功率因数校正原理及相关IC
第9章功率因数校正技术
Ts=T1/N
• 开关电流的周期平均值为
iSA D L i1 D iL
•
开关电流的周期有效值为
iSR D iL1D iL
25
• 而开关电流在输入电压周期内的有效值为
ISR
1 T1
T1 0
iS2dt
1 T1
N1 k 0
TS 0
iS2dt
1 N1 T1 k0 D k TS
I12 sin2 1t
电路控制所需的电压控制、平均电流跟踪控 制、乘法器、驱动、保护、和基准源等全部 电路,使用方便。其主要特点和技术参数为:
– 电源电压:18~35V – 工作频率:10~200kHz – 基准源电压:7.5V – 驱动电流:0.5A(平均值),1.5A(峰值)
27
• 该芯片的内部结构及构成的典型电路如图9-7 。
VD1 VD3 VD5 +
A
LA
LB
B
LC
C
VD7
S
C
VD2 VD4 VD6
图(9-8)
31
• 该电路是工作在电流不连续模式时的升压型斩 波电路。
• PFC电路中D和D′都是时变量,因此用D(t)和
D′(t)表示DtU Uo i si n1tKco1st
K=ω1LIi/Ui
• 通常K很小,DKt≈0UU.0oi s1in,1t 因此,忽略式中第2项
24
• 开关电流的表达式
is Iisin 1t
0
t ksT ,ksT DsT t ksT Ds,T k1Ts
• 将i(t)分解为傅里叶级数,即
itInsinntn n1
T1 :电网电压的周期
i1 t I1si 1 n t 1 :基波成分 3
单相功率因数校正电路
【知识 | 写作答案】单相功率因数校正电路导语:单相功率因数校正电路是一种用来提高电力系统功率因数的装置。
本文将从什么是功率因数、为什么需要校正功率因数以及单相功率因数校正电路的原理和应用等方面展开,带您全面了解单相功率因数校正电路。
一、什么是功率因数?功率因数是指电路中有功功率与视在功率的比值,用cos(φ)表示,其中φ为电路中的相位角。
功率因数是一个描述电路所消耗或所提供的有效功率与总功率之间比值的重要参数。
当功率因数为1时,电路所消耗的有功功率与所提供的总功率完全一致,电路运行高效。
而当功率因数小于1时,电网损耗加大,效率降低,造成能源浪费。
二、为什么需要校正功率因数?校正功率因数的重要性在于提高电力系统的效率和可靠性。
电力系统中功率因数低不仅会导致能源浪费,还会引起电网电流过大、线路和设备过载、线损加大等问题。
功率因数低还会导致电动机效率下降,影响电气设备的寿命。
对于电力系统来说,校正功率因数是一项必不可少的工作。
三、单相功率因数校正电路的原理单相功率因数校正电路采用了电子电路技术,通过合理的电路设计和控制方法来调整电路的功率因数。
其基本原理是通过添加合适的电路,实现对电流和电压的相位调整,从而使得电路的功率因数接近于1。
单相功率因数校正电路的核心部件是功率因数校正电容器,它根据电路的工作情况来调整电流和电压的相位关系。
通过合理选择和调整校正电容器的参数,可以精确校正功率因数,提高电路的能耗效率。
四、单相功率因数校正电路的应用单相功率因数校正电路广泛应用于家庭电器、办公场所、商业设施、工厂厂房等各类电力系统。
在这些场合中,电器设备常常工作在不同负载条件下,功率因数波动较大。
通过使用单相功率因数校正电路,可以有效地提高电力系统的功率因数,减少能源浪费,提高设备的效率和寿命。
结语:单相功率因数校正电路是一种提高电力系统效率和可靠性的重要装置。
本文从功率因数的概念入手,解释了为什么需要校正功率因数,并介绍了单相功率因数校正电路的原理和应用。
功率因数校正的分析
功率因数校正的分析功率因数校正是一种校正电气设备的技术,旨在改善电力系统的功率因数,提高电能的利用效率。
它对降低电能损耗、增加输电距离、改善电力质量等方面具有重要意义。
本文将对功率因数校正的原理、方法和应用进行详细的分析。
首先,我们来了解功率因数的概念。
功率因数是指交流电路中有功功率与视在功率的比值。
在电力系统中,负载的功率因数越低,说明负载对电能的利用效率越低。
例如,功率因数为0.7的电机,其视在功率是有功功率的倒数,即有147%的电能浪费在线路和变压器上。
所以,提高负载的功率因数对于节约能源具有重要的作用。
接下来,我们探讨功率因数校正的原理。
功率因数的补偿可以通过两种方式实现:被动校正和主动校正。
被动校正是指增加并联电容器或电感器,来补偿负载的无功功率。
这种方式简单、成本较低,但对电流谐波产生不利影响。
主动校正则采用电子装置,通过逆变器和电容器的控制,实现在线校正负载的功率因数。
主动校正方式不受谐波干扰,可在较宽的功率范围内校正功率因数,但设备和安装的成本较高。
然后,我们介绍功率因数校正的方法。
根据负载特点和电网需求,有多种方法可用于功率因数校正。
最常见的方法是并联补偿和串联补偿。
并联补偿是在负载侧并联连接电容器或电感器,通过无功功率的补偿来提高功率因数。
串联补偿是在电源侧串联连接逆变器和电容器,通过控制输出电流和电压来改善负载的功率因数。
此外,也可采用混合补偿方法,即并联和串联补偿的结合,根据实际情况综合考虑。
功率因数校正的应用非常广泛。
在工业领域,大型电机、电离发生器、弧炉等设备都需要进行功率因数校正,以提高电能的利用效率和降低能耗。
在商业和住宅领域,办公楼、超市、酒店、居民小区等场所,安装功率因数校正装置可以减少电能的浪费和降低电费。
