齿轮常见失效形式及其解决方法

合集下载

吊车齿轮的主要失效形式和维修

吊车齿轮的主要失效形式和维修

吊车齿轮的主要失效形式和维修吊车上的变速与减速传动主要依据齿轮完成。

通常把安装在封闭的箱体中的齿轮传动称为闭式传动,不在封闭箱中的称为开式齿轮传动。

齿轮箱可在一定范围内改变传递的转矩和转速及动力传动方向。

移动式工程吊车使用的齿轮箱主要有圆柱齿轮减速箱、涡轮减速箱、星形齿轮减速箱(包括少齿差)和摆线针轮减速箱及变速箱。

齿轮箱由齿轮、轴、轴承、箱体、紧固件、封闭件等零件组成。

(一)齿轮的主要失效形式与维修齿轮的失效形式主要是指齿轮在载荷作用下,发生损坏或永久变形。

常见的失效形式有齿面磨损(包括偏磨)、疲劳点蚀、胶合、产生塑性变形、裂纹和断齿等。

通常情况下,齿轮出现下列情况之一应作报废处理。

1.齿面出现裂纹、断齿。

2.齿面点蚀损坏达啮合面的30%,且深度达原齿厚的10%。

3.齿面磨损量超过规定值(闭式传动的起升与非平衡变幅机构的第一级啮合齿轮磨损超过原厚的10%,其他机构第一级啮合超过15%,其他级啮合超过20%,以及开式传动齿轮磨损超过原厚30%)。

对失效没有达到以上三种情的齿轮可按以下情况进行维修。

1.如果齿轮的齿面磨损轻微,齿侧间隙小于0.1毫米时,可用油石修整齿面后继续使用。

2.齿面磨损、剥伤严重时,但对6级精度齿轮齿面磨损量不超过分度圆理论齿厚的4%,7级、8级精度齿轮不超过百分之6,疲劳剥伤面积不超过百分之25,坑深不超过齿厚百分之10.可堆焊齿面或将齿面换向使用。

齿面焊修前应退火、去除疲劳层,用细焊丝堆焊,焊后进行渗碳、猝火、修磨等处理。

3.对某些大型重要齿轮,如果只有个别齿断可采用堆焊或镶齿法进行修复。

堆焊时应将齿轮浸入水中,只露施焊部分,不焊部分用浸水石棉板遮护。

镶齿应在断齿处制出燕尾槽,再将制好带燕尾的单齿镶入断齿燕尾槽中,然后再端部接缝处焊牢。

以上资料由济宁龙锋工程机械有限公司提供:。

齿轮失效常见的形式及预防措施

齿轮失效常见的形式及预防措施

1.5 塑性变形齿⾯塑性变形主要出现在低速重载、频繁启动和过载的场合。

当齿⾯的⼯作应⼒超过材料的屈服极限时,齿⾯产⽣塑性流动,从⽽引起主动轮齿⾯节线处产⽣凹槽,从动轮出现凸脊。

此失效多发⽣在⾮硬⾯轮齿上,齿轮的齿形严重变形,特别是左右不对称时应更换新件。

上⾯阐述的⼏种主要轮齿失效形式,在⼀般情况下,不仅可以修复,且在不能改变齿轮材料、加⼯⼯艺的条件下通过提前预防来延迟齿轮失效不利情况的发⽣,提⾼齿轮使⽤寿命。

2、预防齿轮失效措施2.1 提⾼齿轮安装精度2.2 合理选材齿轮材料的选择,要根据强度、韧性和⼯艺性能要求,综合考虑。

结合我国实际,宜选⽤低碳合⾦渗碳钢。

对于承受重载和冲击载荷的齿轮,采⽤以Ni-Cr和Ni-Cr-Mo合⾦渗碳钢为主的钢材;对于负载⽐较稳定或功率较⼩,模数较⼩的齿轮,亦可选⽤⽆Ni的Ni-Mn钢。

⽤这种钢材制造的齿轮与普通电炉钢制造的齿轮相⽐,其接触和弯曲疲劳寿命可提⾼3-5倍,齿轮极限载荷可提⾼15%-20%。

2.3 热处理通过热处理⼯艺,可以改善齿轮材质,适当提⾼硬度,消除或减轻齿⾯的局部过载,提⾼齿⾯的抗剥落能⼒。

例,对煤矿机械中的齿轮,深层渗碳淬⽕,可减⼩齿轮硬化,提⾼芯部硬度,较⼩的过渡区残余拉应⼒和充⾜的硬化层深度。

2.4 根据实际情况选择齿轮油据资料显⽰,机械故障的34.4%源于润滑不⾜,19.6%源于润滑不当,换句话说,以54%的机械故障是由于润滑问题所致。

因此,选择好的齿轮油对提⾼齿轮使⽤寿命有重要的意义。

2.5 修复为了确保齿轮的强度和硬度,决定采⽤氩弧焊合⾦焊丝堆焊修复,后⽤磨光机整形处理⽅案,这样焊后的齿轮轮齿少不经热处理达到较⾼的硬度和强度。

通过对齿轮失效形式的分析,可提⾼准确判别设备故障的能⼒,及时解除故障,提⾼经济效益。

机械传动齿轮失效问题分析与应对策略

机械传动齿轮失效问题分析与应对策略

机械传动齿轮失效问题分析与应对策略
机械传动齿轮失效问题是机械设备运行过程中常见的故障,如果不及时解决,将会导
致机械设备的停止运行和生产中断。

进行齿轮失效问题的分析和应对策略十分重要。

齿轮失效问题的常见原因包括:
1. 齿轮负荷过大:长时间运行或者超负荷工作会导致齿轮磨损加剧,从而出现齿轮
失效问题。

2. 润滑不良:如果齿轮没有得到足够的润滑,会导致齿轮磨损加剧,进而失效。

3. 齿轮设计问题:齿轮的设计是否合理,齿轮的材质是否适用,齿轮的尺寸是否合
适等都会影响齿轮的使用寿命和失效情况。

4. 齿轮制造质量问题:齿轮的制造工艺和质量问题也会导致齿轮的失效。

应对这些问题,可以采取以下策略:
1. 加强润滑:确保齿轮得到足够的润滑,可以采取定期更换润滑油,增加油脂的用
量等方法,使齿轮在运行时摩擦减小,从而延长齿轮的使用寿命。

