 2b )﹣14a 2b ,其中a =1,b =−12. 13.(2019秋•西城区期末)先化简,再求值:6y 3+4(x 3﹣2xy )﹣2(3y 3﹣xy ),其中x =﹣2,y =3. 14.(2019秋•平谷区期末)先化简,再求值:5x 2+4﹣3x 2﹣5x ﹣2x 2﹣5+6x ,其中x =﹣3. 15.(2018秋•密云区期末)先化简,再求值:(6a 2﹣16a )﹣5(a 2﹣3a +2),其中a 2﹣a ﹣7=0 16.(2018秋•石景山区期末)先化简再求值:2(a 2+3a ﹣2)﹣3(2a +2),当a =﹣2时,求代数式的值. 17.(2018秋•北京期末)进入初中的学习,除了代数中学习了新的概念有理数,也开始了几何初步的学习,并且老师强调几何内容必须带齐作图工具,初一年级的学生沟通后觉得到网上买作图工具更方便更优惠些,一套如图的作图工具是2.3元/套,如果一次买100套以上(不含100套),售价是2.2元/套. (1)列式表示买n 套这样的作图工具所需钱数(注意对n 的大小要有所考虑) (2)按照这样的售价规定,会不会出现多买比少买反而付钱少的情况? (3)如果需要买100套,怎样买更省钱?18.(2018秋•北京期末)如图是一所住宅的建筑平面图(图中长度单位:米),用式子表示这所住宅的建筑面积.19.(2018秋•平谷区期末)化简(3a 2﹣7a )﹣2(a 2﹣3a +2). 20.(2018秋•怀柔区期末)指出下列单项式中的同类项,并将所有同类项写成一个多项式,再合并同类项. ﹣y 2x 、2xy 、2xy 2、x 、y 、﹣3xy 、﹣yx 、2. 21.(2018秋•北京期末)瞳瞳做一道数学题:求代数式x +2x 2+3x 3+4x 4+5x 5+6x 6+7x 7+8x 8+9x 9+10x 10当x =﹣1时的值,由于瞳瞳粗心把式子中的某一项前的“+”号错误地看成了“﹣”号,算出代数式的值是﹣11,那么瞳瞳看错的是 次项前的符号,写出x =﹣1和x =1时代数式的值. 22.(2018秋•海淀区期末)已知2a ﹣b =﹣2,求代数式3(2ab 2﹣4a +b )﹣2(3ab 2﹣2a )+b 的值.23.(2018秋•北京期末)一般情况下,a a+1a=3aa+1不成立,但有些数可以使得它成立,例如:a =1,b =2. 我们称使得a a+1a=3aa+1成立的一对数a ,b 为“相伴数对”,记为(a ,b ).(1)判断数对(﹣2,1),(3,3)是否是“相伴数对”; (2)若(k ,﹣1)是“相伴数对”,求k 的值;(3)若(4,m )是“相伴数对”,求代数式4a −[3a 2−2(4a −1)]3a (a −4)的值.24.(2018秋•东城区期末)如图,一个长方形运动场被分隔成A 、B 、A 、B 、C 共5个区,A 区是边长为am 的正方形,C 区是边长为bm 的正方形.(1)列式表示每个B 区长方形场地的周长,并将式子化简; (2)列式表示整个长方形运动场的周长,并将式子化简; (3)如果a =20,b =10,求整个长方形运动场的面积.25.(2017秋•海淀区校级期末)已知2x 2﹣2x ﹣1=0,求2(x 2﹣3x )﹣(2x 2﹣x )+2x 2+3x ﹣4的值. 26.(2017秋•海淀区校级期末)先化简,再求值:12aa 2+(2a 2a −1)−2(14aa 2+32a 2a ),其中x =﹣1,y =2. 27.(2017秋•顺义区期末)王老师给同学们出了一道化简的题目:2(2x 2y +x )﹣3(x 2y ﹣2x ),小亮同学的做法如下:2(2x 2y +x )﹣3(x 2y ﹣2x )=4x 2y +x ﹣3x 2y ﹣2x =x 2y ﹣x .请你指出小亮的做法正确吗?如果不正确,请指出错在哪?并将正确的化简过程写下来. 28.(2017秋•昌平区期末)化简求值:(﹣2)×3x +3(3x 2﹣1)﹣(9x 2﹣x +3),其中x =−13. 