此外,电力公司也可在配电网中使用功率因数校正装置,以改善电压质量、提高电能的传输效率。
然而,功率因数校正也面临一些挑战和限制。
首先,校正装置的选择和安装需要根据负载特点和电网要求进行合理设计,避免过校正或欠校正。
功率因数校正电路(pfc)电路工作原理及应用
功率因数校正(英文缩写是PFC)是目前比较流行的一个专业术语。
PFC 是在20世纪80年代发展起来的一项新技术,其背景源于离线开关电源的迅速发展和荧光灯交流电子镇流器的广泛应用。
PFC 电路的作用不仅仅是提高线路或系统的功率因数,更重要的是可以解决电磁干扰(EMI)和电磁兼容(EMC)问题。
线路功率因数降低的原因及危害 导致功率因数降低的原因有两个,一个是线路电压与电流之间的相位角中,另一个是电流或电压的波形失真。
前一个原因人们是比较熟悉的。
而后者在电工学等书籍中却从未涉及。
功率因数(PF)定义为有功功率(P)与视在功率(S)之比值,即PF=P/S 。
对于线路电压和电流均为正弦波波形并且二者相位角Φ时,功率因数PF 即为COS Φ。
由于很多家用电器(如排风扇、抽油烟机等)和电气设备是既有电阻又有电抗的阻抗负载,所以才会存在着电压与电流之间的相位角Φ。
这类电感性负载的功率因数都较低(一般为0.5-0.6),说明交流(AC)电源设备的额定容量不能充分利用,输出大量的无功功率,致使输电效率降低。
为提高负载功率因数,往往采取补偿措施。
最简单的方法是在电感性负载两端并联电容器,这种方法称为并联补偿。
PFC 方案完全不同于传统的“功率因数补偿”,它是针对非正弦电流波形而采取的提高线路功率因数、迫使AC 线路电流追踪电压波形的瞬时变化轨迹,并使电流与电压保持同相位,使系统呈纯电阻性的技术措施。
长期以来,像开关型电源和电子镇流器等产品,都是采用桥式整流和大容量电容滤波电路来实现AC-DC 转换的。
由于滤波电容的充、放电作用,在其两端的直流电压出现略呈锯齿波的纹波。
滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多。
根据桥式整流二极管的单向导电性,只有在AC 线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC 输入电压瞬时值低于滤波电容上的电压时,整流二极管因反向偏置而截止。
功率因数校正电路(pfc)电路工作原理及应用
功率因数校正(英文缩写是PFC)是目前比较流行的一个专业术语。
PFC 是在20世纪80年代发展起来的一项新技术,其背景源于离线开关电源的迅速发展和荧光灯交流电子镇流器的广泛应用。
PFC 电路的作用不仅仅是提高线路或系统的功率因数,更重要的是可以解决电磁干扰(EMI)和电磁兼容(EMC)问题。
线路功率因数降低的原因及危害 导致功率因数降低的原因有两个,一个是线路电压与电流之间的相位角中,另一个是电流或电压的波形失真。
前一个原因人们是比较熟悉的。
而后者在电工学等书籍中却从未涉及。
功率因数(PF)定义为有功功率(P)与视在功率(S)之比值,即PF=P/S 。
对于线路电压和电流均为正弦波波形并且二者相位角Φ时,功率因数PF 即为COS Φ。
由于很多家用电器(如排风扇、抽油烟机等)和电气设备是既有电阻又有电抗的阻抗负载,所以才会存在着电压与电流之间的相位角Φ。
这类电感性负载的功率因数都较低(一般为0.5-0.6),说明交流(AC)电源设备的额定容量不能充分利用,输出大量的无功功率,致使输电效率降低。
为提高负载功率因数,往往采取补偿措施。
最简单的方法是在电感性负载两端并联电容器,这种方法称为并联补偿。
PFC 方案完全不同于传统的“功率因数补偿”,它是针对非正弦电流波形而采取的提高线路功率因数、迫使AC 线路电流追踪电压波形的瞬时变化轨迹,并使电流与电压保持同相位,使系统呈纯电阻性的技术措施。
长期以来,像开关型电源和电子镇流器等产品,都是采用桥式整流和大容量电容滤波电路来实现AC-DC 转换的。
由于滤波电容的充、放电作用,在其两端的直流电压出现略呈锯齿波的纹波。
滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多。
根据桥式整流二极管的单向导电性,只有在AC 线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC 输入电压瞬时值低于滤波电容上的电压时,整流二极管因反向偏置而截止。
开关电源功率因数校正电路原理
西安赛维技术培训
5、目前PFC开关电源部分,起到开关作用的斩波管(K)有两种工 作方式: (1)连续导通模式(CCM):
开关管的工作频率一定,而导通的占空比(系数)随被斩波电压的幅度变 化而变化,如图8所示。
图中T1和T2的位置:T1在被斩波电压(半个周期)的低电压区,T2在被斩波 电压的高电压区,T1(时间)=T2(时间).从图中可以看到,所有的开关周期时 间都相等,这说明在被斩波电压的任何幅度时,斩波管的工作频率不变.从图8 中可以看出,在高电压区和低电压区,每个斩波周期内的占空比不同(T1和T2 的时间相同,而上升脉冲的宽度不同),被斩波电压为零时(无电压),斩波频率 仍然不变,所以称为连续导通模式(CCM),该种模式一般应用在250W~2000W的 设备上。
西安赛维技术培训
图10 等离子三星V2屏PFC开关电源基本框图(CCM)
西安赛维技术培训
图11 海信液晶TLM3277电视开关电源基本框图
西安赛维技术培训
谢谢大家!