2. 提高齿轮的质量:在齿轮的设计和制造过程中,要高度重视齿轮的质量,选择合
适的材料,制定合理的工艺,做好齿轮的检验和质量控制工作,以确保齿轮的质量。

3. 加强齿轮的检查和维护:定期对齿轮进行检查,及时发现问题,采取有效的维护
措施,延长齿轮的寿命。

及时更换磨损严重的齿轮,修复齿轮表面的损坏等。

4. 增加齿轮的寿命:在齿轮的使用过程中,可以采取一些延长齿轮寿命的方法,改
变齿轮的工作条件,减少齿轮的负荷,加强齿轮的冷却等。

要解决齿轮失效问题,需要分析具体原因,并采取相应的应对策略。

通过加强润滑、
提高齿轮质量、加强检查和维护以及延长齿轮寿命等措施,可以有效地解决齿轮失效问题,保障机械设备的正常运行。

齿轮失效形式

齿轮失效形式

一.齿轮失效原因及解决措施各种齿轮传动因其润滑方式不同,材料及热处理方式不同,齿轮传动的载荷和速度范围不同,所表现出的主要失效形式也不同。

这里所讨论的齿轮失效形式是指轮齿部分(轮缘)的失效(不是键等部分)。

齿轮传动的优缺点:优点:首先齿轮传动具有较高的传动效率,这对于大功率传动是很重要的特点,使机械传动减少大量的能量损失。

齿轮传动承载能力大,与其他传动形式相比,在传递同样载荷的前提下,具有较小的体积,具有较高的使用寿命,甚至无限寿命。

齿轮传动的瞬时传动比(链传动相比)和平均传动比(带传动相比)都较稳定,具有较高的传动精度。

缺点:齿轮传动的主要缺点是对传动零件及相关的零件提出较高的制造,安装,调整的要求,另外齿轮传动不适合于远距离传动(与带传动和链传动相比)。

按工作条件齿轮传动分两种形式开式传动:齿轮外露,易进入灰尘、杂质,磨损严重,润滑差,对安全操作不利,适用低速场合。

例水泥搅拌等设备。

闭式传动:封闭在刚性的箱体内,润滑良好,精度高,防护条件好。

例机床、减速器等。

1.1 轮齿的失效形式1.轮齿折断一般发生在轮齿根部原因:齿根弯曲应力大;齿根应力集中解决措施:增大齿根圆角半径;正变位,增大模数;增大压力角;强化处理:喷丸、滚压处理;材料选用低碳合金钢,渗碳淬火。

断裂的两种形式a.过载折断b.疲劳断裂(轮齿弯曲应力为脉动循环变应力,r=0)直齿轮:整体折断;斜齿轮:局部折断。

2.齿面点蚀原因:轮齿在节圆附近一对齿受力,载荷大;滑动速度低形成油膜条件差;产生了接触疲劳。

现象:小裂纹-扩展-脱落-凹坑。

点蚀是在交变的接触应力作用下,齿面接触应力超出材料的接触疲劳极限,在载荷的多次重复作用下,齿面表层就会产生细致的疲劳裂纹,裂纹蔓延扩展,在齿面上出现局部材料脱落,形成麻点的失效形式,特别是在齿面硬度低于350HBS的闭式软齿面齿轮,更表现为主要的失效形式。

这种麻点出现后,齿面上的局部接触应力加大,更加剧了点蚀的发生和扩展,引起传动噪声加大,传动精度降低。

机器设备中常见的齿轮失效分析及预防措施

机器设备中常见的齿轮失效分析及预防措施

机器设备中常见的齿轮失效分析及预防措施齿轮传动广泛的用于各种机器设备。

在这些使用了齿轮传动的机器的工作过程中因工作环境以及载荷大小变化等原因,相互啮合的轮齿会产生轮齿折断、齿面磨损、齿面点蚀、齿面胶合、塑性变形等失效形式。

这些失效是由不同的因素所引起的,比如传动过程中的过载和交变应力会引起轮齿折断,而润滑的不足则会引起齿面磨损和齿面胶合。

针对这些失效形式前面已有不同的单位和人员花了大量的精力进行了研究和分析。

但是笔者认为都不够完善,在此再做较为全面的分析和总结,以期望为齿轮传动的发展做出自己的一点贡献。

下面就引起这几种不同失效形式的因素做出分析,并在分析的基础上提出预防和改进的措施。

一、齿轮失效的常见形式1、轮齿折断传动过程中,齿轮发生轮齿折断的主要因素有两个:一是因齿根受到交变应力的作用,引起的疲劳折断,一般发生在轮齿的齿根部分。

二是传动过程中载荷过大引起的过载断裂,极易发生在轮齿的节线到齿顶位置之间。

其他常见的折断形式还有因安装精度差中引起的局部折断和因制造过程中因材料缺陷和加工残余应力引起的随机折断。

2、齿面磨损齿面磨损的形式主要有两大类。

一是磨粒磨损,很多采用齿轮传动作为传动形式的设备工作环境比较恶劣。

比如农业机械,矿山机械和土方机械等。

在这些机械中一部分因制造成本的原因仍然采用的是开式齿轮传动,造成沙粒和粉尘等极易进入到相互结合的两个齿面之间引起磨损,导致两轮齿的侧隙增大,产生严重的振动和噪声。