29.(2017秋•平谷区期末)化简(2a 2﹣a ﹣1)+2(3﹣a +a 2)30.(2017秋•延庆区期末)先化简,再求值:2(x 2+2x ﹣2)﹣(x 2﹣2x ﹣1),其中x =−12.31.(2017秋•石景山区期末)先化简,再求值:(7a 2−3aa )−6(a 2−13aa ),其中x =﹣3,y =13.参考答案与试题解析一.解答题(共31小题) 1.【解答】解:原式=9m 2﹣8m 2+12mn ﹣4n 2+4n 2 =m 2+12mn . 2.【解答】解:原式=6a 2b +2a ﹣2b ﹣6a 2b +3a ﹣3b ﹣5b =5a ﹣10b , ∵a ﹣2b =3,∴原式=5(a ﹣2b )=15. 3.【解答】解:(1)原式=3a 2b ﹣3a 2b +2ab 2﹣5ab 2﹣5+2=﹣3ab 2﹣3, 当a =1,b =﹣2时,原式=﹣3×1×(﹣2)2﹣3=﹣15; (2)原式=3m 2﹣(5m ﹣4m +6+4m 2) =3m 2﹣5m +4m ﹣6﹣4m 2 =﹣m 2﹣m ﹣6,当m =﹣4时,原式=﹣(﹣4)2﹣(﹣4)﹣6=﹣18. 4.【解答】解:(1)∵x =﹣2,y =3,﹣2<3, ∴x <y ,∴m =|﹣2|﹣3×3=﹣7.(2)∵x =4,输出结果m 的值与输入y 的值相同, ∴y =m , ①4>m 时, ∵|4|+3m =m ,解得m =﹣2,符合题意. ①4≤m 时, ∵|4|﹣3m =m , ∴4﹣3m =m ,解得m =1,不符合题意, ∴y =﹣2. 5.【解答】解:(1)①∵M 为线段AB 的中点,点M 与原点O 重合, ∴a 与b 的关系为:a +b =0, 故答案为:a +b =0;①∵M 为线段AB 的中点, ∴点M 表示的有理数m 的值:a +a 2;(2)①∵a +b =c +d ,a <b ,c <d , ∴点D 的位置的如下图2所示,;①由图2可得, a <c <d <b ,故答案为:a <c <d <b . 6.【解答】解:2(a 2b +ab 2)﹣2(a 2b ﹣1)﹣ab 2﹣2 =2a 2b +2ab 2﹣2a 2b +2﹣ab 2﹣2 =ab 2当a =1,b =﹣3时,原式=1×(﹣3)2=1×9=9 7.【解答】解:(1)方式一:x 元; 方式二:(12+0.4x )元(2)方式一:24×1=24(元),方式二:12+0.4×24=21.6(元) ∵21.6<24∴选择方式二合算.答:选择方式二合算.(3)如果两种租书方式收费一样多,则: x =12+0.4x 解得:x =20当每月租书少于20本时,选择方式一租书合算;当每月租书等于20本时,两种 租书方式收费一样多;当每月租书多于20本时,选择方式二租书合算. 8.【解答】解:(1)∵点A 表示的数为5,线段AB 的长为线段OA 长的1.2倍, ∴AB =1.2×5×=×6 ∵OA =5,∴OB =AB ﹣OA =1, ∴点B 表示的数为﹣1. 故答案为﹣1; (2)∵BM =4.5,∴OM =4.5﹣1=3.5(点M 在原点右侧) 或OM =|﹣1﹣4.5|=5.5(点M 在原点左侧) ∵M 为线段OC 的中点 ∴OC =2OM =7或11∴AC =7﹣5=2(点C 在原点右侧) 或AC =11+5=16(点C 在原点左侧) ∴线段AC 的长为2或16. 故答案为2或16; (3)当AC =x ,点C 在点A 右侧,OC =5+x ∴OM =12OC =12(5+x )∴BM =OB +OM =1+12(5+x )=12x +72 点C 在线段OA 上,OC =OA ﹣AC =5﹣x ∴OM =12OC =12(5﹣x )∴BM =OM ﹣OB =12(5﹣x )+1=−12x +72. 