西安赛维技术培训
4、斩波器部分:(PFC开关电源)
整流二极管整流以后不加滤波电容器,把未经滤波的脉动正半周电压作为 斩波器的供电电源,由于斩波器一连串做“开关”工作脉动的正电压被“斩” 成图7所示的电流波形,其波形的特点: (1)电流波形是断续的,其包络线和电压波形相同,并且包络线和电压波形 相位同相; (2)由于斩波作用,半波脉动的直流电变成高频(由斩波频率决定,约 100KHz).
什么是功率因数校正电路如何设计一个功率因数校正电路
什么是功率因数校正电路如何设计一个功率因数校正电路功率因数校正电路的设计是为了改善电力系统中的功率因数,通过使功率因数接近1来提高电力系统的效率。
本文将介绍功率因数校正电路的概念和原理,并提供一个设计功率因数校正电路的步骤。
概述功率因数是衡量电路中有功功率与视在功率之比的指标。
功率因数越接近1,表示电路中的有用功率越高,无用功率(如无功功率)越低。
而功率因数校正电路的作用,则是通过改变电路中的电流波形,以提高功率因数的数值。
功率因数校正电路的设计步骤如下:1. 确定校正电路的类型在设计功率因数校正电路之前,需要明确校正电路的类型。
常见的功率因数校正电路有无源LC滤波器和有源电路两种。
无源LC滤波器主要由电感和电容组成,通过调整滤波器中的元件数值和结构来实现功率因数的校正。
有源电路则需借助电子元器件如运放、晶体管等来完成。
2. 计算电路参数根据所选类型的校正电路,需要计算电路参数。
对于无源LC滤波器,需要计算所需的电感和电容数值,以及它们的布局和连接方式。
而对于有源电路,则需计算运放或晶体管的增益和频率响应等参数。
3. 选择合适的元件根据所计算得到的电路参数,选择合适的电感、电容和其他元件。
这些元件的质量、容值和频率响应等都会直接影响校正电路的性能和效果。
4. 电路的连接和布局在连接和布局电路时,要遵循电路设计的原则,如尽量缩短信号路径和降低电路的损耗等。
对于有源电路,要保证电子元器件的正确连接,并注意电路的绝缘和屏蔽。
5. 进行测试和优化完成电路的连接后,需要进行测试和优化。
通过使用示波器等测试设备,检测电路的功率因数和性能,并根据测试结果对电路进行调整和优化。
总结功率因数校正电路的设计是为了提高电路的功率因数,并优化电力系统的效率。
通过选择合适的校正电路类型、计算得到电路参数、选择合适的元件、正确连接和布局电路,并进行测试和优化,可以设计出效果良好的功率因数校正电路。
以上是关于功率因数校正电路如何设计的简要介绍。
功率因数校正
一.功率因数校正原理1.功率因数(PF)的定义功率因数(PF)是指交流输入有功功率(P)与输入视在功率(S)的比值。
即所以功率因数可以定义为输入电流失真系数()与相移因数()的乘积。
可见功率因数(PF)由电流失真系数()和基波电压、基波电流相移因数()决定。
低,则表示用电电器设备的无功功率大,设备利用率低,导线、变压器绕组损耗大。
同时,值低,则表示输入电流谐波分量大,将造成输入电流波形畸变,对电网造成污染,严重时,对三相四线制供电,还会造成中线电位偏移,致使用电电器设备损坏。
由于常规整流装置常使用非线性器件(如可控硅、二极管),整流器件的导通角小于180o,从而产生大量谐波电流成份,而谐波电流成份不做功,只有基波电流成份做功。
所以相移因数()和电流失真系数()相比,输入电流失真系数()对供电线路功率因数(PF)的影响更大。
为了提高供电线路功率因数,保护用电设备,世界上许多国家和相关国际组织制定出相应的技术标准,以限制谐波电流含量。
如:IEC555-2, IEC61000-3-2,EN 60555-2等标准,它们规定了允许产生的最大谐波电流。
我国于1994年也颁布了《电能质量公用电网谐波》标准(GB/T14549-93)。
传统的功率因数概念是假定输入电流无谐波电流(即I1=I rms或=1)的条件下得到的,这样功率因数的定义就变成了PF =。
二.PF与总谐波失真系数(THD:The Total Harmonic Distortion)的关系三.功率因数校正实现方法由功率因数可知,要提高功率因数,有两个途径:1.使输入电压、输入电流同相位。
此时=1 ,所以PF=。
2.使输入电流正弦化。
即I rms=I1(谐波为零),有即;从而实现功率因数校正。
利用功率因数校正技术可以使交流输入电流波形完全跟踪交流输入电压波形,使输入电流波形呈纯正弦波,并且和输入电压同相位,此时整流器的负载可等效为纯电阻,所以有的地方又把功率因数校正电路叫做电阻仿真器。
高功率因数原边反馈反激 ic 芯片
高功率因数原边反馈反激IC芯片1. 导言高功率因数原边反馈反激IC芯片是一种用于高功率因数电源的控制芯片,其具有提高功率因数和效率、减小器件尺寸和成本等优点。
本文将介绍高功率因数原边反馈反激IC芯片的原理、特点、应用和发展趋势。
2. 原理高功率因数原边反馈反激IC芯片采用原边反馈控制,通过测量输入电压的波形来实现功率因数校正。
其电路包括功率因数校正电路、反激控制电路和监控电路。
功率因数校正电路用来对输入电压进行谐振,使其与输入电流同相位,从而实现功率因数校正。
反激控制电路用来调节输出电压,使其稳定在设定值。
监控电路用来监测输入电压、输出电压和电流等参数,并根据实际情况进行调节。