二是跑合磨损,这种磨损对机器设备的正常传动是有好处的,因此在这里不做累述。

.3、齿面点蚀常见的齿轮传动重合度值均在较小范围,重合度的大小直接影响到传动过程中单对轮齿的受力情况。

重合度较小的齿轮传动一般会在节线附近让轮齿承受比较大的载荷。

在反复产生的脉动循环力和大载荷的长期同时作用下,齿轮就会产生疲劳断裂直至齿面发生金属脱落出现麻点。

4、齿面胶合对于一些大功率高转速的机器设备,在齿轮传动过程中,由于轮齿的齿面间的压力大,瞬时温度高等原因,齿面件的润滑油膜极易发生破裂,导致局部金属相互粘接。

齿轮零件常见失效形式

齿轮零件常见失效形式

齿轮零件常见失效形式齿轮常见的失效形式有四种:齿面磨损、齿面疲劳、轮齿断裂、齿面塑性变形。

(1)齿面磨损齿轮传动中润滑不良、润滑油不洁等均可造成磨损或划痕。

磨损可分为磨粒磨损、划痕、腐蚀磨损和胶合等。

①磨粒磨损与划痕:当润滑油不洁,含有杂质颗粒,或在开式齿轮传动中的外来砂粒,或在摩擦过程中产生的金属磨屑,都可以产生磨粒磨损与划痕。

这些外界的硬质微粒,开始先嵌入一个工作表面,然后以微量切削的形式,从另一个工作表面挖去金属的细小微粒或在塑性流动下引起变形。

通常情况下齿顶、齿根部摩擦较节圆部严重,这是因为啮合过程中节圆处为滚动接触,而齿顶、齿根处为滑动接触。

②腐蚀磨损:由于润滑油中的一些化学物质如酸、碱或水等污染物与齿面发生化学反应造成金属腐蚀而导致齿面损伤。

③烧蚀:烧蚀是由于过载、超高速、润滑不当或不充分引起的齿面剧烈磨损,由磨损引起局部高温,这种温度升高足以引起色变和过时效,或使钢的几微米厚度表面层重新粹火,出现白层。

④齿面胶合:大功率软齿面或高速重载的齿轮传动,当润滑条件不良时产生齿面胶合现象,一个齿面上的部分材料胶合到另一齿面上,因而在此齿面上留下坑穴,在后续的啮合传动中,这部分胶合上的多余材料很容易造成其他齿面的擦伤沟痕,形成恶性循环。

(2)齿面疲劳所谓的齿面疲劳主要包括齿面点蚀与剥落,是由于材料的疲劳引起的。

当工作表面承受交变应力的作用时,会在齿面引起微观疲劳裂纹,润滑油进入裂纹后,由于啮合过程可能先封闭入口然后挤压,微观疲劳裂纹内的润滑油在高压下使裂纹扩展,结果小块金属从齿面上脱落留下一个小坑,形成点蚀。

如果表面的疲劳裂纹扩展较深、较远或一系列小坑由于坑间材料失效时连接起来,造成大面积或大块金属脱落,这种现象则称为剥落。

实验表明,在闭式齿轮传动中,点蚀是非常普遍的破坏形式,在开式齿轮传动中,由于润滑不够充分以及进入污物的可能性增多,磨粒磨损总是先于点蚀磨损。

(3)轮齿断裂齿轮副在啮合传动时,主动轮的作用力和从动轮的反作用力都是通过接触点分别作用在对方的轮齿上,危险的情况下是接触点某一瞬间位于轮齿的齿顶部,此时轮齿如同一个悬臂梁,受载后齿根处产生的弯曲应力为最大,若因突然过载或冲击过载,很容易在齿根部产生过负荷断裂,即使不存在冲击过载的受力H况,当轮齿重复受载后,由于应力集中现象,也易产生疲劳裂纹,并逐步扩展,致使轮齿在齿根处产生疲劳断裂。

齿轮失效形式与解决措施解析

齿轮失效形式与解决措施解析

齿轮失效形式与解决措施解析作者:于永江白祥义来源:《中国新技术新产品》2016年第04期摘要:齿轮作为现阶段工业生产、加工的重要零部件,其在很多方面都具有突出的动力传递作用。

在日常的运作过程中,齿轮有可能出现失效的情况,这主要与产品的加工数量、加工质量、生产速度、加工方法等具有密切的关系。

一旦齿轮出现失效的情况,势必导致齿轮的整体传动遇到较大的阻碍,进而对后续的工作产生负面的影响。

为此,在今后的工作中,应针对齿轮失效的形式展开分析,选择针对性的措施予以解决,应在多方面充分避免齿轮失效的情况发生,提高齿轮的传动效果,强化动力的供应,保证设备的正常运转。

关键词:齿轮;失效;形式;措施中图分类号:TH132 文献标识码:A齿轮失效在现阶段的工业加工、生产中,几乎是一种必然出现的情况,由于长期的运作和摩擦,导致齿轮的传动出现了很大的问题,再加上外部因素的作用,齿轮失效成为了加工、生产中的主要问题。

相对而言,当下的齿轮正在朝着精密的方向发展,在研究其失效形式的过程中,应从多个角度来考虑和分析,找出最主要的原因,选择合理的措施进行应对,必要时更换齿轮,避免生产、加工受到影响。

在此,本文主要对齿轮失效的几种形式与应对措施展开讨论。

一、齿轮折断齿轮在运行过程中,出现失效所造成的影响是非常严重的。

在多数情况下,齿轮折断是造成失效的主要问题,且造成的损失突出。

从客观的角度来分析,齿轮折断的具体形式较多,比较常见的齿根弯曲疲劳折断。

第一,齿轮在检查过程中,发现齿面的啮合痕迹表现为均匀的状态,沿着齿根检查发现,整齿断裂突出。

分析其出现的原因,可能是齿轮在运行过程中,出现了严重超载的情况,多数情况为超过了齿轮设计的承载力,或者是齿轮本身受到的严重的冲击载荷,造成损坏情况。

第二,齿轮破裂。

齿轮在检查过程中,破裂是造成齿轮折断的常见原因,认为是由于齿根或者是热处理时尖角处出现了应力过渡集中的情况,或者是材料本身的问题所造成的。

齿轮常见失效形式及其解决方法

齿轮常见失效形式及其解决方法

齿轮失效分析与解决方法摘要通过对齿轮失效形式的分析,找出相应解决方法,提高机械传动齿轮质量,延长机械设备的使用寿命。

分析研究失效形式有助于建立齿轮设计的准则,提出防止和减轻失效的措施。

关键词失效;轮齿折断;齿面点蚀;齿面胶合;齿面磨损;齿面塑性变形齿轮是现代机械中应用最广泛的重要基础零件之一。

齿轮类型很多,有直齿轮、斜齿轮、人字齿等,齿面硬度有软齿面和硬齿面,齿轮转速有高有低,传动装置有开式装置和闭式装置,载荷有轻重之分,因此影响因素很多,所以实际应用中会出现各种不同的失效形式。

