linux操作系统-实验-Linux-多线程编程

合集下载

操作系统 实验 进程调度 银行家算法 多线程编程 存储管理 磁盘调度

操作系统 实验 进程调度 银行家算法 多线程编程  存储管理 磁盘调度

实验一进程调度实验学时:2学时实验类型:设计实验要求:必修一、实验目的多道程序设计中,经常是若干个进程同时处于就绪状态,必须依照某种策略来决定那个进程优先占有处理机。

因而引起进程调度。

本实验模拟在单处理机情况下的处理机调度问题,加深对进程调度的理解。

二、实验内容1.优先权法、轮转法简化假设1)进程为计算型的(无I/O)2)进程状态:ready、running、finish3)进程需要的CPU时间以时间片为单位确定2.算法描述1)优先权法——动态优先权当前运行进程用完时间片后,其优先权减去一个常数。

2)轮转法三、流程图四、实验程序代码package进程调度;/***@author**/public class CPCB {private String name;private int time;private int count;public int getCount() {return count;}public void setCount(int count) { this.count = count;}public String getName() {return name;}public void setName(String name) { = name;}public int getTime() {return time;}public void setTime(int time) {this.time = time;}}package进程调度;/***@author**/class PCB{private String name;private int time ;private int priority ;public int getTime(){return time;}public void setTime(int time){this.time = time;}public int getPriority(){return priority;}public void setPriority(int priority){ this.priority = priority;}public String getName() {return name;}public void setName(String name) { = name;}}package进程调度;import java.util.LinkedList;/***@author**/class process{private final static int nap_time = 500;private LinkedList<PCB> queue = new LinkedList<PCB>();private LinkedList<CPCB> cqueue = new LinkedList<CPCB>();//优先权算法public void go(int p_Num) throws Exception{for(int i = 0;i<p_Num;i++){PCB pcb = new PCB();int time = (int)(Math.random()*20+1);int pri = (int)(Math.random()*20+4);pcb.setName("进程"+i);pcb.setTime(time);pcb.setPriority(pri);queue.add(pcb);}queue = this.sort(queue);int i=0;while(queue.size()!=0){PCB pcb = (PCB)queue.getFirst();System.out.println(i+"\t\t"+pcb.getName()+"运行\t"+"优先级:"+pcb.getPriority()+"---所需时间:"+pcb.getTime());// Thread.sleep(nap_time);int pre = pcb.getPriority() - 3;int time = pcb.getTime() - 1;if(time<=0){System.out.println(pcb.getName()+"\t\t进程运行结束");PCB p = (PCB)queue.removeFirst();System.out.println("移除队列的进程是\t\t"+p.getName()+"\n队列中还有"+queue.size()+"个进程\n");}else{queue.remove();pcb.setPriority(pre);pcb.setTime(time);// System.out.println("运行后:"+i+"----"+pcb.getName()+"---优先级:"+pcb.getPriority()+"---所需时间:"+pcb.getTime());queue.add(pcb);queue = this.sort(queue);}i++;}}//时间片轮转调度算法public void cycle(int p_Num) throws Exception{final int time = 3; //定义轮转时间片数for(int i = 0;i<p_Num;i++){CPCB cpcb = new CPCB();cpcb.setTime((int)(Math.random()*20)+1);cpcb.setName("进程"+i);cpcb.setCount(0);cqueue.add(cpcb);}while(cqueue.size()!=0){CPCB cpcb = (CPCB)cqueue.getFirst();while(cpcb.getCount()!=time){// Thread.sleep(nap_time);cpcb.setTime(cpcb.getTime() - 1);cpcb.setCount(cpcb.getCount()+1);for(int i=0;i<cqueue.size();i++)//输出进程运行情况{CPCB cpcb1 = (CPCB)cqueue.get(i);System.out.println(cpcb1.getName()+"\t\t所需时间片数"+cpcb1.getTime()+"\t\t已占用CPU时间片数"+cpcb1.getCount());}if(cpcb.getTime()==0){System.out.println(cpcb.getName()+"运行结束\n"+"-------------移除队列的是"+cpcb.getName()+"-------------");cqueue.removeFirst();System.out.println("-------------队列中还有"+cqueue.size()+"个进程--------------");break;}if(cpcb.getCount()==time){// cqueue.remove();System.out.println("----因为"+cpcb.getName()+"占用CPU时间片数"+cpcb.getCount()+"="+time);System.out.println(cpcb.getName()+"时间片运行结束"+cpcb.getCount()+cpcb.getTime());CPCB p = (CPCB)cqueue.removeFirst();cqueue.add(p);cpcb.setCount(0);break;}}}}public LinkedList<PCB> sort(LinkedList<PCB> processes){for(int i=0;i<processes.size();i++){PCB thread = new PCB();thread = processes.get(i);for(int j=i+1;j<processes.size();j++){if(thread.getPriority() < processes.get(j).getPriority()){PCB mythread = new PCB();mythread = thread;//thread = processes.get(j);processes.set(i, processes.get(j));processes.set(j, mythread);}}}return processes;}}package 进程调度;import java.io.BufferedReader;import