3. 特点(1)高功率因数:采用原边反馈控制,能够实现高功率因数,提高系统的功率因数,使其接近1,减小谐波对电网的污染。
(2)高效率:由于功率因数的改善,整个系统的效率也得到提高,能够减少能量的损耗,降低电能的消耗。
(3)小尺寸:高功率因数原边反馈反激IC芯片集成了多个功能模块,能够实现电源控制的全面功能,从而减小了电源的尺寸。
(4)低成本:由于集成度高、功率因数高和效率高,能够减少材料和成本,降低产品的制造成本。
4. 应用高功率因数原边反馈反激IC芯片广泛应用于电力电子、LED照明、工业控制等领域。
在电力电子领域,其功率因数校正功能可以提高电源系统的功率因数,减小谐波对电网的污染,满足各种场景下的电能质量要求。
在LED照明领域,其小尺寸和高功率因数等特点能够满足LED照明驱动的需求,提高LED电源的性能。
在工业控制领域,其高效率和稳定性能能够保证工业设备的稳定运行,提高工作效率。
5. 发展趋势随着电力电子、LED照明、工业控制等领域的不断发展,对功率因数和能效的要求也越来越高,因此高功率因数原边反馈反激IC芯片将会在未来有更加广阔的应用前景。
未来,高功率因数原边反馈反激IC芯片将会更加注重集成度、高效率和高功率因数等方面的性能,以满足不同领域对电源的要求。
第8章 功率因数校正电路
电压模式控制方法: 电压模式控制方法:
而电压模式是与振荡电路产生的固定三角波状电压 斜波比较, 斜波比较,
电流模式控制是一种固定时钟开启、 电流模式控制是一种固定时钟开启、峰 值电流关断的控制方法。 值电流关断的控制方法。
(峰值)电流模式控制不是用电压误差 峰值) 信号直接控制PWM脉冲宽度,而是直接 脉冲宽度,而是直接 信号直接控制 脉冲宽度 控制峰值输出侧的电感电流大小 峰值输出侧的电感电流大小, 控制峰值输出侧的电感电流大小,然后 间接地控制PWM脉冲宽度。 脉冲宽度。 间接地控制 脉冲宽度
将 乘 法 器 的 输 出 作 为 电 流 环 的 给 定 信 号 I s∗, 才 能 保 证 被 控 制 的 电 感 电 流 iL 与 电 压 波 形 ud 一 致 。 I s∗的 幅 值 与 输 出 电 压 u C同 给 定 电
∗ 压 U c 的 差 值 有 关 , 也 与 ud的 幅 值 有 关 。 L1中 的 电 流 检 测 信 号 i F
中的电流有连续和断续两种工作模式, 由于升压电感L1中的电流有连续和断续两种工作模式,因此 可以得到电流环中的PWM信号即开关V 可以得到电流环中的PWM信号即开关V的驱动信号有两种产生 PWM信号即开关 方式: 方式: 一种是电感电流临界连续的控制方式( 一种是电感电流临界连续的控制方式(峰值电流控制方式); 另一种是电感电流连续的控制方式(平均值控制方式) 。 )
6.1.3 有源功率因数校正的电路结构
(a) 双级式
(b) 单级式
图6-5 有源功率因数校正的电路结构
L1 ii ui EMI 滤滤滤 + ud - iF
电流给定
VD Uo V C uC
C1
PWM 形形形形
采采 滤滤
功率因数校正12页PPT文档
(五) 最大峰值电感电流
ILPK 2PinU i2n2Uin2ηU 2P in0
I LPK
2 2P0
η UinL
6.3 平均电流控制的双级式APFC
6.3.1 平均电流控பைடு நூலகம்的调制器: UC3854A/B
(一) UC3854A/B的极限参数
鉌电源电压 22伏 驱动输出连续电流 0.5A 驱动输出占空比50%时的电流 1.5A 输入电压: 11伏 11伏 5伏 输入电流: 10mA 功率损耗 1W 存贮温度 -65℃~+150℃ 焊接温度(锡焊,10秒钟) +300℃
Comparator and RS Latch)
I PK
u4 pin 4 R9
(五)计时器(Timer R)
(六) 欠压闭锁(Under Voltage Lockout—UVLO)
(七)图腾输出级(Totem Pole output Stage)
图6-9 峰值电流控制制的功率因数校正电路
(八)逻辑分析
入,6脚为接地端,7脚为PWM输出 (三)零电流检测器(Zero Current 端,可直接驱动Power MOSFET或 Detector)
IGBT,脚8是UCC提供正电源电压。 用MC34261构成的Boost Converter 如图6-9所示
(四)电流检测比较器和RS触
发器(Current Sense
6.1.2 畸变电流的产生与APFC的基本原理
◤采用有源功率因数校正技术是解决上述问 题的有效途径◢
◤ APFC技术的基本思想是将输入交流进行全 波整流,在整流电路与滤波电容之间加入 DC/DC变换,通过适当控制使输入电流的波形 自动跟随输入电压的波形,即使整流器的输 出电流跟随它输出直流脉动电压波形,且要 保持贮能电容电压稳定,从而实现稳压输出 和单位功率因数输入◢
开关电源功率因数校正PFC(非常好).pdf
开关电源功率因素校正(PFC)及其工作原理什么是功率因数补偿,什么是功率因数校正:功率因数补偿:在上世纪五十年代,已经针对具有感性负载的交流用电器具的电压和电流不同相(图1)从而引起的供电效率低下提出了改进方法(由于感性负载的电流滞后所加电压,由于电压和电流的相位不同使供电线路的负担加重导致供电线路效率下降,这就要求在感性用电器具上并联一个电容器用以调整其该用电器具的电压、电流相位特性,例如:当时要求所使用的40W日光灯必须并联一个4.75μF的电容器)。