齿轮的失效主要发生在轮齿部分,其常见失效形式有:轮齿折断、齿面点蚀、齿面磨损、齿面胶合和齿面塑性变形五种。

1 轮齿折断轮齿折断有多种形式,在正常情况下,有以下两种:1)过载折断。

因短时过载或冲击载荷而产生的折断。

过载折断的断口一般都在齿根部位。

断口比较平直,并且具有很粗糙的特征。

2)疲劳折断。

齿轮在工作过程中,齿根处产生的弯曲应力最大,再加上齿根过渡部分的截面突变及加工刀痕等引起的应力集中作用,当轮齿重复受载后,齿根处就会产生疲劳裂纹,并逐步扩展,致使轮齿疲劳折断轮齿。

齿面较小的直齿轮常发生全齿折断,齿面较大的直齿轮,因制造装配误差易产生载荷偏置一端,导致局部折断;斜齿轮和人字齿齿轮,由于接触线倾斜,一般是局部齿折断。

为了提高齿轮的抗折断能力,除设计时满足强度条件外,还可采取下列措施:①采用高强度钢;②采用合适的热处理方式增强轮齿齿芯的韧性;③增大齿根过度圆角半径,消除齿根加工刀痕,齿根处强化处理;④加大齿轮模数;⑤采用正变位齿轮。

为避免轮齿折断,设计时要进行轮齿弯曲疲劳强度计算和静弯曲强度计算。

齿面磨损有磨粒磨损和跑合磨损两种。

在齿轮传动中,随着工作环境的不同,齿面间存在多种形式的磨损情况。

当齿面间落入铁屑、砂粒、非金属物等磨粒性物质或粗糙齿面的摩擦时,都会发生磨粒磨损。

齿面磨损后,引起齿廓变形,产生振动、冲击和噪声,磨损严重时,由于齿厚过薄而可能发生轮齿折断。

齿轮的失效形式有哪些

齿轮的失效形式有哪些

齿轮的失效形式有哪些1. 齿轮的失效形式有哪些,a齿面点蚀 b齿面磨损c齿面折断d齿面胶合e塑形变型 2. 齿面胶合的失效机理如何,避免齿面胶合的措施有哪些, 齿面胶合是由于齿面未能有效地形成润滑油膜,导致齿面金属直接接触,并在随后的相对滑动中,相互粘连的金属沿着相对滑动方向相互撕扯而出现一条条划痕。

措施:采用正变位齿轮,减小模数,降低齿高以减小滑动速度,提高齿面硬度,降低齿面粗糙度值,采用抗胶合能力强的齿轮材料,在润滑油中加入抗胶合能力强的极压添加剂等 3. 齿面点蚀的机理如何, 齿轮工作时,在循环接触应力,齿面摩擦力及润滑的反复作用下,在齿面或其他表层内会产生微小的裂纹。

这些微裂纹继续扩展,相互连接,形成小片并脱落,在齿面上出现细碎的凹坑或麻点,从而造成痴齿面损伤,称为疲劳点蚀。

4. 减小齿面磨损的措施有哪些,采用闭式齿轮传动,提高齿面硬度,降低齿面粗糙度值,注意保持润滑油清洁等。

5. 如何提高齿轮的抗折断能力,a采用正变位齿轮,增大齿根的强度b使齿根过渡曲线更为平缓及消除加工刀痕,减小齿根应力集中 c增大轴及支承的刚件,使齿轮接触线的受载较为均匀 d采用合适的热处理方法,使齿芯材料具有足够的韧性 e采用喷丸,滚压等工艺措施对齿根表层进行强化处理。

6. 齿轮常用的材料及热处理方法有哪些,锻钢,铸铁,非金属材料。

调制,淬火,渗碳,渗氮 7. 软齿面闭式齿轮传动的设计模式如何,通常保证接齿面触疲劳强度为主。

8硬齿面闭式齿轮传动的设计模式如何,通常保证齿根弯曲疲劳强度为主。

9.开式齿轮传动的设计模式如何,根据保证齿面抗磨损及齿根抗折断能力两准则进行计算 10.对齿轮性能的基本要求是什么,齿面要硬,齿芯要韧11.为了降低载荷沿接触线分布不均匀得程度,可以用怎么样的办法,可以采用增大轴,轴承及支座的刚度,对称地配置轴承,以及适当地限制齿轮的宽度,同时应尽可能避免齿轮作悬臂布置。

12.斜齿轮的螺旋角通常取多少,8?-20?13.人字齿的螺旋角一般是多少,15?-40蜗杆 1. 蜗杆传动的优缺点,优点:传动比大,结构紧凑,传动平稳,噪声小。

简述齿轮的失效形式。

简述齿轮的失效形式。

简述齿轮的失效形式。

齿轮是一种广泛应用于机械和电子设备中的重要部件,其失效形式多种多样,以下是一些常见的失效形式及其原因:
1. 磨损:齿轮在运转中会受到摩擦和冲击,导致表面出现磨损和刮伤。

