第二章 风力发电机组并网方式分析
风力发电机并网 原理ppt课件
![风力发电机并网 原理ppt课件](https://img.taocdn.com/s3/m/c5b1cf63b8f67c1cfad6b8e3.png)
2. 主要三种并网方式
交流励磁变速恒频发电机采用双馈型异步发电机,与传 统的直流励磁同步发电机以及通常的异步发电机相比, 其并网过程有所不同。采用交流励磁后,可根据电网电 压和发电机转速来调节励磁电流, 进而调节发电机输出 电压来满足并网条件,因而可在变速条件下实现并网 。 变速恒频风力发电机组的并网方式主要有空载并网,带 独立负载并网,孤岛并网。其中,空载并网和带独立负载 并网2种方式中,转子励磁变换器直接与电网相连,双馈 电机定子与电网经过开关相连,而孤岛并网方式则是定 子与转子励磁变换器直接连接,再经过开关连接到电网, 电网经过预充电变压器与直流母线连接。
•
• 从定子侧看,这与一般同步发电机具有 直流励磁的转子以同步转速旋转时,在
发电机气隙中形成的同步旋转磁场是等
效的。因而,只要做到转子的机械转速 nr2和三相交流电流在转子表面产生的旋 转磁场的转速nr1互补,即nr1±nr2≌ns,
就可以在不同的转子转速情况下,在定 子绕组中总能感应出频率恒定的50Hz交 流电。
三、GE风机并网方式简介
• 1. 预充电:预充电接触器MA吸和,变频 器直流母排充电至970DC左右,机侧变 频器工作,母排直流电压经机侧变频器 逆变对发电机转子加电压。
• 2.风机达到并网转速,同时网侧变频器及 5Q2检测电压等条件达到并网条件,网侧 接触器合,预充电接触器分。
• 3. 5Q1和5Q2检测5Q3两侧电压、频率等 并网条件,如条件达到5Q3合,风机并网
风力发电机并网
一、双馈异步发电机并网方式简介 二、华锐风机并网方式简介 三、GE风机并网方式简介
一、双馈异步发电机并网方式简介
1.双馈异步发电机 发电机的定子直接连接到电网上,转子 和变流器相连。当风力驱动发电机旋转 时,在变流器的控制下,发电机把机械 能转ห้องสมุดไป่ตู้成电能向电网馈电。
风电发电机并网的方式讲解
![风电发电机并网的方式讲解](https://img.taocdn.com/s3/m/15206ab7dd88d0d233d46aeb.png)
控制系统
电网
空载并网的优点
通过对发电机转子交流励磁电流的调节 与控制,就可在变速运行中的任何转速 下满足并网条件,实现成功并网,这是 这类新型发电方式的优势所在。
很好的实现了定子电压的控制,实现简 单,定子的冲击电流很小,转子电流能 稳定的过渡,
b.带独立负载的并网方式
并网前发电机带负载运行,根据电网信息和定子电 压、电流对风力发电机进行控制。
此时自动并网开关尚未动作,发电机通 过双向的晶闸管平稳的接入电网。发电 机平稳运行后,双向晶闸管出发脉冲自 动关闭。发电机输出电流不再经过双向 晶闸管而是通过已闭合的自动开关触点 流向电网。
两种软并网的差异
第一种方式所选用的是高反压双向晶闸管的电 流允许值比第二种方式的要大得多。这是因 为第一种方式要考虑到能达到发电机的额定 电流值,第二种方式只要通过略高于发电机 空载时的电流就可以满足要求。但需要采用 自动并网开关,控制回路也略显复杂。
对电网时刻控制要求精确,若控制不当,则有 可能产生较大的冲击电流,以致并网失败。
6
恒速恒频异步风力发电机及其并网方式及 特点
主要内容:
异步风力发电机的并网方式
a.恒速笼型异步风力发电机系 统
8
异步发电机的并网结构
异步风力发电机的并网方式
直接并网方式 准同步并网方式 捕捉式准同步快速并网 降压并网方式 软并网方式
降压并网图示
异步电 机
电抗器
电网
无 功 补 偿
软并网(SOFT CUT-IN)技术
采用双向晶闸管的软切入法,使异步发电机并网, 其连接方式有两种
1,异步风力发电机通过(或双向)晶闸管软切入装置 与电网直接相连,异步风力发电机在接近同步速时, 晶闸管的控制角在1800一0o之间逐渐同步打开,晶 闸管的导通角也在0o一1800之间逐渐同步打开,当 异步风力发电机滑差为零时,晶闸管全部导通,这 时短接已全部导通的晶闸管,异步风力发电机输出 电流直接流向电网,风电机组进入稳态运行阶段。
风力发电机组并网方式分析
![风力发电机组并网方式分析](https://img.taocdn.com/s3/m/e8c68c2631126edb6f1a10e6.png)
1 风 力 发 电机 组 并 网 条 件 1 ) 发电机发 出电源的相序与电网汇流排相序相 同。否则 , 不但发 电机不能进入 同步 , 而且 会产生 很大 的拍 振 电流 , 使 发 电机绕组承受过大的电动力 , 使线 圈变形绝缘短路。 2 ) 发电机 的电压有效值 与 电网汇 流排的 电压有 效值相 等 或接近相等( 电压差 <1 0 %) , 否则 , 会 由于电位差而产 生内部 无功环流 , 生 成 很 大 的 电磁 冲击 力 。 3 ) 发 电机的频率应与 电力系统电源的频率基本相等 ( 频率 差不能超过 0 . 5~1 H z ) , 否则会 因为拍振 电流和拍振 电压的有 功分量在发电机轴上产 生力矩 , 使发 电机产 生机械振 动 , 造 成 机组 损 坏 。 4 ) 发 电机 的 电压 相 位 与 电力 系 统 电 源 的 电压 相 位 相 等 ( 相