java.io.InputStreamReader;/**** @author 邱福文**/public class MainFun{public void FPF(){}public static void main (String[] args) throws Exception{Integer n2;do{System.out.print("请输入进程数:");BufferedReader sin = new BufferedReader(new InputStreamReader(System.in));String str = sin.readLine();Integer n = Integer.parseInt(str);System.out.print("请输入调度算法:\n"+"1为优先权\n"+"2为轮转法\n"+"0 退出\n");BufferedReader sin2 = new BufferedReader(new InputStreamReader(System.in));String str2 = sin2.readLine();process p = new process();// do{n2 = Integer.parseInt(str2);switch(n2){case 0:break;case 1:p.go(n);break;case 2:p.cycle(n);break;default:System.out.print("输入有误请重新输入");break;}}while(n2!=0);}}五、实验结果请输入进程数:3请输入调度算法:1为优先权2为轮转法0 退出10 进程0运行优先级:19---所需时间:181 进程1运行优先级:19---所需时间:152 进程0运行优先级:16---所需时间:173 进程1运行优先级:16---所需时间:144 进程0运行优先级:13---所需时间:165 进程1运行优先级:13---所需时间:136 进程2运行优先级:10---所需时间:87 进程0运行优先级:10---所需时间:158 进程1运行优先级:10---所需时间:129 进程2运行优先级:7---所需时间:710 进程0运行优先级:7---所需时间:1411 进程1运行优先级:7---所需时间:1112 进程2运行优先级:4---所需时间:613 进程0运行优先级:4---所需时间:1314 进程1运行优先级:4---所需时间:1015 进程2运行优先级:1---所需时间:516 进程0运行优先级:1---所需时间:1217 进程1运行优先级:1---所需时间:918 进程2运行优先级:-2---所需时间:419 进程0运行优先级:-2---所需时间:1120 进程1运行优先级:-2---所需时间:821 进程2运行优先级:-5---所需时间:322 进程0运行优先级:-5---所需时间:1023 进程1运行优先级:-5---所需时间:724 进程2运行优先级:-8---所需时间:225 进程0运行优先级:-8---所需时间:926 进程1运行优先级:-8---所需时间:627 进程2运行优先级:-11---所需时间:1 进程2 进程运行结束移除队列的进程是进程2队列中还有2个进程28 进程0运行优先级:-11---所需时间:829 进程1运行优先级:-11---所需时间:530 进程0运行优先级:-14---所需时间:731 进程1运行优先级:-14---所需时间:432 进程0运行优先级:-17---所需时间:633 进程1运行优先级:-17---所需时间:334 进程0运行优先级:-20---所需时间:535 进程1运行优先级:-20---所需时间:236 进程0运行优先级:-23---所需时间:437 进程1运行优先级:-23---所需时间:1 进程1 进程运行结束移除队列的进程是进程1队列中还有1个进程38 进程0运行优先级:-26---所需时间:339 进程0运行优先级:-29---所需时间:240 进程0运行优先级:-32---所需时间:1进程0 进程运行结束移除队列的进程是进程0队列中还有0个进程请输入进程数:3请输入调度算法:1为优先权2为轮转法0 退出2进程0 所需时间片数8 已占用CPU时间片数1 进程1 所需时间片数6 已占用CPU时间片数0 进程2 所需时间片数13 已占用CPU时间片数0 进程0 所需时间片数7 已占用CPU时间片数2 进程1 所需时间片数6 已占用CPU时间片数0 进程2 所需时间片数13 已占用CPU时间片数0 进程0 所需时间片数6 已占用CPU时间片数3 进程1 所需时间片数6 已占用CPU时间片数0 进程2 所需时间片数13 已占用CPU时间片数0 ----因为进程0占用CPU时间片数3=3进程0时间片运行结束36进程1 所需时间片数5 已占用CPU时间片数1 进程2 所需时间片数13 已占用CPU时间片数0 进程0 所需时间片数6 已占用CPU时间片数0 进程1 所需时间片数4 已占用CPU时间片数2 进程2 所需时间片数13 已占用CPU时间片数0 进程0 所需时间片数6 已占用CPU时间片数0 进程1 所需时间片数3 已占用CPU时间片数3 进程2 所需时间片数13 已占用CPU时间片数0 进程0 所需时间片数6 已占用CPU时间片数0 ----因为进程1占用CPU时间片数3=3进程1时间片运行结束33进程2 所需时间片数12 已占用CPU时间片数1 进程0 所需时间片数6 已占用CPU时间片数0 进程1 所需时间片数3 已占用CPU时间片数0 进程2 所需时间片数11 已占用CPU时间片数2 进程0 所需时间片数6 已占用CPU时间片数0 进程1 所需时间片数3 已占用CPU时间片数0 进程2 所需时间片数10 已占用CPU时间片数3 进程0 所需时间片数6 已占用CPU时间片数0----因为进程2占用CPU时间片数3=3进程2时间片运行结束310进程0 所需时间片数5 已占用CPU时间片数1 进程1 所需时间片数3 已占用CPU时间片数0 进程2 所需时间片数10 已占用CPU时间片数0 进程0 所需时间片数4 已占用CPU时间片数2 进程1 所需时间片数3 已占用CPU时间片数0 进程2 所需时间片数10 已占用CPU时间片数0 进程0 所需时间片数3 已占用CPU时间片数3 进程1 所需时间片数3 已占用CPU时间片数0 进程2 所需时间片数10 已占用CPU时间片数0 ----因为进程0占用CPU时间片数3=3进程0时间片运行结束33进程1 所需时间片数2 已占用CPU时间片数1 进程2 所需时间片数10 已占用CPU时间片数0 进程0 所需时间片数3 已占用CPU时间片数0 进程1 所需时间片数1 已占用CPU时间片数2 进程2 所需时间片数10 已占用CPU时间片数0 进程0 所需时间片数3 已占用CPU时间片数0 进程1 所需时间片数0 已占用CPU时间片数3 进程2 所需时间片数10 已占用CPU时间片数0 进程0 所需时间片数3 已占用CPU时间片数0 进程1运行结束-------------移除队列的是进程1--------------------------队列中还有2个进程--------------进程2 所需时间片数9 已占用CPU时间片数1 进程0 所需时间片数3 已占用CPU时间片数0 进程2 所需时间片数8 已占用CPU时间片数2 进程0 所需时间片数3 已占用CPU时间片数0 进程2 所需时间片数7 已占用CPU时间片数3 进程0 所需时间片数3 已占用CPU时间片数0 ----因为进程2占用CPU时间片数3=3进程2时间片运行结束37进程0 所需时间片数2 已占用CPU时间片数1 进程2 所需时间片数7 已占用CPU时间片数0 进程0 所需时间片数1 已占用CPU时间片数2 进程2 所需时间片数7 已占用CPU时间片数0 进程0 所需时间片数0 已占用CPU时间片数3 进程2 所需时间片数7 已占用CPU时间片数0 进程0运行结束-------------移除队列的是进程0--------------------------队列中还有1个进程--------------进程2 所需时间片数6 已占用CPU时间片数1进程2 所需时间片数4 已占用CPU时间片数3----因为进程2占用CPU时间片数3=3进程2时间片运行结束34进程2 所需时间片数3 已占用CPU时间片数1进程2 所需时间片数2 已占用CPU时间片数2进程2 所需时间片数1 已占用CPU时间片数3----因为进程2占用CPU时间片数3=3进程2时间片运行结束31进程2 所需时间片数0 已占用CPU时间片数1进程2运行结束-------------移除队列的是进程2--------------------------队列中还有0个进程--------------请输入进程数:实验二银行家算法一、实验目的死锁会引起计算机工作僵死,因此操作系统中必须防止。