当磨损达到一定程度时,可能会导致齿轮失去承载能力,最终导致失效。

2. 断裂:齿轮在高速运转或受到过度压力时,可能会因为疲劳断裂而失效。

3. 腐蚀:齿轮通常被安装在腐蚀环境中,例如潮湿或潮湿的材料中。

腐蚀会导致齿轮表面产生氧化皮和锈蚀,降低齿轮的使用寿命。

4. 咬合:齿轮在运转中可能会因为材料不合适、温度变化等原因,导致相互咬合而失效。

5. 润滑不良:齿轮需要良好的润滑才能延长使用寿命,如果润滑不良或者润滑剂不足,可能会导致齿轮磨损和损坏。

6. 疲劳:齿轮在运转中会受到反复的拉伸、压缩和扭曲等应力,如果这些应力超过了齿轮的承受能力,可能会导致疲劳失效。

为了避免这些失效形式的发生,齿轮制造商需要遵循一些设计准则和标准,例如齿轮的强度、硬度、寿命等指标。

此外,正确的安装、维护和保养也可以帮助延长齿轮的使用寿命。

齿轮传动机构的主要失效形式

齿轮传动机构的主要失效形式

齿轮传动机构的主要失效形式包括以下几种:
1. 齿面磨损:由于齿轮之间的摩擦和滑动,齿面会发生磨损,导致齿轮的承载能力下降。

2. 齿面疲劳:齿轮在长期运行过程中,由于受到周期性载荷的作用,齿面上会出现裂纹和剥落现象,最终导致齿轮的失效。

3. 齿面塑性变形:当齿轮承受过大的负载时,齿面会发生塑性变形,从而导致齿轮的失效。

4. 齿面剥落:在齿轮传动中,由于齿面受到冲击载荷的作用,齿面会出现剥落现象,从而影响齿轮的承载能力。

5. 齿面断裂:当齿轮受到过大的冲击载荷或过大的负载时,齿面会发生断裂,从而导致齿轮的失效。

为了避免齿轮传动机构的失效,需要在设计和制造过程中采取相应的措施,如选择合适的材料、优化齿轮的几何形状和参数、加强齿轮的润滑和冷却等。

此外,在运行过程中,还需要定期进行检查和维护,及时发现和解决问题,以保证齿轮传动机构的正常运行。

齿轮传动失效形式及预防方法

齿轮传动失效形式及预防方法

齿轮传动失效形式及预防方法
齿轮传动是一种常见的机械传动方式,广泛应用于各种机械设备中。

然而,齿轮传动也存在着多种失效形式,下面进行简要介绍。

1. 疲劳断裂:齿轮传动在长期使用过程中,由于受到周期性的载荷和温度变化的影响,齿轮的齿面会产生疲劳断裂。

疲劳断裂通常发生在齿轮的齿面接触处,这是由于齿面接触时产生的高温和高压造成的。

2. 磨损:齿轮传动中,齿轮之间的接触会导致磨损,从而影响齿轮传动的效率和质量。

磨损通常是由于齿轮之间的摩擦和接触造成的,可能是由于齿轮的材料疲劳、润滑不足或接触压力过高等原因引起的。

3. 热失效:齿轮传动过程中,由于齿轮之间的摩擦和传动效率的影响,齿轮传动会产生热量,从而导致齿轮的温度升高。

如果热量积累过多,可能会导致齿轮的过热失效。

4. 腐蚀:齿轮传动过程中,如果齿轮的材料受到腐蚀,可能会导致齿轮的齿面磨损和断裂。

腐蚀可能是由于润滑油的质量不良、环境条件恶劣或齿轮的材料质量问题引起的。

5. 结构失效:齿轮传动的结构失效也是一种常见的失效形式。

这可能是由于齿轮的结构设计不合理、材料选择不当或制造质量不良等原因引起的。

为了避免齿轮传动中的失效形式,需要采取一系列措施。

例如,可以选择适当的齿轮材料,合理选择齿轮的结构和尺寸,加强齿轮的润滑和保养,以及提高齿轮的制作质量和结构设计等。

这些措施可以有效地延长齿轮传动的使用寿命,提高机械设备的工作效率和质量。

机械传动齿轮失效问题分析与应对策略

机械传动齿轮失效问题分析与应对策略

机械传动齿轮失效问题分析与应对策略齿轮是一种常见的机械传动元件,其结构简单,传动能力强,在机械传动中应用广泛。

但是,在使用过程中,齿轮也会出现失效问题,如齿面磨损、断齿、开裂、疲劳裂纹等,这些问题不仅会导致传动效率降低,还会造成设备损坏甚至危及人身安全。

因此,对齿轮失效问题进行分析并提出应对策略具有重要的实际意义。

一、齿轮失效原因分析1. 材料问题:齿轮制造材料不合适或合金成分不稳定,容易引发材料脆化、疲劳等问题,导致齿轮失效。

2. 制造质量问题:齿轮的制造精度、表面处理质量、热处理效果等都会影响其性能和寿命,如果制造不当,就容易导致齿面磨损、断齿等问题。

3. 配合间隙问题:齿轮传动时,配合间隙过大或过小都会影响传动效率和齿轮的寿命。

如果配合过紧,会导致齿面接触应力过大,易出现裂纹;如果配合过松,会导致齿面磨损加剧。

4. 传动负荷问题:齿轮传动时,受到外界负荷的影响,导致齿面接触应力增加,容易出现疲劳裂纹,甚至导致齿面剥落。

5. 使用环境问题:齿轮的使用环境对其寿命也会产生很大影响。

如果环境温度过高或过低、湿度过大或过小等因素都会使齿轮材料变质、疲劳寿命下降。

二、齿轮失效应对策略1. 选择合适的材料:选用合适的材料制造齿轮,根据应用环境和外界负荷情况,选择合适的材料和合金成分,提高齿轮的强度和耐磨性。

2. 提高制造质量:在制造过程中,严格控制制造工艺,提高齿轮的精度和表面质量,在热处理时保持温度和时间的精准控制,确保齿轮的质量达到要求。