1 ) 由于不采用齿轮箱 , 机组水平轴 向的长度 大大减 小 , 电 能生产 的机械传动路径缩短 , 避免了因齿轮 箱旋 转而产生 的损 耗、 噪音 等 。 2 ) 由于 发 电机 具 有 大 的表 面 , 散热 条件更有 利 , 使 发 电机 运 行 时 的 温 升减 低 , 减小 发 电机 温 升 的 起伏 。
技 术 研 发
T E C H N 0 L 0 G Y A N D MA R K E T
风 力 发 电机 组 并 网 方来自式 分 析 高彩 霞
( 内蒙古送 变电有 限责任 公 司 风 力发 电承 装检修 工程 处 ,内蒙古 呼和 浩特 0 1 0 0 2 0 )
摘 要: 随着我 国风 电行业的发展 , 风电装机容量快速增长 , 通过分析 目前风 电场所选 用的不 同类型风 力发 电机 组, 并对
风力发电的并网接入及传输方式
![风力发电的并网接入及传输方式](https://img.taocdn.com/s3/m/ce867055be23482fb4da4c68.png)
风力发电的并网接入及传输方式摘要:在环境保护之中,风力发电是其中节约资源最为有效地方式,虽然现今一直处在低谷的时期,但是未来的发展前景十分广阔,风力发电技术也在逐渐的趋于成熟,世界装机容量以及发电量也在逐渐的加大,日后在发电市场也逐渐的会占有更大的比例。
本文主要就是针对风力发电的并网接入及传输方式来进行分析。
关键词:风力发电;并网接入;传输方式1、我国风力发电及并网发展情况相关的数据充分的表明,2010年的中国风电累积装机容量达到了4182.7万KW,在超过了美国之后,已经跃居成为世界第一装机大国。
但与此同时,风电的发电量只有500亿千瓦的时候,依据要比美国低,并网容量也只有吊装容量的三成左右,要比国际水平低出很多,这在很大程度之上严重的影响到了效益水平与风电效率的提高。
中国的风电行业的风电行业的发展速度也是十分的迅猛,基本上是用到了5年的时间最终才实现了欧美发达国家将近30年的发展进程,在产业逐渐进步市场规模快速发展的同时,其面临的问题与挑战也逐渐的凸显出来。
首先是中国风电装备的质量水平,其中包括了发电能力以及设备完好率等等均有待提高,其次就是吊装容量和并网容量之间的差别,和国际先进水平相比之下,还存在着较大差别。
怎么从装机大国转变成为风电的利用大国,也就成为了我国目前面临的最大问题。
2、风电机组及其并网接入系统2.1、同步发电机在该结构之中,允许同步发电机以可变的速度运行,可以产生频率与可变电压的功率。
以此来作为在并网发电的系统之中广泛应用的同步发电机,在运行的时候,不仅仅可以输出有功功率,而且还可以提供无功功率,且频率也是十分的稳定。
对于由风力机驱动的同步发电机和电网并联运行的时候,就随机可以采用自动准同步并网以及自同步并网的方式。
因为风电的电压、频率的不稳定性,一般就会使得应用前者并网相对比较困难;然而对于后者来说,因为并网的装置比较简单,最为常见的结构就是通过AC—DC—AC的整流逆变方式与系统进行并网,其原理结构如图1所示。
风力发电机并网 原理 PPT
![风力发电机并网 原理 PPT](https://img.taocdn.com/s3/m/1c084f4d6edb6f1aff001f9c.png)
• 2. 网侧变频器接触器闭合(S6)。网侧变频 器接触器闭合,同时预充电接触器断开, 能量从网侧经变频器至直流母排,母排 电压为1050DC,网侧变频器提供系统所 需无功能量,包括变压器、高频滤波装 置等。
• 3. 电机侧变频器启动(S7)。网侧变频器电 流80A左右,电机侧变频器电流20A左右。
• 2.风机达到并网转速,同时网侧变频器及 5Q2检测电压等条件达到并网条件,网侧 接触器合,预充电接触器分。
• 3. 5Q1和5Q2检测5Q3两侧电压、频率等 并网条件,如条件达到5Q3合,风机并网
• 4. 同步(S7-syn)。风机转速达到12001400rpm,电机侧变频器注入140A电流, 电机定子侧电压达到690V。
• 5. 定子接触器闭合,发电(S8)。定子电压 幅值、相位、频率与电网电压近乎一致, 定子接触器闭合,风机并网发电。
三、GE风机并网方式简介
• 1. 预充电:预充电接触器MA吸和,变频 器直流母排充电至970DC左右,机侧变 频器工作,母排直流电压经机侧变频器 逆变对发电机转子加电压。
二、华锐风机并网方式简介
• 1. 预充电(S2):防止高频滤波器件过流。 预充电接触器吸和,变频器直流母排充 电至970DC左右,网侧变频器工作,母 排直流电压经网侧变频器逆变使A点电压 渐升为690AC,且电流值为57A。如果没 有预充电环节,直接吸和网侧接触器, 会使A点瞬间过电流。
大家有疑问的,可以询问和交流 可以互相讨论下,但要小声
此时输入转子电流的频率fr1为:
fr1=P·nr1/60=p(ns-nr2)/60=P·ns·S/60=S·fs
式中:S—转子滑差 fs---工频
上式表明:当发电机的转子以不同的转速 (滑差为S)运行时,只要根据转子转速的变 化来调节输入转子电流的频率,使变频器在转 子三相对称绕组中随时输入滑差频率fr1的电流, 就可以在发电机气隙中形成同步速度的旋转磁 场,在定子绕组中产生恒定频率的电势,满足 其并网运行的要求。