Unix_Linux_Windows_OpenMP多线程编程

Unix_Linux_Windows_OpenMP多线程编程

Unix_Linux_Windows_OpenMP多线程编程第三章 Unix/Linux 多线程编程[引言]本章在前面章节多线程编程基础知识的基础上,着重介绍 Unix/Linux 系统下的多线程编程接口及编程技术。

3.1 POSIX 的一些基本知识POSIX 是可移植操作系统接口(Portable Operating SystemInterface)的首字母缩写。

POSIX 是基于 UNIX 的,这一标准意在期望获得源代码级的软件可移植性。

换句话说,为一个 POSIX 兼容的操作系统编写的程序,应该可以在任何其它的 POSIX 操作系统(即使是来自另一个厂商)上编译执行。

POSIX 标准定义了操作系统应该为应用程序提供的接口:系统调用集。

POSIX是由 IEEE(Institute of Electrical andElectronic Engineering)开发的,并由 ANSI(American National Standards Institute)和 ISO(International StandardsOrganization)标准化。

大多数的操作系统(包括 Windows NT)都倾向于开发它们的变体版本与 POSIX 兼容。

POSIX 现在已经发展成为一个非常庞大的标准族,某些部分正处在开发过程中。

表 1-1 给出了 POSIX 标准的几个重要组成部分。

POSIX 与 IEEE 1003 和 2003 家族的标准是可互换的。

除 1003.1 之外,1003 和 2003 家族也包括在表中。

管理 POSIX 开放式系统环境(OSE) 。

IEEE 在 1995 年通过了这项标准。

ISO 的1003.0版本是 ISO/IEC 14252:1996。

被广泛接受、用于源代码级别的可移植性标准。

1003.1 提供一个操作系统的C 语1003.1 言应用编程接口(API) 。

IEEE 和 ISO 已经在 1990 年通过了这个标准,IEEE 在1995 年重新修订了该标准。

linux多线程 pthread常用函数详解

linux多线程 pthread常用函数详解

linux多线程pthread常用函数详解Linux多线程是指在Linux操作系统中运行的多个线程。

线程是执行程序的基本单位,它独立于其他线程而存在,但共享相同的地址空间。

在Linux中,我们可以使用pthread库来实现多线程程序。

本文将详细介绍pthread库中常用的函数,包括线程的创建、退出、同步等。

一、线程创建函数1. pthread_create函数pthread_create函数用于创建一个新线程。

其原型如下:cint pthread_create(pthread_t *thread, const pthread_attr_t *attr, void*(*start_routine) (void *), void *arg);参数说明:- thread:用于存储新线程的ID- attr:线程的属性,通常为NULL- start_routine:线程要执行的函数地址- arg:传递给线程函数的参数2. pthread_join函数pthread_join函数用于等待一个线程的结束。

其原型如下:int pthread_join(pthread_t thread, void retval);参数说明:- thread:要等待结束的线程ID- retval:用于存储线程的返回值3. pthread_detach函数pthread_detach函数用于将一个线程设置为分离状态,使其在退出时可以自动释放资源。

其原型如下:cint pthread_detach(pthread_t thread);参数说明:- thread:要设置为分离状态的线程ID二、线程退出函数1. pthread_exit函数pthread_exit函数用于退出当前线程,并返回一个值。

其原型如下:cvoid pthread_exit(void *retval);参数说明:- retval:线程的返回值2. pthread_cancel函数pthread_cancel函数用于取消一个线程的执行。

linux下的CC++多进程多线程编程实例详解

linux下的CC++多进程多线程编程实例详解

linux下的CC++多进程多线程编程实例详解linux下的C\C++多进程多线程编程实例详解1、多进程编程#include <stdlib.h>#include <sys/types.h>#include <unistd.h>int main(){pid_t child_pid;/* 创建⼀个⼦进程 */child_pid = fork();if(child_pid == 0){printf("child pid\n");exit(0);}else{printf("father pid\n");sleep(60);}return 0;}2、多线程编程#include <stdio.h>#include <pthread.h>struct char_print_params{char character;int count;};void *char_print(void *parameters){struct char_print_params *p = (struct char_print_params *)parameters;int i;for(i = 0; i < p->count; i++){fputc(p->character,stderr);}return NULL;}int main(){pthread_t thread1_id;pthread_t thread2_id;struct char_print_params thread1_args;struct char_print_params thread2_args;thread1_args.character = 'x';thread1_args.count = 3000;pthread_create(&thread1_id, NULL, &char_print, &thread1_args);thread2_args.character = 'o';thread2_args.count = 2000;pthread_create(&thread2_id, NULL, &char_print, &thread2_args);pthread_join(thread1_id, NULL);pthread_join(thread2_id, NULL);return 0;}3、线程同步与互斥1)、互斥pthread_mutex_t mutex;pthread_mutex_init(&mutex, NULL);/*也可以⽤下⾯的⽅式初始化*/pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; pthread_mutex_lock(&mutex);/* 互斥 */thread_flag = value;pthread_mutex_unlock(&mutex);2)、条件变量int thread_flag = 0;pthread_mutex_t mutex;pthread_cond_t thread_flag_cv;\void init_flag(){pthread_mutex_init(&mutex, NULL);pthread_cond_init(&thread_flag_cv, NULL);thread_flag = 0;}void *thread_function(void *thread_flag){while(1){pthread_mutex_lock(&mutex);while(thread_flag != 0 ){pthread_cond_wait(&thread_flag_cv, &mutex);}pthread_mutex_unlock(&mutex);do_work();}return NULL;}void set_thread_flag(int flag_value){pthread_mutex_lock(&mutex);thread_flag = flag_value;pthread_cond_signal(&thread_flag_cv);pthread_mutex_unlock(&mutex);}感谢阅读,希望能帮助到⼤家,谢谢⼤家对本站的⽀持!。