3. 确定合适的配合间隙:根据传动负荷和工作条件等因素,确立合适的配合间隙,控制其在允许的范围内,避免齿面接触应力过大或过小。

4. 降低传动负荷:通过设计齿轮的结构和传动比等方式,降低齿轮的传动负荷,减少外界负荷对齿轮的影响,提高其寿命。

5. 确保适宜使用环境:对于应用于不同环境场合的齿轮,应根据其要求合适的加入防锈油及润滑油等,降低摩擦和磨损,延长其使用寿命。

综上所述,齿轮作为机械传动的重要元件,其性能和寿命对设备的运行和工业生产起着至关重要的作用。

机械传动齿轮失效问题分析与应对策略

机械传动齿轮失效问题分析与应对策略

机械传动齿轮失效问题分析与应对策略在机械传动系统中,齿轮是一种常见的传动元件。

由于长时间使用、设计不合理、制造工艺不良等因素,齿轮可能会出现失效问题。

本文将从失效问题的分类和原因分析两个方面,探讨机械传动齿轮失效的问题,并提出相应的应对策略。

一、失效问题的分类齿轮失效问题主要可以分为以下几类:胶合失效、齿面磨损、断裂、胶合损伤以及齿轮表面损伤。

1. 胶合失效胶合失效是指齿轮齿面由于工作负荷过大或工况恶劣导致胶合层的破裂和脱落。

胶合层起到承受工作负荷的作用,一旦胶合层失效,会导致齿轮无法正常传动。

胶合失效的主要原因是齿轮的工作负荷超过了设计要求或使用条件恶劣。

2. 齿面磨损齿面磨损是指齿轮齿面上的磨损现象,常见的磨损形式有磨损、剥落、腐蚀等。

齿面磨损的主要原因是齿轮的工作负荷过大、摩擦副材料不良、润滑条件差等。

3. 断裂断裂是指齿轮在工作过程中突然发生不可修复的破裂。

断裂一般表现为齿轮轴的断裂、齿面断裂、胶合层断裂等。

断裂的主要原因是齿轮的疲劳寿命到达或受到冲击载荷。

4. 胶合损伤胶合损伤是指在齿轮的齿面和胶合层之间产生的损伤现象,主要表现为胶合层剥离、胶合层疲劳裂纹等。

胶合损伤的主要原因是胶合层制造工艺不良、粘结剂质量差等。

5. 齿轮表面损伤齿轮表面损伤是指齿轮表面因工作负荷过大或工况恶劣导致的表面破损现象,主要表现为磨损、剥落、腐蚀等。

齿轮表面损伤的主要原因是工作负荷超过设计要求、使用条件恶劣等。

二、原因分析与应对策略机械传动齿轮失效的原因复杂多样,需要通过分析具体情况来制定相应的应对策略。

以下是常见问题的原因分析和相应的应对策略:1. 胶合失效原因分析:胶合失效主要是由于齿轮的工作负荷过大或工况恶劣所致。

应对策略:调整工作负荷,确保其在设计要求范围内;改善工况条件,避免高温、高湿等恶劣环境。

2. 齿面磨损原因分析:齿面磨损主要是由于齿轮的工作负荷过大、摩擦副材料不良、润滑条件差等引起的。

应对策略:优化齿轮轴承设计,减小工作负荷;选择合适的摩擦副材料,并改善润滑条件。

简述齿轮的失效形式。

简述齿轮的失效形式。

简述齿轮的失效形式。

齿轮的失效形式主要有以下几种:
1. 疲劳失效:长时间的使用和负载作用下,齿轮表面会逐渐产生裂纹,最终导致齿轮断裂。

2. 磨损失效:齿轮在工作时摩擦和剪切力会使其表面逐渐磨损,导致齿面变形,从而降低齿轮的准确性和传动效率。

3. 塑性变形失效:齿轮承受较大的载荷时,会发生塑性变形,导致齿面形状变化,进而影响齿轮的传动性能。

4. 开裂失效:在加工或使用中,由于工艺不当或负载过大,齿轮表面可能会产生裂纹,进而扩展和导致齿轮断裂。

5. 腐蚀失效:齿轮在潮湿、腐蚀性环境下暴露时,可能会发生腐蚀现象,导致齿轮表面形成锈蚀或腐蚀,从而降低齿轮的强度和精度。

以上是齿轮的常见失效形式,为了减少齿轮的失效,可以采取合适的材料、工艺和润滑措施,并定期进行维护和保养。

简述闭式软齿面齿轮传动的失效形式和设计准则

简述闭式软齿面齿轮传动的失效形式和设计准则

闭式软齿面齿轮传动是工程机械领域中常见的一种传动形式,它具有传动效率高、承载能力强等优点,因此被广泛应用于各种机械装置中。

然而,在实际使用过程中,闭式软齿面齿轮传动也会出现各种失效形式,影响其正常运行。

为了更好地设计闭式软齿面齿轮传动,减少失效现象的发生,需要遵循一定的设计准则。

一、闭式软齿面齿轮传动的失效形式1. 疲劳断裂:闭式软齿面齿轮传动在长期使用过程中,由于载荷变化或振动引起的疲劳断裂是其常见的失效形式之一。

这种失效形式会导致齿轮齿面出现龟裂、断裂等现象,严重影响传动效率和寿命。

2. 歪斜磨损:在齿轮传动工作时,由于载荷分布不均匀或润滑不良等原因,齿轮齿面容易出现歪斜磨损。

这种磨损会导致齿轮齿面形貌失真,影响传动的平稳性和精度。

3. 弯曲变形:闭式软齿面齿轮传动在大载荷下工作时,齿轮齿面容易发生弯曲变形,导致齿轮传动的正常运行受到影响。

4. 齿面点蚀:在潮湿环境或润滑不良的情况下,闭式软齿面齿轮传动容易发生齿面点蚀现象,导致齿轮表面出现齿痕、磨损等问题。

二、闭式软齿面齿轮传动的设计准则1. 合理布局:在闭式软齿面齿轮传动的设计中,应当合理布局传动装置的结构,减少传动元件之间的干涉和碰撞,提高传动系统的可靠性和稳定性。

