共混复合材料

共混复合材料
共混复合材料

1.共混复合材料的定义

聚合物共混物是指两种或两种以上聚合物通过物理的或化学的方法共同混合而形成的宏观上均匀、连续的固体高分子材料。

2.共混改性的目的、意义

单一组分聚合物的性能缺陷

①应力开裂现象严重,从而导致材料的可靠性大大下降。

②缺口敏感性大,制品稍受损伤,强度急剧下降。

③熔体粘度大,加工温度高,成形性不好。

④某方面的性能不能满足使用要求。

⑤成本高

高分子材料共混改性的目的

(1)改善高分子材料的某些物理机械性能

①改善韧性(提高抗冲击性)

②改善耐热性

③提高尺寸稳定性

④提高耐磨性

⑤改善耐化学药品性(耐溶剂性)

⑥其它物理机械性能,如气密性、耐候性、阻燃性、阻尼性、粘结性、抗静电性、生物相容性等。

2)改善高分子材料的加工性能

①改善高分子材料的熔体流动性,即通过共混改变聚合物的熔体粘度。

②控制结晶聚合物的结晶行为。

(3)降低成本

在保证材料使用性能的前提下,填充价格低的组分来降低材料的成本。(4)赋予高分子材料某些特殊性能

某些应用场合需要高分子材料具有某些特殊性能,如阻燃性、导电性、阻尼性等,可以通过添加具有相应特性的组分使材料具有该特性。

高分子合金:一般是指塑料与塑料的共混物以及在塑料中掺混橡胶的共混物。共混与共聚相比,工艺简单,但共混时存在相容性问题,若两种聚合物共混时相容性差,混合程度(相互的分散程度)很差,易出现宏观的相分离,达不到共混的目的,无实用价值。

3.聚合物共混的应用与研究

?最早利用共混改性的是聚苯乙烯,把天然橡胶混入聚苯乙烯,制成了改性聚苯乙烯,改变了聚苯乙烯的脆性,使它变得更为坚韧和耐冲击,这是因为当聚苯乙烯和天然橡胶的共混物受到外力冲击时,分散在聚苯乙烯中的天然橡胶颗粒能够吸收大量的冲击能量,使共混物耐冲击性和韧性有所提高。

?大量的聚氯乙烯中加入少量丁腈橡胶,即使不加增塑剂,也能得到像软聚氯乙烯一样的共混物,其中丁腈橡胶起了增塑剂的作用。丁腈橡胶在共混

物中既不挥发,也不渗出,比通用的增塑剂要好。这种共混物具有耐油、耐磨、耐老化、低温下不发脆的优点。

?聚碳酸酯是一种性能优良的工程塑料,但它存在着内应力大、不耐有机溶剂、在水蒸气和热水中易水解等缺点。如果聚碳酸酯和聚乙烯共混,制得

的改性聚碳酸酯就变成耐沸水、耐应力开裂性,而且冲击韧性也有所改善

的塑料。

4.共混聚合物的制备方法

物理共混法

定义:将各高分子组份在混合设备如高速混合机,双辊混炼机,挤出机中均匀混合。

大多数高聚物的共混物均可用物理共混法制备,在混合及混炼过程中通常仅有物理变化。但有时由于强烈的机械剪切作用及热效应使一部分高聚物发生降解,产生大分子自由基,继而形成少量接枝或嵌断共聚物,但这类反应不应成为主体。以物理形态分类,物理共混法包括粉料(干粉)共混、熔体共混、溶液共混及乳液共混四类。

⑴干粉共混法

将两种或两种以上品种不同的细粉状高聚物在各种通用的塑料混合设备中加以混合,形成均匀分散的粉状高聚物的方法,称为干粉共混法,用此种方法进行高聚物共混时,也可同时加入必要的各种塑料助剂。

经干粉混合所得高聚物共混料,在某些情况下可直接用于压制、压延、注射或挤出成型,或经挤出造粒后再用于成型。

优点:设备简单、操作容易。缺点:所用高聚物主要为粉状,若原料颗粒大,则需粉碎,干粉混合时,高聚物料温低于粘液温度,物料不易流动,混合分散效果较差,一般情况下,不宜单独使用此法。

⑵熔体共混法

熔体共混也叫熔融共混,此法可将共混所用高聚物组分在它们的粘流温度以上用混炼设备制取均匀的高聚物共熔体,然后再冷却,粉碎或造粒的方法。

聚合物I 冷却—粉碎—粉状共混料

—初混合—熔融共混—冷却—造粒—粒状共混料

聚合物II 直接成型

(3)溶液共混法

将原料各组份加入共同溶剂中,或将原料高聚物组分分别溶解,再混合,搅拌溶解混合均匀,然后加热蒸发或加入非溶剂共沉淀,使获得高聚物共混物。

溶液共混法运用于易溶高聚物和某些液态高聚物以及高聚物共混物以溶液状态被应用的情况。工业上应用意义不大。

(4)乳液共混法

将不同高聚物乳液一起搅拌混合均匀后,加入凝聚剂使异种高聚物共沉淀以形成高聚物共混体系。

当原料高聚物为高聚物乳液时,或共混物将以乳液形式应用时,此法最有利。

接枝共聚—共混是首先制备一种高聚物(高聚物组分I),然后将其溶于另一高聚物(高聚物组分II)的单体中,形成均匀溶液后再依靠引发剂或热能引发,使单体与高聚物组分I发生接枝共聚,同时单体还会发生均聚作用,上述反应产物即高聚物共混物,它通常包含着三种主要高聚物组成,即高聚物I,高聚物II及以高聚物I为骨架接枝上高聚物II的接枝共聚物。接枝共聚组分的存在促进了两种高聚物组分的相容。

IPN法形成互穿网络高聚物共混物,是一种以化学法制备物理共混物的方法,其典型的操作是先制备一交联高聚物网络(高聚物I),将其在含有活化剂和交联剂的第二种单体中溶胀,然后聚合,于是第二步反应所产生的交联高聚物网络与第一种高聚物网络互相贯穿,实现了两种高聚物的共混,在这种体系中,两种高聚物网络之间不存在接枝或化学交联,而是通过在两相界面区域不同链段的扩散和纠缠达到两相之间良好的结合,形成一种互穿网络高聚物共混体系,其形态结构为两相连续。