操作系统实验(进程)多线程实现矩阵乘法

操作系统实验(进程)多线程实现矩阵乘法

多线程编程实现矩阵乘法
一、实验目的
通过实验,熟悉基于Win32线程库和Pthread线程库的编程环境,掌握利用Windows API和Pthread API进行多线程编程的方法,进一步加深对线程概念以及多线程编程相关事项的理解。

二、实验内容
1. 在Windows操作系统上,利用Windows API编写应用程序实现矩阵乘法。

2. 在Linux操作系统上,利用Pthread API编写应用程序实现矩阵乘法。

3. 在上述两种环境下,实现相乘操作的两个矩阵均作为应用程序的输入参数动态生成,并输出计算结果。

4. 在程序实现过程中,要求每个乘积矩阵元素的计算过程均由一个独立的线程实现。

三、实验步骤
1、windows上:打开codeblocks IDE,创建新C++项目,在新文件中输入如下代码,并编译运行。

2、linux上
打开gedit输入下面的代码,保存为Thread.c,在终端进入文档保存的目录并输入
gcc –c Thread.c
gcc –o Thread Thread.o –lpthread
./Thread 得到输出结果。

四、程序运行时的初值和运行结果
1、在Windows操作系统上,利用Windows API实现矩阵乘法,程序运行结果
2. 在Linux操作系统上,利用Pthread API实现矩阵乘法程序运行结果
Pthread_create()
第一个参数为指向线程标识符的指针。

第二个参数用来设置线程属性。

第三个参数是线程运行函数的起始地址。

最后一个参数是运行函数的参数。

操作系统第二次实验报告——Linux创建进程及可执行文件结构分析

操作系统第二次实验报告——Linux创建进程及可执行文件结构分析

操作系统第⼆次实验报告——Linux创建进程及可执⾏⽂件结构分析0 个⼈信息张樱姿201821121038计算18121 实验⽬的熟练Linux创建进程fork操作。

2 实验内容在服务器上⽤VIM编写⼀个程序:⼀个进程创建两个⼦进程。

查看进程树查看进程相关信息3 实验报告 3.1编写程序创建两个⼦进程1 #include<sys/types.h>2 #include<stdio.h>3 #include<unistd.h>45int main(){6 pid_t cpid1 = fork(); //创建⼦进程178if(cpid1<0){9 printf("fork cd1 failed\n");10 }11else if(cpid1==0){12 printf("Child1:pid: %d, ppid: %d\n",getpid(),getppid());13 }14else{15 pid_t cpid2 = fork(); //创建⼦进程216if(cpid2<0){17 printf("fork cd2 failed\n");18 }19else if(cpid2==0){20 printf("Child2:pid: %d, ppid: %d\n",getpid(),getppid());21 }22else{23 printf("Parent: pid :%d\n",getpid());24 }25 }26 }编译运⾏后的结果:3.2打印进程树 添加sleep函数以挂起进程,⽅便打印进程树:1 #include<sys/types.h>2 #include<stdio.h>3 #include<unistd.h>45int main(){6 pid_t cpid1 = fork();78if(cpid1<0){9 printf("fork cd1 failed\n");10 }11else if(cpid1==0){12 printf("Child1:pid: %d, ppid: %d\n",getpid(),getppid());13 sleep(30); //挂起30秒14 }15else{16 pid_t cpid2 = fork();17if(cpid2<0){18 printf("fork cd2 failed\n");19 }20else if(cpid2==0){21 printf("Child2:pid: %d, ppid: %d\n",getpid(),getppid());22 sleep(30); //挂起30秒23 }24else{25 printf("Parent: pid :%d\n",getpid());26 sleep(60); //挂起60秒27 }28 }29 }pstree -p pid #打印进程树 3.3 解读进程相关信息 3.3.1 解释执⾏ps -ef后返回结果中每个字段的含义 ps -ef输出格式 :UID PID PPID C STIME TTY TIME CMDUID: User ID,⽤户ID。

Linux操作系统应用编程课件(完整版)

Linux操作系统应用编程课件(完整版)

2.Linux操作系统的发行版
Linux操作系统发行版实际就是Linux内核加上外围实用程序 组成的一个大软件包。相对于Linux操作系统的内核版本,发行版 的版本号随发布者的不同而不同,与Linux操作系统内核的版本号 是相对独立的。因此把SUSE、RedHat、Ubuntu、Slackware等直 接称为Linux是不确切的,它们是Linux操作系统的发行版。更确 切地说,应该将它们称为“以Linux为核心的操作系统软件包”。
Shell是Linux操作系统的一种用户界面,它作为操作系统 的“外壳”,为用户提供使用操作系统的接口。Shell主要有以 下两大功能特点。
(1)Shell是一个命令解释器,它拥有自己内建的Shell命令集。 (2)Shell的另一个重要特性是它自身就是一种解释型的程序设 计语言。
当用户成功登录Linux系统后,系统将执行一个Shell程序。 正是Shell进程提供了命令提示符。作为默认值,Shell对普通用 户用“$”作提示符,对超级用户(root)用“#”作提示符。
1.4.4 联机手册
联机手册命令man可向用户提供系统中各种命令、系统调用、 库函数和重要系统文件的详细说明,包括名字、使用语法、功能 描述、应用实例和相关参考文件等。其格式如下:
$ man [拥有哪个级别的帮助。 -k:查看和命令相关的所有帮助。
查看who命令的详细说明示例如下。 $ man who
Linux操作系统 应用编程
本章主要介绍Linux文件系统,包括文件系统的结构、文 件的定义与分类、目录与文件操作命令、文件的权限管理等, 让读者对Linux文件系统有一定的认识和理解,为后文的学习 打下基础。
2.1.1 组织结构
Linux操作系统中所有文件存储在文件系统中,文件被组织 到一棵“目录树”中,其文件系统层次结构(树状目录结构)如 图2.1所示。树根在该层次结构的顶部,树根的下方衍生出子目 录分支。