用电容器并连在感性负载,利用其电容上电流超前电压的特性用以补偿电感上电流滞后电压的特性来使总的特性接近于阻性,从而改善效率低下的方法叫功率因数补偿(交流电的功率因数可以用电源电压与负载电流两者相位角的余弦函数值cosφ表示)。
图1在具有感性负载中供电线路中电压和电流的波形而在上世纪80年代起,用电器具大量的采用效率高的开关电源,由于开关电源都是在整流后用一个大容量的滤波电容,使该用电器具的负载特性呈现容性,这就造成了交流220V在对该用电器具供电时,由于滤波电容的充、放电作用,在其两端的直流电压出现略呈锯齿波的纹波。
滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多。
根据整流二极管的单向导电性,只有在AC线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC输入电压瞬时值低于滤波电容上的电压时,整流二极管因反向偏置而截止。
也就是说,在AC线路电压的每个半周期内,只是在其峰值附近,二极管才会导通。
虽然AC输入电压仍大体保持正弦波波形,但AC输入电流却呈高幅值的尖峰脉冲,如图2所示。
这种严重失真的电流波形含有大量的谐波成份,引起线路功率因数严重下降。
在正半个周期内(1800),整流二极管的导通角大大的小于1800甚至只有300-700,由于要保证负载功率的要求,在极窄的导通角期间会产生极大的导通电流,使供电电路中的供电电流呈脉冲状态,它不仅降低了供电的效率,更为严重的是它在供电线路容量不足,或电路负载较大时会产生严重的交流电压的波形畸变(图3),并产生多次谐波,从而,干扰了其它用电器具的正常工作(这就是电磁干扰-EMI和电磁兼容-EMC问题)。
功率因数校正问题
关于电子镇流器的功率因数校正问题的讨论陈传虞摘要本文分析电子镇流器的功率因数校正问题,着重讨论了有源功率因数校正的三种模式(峰值电流控制、固定开通时间、固定频率平均电流连续导通模式)的工作原理,它们的优缺点及适用场合等。
关键词:无源功率因数校正有源功率因数校正峰值电流控制固定开通时间频率钳定前(后)沿调制断续导通、临界导通、连续导通模式过渡模式前言在电子镇流器中通常采用图1a所示的输入电路,由于电解电容器C O的容量很大,工作时储存电荷很多,只有输入电压超过电容上的电压时,才有输入电流,所以电流波形严重失真,仅在电压峰值附近才会出现一个电流尖脉冲(如图1b)。
这样一来,电路的功率因数变得很低,约为0.5左右,输入电流谐波含量十分丰富。
而根据国标GB/T17263-2002以及欧洲法规EN63000-3-2,对25W以上的节能灯和电子镇流器的各次谐波的含量提出了严格要求,现有的许多电路根本无法满足这个要求。
图1 镇流器的输入电路为了减少镇流器输入电流的谐波失真,必须采取一些特殊措施,通常称之为功率因数校正(PFC Power factor correction)技术来提高它的功率因数。
大致说来,功率因数校正有两种方案:无源功率因数校正(Passive PFC)和有源功率因数校正(Active PFC) ,前者已有很多资料介绍,不是本文讨论的重点,我们主要分析有源功率因数校正的三种模式,它们的工作原理、优缺点及适用场合等。
一.无源功率因数校正的原理及常用电路无源功率因数校正的原理主要是增加输入电流的导通时间,使电源电流的波形接近电压的正弦波形,减少它的失真。
最初采用的方案是逐流电路。
图2 无源功率因数校正电路它用图2(a)的电路代替图1的电容C O,电源通过VD3对电容C1、C2充电到输入电压峰值,每个电容电压最多为输入电压峰值之半。
这样,电容可在120˚范围内充电,输入电流的时间被拉长,电流为零(死区)的时间只占33.3%。
有源功率因数校正
有源功率因数校正
• 根据APFC拓扑分类
• 降压式 • 升/降压式 • 反激式 • 升压式
有源功率因数校正
• 降压式
这种电路的主要优点是:开关管所受的最大电压为输人电压的最大值,因此 开关管的电压应力较小;当后级短路时,可以利用开关管实现输出短路保护。 该电路的主要缺点是:由于只有在输人电压高于输出电压时,该电路才能工 作,所以在每个正弦周期中,该电路有一段因输人电压低而不能正常工作,输出 电压较低,在相同功率等级时,后级DC/DC变换器电流应力较大;开关管门极驱动 信号地与输出地不同,驱动较复杂,加之输人电流断续,功率因数不可能提高很 多,因此很少被采用。
有源功率因数校正
•Байду номын сангаас升降压式
该电路的优点是:既可对输人电压升压又可以降压,因此在整个输入正弦周期都可以 连续工作;该电路输出电压选择范围较大,可根据一级的不同要求设计;利用开关管可实现 输出短路保护。 该电路的主要缺点有:开关管所受的电压为输入电压与输出电压之和,因此开关管的 电压应力较大;由于在每个开关周期中,只有在开关管导通时才有输入电流,因此峰值电流 较大;开关管门极驱动信号地与输出地不同,驱动比较复杂;输出电压极性与输入电压极性 相反,后级逆变电路较难设计,因此也采用得较少。
有源功率因数校正
• 有源功率因数校正(APFC)电路是在整流器和负载之间接入 一个DC/DC开关变换器,应用电压电流反馈技术,使输入端 电流波形跟随输入正弦电压波形,从而使输入电流的波形 也接近正弦波,以达到提高功率因数的目的.由于在此电路 中使用了有源器件,所以称为有源功率因数校正电路。