IPNs有分步型、同步型、互穿网络弹性体及胶乳-IPNs等不同类型

(1)分步型IPNs,它是先合成交联的聚合物1,再用含有引发剂和交联剂的单体2使之溶胀,然后使单体2就地聚合交联而得。

(2)同步型IPNs,两种聚合物网络是同时生成。其制备方法是,将两种单体混溶在一起,使两者以互不干扰的方式各自聚合交联。

3)互穿网络弹性体:由两种线型弹性体胶乳混合在一起,再进行凝聚并同时进行交联。

(4)胶乳-IPNs:就是用乳液聚合的方法制得的IPNs

复合材料工艺大全

复合材料工艺大全 复合材料成型工艺是复合材料工业的发展基础和条件。随着复合材料应用领域的拓宽,复合材料工业得到迅速发展,老的成型工艺日臻完善,新的成型方法不断涌现,目前聚合物基复合材料的成型方法已有20多种,并成功地用于工业生产。如: (1)手糊成型工艺--湿法铺层成型法; (2)喷射成型工艺; (3)树脂传递模塑成型技术(RTM技术); (4)袋压法(压力袋法)成型; (5)真空袋压成型; (6)热压罐成型技术; (7)液压釜法成型技术; (8)热膨胀模塑法成型技术; (9)夹层结构成型技术; (10)模压料生产工艺; (11)ZMC模压料注射技术; (12)模压成型工艺; (13)层合板生产技术; (14)卷制管成型技术; (15)纤维缠绕制品成型技术; (16)连续制板生产工艺; (17)浇铸成型技术; (18)拉挤成型工艺; (19)连续缠绕制管工艺; (20)编织复合材料制造技术; (21)热塑性片状模塑料制造技术及冷模冲压成型工艺; (22)注射成型工艺; (23)挤出成型工艺; (24)离心浇铸制管成型工艺; (25)其它成型技术。 视所选用的树脂基体材料的不同,上述方法分别适用于热固性和热塑性复合材料的生产,有些工艺两者都适用。

复合材料制品成型工艺特点:与其它材料加工工艺相比,复合材料成型工艺具有如下特点: (1)材料制造与制品成型同时完成 一般情况下,复合材料的生产过程,也就是制品的成型过程。材料的性能必须根据制品的使用要求进行设计,因此在选择材料、设计配比、确定纤维铺层和成型方法时,都必须满足制品的物化性能、结构形状和外观质量要求等。 (2)制品成型比较简便 一般热固性复合材料的树脂基体,成型前是流动液体,增强材料是柔软纤维或织物,因此用这些材料生产复合材料制品,所需工序及设备要比其它材料简单的多,对于某些制品仅需一套模具便能生产。 ◇成型工艺层压及卷管成型工艺 1、层压成型工艺 层压成型是将预浸胶布按照产品形状和尺寸进行剪裁、叠加后,放入两个抛光的金属模具之间,加温加压成型复合材料制品的生产工艺。它是复合材料成型工艺中发展较早、也较成熟的一种成型方法。该工艺主要用于生产电绝缘板和印刷电路板材。现在,印刷电路板材已广泛应用于各类收音机、电视机、电话机和移动电话机、电脑产品、各类控制电路等所有需要平面集成电路的产品中。 层压工艺主要用于生产各种规格的复合材料板材,具有机械化、自动化程度高、产品质量稳定等特点,但一次性投资较大,适用于批量生产,并且只能生产板材,且规格受到设备的限制。 层压工艺过程大致包括:预浸胶布制备、胶布裁剪叠合、热压、冷却、脱模、加工、后处理等工序。 2、卷管成型工艺 卷管成型工是用预浸胶布在卷管机上热卷成型的一种复合材料制品成型方法,其原理是借助卷管机上的热辊,将胶布软化,使胶布上的树脂熔融。在一定的张力作用下,辊筒在运转过程中,借助辊筒与芯模之间的摩擦力,将胶布连续卷到芯管上,直到要求的厚度,然后经冷辊冷却定型,从卷管机上取下,送入固化炉中固化。管材固化后,脱去芯模,即得复合材料卷管。