Linux多线程编程问题

Linux多线程编程问题

Linux 多线程编程问题1重入问题传统的UNIX没有太多考虑线程问题,库函数里过多使用了全局和静态数据,导致严重的线程重入问题。

1.1–D_REENTRANT /-pthread和errno的重入问题。

所先UNIX的系统调用被设计为出错返回-1,把错误码放在errno中(更简单而直接的方法应该是程序直接返回错误码,或者通过几个参数指针来返回)。

由于线程共享所有的数据区,而errno是一个全局的变量,这里产生了最糟糕的线程重入问题。

比如:do {bytes = recv(netfd, recvbuf, buflen, 0);} while (bytes != -1 && errno != EINTR);在上面的处理recv被信号打断的程序里。

如果这时连接被关闭,此时errno应该不等于EINTR,如果别的线程正好设置errno为EINTR,这时程序就可能进入死循环。

其它的错误码处理也可能进入不可预测的分支。

在线程需求刚开始时,很多方面技术和标准(TLS)还不够成熟,所以在为了解决这个重入问题引入了一个解决方案,把errno定义为一个宏:extern int *__errno_location (void);#define errno (*__errno_location())在上面的方案里,访问errno之前先调用__errno_location()函数,线程库提供这个函数,不同线程返回各自errno的地址,从而解决这个重入问题。

在编译时加-D_REENTRANT就是启用上面的宏,避免errno重入。

另外-D_REENTRANT还影响一些stdio的函数。

在较高版本的gcc里,有很多嵌入函数的优化,比如把printf(“Hello\n”);优化为puts(“hello\n”);之类的,有些优化在多线程下有问题。

所以gcc引入了–pthread 参数,这个参数出了-D_REENTRANT外,还校正一些针对多线程的优化。

第6章 linux进程控制开发及多线程编程

第6章  linux进程控制开发及多线程编程

进程的状态
进程是程序的执行过程,根据它的生命周期可以划分成3种 状态。 执行态:该进程正在运行,即进程正在占用CPU。 就绪态:进程已经具备执行的一切条件,正在等待分配 CPU的处理时间片。 等待态:进程不能使用CPU,若等待事件发生(等待的 资源分配到)则可将其唤醒。
Linux下进程地址空间(1)
互斥锁线程控制 (1)
在同一时刻只能有一个线程掌握某个互斥锁,拥有上锁状态 的线程能够对共享资源进行操作。若其他线程希望上锁一个 已经被上锁的互斥锁,则该线程就会挂起,直到上锁的线程 释放掉互斥锁为止。
互斥锁机制主要包括下面的基本函数。 互斥锁初始化: pthread_mutex_init() 互斥锁上锁: pthread_mutex_lock() 互斥锁判断上锁:pthread_mutex_trylock() 互斥锁解锁: pthread_mutex_unlock() 消除互斥锁: pthread_mutex_destroy()
示例
阅读并执行示例7-2-4 开始
教材P216-P217
fork()
程序功能: (1)使用fork创建一个子进程, 然后让其子进程暂停5s(sleep函 数)。 (2)父进程使用waitpid,参数 WNOHANG使进程不会阻塞; (3)若子进程退出,则waitpid返 回子进程号,若没有则waitpid返 回0,并且父进程每隔一秒循环判 断。
因此,可以通过返回值来判定该进程是父进程还是子进程。
fork示例
1.Fork返回两个值返回到哪里??
int main(void)
{

pid_t result;
2.怎样区分是父、子进程??

result = fork();

Linux多线程程序设计

Linux多线程程序设计

创建缺省线程
如果未指定属性对象,则该对象为NULL,系统会创建具有以下属性
的缺省线程: 进程范围 非分离 缺省栈和缺省栈大小 零优先级
线程的ID号,创建
线程创建 int pthread_create (pthread_t * thread, __const pthread_attr_t * attr, void *(*__start_routine) (void *), void *arg); thread:指向线程标识符的指针,被创建的线程的标识符将由操作系统 写入到此结构中; attr:设置线程属性,如果为空指针(NULL),则表示采用缺省类型; start_routine:线程运行函数的起始地址; arg:指向运行函数参数的指针。
当创建线程成功时,函数返回0,若不为0 则说明创建线程失败,常见的 错误返回代码为EAGAIN 和EINVAL。前者表示系统限制创建新的线程, 例如线程数目过多了;后者表示第二个参数代表的线程属性值非法。创 建线程成功后,新创建的线程运行start_routine函数,其输入参数由arg 确定,原来的线程则继续运行下一行代码。
线程属性
初始化属性
int pthread_attr_init(pthread_attr_t *tattr);
线程属性
销毁属性 int pthread_attr_destroy(pthread_attr_t *tattr); 设置分离状态
int pthread_attr_setdetachstate(pthread_attr_t *tattr,int
线程属性
设置调度策略
int pthread_attr_setschedpolicy(pthread_attr_t *tattr, int policy); POSIX 标准指定的Policy:

嵌入式Linux多线程编程实验

嵌入式Linux多线程编程实验

实验二、嵌入式Linux多线程编程实验一、实验目的1. 熟悉线程的定义、创建及应用方法,掌握编译源代码时引入线程库的方法。

2. 掌握如何利用信号量完成线程间的同步与互斥。

3. 熟悉Makefile工作原理,掌握编写Makefile的编写方法。

二、实验基本要求1. 掌握熟悉线程的定义及操作方法。

2. 利用信号量的PV操作完成完成以下单个生产者和单个消费者模型的代码。

3. 编写在Ubuntu中编译执行的makefile文件,然后在Ubuntu中执行。

4. 编写在实验箱中编译执行的makefile文件,然后在实验箱中执行。

注意Makefile编写规范缩进应使用制表键即Tab键。

三、实验原理1.Linux线程的定义线程(thread)是在共享内存空间中并发的多道执行路径,它们共享一个进程的资源,如文件描述和信号处理。

在两个普通进程(非线程)间进行切换时,内核准备从一个进程的上下文切换到另一个进程的上下文要花费很大的开销。

这里上下文切换的主要任务是保存老进程CPU状态并加载新进程的保存状态,用新进程的内存映像替换进程的内存映像。

线程允许你的进程在几个正在运行的任务之间进行切换,而不必执行前面提到的完整的上下文。

另外本文介绍的线程是针对POSIX线程,也就是pthread。

也因为Linux对它的支持最好。

相对进程而言,线程是一个更加接近于执行体的概念,它可以与同进程中的其他线程共享数据,但拥有自己的栈空间,拥有独立的执行序列。

在串行程序基础上引入线程和进程是为了提高程序的并发度,从而提高程序运行效率和响应时间。

也可以将线程和轻量级进程(LWP)视为等同的,但其实在不同的系统/实现中有不同的解释,LWP更恰当的解释为一个虚拟CPU或内核的线程。

它可以帮助用户态线程实现一些特殊的功能。

Pthread是一种标准化模型,它用来把一个程序分成一组能够同时执行的任务。

2. 什么场合会使用Pthread即线程(1) 在返回前阻塞的I/O任务能够使用一个线程处理I/O,同时继续执行其他处理任务。

linux操作系统培训资料

linux操作系统培训资料
一个进程一旦调用exec类函数,它本身就"死亡"了,系统把代码段替 换成新的程序的代码,废弃原有的数据段和堆栈段,并为新程序分配 新的数据段与堆栈段,唯一留下的,就是进程号,也就是说,对系统 而言,还是同一个进程,不过已经是另一个程序了。(不过exec类函 数中有的还允许继承环境变量之类的信息。)
Linux线程管理
在指定路径查找文件
Linux常用操作命令
命令 grep mv chmod man top ps pstree
功能 在指定文件查找指定字符串 移动文件或目录 改变文件权限指令 命令或函数帮助查询指令 查看cpu和内存使用情况的指令 查看当前运行的进程的指令 查看进程树的指令
Linux设备管理
Linux上层应用与实际设备的关联
printf("Error in fork\n"); exit(1); }
Linux进程间通信
无名管道的例子 if(pid == 0) {
/*执行子进程*/ printf("child process...\n"); /*子进程向父进程写数据,关闭管道的读端*/ close(file_descriptors[INPUT]); write(file_descriptors[OUTPUT], "test data", strlen("test data")); exit(0); } else { /*执行父进程*/ printf("parent process...\n"); /*父进程从管道读取子进程写的数据,关闭管道的写端*/ close(file_descriptors[OUTPUT]); returned_count = read(file_descriptors[INPUT], buf, sizeof(buf)-1); if(returned_count<0){

多线程编程实验报告

多线程编程实验报告

一、实验目的1. 理解多线程编程的基本概念和原理。

2. 掌握多线程的创建、同步、通信和调度等关键技术。

3. 通过实验加深对多线程编程的理解,提高编程能力。

二、实验环境硬件:PC机软件:VMware虚拟机、Linux系统、C/C++编译器三、实验内容1. 多线程创建与运行2. 线程同步与互斥3. 线程通信与协作4. 线程调度与优先级5. 生产者-消费者问题四、实验步骤1. 多线程创建与运行(1)创建线程:使用pthread_create函数创建线程,指定线程的入口函数、参数、线程属性等。

(2)线程运行:编写线程入口函数,实现线程需要执行的任务。

(3)线程结束:在线程入口函数中执行任务后,使用pthread_exit函数结束线程。

2. 线程同步与互斥(1)互斥锁:使用pthread_mutex_lock和pthread_mutex_unlock函数实现互斥锁,保证同一时刻只有一个线程访问共享资源。

(2)条件变量:使用pthread_cond_wait和pthread_cond_signal函数实现条件变量,实现线程间的同步与协作。

(3)读写锁:使用pthread_rwlock_rdlock和pthread_rwlock_wrlock函数实现读写锁,允许多个线程同时读取共享资源,但只有一个线程可以写入。

3. 线程通信与协作(1)线程间通信:使用pthread_cond_signal、pthread_cond_broadcast、pthread_barrier_wait等函数实现线程间的通信。

(2)线程协作:使用pthread_barrier_init、pthread_barrier_wait函数实现线程间的协作,确保所有线程到达某个点后再继续执行。

4. 线程调度与优先级(1)线程调度:了解操作系统的线程调度算法,如时间片轮转、优先级调度等。

(2)线程优先级:使用pthread_setschedparam函数设置线程的调度策略和优先级。

Linux操作系统实训与项目案例

Linux操作系统实训与项目案例

本章内容
1-1 什么是Linux
1-1-1 什么是Linux
简单的说,Linux是类UNIX的操作系统,在原代码上兼容绝大部分 UNIX标准(指的是IEEE POSIX,System V,BSD),是一个支持多用户, 多进程,多线程,实时性较好的功能强大而稳定的操作系统。
Linux是目前运行硬件平台最多的操作系统。Linux最大的特点在于 它是GNU的一员,遵循公共版权许可证(GPL),秉承“自由的思想,开放 的源码”的原则,成千上万的专家、爱好者通过Internet在不断地完善并 维护它,可以说Linux是计算机爱好者自己的操作系统 。
比较著名的版本有:
1.RedHat Linux:最早的Linux发行版本之一,在全球拥有最高的市场 占有率
2.Debian Linux:Debian是社区类Linux的典范,是迄今为止最遵循 GNU规范 的Linux系统
3.Fedora Core:Fedora Core是Red Hat的开源项目 4.Ubuntu :Ubuntu是基于Debian的unstable版本加强而来
5.Gentoo
6.TurboLinux
7.SUSE
8.Corel Linux 9.Mandrake
10.Kubuntu
1-4 Linux的应用
1-4-1 Linux服务器
目前主流服务器产品:
1.Redhat Enterprise Linux RHEL是目前Linux服务器产品的标杆,在国内和国际上都占据着主要的 Linux服务器市场份额。RHEL产品功能全面,产品认证齐全,用户的接 受度比较高。RHEL主要依靠技术服务和产品维护获取盈利。
注意,人们在使用“开放源码软件(OSS)”时强调的是这些软件在技术方 面的优势(比如 可靠性和安全性),而使用“自由软件(FS)”时则强调的是其可 以被自由控制的特性