图1 有源功率因数校正原理
有源功率因数校正
有源功率因数校 正
小组成员:徐勇、常惜阳、付美真、王启龙、王嘉 炜、陈玉民、管红立、瞿林飞、田小龙、王彦刚
功率因数校正原理及相关IC
功率因数校正原理及相关IC1概述近年来,随着电子技术的发展,对各种办公自动化设备,家用电器,计算机的需求逐年增加。
这些设备的内部,都需要一个将市电转换为直流的电源部分。
在这个转换过程中,会产生大量的谐波电流,使电力系统遭受污染。
作为限制标准,IEC发布了IEC1000 3 2;欧美日各国也颁布实施了各自的标准。
为此谐波电流的抑制及功率因数校正是电源设计者的一个重要的课题。
2高次谐波及功率因数校正一般开关电源的输入整流电路为图1所示:市电经整流后对电容充电,其输入电流波形为不连续的脉冲,如图2所示。
这种电流除了基波分量外,还含有大量的谐波,其有效值I为:I=(1) 式中:I1,I2,…In,分别表示输入电流的基波分量与各次谐波分量。
谐波电流使电力系统的电压波形发生畸变,我们将各次谐波有效值与基波有效值的比称之为总谐波畸变THD(TotalHarmonicDistortion):THD=(2) 用来衡量电网的污染程度。
脉冲状电流使正弦电压波形发生畸变,见图3的波峰处。
它对自身及同一系统的其它电子设备产生恶劣的影响,如:——引起电子设备的误操作,如空调停止工作等;——引起电话网噪音;——引起照明设备的障碍,如荧光灯闪灭;——造成变电站的电容,扼流圈的过热、烧损。
功率因数定义为PF=有效功率/视在功率,是指被有效利用的功率的百分比。
没有被利用的无效功率则在电网与电源设备之间往返流动,不仅增加线路损耗,而且成为污染源。
设电容输入型电路的输入电压e为:e(t)=Em·sinω0t(3)图1电容输入型电路图2电容输入型电路的输入电流,5A/DIV图3输入电压波形发生畸变入电流i为:i(t)=Imk·sin(kω0t)(4)则有效功率Pac为:Pac=e(t)·i(t)dt=Em·Im1/2=E·I1而视在功率Pap为:Pap=E·I因此:PF=Pac/Pap=I1/I=(5)电流波形为图2的电源功率因数只有62.4%。
功率因数校正芯片的分析与优化设计
功率因数校正芯片的分析与优化设计随着电力需求的增长和能源的日益稀缺,提高能源利用率成为了当今社会亟待解决的问题。
功率因数校正技术因其能够提高电源的效率和减少能量损耗而备受关注。
功率因数校正芯片作为实现功率因数校正技术的关键组成部分,其分析与优化设计显得尤为重要。
首先,我们来分析功率因数校正芯片的工作原理。
功率因数校正芯片主要根据电源输入电流的波形来判断负载的功率因数,并通过控制电路中的开关器件来改变输入电流的波形,从而实现功率因数的校正。
通过引入电感和电容等元件,功率因数校正芯片能够将电源输入电流的波形变得更加接近正弦波,从而提高功率因数。
接下来,我们需要对功率因数校正芯片进行优化设计。
首先,需要考虑功率因数校正芯片的集成度和功耗。
集成度的提高能够减小芯片的体积,降低制造成本,并提高工作效率。
而功耗的降低则能够减少能量损耗,提高整个电源系统的效率。
其次,需要考虑功率因数校正芯片的稳定性和可靠性。
稳定性的提高能够保证芯片在不同负载条件下都能正常工作,而可靠性的提高则能够延长芯片的使用寿命。
在进行功率因数校正芯片的优化设计时,还需要考虑到实际应用中的一些特殊要求。
例如,对于工业领域来说,功率因数校正芯片需要具备较高的抗干扰能力和稳定性,以应对复杂的电磁环境和负载波动。
而对于家用电器来说,功率因数校正芯片需要具备低成本、小体积和低功耗的特点,以方便集成到各类电器中。
综上所述,功率因数校正芯片的分析与优化设计是提高电源效率、降低能量损耗的关键环节。
通过分析功率因数校正芯片的工作原理,我们可以了解其基本原理和实现方式。
在优化设计中,需要考虑到集成度、功耗、稳定性和可靠性等因素,并根据实际应用的特殊要求进行相应的调整。
只有不断完善功率因数校正芯片的设计,才能更好地满足不同领域的需求,实现能源的高效利用。
功率因数校正电路原理说明与应用(APFC)
第四章 APFC4.1 功率因素校正技术的由来由整流二极管和滤波电容组成的整流滤波电路具有很多优点:应用广泛、价格低廉、可靠性高等,但是它产生的谐波对电网有着严重的污染,单项不可控整流电路存在以下几个主要的问题:(1)启动时冲击电流大;(2)正常工作时,由于二极管的导通角是<180°,会形成幅度很高的窄脉冲,总谐波失真THD通常超过100%,从而引起了电网电压波形的畸变。
(3)谐波带来的电路功率因数低,一般约为0.5~0.6,造成电路的效率低。
由整流电路可知,二极管整流滤波电路,因为二极管的导通角<180°,以及无源器件电感L、电容C导致的输入信号发生畸变,不但降低了系统的功率因数,效率大大减小,还造成噪声和对电网冲击等一系列的危害。
因此,为了减小AC/DC交流电路输入端谐波电流造成的噪声和谐波污染,保证电网高质量供电以及高可靠性;同时,通过相关技术达到电路节能的效果。
以上阐述都表明了研究提高电路功率因数重要性,因此提出了功率因数校正技术(PFC)的概念。