聚乳酸_有机蒙脱石纳米插层复合材料的制备及表征

第31卷第4期 非金属矿 Vol.31 No.4 2008年7月 Non-Metallic Mines July, 2008 聚乳酸是一种具有广泛应用前景的环境友好型生物高分子可降解材料[1,2],但其力学性能、热稳定性能不稳定。利用层状硅酸盐的特殊结构, 使硅酸盐片层与聚乳酸基体实现纳米尺度复合,并均匀分散在聚乳酸基体中,形成聚乳酸/有机蒙脱石纳米复合材料 [3,4] 。绝大部分传统聚合物/黏土纳米复合材料废弃物 不能自然降解,对环境造成污染。而聚乳酸/有机蒙脱石纳米复合材料可有效克服这一缺点,是与生态和 环境相适应的“绿色聚合物复合材料”[5~7] ;这类材料 还改善了单一生物降解性聚合物材料的力学、耐热、阻燃、气体阻隔等性能[8~11],拓展了材料的应用范围,可从根本上解决合成材料废品废料造成的污染问题。 目前,聚乳酸/有机蒙脱石纳米复合材料,基本上是以聚乳酸和蒙脱石采用熔融共混法制备[7,9,12]。 本实验采用乳酸单体为原料的原位插层聚合方法,制备了聚乳酸/有机蒙脱石纳米插层复合材料,并通过傅立叶变换红外光谱(FT-IR)、X 射线衍射(XRD )、透射电子显微镜(TEM )、热重分析(TGA )对其结构、形态和热稳定性能进行了表征,同时对材料的降解性能进行了初步研究。1?实验部分 1.1 原料和试剂?D , L-乳酸(含量≥85%),天津市巴斯夫化工有限公司;氯化亚锡,西安化学试剂厂;氧化锌,西安化学试剂厂;乙酸乙酯,天津市巴斯夫化工有限公司;正辛醇,天津市福晨化学试剂厂;三氯甲烷,西安化学试剂厂;分子筛3?型,分析纯,天津市福晨化学试剂厂;以上均为分析纯。有机蒙脱石(OMMT ),实验室自制。 1.2 主要仪器设备 循环水式真空泵,SHB-III 型,郑州长城科工贸有限公司;电热真空干燥箱,DZF-6020 收稿日期:2008-03-28 基金项目:2005年度新疆维吾尔自治区高校科研计划(XJEDU2005E01) 聚乳酸/有机蒙脱石纳米插层复合材料的制备及表征 甄卫军?马小惠?袁龙飞?刘月娥?李志娟?庞桂林 (新疆大学化学化工学院,乌鲁木齐 830046) 摘?要?以乳酸制备的丙交酯和有机蒙脱石为原料, 通过原位插层聚合法制备了聚乳酸/有机蒙脱石纳米插层复合材料, 分别采用傅立叶变换红外光谱、X 射线衍射、透射电子显微镜、热重分析等对聚乳酸/有机蒙脱石纳米插层复合材料的结构、形貌及热稳定性进行了表征和分析,同时研究了材料的降解性能。研究表明,有机膨润土在聚合过程中被剥离成很小的粒子,并分散在聚乳酸基体中,形成聚乳酸/有机蒙脱石纳米插层复合材料。其蒙脱石层间距为2.439nm ,层间距明显增大,表明聚乳酸分子链插入到蒙脱石片层间,实现了原位插层聚合,并形成了插层型结构。材料的热失重曲线移向高温端,其热分解温度提高,热稳定性比纯PLA 有明显的提高。在不同介质中降解结果表明,材料在碱液中降解速率最快。 关键词?有机蒙脱石?聚乳酸?纳米插层复合材料?降解 中图分类号: TB332 文献标识码:A 文章编号:1000-8098(2008)04-0048-05Preparation and Characterization of Polylactic Acid/Organomontmorillonite Intercalation Nanocomposite Zhen Weijun Ma Xiaohui Yuan Longfei Liu Yuee Li Zhijuan Pang Guilin (College of Chemistry and Chemical Engineering of Xinjiang University, Urumqi 830046) Abstract The polylactic acid/organomontmorillonite intercalation nanocomposite was prepared by in-situ intercalative polymerization with organomontmorillonite (OMMT) and lactide(LA) which was obtained from lactic acid. The structure and properties of polylactic acid/organomontmorillonite intercalation nanocomposite were characterized by FT-IR, XRD, TEM and TGA. The biodegradability of PLA/OMMT intercalation nanocomposite was also discussed in this study. The research results indicated that the silicate layers were exfoliated and dispersed into the PLA matrix during the polymerization, the layer spacing of PLA/OMMT intercalation nanocomposite was 2.439nm, which revealled the swellable silicate layers were intercalated into the PLA matrix, and in-situ intercalative polymerization was done. The TGA curve of PLA/OMMT intercalation nanocomposite was shifted to higher temperature, which illustrated that intercalation of the OMMT into PLA matrix enhanced the thermal stability of PLA/OMMT intercalation nanocomposite. The results of the degradation of PLA/OMMT intercalation nanocomposite in different media showed PLA/OMMT intercalation nanocomposite was degraded more rapidly in NaOH solution. Key words organomontmorillonite polylactic acid intercalation nanocomposite degradation

复合材料层合板的厚度方向性能和层间性能_张汝光[1]

· 2 · 玻璃钢 2006年第4期 复合材料层合板的厚度方向性能 和层间性能  张 汝 光 (上海玻璃钢研究院,上海 201404) 摘 要 复合材料层合板厚度方向性能和层间性能有着完全不同物理的概念,不能混用,以免发生差错。用三点弯曲外伸梁法,测定一般层合板厚度方向的剪切性能,理论上可行,但在实际测试中会产生较大误差,很难保证数据的准确性。 关键词:层合板; 厚度方向; 层间; 三点弯曲试验 1 两个不同的物理概念 复合材料层合板厚度方向的性能和层间性能有着完全不同的物理概念,应该加于区别,不能混用,以免发生差错。虽然厚度 方向在单向拉伸、压缩或剪切应力作 用下,层间界面相受到同样的拉伸、 压缩或剪切应力,但其应变完全不同 (见图1、图2和图3),破坏强度也 3σ 13τ3 图2 层合板厚度-3方向的受力和表观变形 图3 层合板层间界面相的受力和变形

· 3 · 层间性能顾名思义,是层合板两层之间界面相的性能,反映单纯界面相对外界作用的响应;而厚度方向的性能,则反映整个层板材料在3方向的表观性能,它包括各层及其界面相对外界作用的综合响应。在复合材料层板的受力分析中,需要区分这两个不同的概念,以免发生差错。如,在分析层合板厚度方向的应变时,需要用厚度方向的表观模量;在分析由于相邻层性能的不匹配造成的层间应力时(如:拉伸、压缩时,由于两相邻层泊松比不同或温度变化时,由于两相邻层热膨胀系数不同,而产生的层间剪切应力;或拉伸、压缩时,由于两相邻层模量的不同,而产生的层间正应力等等),需要用层间的界面相模量。而厚度方向的模量往往要比层间界面相的模量大2至5倍。又如在分析单向板的拉伸和压缩不同的损伤扩展、破坏模式和强度时,界面相的性能起非常重要的作用,而它完全不同于层合板厚度方向的性能,不能用后者来取代。 1.1 厚度方向和层间的弹性模量 由上图可以清楚看出,受简单拉伸(或压缩)和剪切时,虽然复合材料层合板的层间应力和厚度方向的应力相等,其应变完全不同。材料的弹性模量等于产生单位应变所需要的作用应力,应力相等,而应变不等,自然它们的弹性模量也不相等。即 int E (层间拉伸模量) ≠ 3E (厚度方向拉伸模量) int G (层间剪切模量) ≠ 13G (厚度方向剪切模量) 1.2 厚度方向和层间的强度 厚度方向的作用应力达到最大时,材料发生破坏,此时的应力是复合材料层合板厚度方向的强度。其破坏可以是发生在界面相上,也可以是发生在某一层内。只有当破坏发生在界面相时,厚度方向的强度才等于层间强度。如,若层合板中含有泡沫层(如泡沫夹层板),破坏往往就发生在泡沫层内,厚度方向的强度等于泡沫材料的强度,而不是层间强度。对大多数的层合板,破坏常常发生在层间,因此可认为是层间强度。但这不是绝对的,所有还是分开为好,以避免发生差错。 2 层合板厚度方向性能和层间性能的测试 由于通过对厚度方向施加单向力,就可实现对层间界面相施加同样的单向力,层间性能的测试往往就可以相同于对厚度方向的测试,只是在对数据分析处理时,要注意加于区别。如: 2.1 层合板厚度方向性能的测试 厚度方向的弹性模量: 333/εσ??=E 131313/γτ??=G 厚度方向的强度:

航空航天复合材料技术发展现状

航空航天复合材料技术发展现状 2008-11-25 中国复合材料在线[收藏该文章] 材料的水平决定着一个领域乃至一个国家的科技发展的整体水平;航空、航天、空天三大领域都 对材料提出了极高的要求;材料科技制约着宇航事业的发展。 固体火箭发动机以其结构简单,机动、可靠、易于维护等一系列优点,广泛应用于武器系统及航 天领域。而先进复合材料的应用情况是衡量固体火箭发动机总体水平的重要指标之 一。在固体发动机研制及生产中尽量使用高性能复合材料已成为世界各国的重要发展目标, 目前已拓展到液体动力领域。科技发达国家在新材料研制中坚持需求牵引和技术创新相结合,做到了需求牵引带动材料技术发展,同时材料技术创新又推动了发动机水平提高的良性发展。 目前,航天动力领域先进复合材料技术总的发展方向是高性能、多功能、高可靠及低成本。 作为我国固体动力技术领域专业材料研究所,四十三所在固体火箭发动机各类结构、功能复合材料研究及成型技术方面具有雄厚的技术实力和研究水平,突破了我国固体火箭发动 机用复合材料壳体和喷管等部件研制生产中大量的应用基础技术和工艺技术难关,为我国的 固体火箭发动机事业作出了重要的贡献,同时牵引我国相关复合材料与工程专业总体水平的 提高。建所以来,先后承担并完成了通讯卫星东方红二号远地点发动机,气象卫星风云二号 远地点发动机,多种战略、战术导弹复合材料部件的研制及生产任务。目前,四十三所正在 研制多种航天动力先进复合材料部件,研制和生产了载人航天工程的逃逸系统发动机部件。 二、国内外技术发展现状分析 1、国外技术发展现状分析 1.1结构复合材料 国外发动机壳体材料采用先进的复合材料,主要方向是采用炭纤维缠绕壳体,使发动机质量比有较大提高。如美国“侏儒”小型地地洲际弹道导弹三级发动机(SICBM-1 、-2、- 3 )燃烧室壳体由IM-7炭纤维/HBRF-55A 环氧树脂缠绕制作,IM-7炭纤维拉伸强度为 5 300MPa , HBRF-55A 环氧树脂拉伸强度为84.6MPa,壳体容器特性系数(PV/Wc )>3 9KM ;美国的潜射导弹“三叉戟II (D5 )”第一级采用炭纤维壳体,质量比达0.944,壳 体特性系数43KM,其性能较凯芙拉/环氧提高30% 国外炭纤维的开发自八十年代以来,品种、性能有了较大幅度改观,主要体现在以下两个方 面:①性能不断提高,七、八十年代主要以3000MPa的炭纤维为主,九十年代初普遍使用 的IM7、IM8纤维强度达到5300MPa,九十年代末T1000纤维强度达到7000MPa,并已开始工程应用;②品种不断增多,以东丽公司为例,1983年产的炭纤维品种只有4种,至U 1995 年炭纤维品种达21种之多。不同种类、不同性能的炭纤维满足了不同的需要,为炭纤维复合材料的广泛应用提供了坚实的基础。 芳纶纤维是芳族有机纤维的总称,典型的有美国的Kevlar、俄罗斯的APMOC,均已在多 个型号上得到应用,如前苏联的SS24、SS25洲际导弹。俄罗斯的APMOC纤维生产及其应 用技术相当成熟,APMOC纤维强度比Kevlar高38%、模量高20%,纤维强度转化率已达到75%以上。PBO纤维是美国空军1970年开始作为飞机结构材料而着手研究的产品,具有刚

复合聚合物层合梁弯曲正应力的测试与计算

复合聚合物层合梁弯曲正应力的测试与计算 【摘要】在此次创新中运用了电测技术对不同配比的环氧树脂与有机玻璃复合层合梁的弯曲正应力进行了测试,并且基于层合梁弯曲的理论,计算了均布载荷作用下简支层合梁的弯曲正应力。 【关键词】弹性层合梁;电测技术;弯曲正应力;中性轴 1.选题背景 复合材料将两种或多种性质不同的材料组合成一种具有多种性能的材料,新组成的材料的性能优于任何一种基体材料。聚合物复合材料是由诸多聚合树脂制成的多相位材料,它们可产生一种比任何一种独立物质性能都要强的疏松物质,减少成本、减少体积密度或增加美观性;增强聚合物的性能,改善诸如硬度及强度等的机械性能;承载负荷,保护纤维。 多年来,聚合物复合材料在生产生活中得到广泛应用,建筑业成为聚合物复合材料的第二大消费产业,在全球市场消费份额中的比例为35%。在土木结构翻修、式样翻新,作为钢筋混凝土以及较少范围的新型土木结构的替代物方面,聚合物复合材料为其自身树立了实际可行及具有竞争力的形象。聚合物复合结构在战略导弹、战术导弹、运载火箭及航天飞行器的太阳电池阵结构、有效载荷结构、本体结构、桁架结构、热控制系统和压力容器的应用十分广泛且对国家军事水平的发展都有深远意义。 2.方案论证 有关层合梁应力分析的一般理论已有一些研究成果,而弹性层合梁弯曲的Timoshenko理论则为工程计算提供简易可行的理论依据。在材料力学课程中有经典的单层弹性梁的纯弯曲实验,是以验证理论结果为主的。本研究在传统单层弹性梁的纯弯曲实验的基础上,设计和实施了层合梁的弯曲实验。运用电测技术对多层复合物聚合材料层合梁的弯曲正应力进行了测试,并且运用弹性层合梁弯曲的Timoshenko理论,计算了四点弯曲简支层合梁的弯曲正应力分布。 3.研究方法 制作多层复合梁试件 试件采用浇铸的方法做出。试件分组如下表。(EP固化剂与环氧树脂配比1:1为现在市场上最流通的配比。) 组别EP固化剂与环氧树脂配比温度固化时间 A 1:2 15℃24h