Linux 多线程编程

Linux 多线程编程

线程的优点
除了以上所说的优点外,多线程程序作为一种多 任务、并发的工作方式,有如下优点: 使多CPU系统更加有效.操作系统会保证当线程 数丌大于CPU数目时,丌同的线程运行于丌同的 CPU上. 改善程序结构.一个既长又复杂的进程可以考虑分 为多个线程,成为几个独立戒半独立的运行部分, 这样的程序会利于理解和修改.
互斥量
对于这种情况,系统给我们提供了互斥 量.线程 在取出头节点前必须要等待互斥量,如果此时有其 他线程已经获得该互斥量,那么该线程将会阻塞在 这里.只有等到其他线程释放掉该互斥量后,该线 程才有可能得到该互斥量。互斥量从本质上说就 是一把锁, 提供对共享资源的保护访问
创建
在Linux中, 互斥量使用类型pthread_mutex_t表 示.在使用前, 要对它进行初始化: 对于静态分配的互斥量, 可以把它设置为默认的 mutex对象PTHREAD_MUTEX_INITIALIZER 对于劢态分配的互斥量, 在申请内存(malloc)之 后, 通过pthread_mutex_init进行初始化, 并且 在释放内存(free)前需要调用 pthread_mutex_destroy
Item * p =queue_list; Queue_list=queue_list->next; process_job(p); free(p);
当线程1处理完Item *p=queue_list后,系统停 止线程1的运行,改而运行线程2。线程2照样取 出头节点,然后进行处理,最后释放了该节点。 过了段时间,线程1重新得到运行。而这个时候, p所指向的节点已经被线程2释放掉,而线程1对 此毫无知晓。他会接着运行process_job(p)。而 这将导致无法预料的后果!
加锁

linux多线程的实现方式

linux多线程的实现方式

linux多线程的实现方式Linux是一种支持多线程的操作系统,它提供了许多不同的方式来实现多线程。

本文将介绍Linux多线程的几种实现方式。

1. 线程库Linux提供了线程库,包括POSIX线程库(Pthreads)和LinuxThreads。

Pthreads是一种由IEEE组织制定的标准线程库,它提供了一组线程API,可以在不同的操作系统上实现。

LinuxThreads 是Linux内核提供的线程实现,不同于Pthreads,它不是标准线程库,但具有更好的性能。

使用线程库可以方便地创建和管理线程,线程库提供了许多API 函数,例如pthread_create(),pthread_join(),pthread_mutex_lock()等,可以在程序中使用这些API函数来实现多线程。

2. 多进程在Linux中,多进程也是一种实现多线程的方式。

每个进程都可以有自己的线程,进程之间也可以通过IPC机制进行通信。

多进程的优点是可以更好地利用多核CPU,因为每个进程都可以在不同的CPU核心上运行。

但是,多进程的开销比多线程大,因为每个进程都需要拥有自己的地址空间和运行环境。

3. 线程池线程池是一种常见的多线程实现方式。

线程池中有多个线程可以处理任务,任务可以通过任务队列来进行分发。

当任务到达时,线程池中的线程会从任务队列中取出任务并处理。

线程池的优点是可以重复利用线程,减少创建和销毁线程的开销。

线程池还可以控制线程的数量,避免过多线程导致的性能下降。

4. 协程协程是一种轻量级线程,它不需要操作系统的支持,可以在用户空间中实现。

协程基于线程,但是不需要线程上下文切换的开销,因为协程可以在同一个线程内进行切换。

协程的优点是可以更好地利用CPU,因为不需要线程上下文切换的开销。

协程还可以更好地控制并发性,因为协程的切换是由程序员控制的。

总结Linux提供了多种实现多线程的方式,每种方式都有其优点和缺点。

在选择多线程实现方式时,需要考虑到应用程序的特点和需求,选择最适合的实现方式。

线程控制实验报告(3篇)

线程控制实验报告(3篇)

第1篇一、实验背景线程是操作系统中实现并发执行的基本单位,它允许程序在同一时间内执行多个任务。

线程控制实验旨在通过实际操作,加深对线程概念、线程同步与互斥机制的理解,并掌握线程的创建、同步与互斥方法。

二、实验目的1. 理解线程的概念及其在操作系统中的作用。

2. 掌握线程的创建、同步与互斥方法。

3. 熟悉线程调度与同步在实际编程中的应用。

4. 通过实验,提高对多线程编程的理解和实际操作能力。

三、实验环境操作系统:Windows 10编程语言:Java开发工具:Eclipse四、实验内容1. 线程的创建与启动实验步骤:(1)创建一个名为ThreadDemo的Java类,继承自Thread类。

(2)在ThreadDemo类中重写run()方法,实现线程要执行的任务。

(3)在main方法中创建ThreadDemo类的实例,并调用start()方法启动线程。

实验代码:```javapublic class ThreadDemo extends Thread {@Overridepublic void run() {// 线程要执行的任务System.out.println("线程运行:" +Thread.currentThread().getName());}public static void main(String[] args) {ThreadDemo threadDemo = new ThreadDemo();threadDemo.start(); // 启动线程}}```2. 线程同步与互斥实验步骤:(1)创建一个名为SyncDemo的Java类,包含一个共享资源和一个同步方法。

(2)在SyncDemo类中,使用synchronized关键字声明同步方法,实现线程间的同步。

(3)在main方法中创建多个ThreadDemo类的实例,并启动线程,观察线程同步与互斥的效果。

实验代码:```javapublic class SyncDemo {private int count = 0;public synchronized void increment() {count++;System.out.println(Thread.currentThread().getName() + ":count=" + count);}public static void main(String[] args) {SyncDemo syncDemo = new SyncDemo();Thread thread1 = new Thread(() -> {for (int i = 0; i < 5; i++) {syncDemo.increment();}});Thread thread2 = new Thread(() -> {for (int i = 0; i < 5; i++) {syncDemo.increment();}});thread1.start();thread2.start();}}```3. 线程通信实验步骤:(1)创建一个名为ThreadCommunication的Java类,包含一个共享资源和一个同步方法。