那如何提高功率因数?根据第三章整流电路的分析可知,功率因数λ=PS=cosφ=υ∙cosφ1主要由两个因素决定:基波因数和相位因数。
因此,通过提高基波因数υ=I1I和相位因数cosφ1是两个主要的途径:(1)使输入电压、输入电流同相位。
若输入电压与输出电压同相位,则相位因素cosφ1为1,功率因素λ增大;(2)使输入电流正弦化若输入电流正弦化,即电流频率保持固定,几乎不存在谐波分量,υ=I1I=1,功率因素λ增大。
满足以上两个条件,功率因素将接近为1,电路效率将非常高。
4.2 PFC的分类根据使用器件的不同,分为无源功率因数校正和有源功率因数校正。
根据有无整流桥,分为有桥PFC和无桥PFC。
无源PFC无源PFC一般采用电感补偿方法。
这种方式是使用由电感、电容等无源器件组合而成的谐振电路来降低谐波电流,以及减小交流输入的基波电流与电压之间相位差,从而提高功率因数。
有源功率因数校正电路的研究与实现
有源功率因数校正电路的研究与实现通过研究和实现有源功率因数校正电路,可以实现对电源质量的改善,降低电能的消耗,减少损耗和对环境的负面影响。
1.功率因数校正原理研究:了解功率因数校正的基本原理和数学模型。
功率因数是指电源在供给有功负荷时,有时在供给无功性负载的比值,也可以看做是电源输出有用功率与总输入功率的比值。
功率因数的值在0到1之间,当功率因数接近1时,表示电源的供电效率高,能够更好的满足负载的需要。
2.有源功率因数校正电路设计:根据功率因数校正原理,设计出相应的电路结构和参数,包括调整电流和电压的相位角,提高功率因数的控制算法等。
3.电路元件选型与电路拓扑设计:选用合适的电子元件,如功率电子器件、电容器、电感器等,根据实际需求和电路模型,设计电路的结构和电路拓扑。
4.电路实现与验证:根据设计方案,利用仿真软件进行电路模拟,优化电路参数和结构;然后进行电路实现,包括电路板的设计和制作,元件的焊接等;最后,对实现的电路进行测试和验证,确保功率因数校正电路的稳定性和可靠性。
5.有源功率因数校正电路的应用:将研究和实现的有源功率因数校正电路应用于实际电源供应中,比如家庭电源、工业电源、照明电源等,以提高电能利用效率,减少能源浪费和环境污染。
值得注意的是,要对有源功率因数校正电路进行合理的设计和实现,需要综合考虑电源的负载特性,电压和电流的波形,电路的成本和可靠性等因素。
此外,对于有源功率因数校正电路的研究,还需要关注电路的应用环境和具体的需求,以满足电源供应的要求。
总结起来,有源功率因数校正电路的研究和实现是一个综合性的工作,在电路设计、电子元件选型和电路实现等方面都需要考虑。
研究和实现有源功率因数校正电路有助于提高电源效率和稳定性,减少电能的消耗和损耗,对于节能减排和环境保护具有重要意义。
采用uc3854的有源功率因数校正电路工作原理与应用
采用uc3854的有源功率因数校正电路工作原理与应用
UC3854是一款可编程高效能电源因数校正控制器,是由德州仪器公司(Texas Instruments,TI)生产的一款专业电源管理IC。
它是一种高效、可靠、智能化的功率因数校正控制器,常用于交流电源的功率因数校正应用中,可实现高精度的电源因数校正,并且具有较高的应用灵活性和可靠性。
UC3854采用的是有源功率因数校正技术,即通过对输入电流调节来控制输出电流的大小,从而达到功率因数校正的目的。
有源功率因数校正电路主要由电源电路、控制电路、采样电路和校正电路等部分组成。
其中,电源电路提供了稳定的工作电压和电流,控制电路通过控制开关管的导通和截止,实现对输出电流的控制。
采样电路采集输入电压和电流的信息,并将其转化为数字信号,校正电路根据采集到的信号,控制开关管的导通和截止,实现功率因数的校正。
UC3854的应用场景非常广泛,主要应用于交流电源的功率因数校正。
它可以实现交流电源的输入电压和电流的采样和测量,计算出功率因数的值,然后对输出电流进行调节,从而实现功率因数的校正。
同时,该芯片还具有多种保护功能,如过电流保护、过电压保护、过温保护等,能够保证电路的可靠性和安全性。
总之,UC3854是一款功能强大、性能稳定、可靠性高的有源功率因数校正控制器,对于交流电源的功率因数校正具有重要的作用。
它的应用广泛,可以满足不同场合和需求的功率因数校正要求,是一款非常优秀的电源管理IC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1概述
近年来,随着电子技术的发展,对各种办公自动化设备,家用电器,计算机的需求逐年增加。
这些设备的内部,都需要一个将市电转换为直流的电源部分。
在这个转换过程中,会产生大量的谐波电流,使电力系统遭受污染。
作为限制标准,IEC发布了IEC1000 3 2;欧美日各国也颁布实施了各自的标准。
为此谐波电流的抑制及功率因数校正是电源设计者的一个重要的课题。
2高次谐波及功率因数校正
一般开关电源的输入整流电路为图1所示:
市电经整流后对电容充电,其输入电流波形为不连续的脉冲,如图2所示。
这种电流除了基波分量外,还含有大量的谐波,其有效值I为:I=(1)
式中:I1,I2,…In,分别表示输入电流的基波分量与各次谐波分量。
谐波电流使电力系统的电压波形发生畸变,我们将各次谐波有效值与基波有效值的比称之为总谐波畸变TH D(TotalHarmonicDistortion):THD=(2)