复合材料层合板

复合材料层合板 MA 02139,剑桥 麻省理工学院 材料科学与工程系 David Roylance 2000年2月10日 引言 本模块旨在概略介绍纤维增强复合材料层合板的力学知识;并推导一种计算方法,以建 立层合板的平面内应变和曲率与横截面上内力和内力偶之间的关系。虽然这只是纤维增强复 合材料整个领域、甚至层合板理论的很小一部分,但却是所有的复合材料工程师都应掌握的 重要技术。 在下文中,我们将回顾各向同性材料矩阵形式的本构关系,然后直截了当地推广到横观 各向同性复合材料层合板。因为层合板中每一层的取向是任意的,我们随后将说明,如何将 每个单层的弹性性能都变换到一个共用的方向上。最后,令单层的应力与其横截面上的内力 和内力偶相对应,从而导出控制整块层合板内力和变形关系的矩阵。 层合板的力学计算最好由计算机来完成。本文简略介绍了几种算法,这些算法分别适用 于弹性层合板、呈现热膨胀效应的层合板和呈现粘弹性响应的层合板。 各向同性线弹性材料 如初等材料力学教材(参见罗兰奈斯(Roylance )所著、1996年出版的教材1)中所述, 在直角坐标系中,由平面应力状态(0===yz xz z ττσ)导致的应变为 由于泊松效应,在平面应力状态中还有沿轴方向的应变:z )(y x z σσνε+?=,此应 变分量在下文中将忽略不计。在上述关系式中,有三个弹性常量:杨氏模量E 、泊松比ν和 切变模量。但对各向同性材料,只有两个独立的弹性常量,例如,G 可从G E 和ν得到 上述应力应变关系可用矩阵记号写成 1 参见本模块末尾所列的参考资料。

方括号内的量称为材料的柔度矩阵,记作S 或。 弄清楚矩阵中各项的物理意义十分重要。从矩阵乘法的规则可知,中第i 行第列的元素表示第个应力对第i 个应变的影响。例 如,在位置1,2上的元素表示方向的应力对j i S j i S j j y x 方向应变的影响:将E 1乘以y σ即得由y σ引起的方向的应变,再将此值乘以y ν?,得到y σ在x 方向引起的泊松应变。而矩阵中的 零元素则表示法向分量和切向分量之间无耦合,即互不影响。 如果我们想用应变来表示应力,则式(1)可改写为: 式中,已用G )1(2ν+E 代替。该式可进一步简写为: 式中,是刚度矩阵。注意:柔度矩阵S 中1,1元素的倒数即为杨氏模量,但是 刚度矩阵中的1,11 S D ?=D 元素还包括泊松效应、因此并不等于E 。 各向异性材料 如木材、或者如图1所示的单向纤维增强复合材料,其典型特征是:沿 纤维方向的弹性模量有纹理的材料,1E 将大于沿横向的弹性模量和。当2E 3E 321E E E ≠≠时,该材料称 为其力学性能是各向同性的,即为正交各向异性材料。不过常见的情况是:在垂直于纤维方向的平面内,可以足够精确地认 32E E =,这样的材料称为横观各向同性材料。这类各向异 同性材料的推广: 性材料的弹性本构关系必须加以修正, 下式就是各向同性弹性体通常的本构方程对横观各向 式中,参数12ν是主泊松比,如图1所示,沿方向1的应变将引起沿方向2的应变,后者与 前者之比的绝对值就是12ν。此参数值不象在各向同性材料中那样,限制其必须小于0.5。反 过来,沿方向2的应变将引起沿方向1的应变,后者与前者之比的绝对值就是21ν。因为方

复合材料铺层设计说明书

复合材料铺层设计 复合材料制件最基本的单元是铺层。铺层是复合材料制件中的一层单向带或织物形成的复合材料单向层。由两层或多层同种或不同种材料铺层层合压制而成的复合材料板材称为层合板。复合材料层压结构件的基本单元正是这种按各种不同铺层设计要素组成的层合板。 本章主要介绍由高性能连续纤维与树脂基体材料构成的层合结构和夹层结构设计的基本原理和方法,也介绍复合材料结构在导弹结构中的应用。 一、层合板及其表示方法 (1) 铺层及其方向的表示? 铺层是层合板的基本结构单元,其厚度很薄,通常约为~。铺层中增强纤维的方向或织物径向纤维方向为材料的主方向(1向:即纵向);垂直于增强纤维方向或织物的纬向纤维方向为材料的另一个主方向(2向:即横向)。1—2坐标系为材料的主坐标系,又称正轴坐标系,x-y坐标系为设计参考坐标系,如图所示。 铺层是有方向性的。铺层的方向用纤维的铺向角(铺层角)θ表示。所谓铺向角(铺层角)就是铺层的纵向与层合板参考坐标X轴之间的夹角,由X轴到纤维纵向逆时针旋转为正。参考坐标系X-Y与材料主方向重合则为正轴坐标系。X-Y方向与材料主方向不重合则称偏轴坐标系,如图(b)所示。铺层的正轴应力与偏轴应力也在图中标明。

(2)层合板的表示方法? 为了满足设计、制造和力学性能分析的需要,必须简明地表示出层合板中各铺层的方向和层合顺序,故对层合板规定了明确的表示方法,如表所示。 二、单层复合材料的力学性能

单层的力学性能是复合材料的基本力学性能,即材料工程常数。由于单层很薄,一般仅考虑单层的面内力学性能,故假设为平面应力状态。单层在材料主轴坐标系中通常是正交各向异性材料,在其主方向上某一点处的正应变ε1、ε2只与该点处的正应力σ1、σ2有关,而与剪应力τ12无关;同时,该点处剪应变γ12也仅与剪应力τ12有关,而与正应力无关。 材料工程常数共9个:纵向和横向弹性模量Ε1和Ε2、主泊松比ν12、纵横剪切弹性模量G12,共四个弹性常数;还有纵向拉伸和压缩强度X1、X2,横向拉伸与压缩强度Y1、Y2,纵横剪切强度S共五个强度参数。这9个工程常数是通过单向层合板的单轴试验确定的。通常情况下,单层力学性能有明显的方向性,与增强纤维的方向密切相关,即Ε1>>Ε2,X>>Y;而且拉伸与压缩强度不相等,即X1≠X2,Y1≠Y2;纵横剪切性能与拉伸、压缩性能无关,即S 与X 、Y 无关。 由于单层复合材料是复合材料的基础,故往往用它的性能来说明复合材料的性能。但应当指出:单层的性能不能替代实际使用的层合复合材料的性能。一般说,实际使用的层合复合材料性能要低于单向复合材料的纵向性能。复合材料的性能与材料中含有的纤维数量有很大的关系,所以在规定性能数据时,一般还应给定材料所含的纤维量,通常用纤维所占的体积百分比V来表示。V称为纤维体积分数或纤维体积含量,其值通常控制在60%左右。 三、复合材料结构的制造与成形工艺 (1)制造与成形工艺的分类、特点与适用范围? 树脂基复合材料结构成形工艺方法多种多样,各有所长。工艺方法的分类见图各种工艺方法的特点与适用范围见表。

abaqus复合材料

复合材料不只是几种材料的混合物。它具有普通材料所没有的一些特性。它在潮湿和高温环境,冲击,电化学腐蚀,雷电和电磁屏蔽环境中具有与普通材料不同的特性。 复合材料的结构形式包括层压板,三明治结构,微模型,编织预成型件等。 复合材料的结构和材料具有同一性,并且可以在结构形成时同时确定材料分布。它的性能与制造过程密切相关,但是制造过程很复杂。由于复合结构不同层的材料特性不同,复合结构在复杂载荷作用下的破坏模式和破坏准则是多种多样的。 在ABAQUS中,复合材料的分析方法如下 1,造型 它的结构形式决定了它的建模方法,并且可以使用基于连续体的壳单元和常规壳单元。复合材料被广泛使用,但是复合材料的建模是一个困难。铺设复杂的结构光需要一个月 2,材料