当点C 在线段OB 上时,OC =x ﹣5,OM =12(x ﹣5),BM =1−12(x ﹣5)=72−12x ,当点C 在点B 的左侧时,OC =x ﹣5,OM =12(x ﹣5),BM =|1−12(x ﹣5)|=72−12x 或12x −72,答:线段BM 的长为:12x +72或12x −72或72−12x .9.【解答】解:(1)对于数对〈3,﹣12〉,有32+−124=3−122+4=−32,因此〈3,﹣12〉是“理想数对”; 对于数对<﹣2,4>,−22+44=0,−2+42+4=13,0≠13,所以<﹣2,4>不是理想数对;故答案为<3,﹣12>. (2)因为<2,x >是“理想数对”, 所以22+a 4=2+a 2+4,解得x =﹣8故答案为﹣8.(3)由题意,〈m ,n 〉是“理想数对”,所以a 2+a 4=a +a 2+4,即n =﹣4m3[(9a−4a)−8(a−76a)]−4a−12=3[9n﹣4m﹣8n+283m]﹣4m﹣12=3n+12m﹣12将n=﹣4m代入,原式=﹣12答:代数式的值是﹣12.10.【解答】解:原式=2x2y+2xy﹣x2y+xy﹣3x2y=﹣2x2y+3xy,当x=﹣1,y=1时,原式=﹣2×(﹣1)2×1+3×(﹣1)×1=﹣2﹣3=﹣5.11.【解答】解:原式=2a2−23ab﹣3a2+23ab=﹣a2.12.【解答】解:原式=12a2b﹣4ab2﹣6ab2+2a2b﹣14a2b=﹣10ab2,当a=1,b=−12时,原式=−52.13.【解答】解:原式=6y3+4x3﹣8xy﹣6y3+2xy=4x3﹣6xy,当x=﹣2,y=3时,原式=﹣32+36=4.14.【解答】解:原式=(5﹣3﹣2)x2+(﹣5+6)x+(4﹣5)=x﹣1,当x=﹣3时,原式=﹣3﹣1=﹣4.15.【解答】解:原式=6a2﹣16a﹣5a2+15a﹣10=a2﹣a﹣10,∵a2﹣a﹣7=0,∴a2﹣a=7,则原式=7﹣10=﹣3.16.【解答】解:原式=2a2+6a﹣4﹣6a﹣6=2a2﹣10,当a=﹣2时,原式=2×(﹣2)2﹣10=﹣2.17.【解答】解:(1)由题意可得,当0<n≤10且n为正整数时,所需钱数为:2.3n;当n>100且n为正整数时,所需钱数为:2.2n;(2)当n=100时,钱数是230元,当n=101,102,103,104时,钱数是222.2元,224.4元,226.6元,228.8元,当n=105时,钱数是231元,所以100<n≤104且n为正整数时,出现多买比少买反而付钱少的情况;(3)由(2)可知,如果需要买100套,就买101套比较省钱.18.【解答】解:由图可知,这所住宅的建筑面积为:x2+2x+2×5+5×6=x2+2x+40(米2).19.【解答】解:(3a2﹣7a)﹣2(a2﹣3a+2)=3a2﹣7a﹣2a2+6a﹣4=a2﹣a﹣4.20.【解答】解:同类项为:﹣y2x和2xy2,2xy、﹣3xy和﹣yx,多项式为:﹣y2x+2xy2+2xy﹣3xy﹣yx,合并同类项:﹣y2x+2xy2+2xy﹣3xy﹣yx.原式=(﹣1+2)xy2+(2﹣3﹣1)xy.=xy2﹣2xy.21.【解答】解:当x=﹣1时,x+2x2+3x3+4x4+5x5+6x6+7x7+8x8+9x9+10x10=﹣1+2﹣3+4﹣5+6﹣7+8﹣9+10=5,当某一项写错时,正确结果比错误结果大了5﹣(﹣11)=16,而16÷2=8, ∴8x 8符号写错了,即八次项的符号写错了.当x =﹣1时,代入原式=﹣1+2﹣3+4﹣5+6﹣7+8﹣9+10=5, 当x =1时,代入原式=1+2+3+4+5+6+7+8+9+10=55. 故答案为:八. 22.【解答】解:3(2ab 2﹣4a +b )﹣2(3ab 2﹣2a )+b =6ab 2﹣12a +3b ﹣6ab 2+4a +b =﹣8a +4b , ∵2a ﹣b =﹣2,∴原式=﹣8a +4b =﹣4(2a ﹣b )=﹣4×(﹣2)=8. 23.