第二章风力发电机组并网方式分析
![第二章风力发电机组并网方式分析](https://img.taocdn.com/s3/m/bf633d02fbd6195f312b3169a45177232f60e4e2.png)
第二章风力发电机组并网方式分析2风力发电机组并网运行方式分析2.1风力发电系统的基本结构和工作原理风力发电系统从形式上有离网型、并网型。
离网型的单机容量小(约为0.1~5 kW,一般不超过10 kW),主要采用直流发电系统并配合蓄电池储能装置独立运行;并网型的单机容量大(可达MW级),且由多台风电机组构成风力发电机群(风电场)集中向电网输送电能。
另外,中型风力发电机组(几十kW到几百kW)可并网运行,也可与其它能源发电方式相结合(如风电一水电互补、风电一柴油机组发电联合)形成微电网。
并网型风力发电的频率应保持恒等于电网频率,按其发电机运行方式可分为恒速恒频风力发电系统和变速恒频风力发电系统两大类。
2.1.1恒速恒频风力发电系统恒速恒频风力发电系统中主要采用三相同步发电机(运行于由电机极对数和频率所决定的同步转速)、鼠笼式异步发电机(SCIG)。
且在定桨距并网型风电机组中,一般采用SCIG,通过定桨距失速控制的风轮使其在略高于同步转速的转速(一般在(1~1.05)n)之间稳定发电运行。
如图2.1所示采用SCIG的恒速恒频风力发电系统结构示意图,由于SCIG在向电网输出有功功率的同时,需从电网吸收滞后的无功功率以建立转速为n的旋转磁场,这加重了电网无功功率的负担、导致电网功率因数下降,为此在SCIG机组与电网之间设置合适容量的并联电容器组以补偿无功。
在整个运行风速范围内(3 m/s < <25 m/s),气流的速度是不断变化的,为了提高中低风速运行时的效率,定桨距风力1 发电机普遍采用三相(笼型)异步双速发电机,分别设计成4极和6极,其典型代表是NEGMICON 750 kW机组。
风图2.1采用SCIG的恒速恒频风力发电系统恒速恒频风力发电系统具有电机结构简单、成本低、可靠性高等优点,其主要缺点为:运行范围窄;不能充分利用风能(其风能利用系数不可能保持在最大值);风速跃升时会导致主轴、齿轮箱和发电机等部件承受很大的机械应力。
2.风力发电及其并网技术
![2.风力发电及其并网技术](https://img.taocdn.com/s3/m/9b7c53d4cc22bcd126ff0cf4.png)
3 、风力机的功率调节
(3) 直驱永磁变速恒频风力发电机 PMSG
PMSG
电 网
机侧 变换器
网侧 变换器
2.3 风力发电系统的并网运行
1 大容量风电场并网对电力系统电能质量的影响 电压 恒速异步感应风电机组接入瞬间会产生较大的冲击电流,
使电网电压瞬时跌落;异步发电机运行时要从电网吸收感性无 功来建立磁场,也会引起无功损耗和电压损耗导致电压偏差增 大。变速双馈感应风电机组和永磁同步风电机组能实现有功和 无功的解偶控制,控制调节功率因数为1时,风电场与电网之间 可以不发生无功功率的交换,较之恒速异步风电机组,能够在 一定程度上缓解地区性的电压偏差问题。但当风力发电机出力 较大时,由于有功功率在线路上流动而消耗的无功功率,也可 能会造成电压降落,引起电压偏差过大。
2、全球区域风资源分布
三、风能资源的分布
三、风能资源的分布
三、风能资源的分布
三、风能资源的分布
3、我国分能资源分布
三、风能资源的分布
2.2风力发电机组
根据系统的运行方式,风力发电机组可以分: 离网型运行机组 互补运行机组 并网型运行机组
风力发电系统包括风力机及其控制系统与发电机及其控制系统两个 部分。
2.3 风力发电系统的并网运行
2 风电并网对系统安全稳定性的影响 暂态稳定性 恒速异步感应风电机组与电网的机电耦合紧密,动态 稳定性受异步发电机临界转速和故障持续时间的影响 较大。变速恒频风电机组利用变流器参与系统的无功 和电压控制,具有一定的无功调节能力,风电机组可 以按照不同的控制策略,吸收或发出无功功率进行电 压控制,其电网暂态稳定性的好坏主要取决于风电机 组的控制策略。
2.3.3风力发电机组的并网技术
1 风力发电机组的并网方式 异步风力发电机 降压并网 为了降低并网合闸瞬间冲击电流的大小和电网电压 下降的幅度,并网时在异步发电机每相绕组与电网 之间串联电阻或电抗器,或者接入自耦变压器。当 发电机并网稳定运行后再将接入的元件迅速从线路 中切除以免其消耗功率。
风力发电并网分析
![风力发电并网分析](https://img.taocdn.com/s3/m/7787f8a0960590c69ec376c2.png)
风力发电是要科学技术的支持, 风力发电是要科学技术的支持 , 风电并网更是对科技的 考验。我国地质条件特殊性 考验。 我国地质条件特殊性, , 地理环境的特殊性, 地理环境的特殊性 , 都是对风力 发电工程建设的不小挑战。 发电工程建设的不小挑战 。山区地形 山区地形、 、 高原气候, 高原气候 , 都增加了风 力发电工程的困难性。 力发电工程的困难性 。 况且风电工程在建设中 况且风电工程在建设中, , 还存在电源 建设的无序性、 建设的无序性 、 过快性等人为的问题。 过快性等人为的问题 。 还有就是电网工程核 准环节多、 周期长, 这对电网的管理系统也提出了更高的 要求。 要求 。