使用薄片类型(层材料)建立材料参数。材料参数可以工程参数的形式给出,或者材料强度数据可以通过子选项给出。这种材料仅使用平面应力问题。 ABAQUS可以通过两种方式定义层压板:复合截面定义和复合层压板定义 复合截面定义对每个区域使用相同的图层属性。这样,我们只需要建立壳体组合即可将截面属性分配给二维(在网格中定义的常规壳体元素)或三维(三维的大小应与壳体中给定的厚度一致)。基于网格中定义的连续体的壳单元) ABAQUS复合材料分析方法介绍 复合叠加定义是由复合布局管理器定义的,它主要用于在模型的不同区域中构造不同的层。因此,应在定义之前对区域进行划分,并且应将不同的层分配给不同的区域。可以根据常规外壳的元素和属性进行定义。 传统的壳单元定义了每个层的厚度,并将其分配给二维模型。应该给基于连续体的壳单元或实体单元提供3D模型(厚度是相对于单元长度的系数,因此厚度方向可以分为一层单元)。

航空航天先进复合材料

航空航天先进复合材料现状 2014-08-10 Lb23742 摘要:回顾了树脂基复合材料的发展史;综述了先进复合材料工业上通常使用环氧树脂的品种、性能和特性;复合材料使用的增强纤维;国防、军工及航空航天用树脂基复合材料;用于固体发动机壳体的树脂基体;用于固体发动机喷管的耐热树脂基体;火箭发动机壳体用韧性环氧树脂基体;树脂基结构复合材料;防弹结构复合材料;先进战斗机用复合材料;树脂基体;航天器用外热防护涂层材料;飞机结构受力构件用的高性能环氧树脂复合材料;碳纤维增强树脂基复合材料在航空航天中的其它应用;民用大飞机复合材料;国产大飞机的软肋还是技术问题;复合材料之惑。 关键词:树脂基体;复合材料;国防;军工;航空航天;结构复合材料 0 前言 复合材料与金属、高聚物、陶瓷并称为四大材料。今天,一个国家或地区的复合材料工业水平,已成为衡量其科技与经济实力的标志之一。先进复合材料是国家安全和国民经济具有竞争优势的源泉。到2020年,只有复合材料才有潜力获得20-25%的性能提升。 环氧树脂是优良的反应固化型性树脂。在纤维增强复合材料领域中,环氧树脂大显身手。它与高性能纤维:PAN基碳纤维、芳纶纤维、聚乙烯纤维、玄武岩纤维、S或E玻璃纤维复合,便成为不可替代的重要的基体材料和结构材料,广泛运用在电子电力、航天航空、运动器材、建筑补强、压力管雄、化工防腐等六个领域。本文重点论述航空航天先进树脂基体复合材料的国内外现状及中国的技术软肋问题 1 树脂基复合材料的发展史 树脂基复合材料(Resin Matrix Composite)也称纤维增强塑料(Fiber Reinforced Plastics),是技术比较成熟且应用最为广泛的一类复合材料。这种材料是用短切的或连续纤维及其织物增强热固性或热塑性树脂基体,经复合而成。以玻璃纤维作为增强相的树脂基复合材料在世界范围内已形成了产业,在我国不科学地俗称为玻璃钢。 树脂基复合材料于1932年在美国出现,1940年以手糊成型制成了玻璃纤维增强聚酯的军用飞机的雷达罩,其后不久,美国莱特空军发展中心设计制造了一架以玻璃纤维增强树脂为机身和机翼的飞机,并于1944年3月在莱特-帕特空军基地试飞成功。1946年纤维缠绕成型技术在美国出现,为纤维缠绕压力容器的制造提供了技术贮备。1949年研究成功玻璃纤维预混料并制出了表面光洁,尺寸、形状准确的复合材料模压件。1950年真空袋和压力袋成型工艺研究成功,并制成直升飞机的螺旋桨。60年代在美国利用纤维缠绕技术,制造出北极星、土星等大型固体火箭发动机的壳体,为航天技术开辟了轻质高强结构的最佳途径。在此期间,玻璃纤维-聚酯树脂喷射成型技术得到了应用,使手糊工艺的质量和生产效率大为提高。1961年片状模塑料(Sheet Molding Compound, 简称SMC)在法国问世,利用这种技术可制出大幅面表面光洁,尺寸、形状稳定的制品,如汽车、

工程复合材料

工程复合材料论文 学院(部) 材料科学与工程学院 专业材料学 班级 2017131 姓名周健 学号 2017131007 年月日 材料的复合是材料发展的必然规律,复合材料是把金属、无机非金属、高分子等材料组合成一种多相材料,从而赋予复合材料轻质高强以及其他的优越的综合性能。同时复合材料还具有复合效应,即经过复合以后产生各原始组分所不具备的性能。因此,在不少高技术领域。如航天、航空、信息等产业中获得重要的应用。目前复合材料已与金属、无机非金属、高分子并列为四大材料。 纳米复合材料是指分散相尺度至少在一维方向上小于100nm的复合材料,