2. 选用优质材料:闭式软齿面齿轮传动的制造材料应选择高强度、耐磨损的优质材料,以保证传动元件的使用寿命。

3. 合理设计齿轮参数:在闭式软齿面齿轮传动的设计过程中,应根据实际工况和负载状况,合理设计齿轮的参数,如齿轮模数、齿数、齿宽等,以提高传动效率和承载能力。

4. 提高润滑条件:在闭式软齿面齿轮传动中,应采用良好的润滑方式,保持齿轮传动的润滑状态良好,减少齿面磨损和点蚀现象的发生。

5. 加强传动系统的监测和维护:在使用闭式软齿面齿轮传动的设备中,应加强对传动系统的监测和维护,及时发现和处理传动元件的异常,延长传动系统的使用寿命。

通过遵循上述的设计准则,可以有效减少闭式软齿面齿轮传动的失效现象,提高传动系统的可靠性和稳定性,延长设备的使用寿命,降低维护成本,对于工程机械领域的闭式软齿面齿轮传动设计和制造具有重要的指导意义。

闭式硬齿轮传动的主要失效形式

闭式硬齿轮传动的主要失效形式

闭式硬齿轮传动的主要失效形式
以闭式硬齿轮传动的主要失效形式为题,我们来探讨一下这些失效形式的原因和解决方法。

1. 齿面磨损
齿面磨损是闭式硬齿轮传动中最常见的失效形式之一。

这是由于齿轮在传动过程中摩擦和磨损所导致的。

齿面磨损会导致齿轮传动效率下降,噪音增加,甚至会导致齿轮断裂。

为了避免齿面磨损,我们可以采用更高质量的材料制造齿轮,或者采用更好的润滑方式。

2. 齿面断裂
齿面断裂是闭式硬齿轮传动中比较严重的失效形式之一。

这是由于齿轮在传动过程中承受的载荷过大,导致齿面断裂。

为了避免齿面断裂,我们可以采用更高强度的材料制造齿轮,或者采用更合理的齿轮设计。

3. 齿轮变形
齿轮变形是闭式硬齿轮传动中比较常见的失效形式之一。

这是由于齿轮在传动过程中承受的载荷过大,导致齿轮变形。

齿轮变形会导致齿轮传动效率下降,噪音增加,甚至会导致齿轮断裂。

为了避免齿轮变形,我们可以采用更高强度的材料制造齿轮,或者采用更合理的齿轮设计。

4. 齿轮间隙过大
齿轮间隙过大是闭式硬齿轮传动中比较常见的失效形式之一。

这是由于齿轮在传动过程中间隙过大,导致齿轮传动效率下降,噪音增加,甚至会导致齿轮断裂。

为了避免齿轮间隙过大,我们可以采用更合理的齿轮设计,或者采用更好的装配方式。

闭式硬齿轮传动的失效形式有很多种,但是我们可以通过采用更好的材料、更合理的设计和更好的装配方式来避免这些失效形式的发生。

齿轮传动的失效分析及改善措施

齿轮传动的失效分析及改善措施
曲应 力 ;最 后 ,在 轮 齿 推 动 时 ,只 有 节 点 处 是 纯
滚 动 的 ,其 它 齿 面 各 接 触 点 都 是 连 滚 带 滑 ,而 齿 顶 部分 的运 行速 度要 远远 大 于齿 根部 分 。
通 常 点 蚀会 先 发 生 于 靠近 节 线 的 齿 根 处 。在 滚 滑 过 程 中 ,互 相 滚 滑 的接 触 表 面 在 滑 动 时 会 由于 摩
不 固定 的 ,并 且 断面 相对 粗糙 。如 图 l 示 : 所
发 生 一 定 的 塑 性 流 动 ,这 种 现 象就 是齿 面 塑性 变 形 。它 的变 形 方 向 与 滑 动 方 向相 平 行 , 因为 滑 动 摩 擦 力 以 入 主 动 轮 齿 的 滑 动 方 向 与节 线 是相 背 而
轮 在 工 作 时 受 到 了 严 重 的冲 击 载 荷 或 过 载 作 用 ,
23 齿 面磨粒 磨 损 .
当润 滑 不充分 或 者处于 开式 传动 时 ,会 有外界
灰 尘 杂质 进 入 啮合 区 ,从 而 引起 齿 面 材料 的 损失 , 这种 现 象就是 齿面 磨粒 磨损 。 当出现齿 面磨 粒磨损 时 ,会在 滑动 速度 方 向产 生平 行的 线道滑痕 。
成 飞 边 ,在 节 线 附近 处 产 生 沟 谷 ,而 从 动 轮 则 与
其相反。
节 线 附近 的 应 力 以及 摩 擦 系 数 都 相 对 较 大 ,因 此
收稿日翔:2 1-1-0 00 1 5 作者简介:陈苗青 (9 8 17 一),女 ,浙江义乌人 ,本科 ,中教一级 ,研究方 向为机械传动。
先 , 由于 齿 轮 的 传 动 过 程 是 依 靠 齿 面 推 压 来 实 现
的 ,所 以轮 齿 中 总是 齿 面 受 力 ;其 次 ,轮 齿 中齿
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

齿轮常见失效形式及其解决方
法(总2页)
-CAL-FENGHAI.-(YICAI)-Company One1
-CAL-本页仅作为文档封面,使用请直接删除
齿轮失效分析与解决方法
摘要通过对齿轮失效形式的分析,找出相应解决方法,提高机械传动齿轮质量,延长机械设备的使用寿命。

分析研究失效形式有助于建立齿轮设计的准则,提出防止和减轻失效的措施。

关键词失效;轮齿折断;齿面点蚀;齿面胶合;齿面磨损;齿面塑性变形齿轮是现代机械中应用最广泛的重要基础零件之一。

齿轮类型很多,有直齿轮、斜齿轮、人字齿等,齿面硬度有软齿面和硬齿面,齿轮转速有高有低,传动装置有开式装置和闭式装置,载荷有轻重之分,因此影响因素很多,所以实际应用中会出现各种不同的失效形式。

齿轮的失效主要发生在轮齿部分,其常见失效形式有:轮齿折断、齿面点蚀、齿面磨损、齿面胶合和齿面塑性变形五种。

1 轮齿折断
轮齿折断有多种形式,在正常情况下,有以下两种:1)过载折断。

因短时过载或冲击载荷而产生的折断。

过载折断的断口一般都在齿根部位。

断口比较平直,并且具有很粗糙的特征。

2)疲劳折断。

齿轮在工作过程中,齿根处产生的弯曲应力最大,再加上齿根过渡部分的截面突变及加工刀痕等引起的应力集中作用,当轮齿重复受载后,齿根处就会产生疲劳裂纹,并逐步扩展,致使轮齿疲劳折断轮齿。