目的。降压并网式风电并网和准同期式风电并网的目的相差 目的。 无几, 无几 , 都是要达到幅值、 都是要达到幅值 、 频率及相位上的平衡才能进行风电 并网。 并网 。
4 风力发电并网的问题 4.1 风力发电技术不够成熟
2
风力发电并网的概念
风力发电并网也称风电并网。 风力发电并网也称风电并网 。离网型和并网型是风力发 电的两种类型 。 并网型风力发电 电的两种类型。 并网型风力发电, , 顾名思义, 顾名思义 , 就是合并入网, 就是合并入网 , 即将风力发电设备所开发出来的电力通过特定改变, 即将风力发电设备所开发出来的电力通过特定改变 , 接入到 电力系统中进行电力运输。 电力系统中进行电力运输 。通俗来说就是国家电力系统是一 张电网, 张电网 , 而并网型风力发电就是把开发的电能合并到电网 中 。 并网型风力发电的风力发电厂规模较大 并网型风力发电的风力发电厂规模较大, , 由成千上百台 风电机组构成, 风电机组构成 , 容量可达几兆瓦甚至几百兆瓦。 容量可达几兆瓦甚至几百兆瓦 。 由于并网型 风力发电可以得到电网的补偿和支撑, 风力发电可以得到电网的补偿和支撑 , 因此可以更加充分的 利用电力资源。 利用电力资源 。并网型风力发电是国内外风力发电最为主要 的风力发电模式。 的风力发电模式 。
风力发电机并网讲解
![风力发电机并网讲解](https://img.taocdn.com/s3/m/e0c7a9c1f242336c1fb95ea7.png)
2020/10/1
13
双馈式风力发电机及其并网
双馈风力发电机为定子绕组直接接入交流电网,转子绕组由频 率、幅值、相位可调的变流器提供三相低频励磁电流的新型电 机,当转子绕组通过某一频率的交流电时,就会产生一个相对 转子旋转的磁场,此时会在电机气隙中形成一个同步旋转磁场, 转子的实际转速加上交流励磁电流产生的旋转磁场所对应的转 速等于同步转速,从而改变了双馈电机定子电动势与电网电压 向量的相对位置,也即改变了电机的功率角,因此有调节无功 功率出力的能力。
变速恒频发电机系统是指在风力发电过 程中发电机的转速可以随风速变化,而通 过其他的控制方式来得到和电网频率一 致的恒频电能。
2020/10/1
4
发电机组并网的四个条件
1. 发电机的频率与系统频率相同。 2. 发电机出口电压与系统电压相同,其最
大误差应在5%以内。 3. 发电机相序与系统相序相同。 4.发电机电压相位与系统电机组
根据风力发电机运行特征和运行技术,并 网型风力发电机一般分为:
1、恒速恒频风力发电机。 2、变速恒频风力发电机。
2020/10/1
3
什么是恒速恒频与变速恒频?
恒速恒频发电机系统是指在风力发电过 程中保持发电机的转速不变从而得到和 电网频率一致的恒频电能。
2020/10/1
17
(2)独立负载并网方式:采用这种方式的思路是,并网前发 电机带负载运行,对发电机和负载进行控制,在满足并网条 件时进行并网。这种并网方式的特点是,发电机具有一定的 能量调节作用,降低了对原动机的调速能力要求,但是这种 并网方式控制起来非常复杂,所需要的信息不仅取自于电网
侧,同时还取自于定子侧。
2020/10/1
6
恒速笼型异步风力发电机系统
不同风力发电机组同时并网稳定性分析
![不同风力发电机组同时并网稳定性分析](https://img.taocdn.com/s3/m/b8270c2f856a561252d36fc2.png)
不同风力发电机组同时并网稳定性分析摘要:风能本身是一种可再生的清洁型能源,近年来在世界各国都得到了一定的重视和认可。
风能蕴藏总量相当巨大,经过不完全统计,全世界范围内,可利用风能大约为2*107MW。
我国是一个风能资源丰富的国家,仅仅在陆地上,可利用风能就已经超过2.5亿千瓦,同时我国风能也已经得到了较为充分的发展。
风电容量越来越大,可以直接经过配电后工给用户使用,对电力系统产生越来与也打的影响。
但是这也给电机组并网提出了更高的要求。
本文针对不同风力发电机组同时并网中的稳定性问题进行了简要分析。
关键词:风机并网;小干扰稳定;暂态稳定;电力系统近年来,能源问题正在威胁着人类社会的发展,环境问题也成为人类所面临的关键问题。
风能是一种清洁可再生能源,近年来得到了人们重视。
在整个电力系统中,风力装机的数量越来越多,如不解决其中的一系列关键问题,必然会影响到整个电力系统的安全稳定性。
现在主要应用的风力发电机包括一部风力发电机、双馈感应风力发电机、永磁直驱风力发电机等等,不同类型电机组并网也会直接给电力系统的安全稳定性造成一定影响。
一、风力发电机组并网条件首先,需要并组的风力发电机组的发出电源相许和电网汇流排相序应当是相同的,如果不符合此条件的风力发电机组强行并网,会导致拍振电流的出现,这样一来,发电机绕组因为电动力过高,线圈就会绝缘形成短路,无法正常工作。
第二,发电机和电网汇流排之间,需要保证电压有效值相等或接近,差值不能大于1/10,否则就会由于出现电位差,内部无功环流的出现,最终直接导致电磁冲击力的产生。
第三,发电机频率应当等同或接近于电力系统电源屏,频率差也要小于1HZ,否则会导致拍真的电流和拍振电压的产生,有功分量直接在发电机轴上出现力矩,导致发电机机械振动问题的出现,严重时会导致设备损坏。