分散相可以是非品质、半晶质、品质或者兼而有之,可以是有机、无机或两者都有。由于纳米粒子的小尺寸、大比表面积,使表面原子数、表面张力和表面能随粒径的减小急剧增加,从而具有显著的小尺寸效应、量子尺寸效应、表面效应和宏观量子隧道效应等,赋予材料许多新奇的特性和新的规律,为纳米复合材料的研究和应用展示了广阔的前景。 1.橡胶纳米复合材料 1.1黏土/橡胶纳米复合材料 黏土矿物是由硅氧四面体和铝氧八面体按比例叠垛而成的层状硅酸盐,其片层间距一般在几纳米到十几纳米之间,层间存在可交换性的正离子,层与层之间的结合力弱,通过离子交换的方法,将有机正离子引入层问,从而使通常亲水性的黏土矿物表面疏水化,改善黏土与橡胶基质之问的润湿作用。黏土/橡胶纳米复合材料制备关键是扩大黏土片层间距。将橡胶长链引入层间,其微观结构可分为插层型和完全剥离型,目前制备的黏土/橡胶纳米复合材料大多属于插层型。 1.2炭黑和白炭黑/橡胶纳米复合材料 作为纳米粉体。炭黑和白炭黑均具有纳米材料的大多数特性(如强吸附效应、自由基效应、电子隧道效应、不饱和价效应等)。根据纳米复合材料的定义,及炭黑和自炭黑的原生粒子以及它们在橡胶基质中的一次聚合体的尺寸,应当将炭黑和自炭黑增强橡胶归属为纳米复合材料的范畴。更严格地讲,应当是N660级别以上的炭黑增强橡胶。也正因为如此,炭黑和白炭黑的高增强地位一直很难被取代。尽管在橡胶基质中炭黑和白炭黑常以二次聚集体的形式存在.但这种聚集体是松散的物理结合体,如同“密度”较大的星云,并逐渐向外弥散。虽然二次聚集体会对其增强性能产生不同导向和不同程度的影响,但真正起作用的仍是其原生粒子和一次聚集体。另外,就目前报道的大多数纳米复合材料而言,连续相中局部存在分散相的聚集体是非常普遍的,如原位聚合法生成的黏土/尼龙6纳米复合材料,在分散相质量分数超过5%时,也很难做到黏土单晶层在整个基质中完全地、等间距地均匀分散,尽管晶层间距加大了,但仍以较紧密的单元分布在尼龙6基质中。最后,当用物理机械性能判断材料是否为纳米复合材料时,必须考虑分散相的形状问题。 1.3 ZnO(Al2O3)/橡胶纳米复合材料 纳米氧化锌因其粒径小,比表面积大,吸附活性强,从而具有表面效应和高

复合材料层合板强度计算现状

复合材料层合板强度计算现状 作者:李炳田 1.简介 复合材料是指由两种或者两种以上不同性能的材料在宏观尺度上组成的多相材料。一般复合材料的性能优于其组分材料的性能,它改善了组分材料的刚度、强度、热学等性能。复合材料从应用的性质可分为功能复合材料和结构复合材料两大类。功能复合材料主要具有特殊的功能,例如:导电复合材料,它是用聚合物与各种导电物质通过分散、层压或通过表面导 电膜等方法构成的复合材料;烧灼复合材料,它由各种无机纤维增强树脂或非金属基体构成,可用于高速飞行器头部热防护;摩阻复合材料,它是用石棉等纤维和树脂制成的有较高摩擦系数的复合材料,应用于航空器、汽车等运转部件的制动。功能复合材料由于其涉及的学科比较广泛,已不是单纯的力学问题,需要借助电磁学,化学工艺、功能学等众多学科的研究方法来研究。结构复合材料一般由基体料和增强材料复合而成。基体材料主要是各种树脂或金属材料;增强材料一般采用各种纤维和颗粒等材料。其中增强材料在复合材料中起主要作用,用来提供刚度和强度,而基体材料用来支持和固定纤维材料,传递纤维间的载荷。结构复合材料在工农业及人们的日常生活中得到广泛的应用,也是复合材料力学研究的主要对象,是固体力学学科中一个新的分支。在结构复合材料中按增强材料的几何形状及结构形式又可划分为以下三类: 1.颗粒增强复合材料,它由基体材料和悬浮在基体材料中的一种或多种金属或非金属颗 粒材料组合而成。 2.纤维增强复合材料,它由纤维和基体两种组分材料组成。按照纤维的不同种类和形状 又可划分定义多种复合材料。图1.1为长纤维复合材料的主要形式。 图1.1 3.复合材料层合板,它由以上两种复合材料的形式组成的单层板,以不同的方式叠合在 一起形成层合板。层合板是目前复合材料实际应用的主要形式。本论文的主要研究对象就是长纤维增强复合材料层合板的强度问题。长纤维复合材料层合板主要形式如图1.2所示。 图1.2 一般来说,强度是指材料在承载时抵抗破坏的能力。对于各向同性材料,在各个方向上强度均相等,即强度没有方向性,常用极限应力来表示材料的强度。对于复合材料,其强度的显著的特点是具有方向性。因此复合材料单层板的基本强度指标主要有沿铺层主方向(即纤维方向)的拉伸强度Xt和压缩强度Xc;垂直于铺层主方向的拉伸强度Yt和压缩强度Yc以及平面内剪切强度S等5个强度指标。对于复合材料层合板而言,由于它是由若干个单层

复合材料英语

复合材料英语 复合材料专业术语 高性能的长纤维增强热塑性复合材料:(LF(R)T)Long Fiber Reinforced Thermoplastics 玻璃纤维毡增强热塑性复合材料:(GMT)Glass Mat Reinforced Thermoplastics 短玻纤热塑性颗粒材料:(LFT-G)Long-Fiber Reinforce Thermoplastic Granules 长纤维增强热塑性复合材料:(LFT-D)Long-Fiber Reinforce Thermoplastic Direct 玻纤:Glass Fiber 玄武岩纤维:Basalt Fibre (BF) 碳纤维:CFRP 芳纶纤维:AFRP ( Aramid Fiber) 添加剂:Additive 树脂传递模塑成型:(RTM)Resin Transfer Molding 热压罐:autoclave 热压罐成型:autoclave moulding 热塑性复合材料缠绕成型:filament winding of thermoplastic composite 热塑性复合材料滚压成型:roll forming of thermoplastic composite 热塑性复合材料拉挤成型:pultrusion of thermoplastic composite 热塑性复合材料热压罐/真空成型:thermoforming of thermoplastic composite 热塑性复合材料液压成型:hydroforming of thermoplastic composite 热塑性复合材料隔膜成型:diaphragm forming of thermoplastic composite 离心浇注成型:centrifugal casting moulding 泡沫贮树脂成型:foam reserve resin moulding 环氧树脂基复合材料:epoxy resin matrix composite 聚氨酯树脂基复合材料:polyurethane resin matrix composite 热塑性树脂基复合材料:thermoplastic resin matrix composite 玻璃纤维增强树脂基复合材料:glass fiber reinforced resin matrix composite 碳纤维增强树脂基复合材料:carbon fiber reinforced resin matrix composite 芳纶增强树脂基复合材料:aramid fiber reinforced resin matrix composite 混杂纤维增强树脂基复合材料:hybrid fiber reinforced resin matrix composite 树脂基复合材料层压板:resin matrix composite laminate 树脂基纤维层压板:resin matrix fiber laminate 树脂基纸层压板:resin matrix paper laminate 树脂基布层压板:resin matrix cloth laminate