齿面较小的直齿轮常发生全齿折断,齿面较大的直齿轮,因制造装配误差易产生载荷偏置一端,导致局部折断;斜齿轮和人字齿齿轮,由于接触线倾斜,一般是局部齿折断。

为了提高齿轮的抗折断能力,除设计时满足强度条件外,还可采取下列措施:①采用高强度钢;②采用合适的热处理方式增强轮齿齿芯的韧性;③增大齿根过度圆角半径,消除齿根加工刀痕,齿根处强化处理;④加大齿轮模数;
⑤采用正变位齿轮。

为避免轮齿折断,设计时要进行轮齿弯曲疲劳强度计算和静弯曲强度计算。

齿面磨损有磨粒磨损和跑合磨损两种。

在齿轮传动中,随着工作环境的不同,齿面间存在多种形式的磨损情况。

当齿面间落入铁屑、砂粒、非金属物等磨粒性物质或粗糙齿面的摩擦时,都会发生磨粒磨损。

齿面磨损后,引起齿廓变形,产生振动、冲击和噪声,磨损严重时,由于齿厚过薄而可能发生轮齿折断。

磨粒磨损是开式齿轮传动的主要失效形式。

新的齿轮副,由于加工后表面具有一定的粗糙度,受载时实际上只有部分峰顶接触。

接触处压强很高,因而在开始运转期间,磨损速度和磨损量都较大,磨损到一定程度后,摩擦面渐渐光洁,压强减小、磨损速度缓和,这种磨损成为跑合。

人们有意的使新齿轮副在轻载下进行跑合,为随后的正常磨损创造条件。

但应注意,跑合结束后,必须清洗和更换润滑油。

提高抗磨粒磨损能力的措施:①改善密封条件(采用闭式传动代替开式传动或加防护装置);②提高齿面硬度;③改善润滑条件、在润滑油中加入减摩添加剂、保持润滑油的清洁。

3 齿面点蚀
由于齿面接触应力是按脉动循环变化的(其工作表面上任一点产生的接触应力系由零增加到一最大值),应力经多次反复后,轮齿表层下一定深度产生裂纹,裂纹逐渐发展扩大导致轮齿表面出现疲劳裂纹,疲劳裂纹扩展的结果是使齿面金属脱落而形成麻点状凹坑,这种现象就称为齿面疲劳点蚀。

发生点蚀后,齿廓形状遭破坏,传动的平稳性受影响并产生振动与噪声,以至于齿轮不能正常工作而使传动失效。

实践表明,疲劳点蚀首先出现在齿面节线附近的齿根部分,这是因为节线附近齿面相对滑动速度小,油膜不宜形成,摩擦力较大,且节线处同时参与啮合的轮齿对数少,接触应力大。

点蚀是润滑良好的闭式齿轮传动的主要失效形式,在开式传动中,由于磨粒磨损比点蚀发展得快,因此不会出现点蚀。

提高齿轮的接触疲劳强度的措施:①提高齿面硬度和降低齿面粗糙度;②合理选用润滑油粘度,采用黏度较高的润滑油(实践证明:润滑油黏度越低,越易渗入裂纹,点蚀扩展越快);③减小动载荷;④采用正变位齿轮传动,增大综合曲率半径。

设计时为避免齿面点蚀,应进行齿面接触疲劳强度计算。

4 齿面胶合
胶合是比较严重的黏着磨损,一般发生在齿面相对滑动速度大的齿顶或齿根部位。

互相啮合的轮齿齿面,在一定的温度或压力作用下,发生粘着,随着齿面的相对运动,粘焊金属被撕脱后,齿面上沿滑动方向形成沟痕,这种现象称为胶合。

胶合发生在高速重载齿轮传动中,使啮合点处瞬时温度过高,润滑失效,致使相啮合两齿面金属尖峰直接接触并相互粘连在一起,造成热胶合;发生在重载低速齿轮传动中,不易形成油膜,或由于局部偏载使油膜破坏,会造成冷胶合。

齿面一旦出现胶合,不但齿面温度升高,而且齿轮的振动和噪声也增大,导致失效。

提高抗齿面胶合的方法有:①减小模数,降低齿高,降低滑动系数;②加入极压添加剂的润滑油;③采用齿廓修形,提高传动平稳性;采用抗胶合能力强的齿轮材料;④提高齿面硬度和降低齿面粗糙度;⑤材料相同时,使大、小齿轮保持适当硬度差。

5 齿面塑性变形
塑性变形属于轮齿永久变形,是由于在过大的应力作用下,轮齿材料处于屈服状态而产生的齿面或齿体塑性流动所形成的。

当轮齿材料较软,载荷很大时,轮齿在啮合过程中,齿面油膜被破坏,摩擦力增大,而塑性流动方向和齿面所受摩擦力的方向一致,齿面表层的材料就会沿着摩擦力的方向产生塑性变形。

齿面塑性变形常发生在齿面材料较软、低速重载的传动中。

常出现在低速重载、频繁启动和过载传动中。

主动轮齿上所受摩擦力是背离节线分别朝向齿顶及齿根作用的,故产生塑性变形后,齿面沿节线处变成凹槽。

从动轮齿上所受的摩擦力方向则相反,塑性变形后,齿面沿节线处形成凸脊。

减轻或防止齿面塑性变形的方法有:①适当提高齿面硬度;②采用粘度高的润滑油。

对各种齿轮的失效形式及原因的分析和讨论,对提高机械传动齿轮质量,延长机械设备的使用寿命有非常重要的现实意义。

参考文献
[1]邱宣怀,等.机械设计.高等教育出版社. <br />
[2]吴克坚,于小红,钱瑞明.机械设计.高等教育出版社. <br />
[3]杨可桢,等.机械设计基础.高等教育出版社.。

相关文档
最新文档