第四,发电机电压相位和电力系统电源电压需要相等或接近,相位差要小于10°,若不满足该条件,会生成电流冲击,烧毁发电机。
直驱式永磁同步风力发电机组并网与保护
![直驱式永磁同步风力发电机组并网与保护](https://img.taocdn.com/s3/m/e1c3813a1611cc7931b765ce0508763230127449.png)
直驱式永磁同步风力发电机组并网与保护一、并网条件和方式1.并网条件永磁同步风力发电机组并联到电网时,为了防止过大的电流冲击和转矩冲击,风力发电机各相端电压的瞬时值要与电网端对应相电压的瞬时值完全一致,满足的条件:①波形相同;②幅值相同;③频率相同;④相序相同;⑤相位相同。
并网时因风力发电机旋转方向不变,只要使发电机的各相绕组输出端与电网各相互相对应,条件④就可以满足;而条件①可由发电机设计、制造和安装保证;因此并网时主要完成其他3个条件的检测和控制,其中频率相同必须满足。
2.并网方式(1)自动准同步并网。
满足上述理想并联条件的并网方式称为准同步并网,在这种并网方式下,并网瞬间不会产生冲击电流,电网电压不会下降,也不会对定子绕组和其他机械部件造成冲击。
永磁同步风力发电机组的起动与并网过程如下:当发电机在风力机带动下的转速接近同步转速时,励磁调节器给发电机输入励磁电流,通过调节励磁电流使发电机输出的端电压与电网电压相近。
在风力发电机的转速几乎达到同步转速、发电机的端电压与电网电压的幅值大致相同,并且断路器两端的电位差为零或很小时,控制断路器合闸并网。
永磁同步风力发电机并网后通过自整步作用牵入同步,使发电机电压频率与电网一致。
以上的检测与控制过程一般通过微机实现。
(2)自同步并网。
自动准同步并网的优点是合闸时没有明显的电流冲击,缺点是控制与操作复杂、费时。
当电网出现故障而要求迅速将备用发电机投入时,由于电网电压和频率出现不稳定,自动准同步法很难操作,往往采用自同步法实现并网运行。
自同步并网的方法是,同步发电机的转子励磁绕组先通过限流电阻短接,发电机中无励磁磁场,用原动机将发电机转子拖到同步转速附近(差值小于5%)时,将发电机并入电网,再立刻给发电机励磁,在定子、转子之间的电磁力作用下,发电机自动牵入同步。
由于发电机并网时转子绕组中无励磁电流,因而发电机定子绕组中没有感应电动势,不需要对发电机的电压和相角进行调节和校准,控制简单,并且从根本上排除不同步合闸的可能性。
风力发电机并网概要
![风力发电机并网概要](https://img.taocdn.com/s3/m/178a9255f46527d3240ce082.png)
2018/10/24
4
发电机组并网的四个条件
1. 发电机的频率与系统频率相同。
2. 发电机出口电压与系统电压相同,其最
大误差应在5%以内。 3. 发电机相序与系统相序相同。 4.发电机电压相位与系统电压相位一致。 当满足以上四个条件时,可以合上并网 开关,使发电机组并入系统运行
2018/10/24 5
2018/10/24
13
双馈式风力发电机及其并网
双馈风力发电机为定子绕组直接接入交流电网,转子绕组由频
率、幅值、相位可调的变流器提供三相低频励磁电流的新型电 机,当转子绕组通过某一频率的交流电时,就会产生一个相对 转子旋转的磁场,此时会在电机气隙中形成一个同步旋转磁场, 转子的实际转速加上交流励磁电流产生的旋转磁场所对应的转 速等于同步转速,从而改变了双馈电机定子电动势与电网电压 向量的相对位置,也即改变了电机的功率角,因此有调节无功 功率出力的能力。
2018/10/24
11
4、双向晶闸管控制的软切入法的并网方式 采用这种方式时在异步发电机定子与电网之间每 相串入一只双向晶闸管,接入的目的是将发电机 并网瞬间的冲击电流控制在允许的限度内。当发 电机达到同步速附近时,发电机输出端的短路器 闭合,发电机组通过双向晶闸管与电网相连,通 过电流反馈对双向晶闸管导通角控制,将并网时 的冲击电流限定在额定电流1.5倍以上,从而得到 一个比较平滑的并网过程,正常运行时,双向晶 闸管被短接。
2018/10/24
14
双馈异步风力发电机系统
2018/10/24
15
双馈风力发电机组的并网方式
空载并网,独立负载并
网以及孤岛并网方式。
2018/10/24
16
风力发电机并网原理PPT课件
![风力发电机并网原理PPT课件](https://img.taocdn.com/s3/m/80edc33a52d380eb62946daa.png)
二、华锐风机并网方式简介
• 1. 预充电(S2):防止高频滤波器件过流。 预充电接触器吸和,变频器直流母排充 电至970DC左右,网侧变频器工作,母排 直流电压经网侧变频器逆变使A点电压渐 升为690AC,且电流值为57A。如果没有 预充电环节,直接吸和网侧接触器,会 使A点瞬间过电流。
• 2. 网侧变频器接触器闭合(S6)。网侧变 频器接触器闭合,同时预充电接触器断 开,能量从网侧经变频器至直流母排, 母排电压为1050DC,网侧变频器提供系 统所需无功能量,包括变压器、高频滤 波装置等。
三、GE风机并网方式简介