linux多线程编程实验心得

linux多线程编程实验心得

linux多线程编程实验心得在进行Linux多线程编程实验后,我得出了一些心得体会。

首先,多线程编程是一种高效利用计算机资源的方式,能够提高程序的并发性和响应性。

然而,它也带来了一些挑战和注意事项。

首先,线程同步是多线程编程中需要特别关注的问题。

由于多个线程同时访问共享资源,可能会引发竞态条件和数据不一致的问题。

为了避免这些问题,我学会了使用互斥锁、条件变量和信号量等同步机制来保护共享数据的访问。

其次,线程间通信也是一个重要的方面。

在实验中,我学会了使用线程间的消息队列、管道和共享内存等方式来实现线程间的数据传递和协作。

这些机制可以帮助不同线程之间进行有效的信息交换和协调工作。

此外,线程的创建和销毁也需要注意。

在实验中,我学会了使用pthread库提供的函数来创建和管理线程。

同时,我也了解到线程的创建和销毁是需要谨慎处理的,过多或过少的线程都可能导致系统资源的浪费或者性能下降。

在编写多线程程序时,我还学会了合理地划分任务和资源,以充分发挥多线程的优势。

通过将大任务拆分成多个小任务,并将其分配给不同的线程来并行执行,可以提高程序的效率和响应速度。

此外,我还学会了使用调试工具来分析和解决多线程程序中的问题。

通过使用gdb等调试器,我可以观察线程的执行情况,查找潜在的错误和死锁情况,并进行相应的修复和优化。

总结起来,通过实验我深刻认识到了多线程编程的重要性和挑战性。

合理地设计和管理线程,正确处理线程同步和通信,以及使用调试工具进行分析和修复问题,都是编写高效稳定的多线程程序的关键。

通过不断实践和学习,我相信我能够更好地应用多线程编程技术,提升程序的性能和可靠性。

Linux下的多线程编程实例解析

Linux下的多线程编程实例解析

Linux下的多线程编程实例解析1 引⾔ 线程(thread)技术早在60年代就被提出,但真正应⽤多线程到操作系统中去,是在80年代中期,solaris是这⽅⾯的佼佼者。

传统的Unix也⽀持线程的概念,但是在⼀个进程(process)中只允许有⼀个线程,这样多线程就意味着多进程。

现在,多线程技术已经被许多操作系统所⽀持,包括Windows/NT,当然,也包括Linux。

为什么有了进程的概念后,还要再引⼊线程呢?使⽤多线程到底有哪些好处?什么的系统应该选⽤多线程?我们⾸先必须回答这些问题。

使⽤多线程的理由之⼀是和进程相⽐,它是⼀种⾮常"节俭"的多任务操作⽅式。

我们知道,在Linux系统下,启动⼀个新的进程必须分配给它独⽴的地址空间,建⽴众多的数据表来维护它的代码段、堆栈段和数据段,这是⼀种"昂贵"的多任务⼯作⽅式。

⽽运⾏于⼀个进程中的多个线程,它们彼此之间使⽤相同的地址空间,共享⼤部分数据,启动⼀个线程所花费的空间远远⼩于启动⼀个进程所花费的空间,⽽且,线程间彼此切换所需的时间也远远⼩于进程间切换所需要的时间。

据统计,总的说来,⼀个进程的开销⼤约是⼀个线程开销的30倍左右,当然,在具体的系统上,这个数据可能会有较⼤的区别。

使⽤多线程的理由之⼆是线程间⽅便的通信机制。

对不同进程来说,它们具有独⽴的数据空间,要进⾏数据的传递只能通过通信的⽅式进⾏,这种⽅式不仅费时,⽽且很不⽅便。

线程则不然,由于同⼀进程下的线程之间共享数据空间,所以⼀个线程的数据可以直接为其它线程所⽤,这不仅快捷,⽽且⽅便。

当然,数据的共享也带来其他⼀些问题,有的变量不能同时被两个线程所修改,有的⼦程序中声明为static的数据更有可能给多线程程序带来灾难性的打击,这些正是编写多线程程序时最需要注意的地⽅。

除了以上所说的优点外,不和进程⽐较,多线程程序作为⼀种多任务、并发的⼯作⽅式,当然有以下的优点: 1) 提⾼应⽤程序响应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《操作系统》实验报告
用gcc编译的时候需要加-lpthread,否则会出现以下错误:
五、思考题
多进程编程与多线程编程有何区别?
相同点:Linux下不管是多线程编程还是多进程编程,最终都是用do_fork 实现
不同点:父子进程变量是互不影响的,由于父子进程地址空间是完全隔开的,变量的地址可以是完全相同的。

Linux下编程多用多进程编程少用多线程编程。

多线程比多进程成本低,但性能更低:多进程是立体交通系统,虽然造价高,上坡下坡多耗点油,但是不;多线程是平面交通系统,造价低,但红绿灯太多,老堵车。

1、多进程:子进程是父进程的复制品。

子进程获得父进程数据空间、堆和栈的复制品。

2、多线程:相对与进程而言,线程是一个更加接近与执行体的概念,它可以与同进程的其他线程共享数据,但拥有自己的栈空间,拥有独立的执行序列。

两者都可以提高程序的并发度,提高程序运行效率和响应时间。

3、线程和进程在使用上各有优缺点:线程执行开销小,但不利于资源管理和保护;而进程正相反。

同时,线程适合于在5MP机器上运行,而进程则可以跨机器迁移。

代码:
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
char globe_buffer[100];
void *read_buffer_thread(void *arg);
int main()
{
int res,i;
pthread_t read_thread;
for(i=0;i<20;i++)
globe_buffer[i]=i;
printf("\nxiancheng thread : write buffer finish\n");
sleep(3);
res = pthread_create(&read_thread, NULL, read_buffer_thread, NULL);
if (res != 0)
{
printf("Read Thread creat Error!");
exit(0);
}
sleep(1);
printf("waiting for read thread to finish...\n");
res = pthread_join(read_thread, NULL);
if (res != 0)
{
printf("read thread join failed!\n");
exit(0);
}
printf("read thread xiancheng OK, have fun!! exit ByeBye\n");
return 0;
}
void *read_buffer_thread(void *arg)
{
int i,x;
printf("Read buffer thread read data : \n");
for(i=0;i<20;i++)
{
x=globe_buffer[i];
printf("%d ",x);
globe_buffer[i]=0;
}
printf("\nread over\n");
}。

相关文档
最新文档