航空航天复合材料设计要求比较

航空航天复合材料结构设计要求的比较 复合材料是指由有机高分子、无机非金属或金属等几类不同材料通过复合工艺组合而成的新型材料,它既能保留原有组分材料的主要特色,又通过材料设计使各组分的性能互相补充并彼此关联与协同,从而获得原组分材料无法比拟的优越性能, 复合化是当代材料技术发展的重要趋势之一,而大量采用高性能复合材料是航空航天飞行器发展的重要方向。航空航天追求性能第一的特点,使其成为先进复合材料技术的率先实验和转化的战场,航空航天工业的发展和需求推动了先进复合材料的发展,而先进复合材料的发展和应用又促进了航空航天的进步。先进复合材料继铝、钢、钛之后,迅速发展成四大结构材料之一,其用量成为航空航天结构的先进性标志之一。将先进复合材料用于航空航天结构上可相应减重20%~30%,这是其他先进技术很难达到的效果。美国NASA的Langley 研究中心在航空航天用先进复合材料发展报告中指出,各种先进技术的应用可以使亚音速运输机获得51%的减重(相对于起飞重量)效益,其中,气动设计与优化技术减重4·6%,复合材料机翼机身和气动剪裁技术减重24·3%,发动机系统和热结构设计减重13.1%,先进导航与飞行控制系统减重9%,说明了先进复合材料的应用减重最明显。这不仅带来相当大的经济效益,而且可以增加装备的机动性,还可以提高其抗疲劳、耐腐蚀性能。 由于航天与航空的使用环境和应用范围存在区别,因而造成复合

材料在航空飞行器与航天飞行器上使用的设计要求也有很多不同之处。而且由于任务目标和使用环境差异,飞机结构的要求不能直接作为空间飞行器的结构设计要求。空间飞行器的飞行环境和承受的载荷很特殊,并且几乎没有可能再去检查和维修航天器的结构或在其任务条件下验证其结构的性能。因此,空间飞行器复合结构设计必须比飞机复合材料结构设计更加稳定可靠。虽然如此,飞机行业的复合材料结构设计方面的经验仍然可以为航天器的复合材料结构设计提供一定的参考和借鉴。 航空和航天复合材料结构设计要求具体在哪些方面存在差异呢? 第一点是两者的生成规模差别很大。航空产品通常进行大规模生产,不仅整机生产数量多,而且因为需要维修等等,这样更换损坏的零件同样数量巨大;而航天产品则大多生产较少。因此在结构设计时,航空产品对结构设计时需要对加工工艺等配套设施进行细致的考虑,以达到成本、周期。效益的均衡,而航天结构设计则大多不需要考虑。同时生产数量的差异也使后续的设计工作产生了很大不同。 第二点是初始设计要求。飞机工业需要通过测试数量庞大的样本总结设计出一套模块建立的方法。但航天器的生产数量很有限,因此用于航空专业的样本采集到模块建立的方法,要想应用于航天器,从成本和进度的角度来看,是不切实际的。 第三点是强度要求。在航空和航天器中,对于强度的要求二者是一致的,但因工作环境不同存在一定的区别。航空和航天器复合材料

复合材料结构与力学设计复结习题(本科生)

《复合材料结构设计》习题 §1 绪论 1.1 什么是复合材料? 1.2 复合材料如何分类? 1.3 复合材料中主要的增强材料有哪些? 1.4 复合材料中主要的基体材料有哪些? 1.5 纤维复合材料力学性能的特点哪些? 1.6 复合材料结构设计有何特点? 1.7 根据复合材料力学性能的特点在复合材料结构设计时应特别注意到哪些问题? §2 纤维、树脂的基本力学性能 2.1 玻璃纤维的主要种类及其它们的主要成分的特点是什么? 2.2 玻璃纤维的主要制品有哪些?玻璃纤维纱和织物规格的表示单位是什么?2.3 有一玻璃纤维纱的规格为2400tex,求该纱的横截面积(取玻璃纤维的密度 为2.54g/cm3)? 2.4 有一玻璃纤维短切毡其规格为450 g/m2,求该毡的厚度(取玻璃纤维的密 度为2.54g/cm3)? 2.5 无碱玻璃纤维(E-glass)的拉伸弹性模量、拉伸强度及断裂伸长率的大致 值是多少? 2.6 碳纤维T-300的拉伸弹性模量、拉伸强度及断裂伸长率的大致值是多少?密 度为多少? 2.7 芳纶纤维(kevlar纤维)的拉伸弹性模量、拉伸强度及断裂伸长率的大致值 是多少?密度为多少? 2.8 常用热固性树脂有哪几种?它们的拉伸弹性模量、拉伸强度的大致值是多 少?密度为多少?热变形温度值大致值多少? 2.9 简述单向纤维复合材料抗拉弹性模量、抗拉强度的估算方法。 2.10 试比较玻璃纤维、碳纤维单向复合材料顺纤维方向拉压弹性模量和强度值,指出其特点。 2.11 简述温度、湿度、大气、腐蚀质对复合材料性能的影响。 2.12 如何确定复合材料的线膨胀系数? 2.13已知玻璃纤维密度为ρf=2.54g/cm3,树脂密度为ρR=1.20g/cm3,采用规格 为450 g/m2的玻璃纤维短切毡制作内衬时,其树脂含量为70%,这样制作一层其GFRP的厚度为多少? 2.14 采用2400Tex的玻璃纤维(ρf=2.54g/cm3)制造管道,其树脂含量为35% (ρR=1.20g/cm3),缠绕密度为3股/10 mm,试求缠绕层单层厚度? 2.15 试估算上题中单层板顺纤维方向和垂直纤维方向的抗拉弹性模量和抗拉强度。 2.16已知碳纤维密度为ρf=1.80g/cm3,树脂密度为ρR=1.25g/cm3,采用规格为300 g/m2的碳纤维布制作复合材料时,其树脂含量为32%,这样制作一层其CFRP的厚度为多少?其纤维体积含量为多少? 2.17 某拉挤构件的腹板,厚度为5mm,采用±45°的玻璃纤维多轴向织物(面密

相关文档
最新文档