• 1. 预充电:预充电接触器MA吸和,变频 器直流母排充电至970DC左右,机侧变频 器工作,母排直流电压经机侧变频器逆 变对发电机转子加电压。
• 2.风机达到并网转速,同时网侧变频器 及5Q2检测电压等条件达到并网条件,网 侧接触器合,预充电接触器分。
• 3. 5Q1和5Q2检测5Q3两侧电压、频率等 并网条件,如条件达到5Q3合,风机并网
风力发电机并网
一、双馈异步发电机并网方式简介 二、华锐风机并网方式简介 三、GE风机并网方式简介
一、双馈异步发电机并网方式简介
1.双馈异步发电机 发电机的定子直接连接到电网上,转子 和变流器相连。当风力驱动发电机旋转 时,在变流器的控制下,发电机把机械 能转换成电能向电网馈电。
• 实际运行中,如果转子的机械转速nr2与 三相交流电流在转子表面产生的旋转磁 场的转速nr1(两者方向可以相同或相反) 之和等于电网频率为50Hz的发电机的同 步转速ns,即nr1±nr2=ns,此时在发电 机气隙中形成的同步旋转磁场就会在发 电机定子绕组中感应出频率为50Hz的感 应电势。
此时输入转子电流的频率fr1为:
风力发电的并网
![风力发电的并网](https://img.taocdn.com/s3/m/fbd3c9010740be1e650e9ad3.png)
近年来大规模风力发电场的数量大幅度增加。
由于风场大都位于海面上,或遥远的乡村、山区,如何将风场连接至电网是投资风力发电时一个重要的考虑因素。
如果是海上风场,这个因素更为重要。
除了建设需要考虑的问题外,对电力系统稳定的影响也是需要考虑的重要因素。
随着风电场的容量越来越大,对电力系统的影响也越来越明显,研究风电并网后对系统的影响己成为重要课题。
风电的随机性使风电厂输入系统的有功功率处于不易控制的变化之中,相应地风电场吸收的无功功率也处于变化之中。
在系统重负荷或者临近功率极限运行时,风速的突然变化将成为系统电压失稳的扰动。
风电场所在地区往往远离负荷中心,处于供电网络的末端,而且需要消耗感性无功,系统的电压稳定问题更加突出。
在风电场规划设计时,通常根据电力系统确定一个风电场的最大容量,但是不同厂家、型号的风力发电机组的功率曲线不同,无功电压特性也不同。
目前国内采用的双馈机组可以根据需要调节无功,对系统来说起到了一定的稳压作用。
风电也给发电和运行计划的制定带来很多困难,需要重新评估系统的发电可靠性,分析风电的容量可信度,研究新的无功调度及电压控制策略以保证风电场和整个系统的电压水平及无功平衡,以及对孤立系统的稳定性影响等。
风力发电机的并网风力发电领域要解决的一个很重要的问题是风力发电机组的并网问题。
目前在国内和国外大量采用的是交流异步发电机,其并网方法也根据电机的容量不同和控制方式不同而变化。
异步发电机并入网运行时,是靠滑差率来调整负荷的,其输出的功率与转速近乎成线性关系,因此对机组的调速要求不像同步发电机那么严格和精确,只要检测到转速接近同步转速时就可并网,但异步发电机在并网瞬间会出现较大的冲击电流(约为异步发电机额定电流的4~7倍),并使电网电压瞬时下降。
随着风力发电机组单机容量的不断增大,这种冲击电流对发电机自身部件的安全及对电网的影响也愈加严重。
过大的冲击电流,有可能使发电机与电网连接的主回路中的自动开关断开;而电网电压的较大幅度下降,则可能会使电压保护回路动作,从而导致异步发电机根本不能并网。
风力发电机组的并网运行
![风力发电机组的并网运行](https://img.taocdn.com/s3/m/d75dfcd4336c1eb91a375dc1.png)
无功功率与有功之间的关系:
Qe
r22 xk (xk xm )s 2 r2 xm s
Pe
注意!
异步发电机的最大转矩与电网电压的平方成正比,电 网电压下降会导致发电机的最大转矩成平方关系下降, 因此如电网电压严重下降也会引起转子飞车;
电网电压上升过高,会导致发电机励磁电流增加,功 率因数下降,并有可能造成电机过载运行。
第四讲 风电场并网运行
4.1 同步发电机的并网运行 4.2异步发电机的并网运行 4.3 变速恒频风力发电机的并网运行 4.4 同步发电机交/直/交系统的并网运行 4.4 磁场调制发电机系统的并网运行 4.5双馈发电机系统的并网运
概述
风能是一种不稳定的能源,如果没有储能装置或与其他发电装置互补 运行,风力发电装置本身难以提供稳定的电能输出。
瞬态过程结束后,微处理机发出信号,用一组开关K将双向晶闸管短接,结束风力发 电机的并网过程,进入正常的发电运行。
引进和国产的250、300、600kW的风力发电机都采用这种起动方式。
特点:这种并网方式要求三相晶闸管性能一致,控制极触发电压、触发电流一致、全开
通后压降相同,才能保证晶闸管导通角在0°至180°同步逐渐增大,保证三相电流平
③降压并网
并网过程:并网前,在异步发电机与电网之间串接电阻或 电抗器或者接入自耦变压器,以达到降低并网瞬间冲击电 流幅值及电网电压下降的幅度。并网后,将电阻、电抗短 接,避免耗能。
适用于百千瓦以上的发电机组,我国引进的200kW异步风 力发电机组就是采用这种并网方式。
这种并网方式的经济性较差。
风电机输出的电功率
1
• 要增加它的输出电功率,就必须增加来自风力机的输入机械功率