【解答】解:(1)∵1−2+11≠3−2×1+1,∴(﹣2,1)不是“相伴数对”;∵33+13=33×3+1,∴(3,3)是“相伴数对”;(2)∵(k ,﹣1)是“相伴数对”, ∴−1a+1−1=3−a+1,解得k =1;(3)∵(4,m )是“相伴数对”, ∴a 4+1a=34a+1,∴m 2﹣4m =﹣1, ∴4a −[3a 2−2(4a −1)]3a (a −4)=4a −(3a 2−8a +2)3(a 2−4a )=−3a 2+12a −23(a 2−4a )=−3(a 2−4a )−23(a 2−4a )=−3×(−1)−23×(−1)=−13.24.【解答】解:(1)2[(a +b )+(a ﹣b )]=2(a +b +a ﹣b )=4a (m ); (2)2[(a +a +b )+(a +a ﹣b )]=2(a +a +b +a +a ﹣b )=8a (m ); (3)当a =20,b =10时,长=2a +b =50(m ),宽=2a ﹣b =30(m ),所以面积=50×30=1500(m 2). 25.【解答】解:原式=2x 2﹣6x ﹣2x 2+x +2x 2+3x ﹣4 =2x 2﹣2x ﹣4,由2x 2﹣2x ﹣1=0,得到2x 2﹣2x =1, ∴原式=1﹣4=﹣3. 26.【解答】解:原式=12xy 2+2x 2y ﹣1−12xy 2﹣3x 2y=﹣x 2y ﹣1当x =﹣1,y =2时, 原式=﹣(﹣1)2×2﹣1 =﹣3. 27.【解答】解:不正确,去括号时出错 2(2x 2y +x )﹣3(x 2y ﹣2x ) =4x 2y +2x ﹣3x 2y +6x =x 2y +8x 28.【解答】解:原式=﹣6x +9x 2﹣3﹣9x 2+x ﹣3 =﹣5x ﹣6,当x =−13时,原式=﹣5×(−13)﹣6 =−133. 29.【解答】解:(2a 2﹣a ﹣1)+2(3﹣a +a 2) =2a 2﹣a ﹣1+6﹣2a +2a 2 =4a 2﹣3a +5. 30.【解答】解:原式=2x 2+4x ﹣4﹣x 2+2x +1 =x 2+6x ﹣3 当a =−12时,原式=(−12)2+6×(−12)−3=14−3−3=−234. 31.【解答】解:原式=7x 2﹣3xy ﹣6x 2+2xy =x 2﹣xy . 当x =﹣3,y =13时, 原式=(−3)2−(−3)×13=10.。
人教版七年级数学上册整式的加减(3)
2.2 整式的加减
题型二 同类项的概念的综合运用
例题2 [凉山州中考] 如果单项式
与
么a, b的值分别为( C).
A.a=2, b=3
B.a=1, b=2
C.a=1, b=3
D.a=2, b=2
是同类项, 那
2.2 整式的加减
2.2 整式的加减
锦囊妙计
利用同类项的概念求未知字母的值的方法 当已知所给的两个单项式是同类项, 或已 知两个单项式 可以合并, 或已知两个单项式的 和(或差)仍然是单项式时, 可抓 住同类项的定义 中的两个“相同”, 即“所含字母相同, 相同 字 母的指数相同” , 运用它们构造方程,求出单项 式中待定字 母的值, 从而解决问题.
第二章 整式的加减
2.2 整式的加减
第二章 整式的加减
2.2 整式的加减
考场对接
2.2 整式的加减
考场对接
题型一 辨认同类项
例题1 [上海中考] 下列单项式中, 与a²b是同 类项的是( A ).
A.2a²b
B.A²b²
C.Ab²
D.3ab
2.2 辨认同类项的两个关键条件 (1)所含字母相同;(2)相同字母的指数相同.
2.2 整式的加减
锦囊妙计
新定义问题的解题方法 (1)认真审题, 深刻理解新定义的内容, 了解 新定义的变换法 则;(2)排除干扰, 按新定义的 变换法则去掉新运算符号, 化新为旧, 将它们转 化成我们熟悉的加、减、乘、除、乘方等运算.
谢 谢 观 看!
2.2 整式的加减
锦囊妙计
多项式加减运算中加括号的方法 在多项式加法运算中, 整式可以不加括 号;在多项式减 法运算中, 被减式可以不加括 号, 但减式必须加上括号.