用来衡量电网的污染程度。
脉冲状电流使正弦电压波形发生畸变,见图3的波峰处。
它对自身及同一系统的其它电子设备产生恶劣的影响,如:
——引起电子设备的误操作,如空调停止工作等;
——引起电话网噪音;
——引起照明设备的障碍,如荧光灯闪灭;
——造成变电站的电容,扼流圈的过热、烧损。
功率因数定义为PF=有效功率/视在功率,是指被有效利用的功率的百分比。
没有被利用的无效功率则在电网与电源设备之间往返流动,不仅增加线路损耗,而且成为污染源。
设电容输入型电路的输入电压e为:
e(t)=Em·sinω0t(3)
图1电容输入型电路
图2电容输入型电路的输入电流,5A/DIV
图3输入电压波形发生畸变
入电流i为:i(t)=Imk·sin(kω0t)(4)
则有效功率Pac为:
Pac=e(t)·i(t)dt=Em·Im1/2=E·I1而视在功率Pap为:
Pap=E·I因此:
PF=Pac/Pap=I1/I=(5)
电流波形为图2的电源功率因数只有62.4%。
由式(2)、(5)可见功率因数与总谐波畸变THD的关系为:
PF=1/(6)
从式(2)、式(5)可见,抑制谐波分量即可达到减小THD,提高功率因数的目的。
因此可以说谐波的抑制电路即功率因数校正电路(实际上有所区别)。
3功率因数校正的实现方法
综上所述,只要设法抑制输入电流中的谐波分量,通过电路方法,将输入电流波形校正为或使无限接近正弦波,即可实现功率因数校正。
有很多的电路方式可以实现这一目的,比如说在电路中加入一个大电感(见图4),使整流管的导通角变大。
这种方法虽然简单,价格低,但存在体积大,重量大,且效果不好(PF小于80%)等缺点。
下面以东芝公司的功率因数校正控制ICTA8310F为例,介绍一种有源功率因数校正方法。
电路原理图见图5。
3.1主电路
由一个全桥整流器和升压型BOOST变换器构成,虽然其它的变换器BUCK,FLYBACK等也可以实现这一功能,但是由于BOOST变换器具有输出电容小断电保持时间长,可实现WorldWild电压输入,及输入电流连续EMI小等诸多优点,大部分功率因数校正都采用它来作为主电路。
Vout=Vin/(1-D)(7)
式中:Vin为输入电压的有效值;
D为开关管FET的占空比。
主电路参数为:输入178~264Va.c.;
输出380Vd.c.;
最大输出功率608W。
3.2PFC控制电路
为图5的虚线框中部分,主要包含一个乘法器MPX,电流误差放大器EI及PWM比较器。
三者协调工作,将系统的输入电流校正为正弦波,实现谐波的抑制。
原理如下:
(1)乘法器MPX包含2个输入,一个是通过电阻Ra检测输入电压,作为基准的正弦波信号。
只要做到使输入电流波形与此一致,即可达到目的。
乘法器的另一个输入是电压误差放大器EV的输出端,作为输出稳压的控制信号,见下述(3)。
乘法器为电流输入型,不易受噪音干扰;
图4扼流圈输入型电路
图5有源功率因数校正电路原理图(原图,未做格式处理)
图6电感线圈L的电流波形示意图
图7功率因数改善后的输入电流波形,2A/DIV
(2)乘法器的输出电流信号为基准正弦波电流与电压误差放大器EV输出的积,它通过电阻Rb,产生一个信号电压。
该信号电压与由电阻Rc检测到的主电路电流的信号电压之差输入到电流误差放大器EI,而E I与PWM比较器,驱动器DRIVER,主电路及Ra形成一个闭环控制。
使两者的差无限接近于零。
也就是说电阻Rb上的信号电压与电阻Rc上的信号电压相同,以达到电源的输入电流波形无限接近于基准正弦波的目的。
为了更容易理解,可放大示波器X轴量程,观察输入电流IL的波形,如图6所示,通过PWM控制,改变开关的占空比,来实现对输入电流的校正;
(3)一个PFC里面有2个闭环控制回路,其一就是上述的(1)、(2),我们称之为电流控制环。
它实现功率因数校正。
其二是由电压误差放大器EV,乘法器MPX,EI,PWM比较器,DRIVER,主电路及R a构成的电压控制环,它使输出电压稳定在380Vd.c.。
主要设计参数有:开关频率f=95kHz;
功率因数PF=99.2%;
效率η=95.4%。
EMC:符合VCCI A,FCC A,VDE A,DOC A,及EN55022。
实现功率因数校正后的电源,其输入电流的波形,见图7。
功率因数达到99.2%,THD只有0.127。
与图2比较,电流波形已得到明显的校正。
3.3设计时的注意事项
扼流线圈的选取会影响到输出纹波电流的大小,及其它电路设计参数。
应保证它有足够大的饱和电流,而
其值L为:L=·Vmin2/(2··Pout·f)(8)
式中:Vmin为最小输入电压的峰值;
Vout为输出电压;
ΔIL为扼流线圈上的纹波电流峰峰值;
IPmax为输入电流的峰值;
Pout为输出功率;
f为电源开关频率。
用来检测电流的主电路上的Rc应当选用额定功率大的电阻,且阻值应尽量小,一般在几十mΩ级。
IC的2脚,4脚间及12脚,13脚间接入RC相位补偿网络,合适的选值可以使系统更稳定,并可减小输出电压纹波。
4结语
作为限制谐波电流的对策而导入的功率因数校正,对其小型化,高效率,低价格,噪音小的要求将会越来越苛刻,特别是对其低噪音化在国外已经成为一个重要的课题,利用谐振技术的PFC控制IC也已经得到了开发和应用,如UNITRODE公司的UC3852等。
改善和创新永无止境。