同步发电机的功角特性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2风力发电机组并网运行方式分析2.1风力发电系统的基本结构和工作原理风力发电系统从形式上有离网型、并网型。
离网型的单机容量小(约为0.1~5 kW,一般不超过10 kW),主要采用直流发电系统并配合蓄电池储能装置独立运行;并网型的单机容量大(可达MW级),且由多台风电机组构成风力发电机群(风电场)集中向电网输送电能。
另外,中型风力发电机组(几十kW到几百kW)可并网运行,也可与其它能源发电方式相结合(如风电一水电互补、风电一柴油机组发电联合)形成微电网。
并网型风力发电的频率应保持恒等于电网频率,按其发电机运行方式可分为恒速恒频风力发电系统和变速恒频风力发电系统两大类。
2.1.1恒速恒频风力发电系统恒速恒频风力发电系统中主要采用三相同步发电机(运行于由电机极对数和频率所决定的同步转速)、鼠笼式异步发电机(SCIG)。
且在定桨距并网型风电机组中,一般采用SCIG,通过定桨距失速控制的风轮使其在略高于同步转速的转速(一般在(1~1.05)n)之间稳定发电运行。
如图2.1所示采用SCIG的恒速恒频风力发电系统结构示意图,由于SCIG在向电网输出有功功率的同时,需从电网吸收滞后的无功功率以建立转速为n的旋转磁场,这加重了电网无功功率的负担、导致电网功率因数下降,为此在SCIG机组与电网之间设置合适容量的并联电容器组以补偿无功。
在整个运行风速范围内(3 m/s < <25 m/s),气流的速度是不断变化的,为了提高中低风速运行时的效率,定桨距风力1发电机普遍采用三相(笼型)异步双速发电机,分别设计成4极和6极,其典型代表是NEGMICON 750 kW机组。
风图2.1采用SCIG的恒速恒频风力发电系统恒速恒频风力发电系统具有电机结构简单、成本低、可靠性高等优点,其主要缺点为:运行范围窄;不能充分利用风能(其风能利用系数不可能保持在最大值);风速跃升时会导致主轴、齿轮箱和发电机等部件承受很大的机械应力。
2.1.2变速恒频风力发电系统为了克服恒速恒频风力发电系统的缺点,20世纪90年代中期,基于变桨距技术的各种变速恒频风力发电系统开始进入市场,其主要特点为:低于额定风速时,调节发电机转矩使转速跟随风速变化,使风轮的叶尖速比保持在最佳值,维持风电机组在最大风能利用率下运行;高于额定风速时,调节桨距以限制风力机吸收的功率不超过最大值;恒频电能的获得是通过发电机与电力电子变换装置相结合实现的。
目前,变速恒频风电机组主要采用绕线转子双馈异步发电机,低速同步发电机直驱型风力发电系统亦受到广泛重视。
(1)基于绕线转子双馈异步发电机的变速恒频风力发电系统绕线转子双馈异步发电机(DFIG)的转子侧通过集电环和电刷加入交流励磁,既可输入电能也可输出电能。
图2.2为基于绕线转子双馈异步发电机的变速恒频风力发电系统结构示意图,其中,DFIG的转子绕组通过可逆变换器与电网相连,通过控制转子励磁电流的频率实现宽范围变速恒频发电运行,其工作原理为:转子通入三相低频励磁电流形成低速旋转磁场,该磁场的旋转速度r n 与转子机械转速r n 相叠加,等于定子的同步转速0n ,即r n 2n =0n从而在DFIG 定子绕组中感应出相应于同步转速0n 的工频电压。
当发电机转速r n 随风速变化而变化时(一般的变化范围为0n 的30%,可双向调节),调节转子励磁电流的频率即可调节0n 以补偿r n 的变化,保持输出电能频率恒定。
图2.2所示变速恒频方案由于是在转子电路中实现的而流过转子电路的功率是由DFIG 转速运行范围所决定的转差功率,一般只为额定功率的1/4—1/3,故显著降低了变换器的容量、成本。
此外,调节转子励磁电流的有功、无功分量,可独立调节发电机的有功、无功功率,以调节电网的功率因数、补偿电网的无功需求。
事实上,由于DFIG 转子采用了可调节频率、幅值、相位的交流励磁,发电机和电力系统构成了“柔性连接”。
德国Dewind 公司生产的D6型机组(其额定功率为1 250 kW ,起动、额定、切出风速分别为2.5 m /s ,13 m /s ,28 m /s)是采用这种变速恒频方案的典型产品。
风图2.2基于DFIG 的变速恒频风力发电系统(2)基于低速同步发电机的直驱型风力发电系统直驱型风力发电系统中,风轮与永磁式(或电励磁式)同步发电机直接连接,省去了常用的升速齿轮箱。
图2.3为永磁直驱型变速恒频风力发电系统结构示意图,风能通过风机和永磁同步发电机(PMSG)转换为PMSG定子绕组中频率、幅值变化的交流电,输入到全功率变换器中(其通常采用可控PWM整流或不控整流后接DC/AC变换),先经整流为直流,然后经三相逆变器变换为三相工频交流电输出。
该系统通过定子侧的全功率变换器对系统的有功、无功功率进行控制,并控制发电机的电磁转矩以调节风轮转速,实现最大功率跟踪。
与基于DFIG的风力发电系统相比,该系统可在较宽的转速范围内并网,但其全功率变换器的容量较大。
与带齿轮箱的风力发电系统相比,该系统提高了效率与可靠性、降低了运行噪声,但发电机转速低,为获得一定的功率,发电机应具备较大的电磁转矩,故其体积大、成本高。
风变压器图2.3永磁直驱型变速恒频风力发电系统2.2现行风能并网方法综述自从上世纪以来,学术界已经提出了有很多种风能并网方案并且应用在实际的风电场并网建设中。
总得来说,目前风力发电的并网方式大致可以分为异步发电机、同步发电机和双馈发电机三种方式。
2.2.1异步发电机组的并网因为风力机为低速运转的动力机械,在风力机与异步发电机转子之间经增速齿轮传动来提高转速以达到适合异步发电机运转的转速。
一般与电网并联运行的异步发电机多选用4极或6极电机,因此异步电机转速必须超过1500r/rain或1000r/min才能运行在发电状态向电网送电。
根据电机理论,异步发电机并入电网运行时,是靠滑差率来调整负荷的,其输出的功率与转速近乎成线性关系。
因此对机组的调速要求,不像同步发电机那么严格精确,不需要同步设备和整步操作,只要转速接近同步转速时就可并网。
但异步发电机在并网瞬间会出现较大的冲击电流(约为异步发电机额定电流的4~7倍),并使电网电压瞬时下降。
随着风力发电机组单机容量的不断增大,这种冲击电流对发电机自身部件的安全及对电网的影响也愈加严重。
过大的冲击电流,有可能使发电机与电网连接的主回路中的自动开关断开;而电网电压的较大幅度下降,则可能会使低压保护动作,从而导致异步发电机根本不能并网。
当前在风力发电系统中采用的异步发电机并网方法有以下几种:(1)直接并网这种并网方法要求在并网时发电机的相序与电网的相序相同,当风力驱动的异步发电机转速接近同步转速时即可自动并入电网;自动并网的信号由铡速装置给出,而后通过自动空气开关合闸完成并网过程。
但如上所述,直接并网时会出现较大的冲击电流及电网电压的下降,因此这种并网方法只适合用于异步发电机容量在百千瓦级以下而电网容量较大的情况下。
我国最早引进的55KW风力发电机组和自行研制的50Kw风力发电机组都是采用这种方法并网的。
(2)降压并网这种并网方法是在异步电机与电网之间串接电阻或电抗器或者接入自耦变压器,以达到降低并网合闸瞬间冲击电流幅值及电网电压下降的幅度。
因为电阻、电抗器等元件要消耗功率,在发电机并入电网以后,进入稳定运行状态时,必须将其迅速切除。
这种并网方法适用于百千瓦级以上、容量较大的机组,显而易见这种并网方法的经济性较差。
我国引进的200KW异步发电机组,就是采用这种并网方式,并网发电机每相绕组与电网之间皆串接有大功率电阻。
(3)通过晶闸管软并网这种并网方法是在异步发电机定子与电网之间通过每相串入一只双向晶闸管连接起来,三相均有晶闸管控制,双向晶闸管的两端与并网自动开关的动合触头并联。
接入双向晶闸管的目的是将发电机并网瞬间冲击电流控制在允许的限度内。
其并网的过程如下:当风力发电机组接收到由控制系统内微处理器发出的启动命令后,先检查发电机的相序与电网的相序是否一致,若相序正确,则发出松闸命令,风力发电机组开始启动。
当发电机转速接近同步转速时(约为99%~100%同步转速),双向晶闸管的控制脚同时由180度到0度逐渐同步打开;与此同时,双向晶闸管的导通角则同时由0度到180 度逐渐增大,此时并网自动开关未动作,动合触头未闭合,异步发电机即通过晶闸管平稳的并入电网;随着发电机转速继续升高,电机的滑差率渐趋于零。
当滑差率为零时,并网自动开关动作,动合触头闭合,双向晶闸管被短接,异步发电机的输出电流将不再经双向晶闸管,而是通过已闭合的自动开关触头流入电网。
在发电机并网后,应立即在发电机端并入补偿电容,将发电机的功率因数提高到0.95以上。
该种软并网方法的特点是通过控制晶闸管的导通角,将发电机并网瞬间的冲击电流值限制在规定的范围内(一般为1.5倍额定电流以下),从而得到一个平滑的并网瞬态过程。
在所示的软并网线路中,在双向晶闸管两端并接有旁路并网自动开关,并在零转差率时实现自动切换,在并网瞬态过程完毕后,即将双向晶闸管短接。
与此种软并网连接方式相对应的另一种软并网连接方式是在异步发电机与电网之间通过双向晶闸管直接连接,在晶闸管两端没有并接旁路并网自动开关,双向晶闸管既在并网过程中起到控制冲击电流的作用,同时又作为无触头自动开关,在并网后继续存在于主回路中,这种软并网方连接方式可以省去一个并网自动开关,因而控制回路较为简单,而且避免了有触头自动开关触头弹跳、沾着及磨损等现象,可以保证较高的开关频率。
但这种连接方式需选用电流允许值大的高反压双向晶闸管,这是因为双向晶闸管中通过的电流需满足能通过异步发电机的额定电流值,而具有旁路并网自动开关的软并网连接方式中的高反压双向晶闸管只要能通过较发电机空载电流略高的电流就可以满足要求。
这种软并网连接方式的并网过程与上述具有并网自动开关的软并网连接方式的并网过程类似,在双向晶闸管开始导通阶段,异步电机作为电动机运行,但随着异步发电机转速的升高,滑差率渐渐接近与零,当滑差率为零时,双向晶闸管已全部导通,并网过程结束。
异步发电机晶闸管电网图2.4 异步电机晶闸管软并网电路晶闸管软并网技术对晶闸管器件及与之相关的晶闸管触发电路提出了严格的要求,即晶闸管器件的特性要求一致、稳定以及触发电路可靠,只有发电机主回路中的每相的双向晶闸管特性一致,控制极触发电压,触发电流一致,全开通压降相同,才能保证可控硅导通角在0度~1踟度范围内同步逐渐增大,才能保证发电机三相电流平衡。
目前在晶闸管软并网方法中,根据晶闸管的通断状况,触发电路有移相触发和过零触发两种方式。
移相触发会造成电机每相电流为正负半波对称的非正弦波(缺角正弦波)含有较多的奇次谐波分量,这些谐波会对电网造成污染公害,必须加以限制和消除。