(精选)旋转机械的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现场中旋转机械故障诊断应用
班级:装备0901
姓名:王峥
学号:200906080609
这学期我们学习的这门课为《机械设备故障诊断技术与应用》,设备诊断技术是一种了解和掌握设备在使用过程中的状态,确定其整体或局部是正常或异常,早期发现故障及其原因,并能预报故障发展趋势的技术。机械设备故障诊断技术日益获得重视与发展的原因是,随着科学技术与生产的发展,机械设备工作强度不断增大,生产效率、自动化程度越来越高,同时设备更加复杂,各部分的关联愈加密切,往往某处微小故障就爆发链锁反应,导致整个设备乃至与设备有关的环境遭受灾难性的毁坏。
一、设备故障的信息获取和检测方法
设备故障信息的获取方法:
1、直接观测法
2、参数测定法
3、磨损残余物的测定
4、设备性能指标的测定
设备故障的检测方法:
1、振动和噪声的故障检测
(1)振动法:对机器主要部位的振动值如位移、速度、加速度、转速及相位值等进行测定,与标准值进行比较,据此可以宏观地对机器的运行状况进行评定,这是最常用的方法。
(2)特征分析法:对测得的上述振动量在时域、频域、时—频域进行特征分析,用以确定机器各种故障的内容和性质。
(3)模态分析与参数识别法:利用测得的振动参数对机器零部件的模态参数进行识别,以确定故障的原因和部位。
(4)冲击能量与冲击脉冲测定法:利用共振解调技术以测定滚动轴承的故障。
(5)声学法:对机器噪声的测量可以了解机器运行情况并寻找故障源。
2、材料裂纹及缺陷损伤的故障检测
(1)超声波探伤法:该方法成本低,可测厚度大,速度快,对人体无害,主要用来检测平面型缺陷。
(2)射线探伤法:主要采用X 射线。该方法主要用于展示体积型缺陷,适用于一切材料,测量成本较高,对人体有一定损害,使用时应注意。
(3)渗透探伤法:主要有荧光渗透与着色渗透两种。该方法操作简单,成本低,应用范围广,可直观显示,但仅适用于有表面缺陷的损伤类型。
(4)磁粉探伤法:该法使用简便,较渗透探伤更灵敏,能探测近表面的缺陷,但仅适用于铁磁性材料。
(5)涡流探伤法:这种方法对封闭在材料表面下的缺陷有较高的检测灵敏度,它属于电学测量方法,容易实现自动化和计算机处理。
3、设备零部件材料的磨损及腐蚀故障检测
(1)光纤内窥技术:它是利用特制的光纤内窥探测器直接观测到材料表面磨损及情况。(2)油液分析技术:油液分析技术可分为两大类:一类是油液本身的物理、化学性能分析,另一类是对油液污染程度的分析。具体的方法有光谱分析法与铁谱分析法。
4、温度、压力、流量变化引起的故障检测机械设备中的有些故障往往反映在一些工艺参数,如温度、压力、流量的变化中,在温度测量中除常规使用的装在机器上的热电阻、热电偶等接触式测温仪外,还有在特殊场合使用的非接触式测温方法。
二、旋转机械简介
旋转机械指汽轮机、燃气轮机、发电机、电动机、离心压缩机、水轮机、航空发动机等机械设备,它的主要构成部件有转子、支承转子的轴承、定子或机器壳体、连轴器等等。转速范围一般为几千r / min 至几十万r / min ,这类机组通常称为高速旋转机械,由于旋转机械的结构及其零部件的加工和安装方面的缺陷,使机器在运行时引起振动,其振动类型可分为横向振动、轴向振动和扭转振动三类。其中过大的横向振动往往是机器破坏的主要原因,所以成了振动监测的主要对象,也是对机组状态进行诊断的主要依据。
三、现场中旋转机械故障的诊断与应用实例
A、医用离心机故障诊断
对医用离心机系统运行状态的故障监测与诊断,是通过对设备某些敏感部位振动、平衡度、温度、压力等信号的采集,并通过对信号处理,提取特征参数的方法来辩识医用离心机工作状态。其基本原理是:在医用离心机运行过程中,其零部件会发出各自确定特征的信号,而这些信号随单个零件的损坏、磨损以及电子元件的电压、电流、温度等变化而变化。根据表征具体故障的特征参数,通过人工神经网络监测与诊断系统,对医用离心机故障进行诊断和预报。
该故障智能监测与诊断系统,主要包括监测与诊断两个过程。其中每个过程都包括预处理和特征信号提取两部分。快速、有效地提取反映设备故障信息的特征是故障诊断的关键。把从诊断的对象处获得的数据看作一组时间序列,通过对该时间序列的分段采样,将输入数据映射成样本空间的点,这些数据包括故障的类型、程度和位置等信息。首先对映射到样本空间的输入数据进行预处理,通过删除原始数据中的无用的信息得到另一类故障模式,由样本空间映射成数据空间。在数据空间的基础上,提取数据中的不变特性,形成不变故障模式空间。在提取了故障模式的不变特性后,根据诊断的需要和问题的特性,对所选择的模式特征矢量进行量化压缩变换,选择有用的特征,以用于故障诊断。
信号的产生和传播
可以认为医用离心机系统结构为一定常线性系统,则系统振动可表示为:
M【】{x}C【】{x}K【]{x}={Q}
M【】为系统的质量矩阵,{X}为响应的加速度向量,C【】为系统的阻尼矩阵,{x}为速度向量,[KI为系统刚度矩阵,{x}为振动的位移向量,Q【】为产生医用离心机系统振声的激励力向量。
医用离心机系统振动的激励源主要有:电机驱动系统,筛篮及转轴的加工误差、轴承和支架、装配不平衡,试管裂纹破裂形成的腔内积水、温升过高等故障问题造成的离心转轴在高速旋转中严重倾斜、振动,当振动频率超过极限值时,会引起离心机整个系统的共振,以致产生严重后果。
B、基于贝叶斯网络的超速离心机故障诊断专家系统研究
摘要:研究了一种超速离心机故障诊断专家系统。系统采用人机对话方式,以专家知识库为基础,对离心机运转时的实时数据采样或者通过人工对界面输入故障征兆知识;采用贝叶斯网络方法进行推理,从而诊断出故障原因和各原因可能发生的概率。使维修更具针对性,实现智能化超速离心机故障诊断,提高了设备可靠性与安全性。
离心机是一种在工业生产中应用非常广泛的高速旋转机械,超速离心机是转速大于30000r/min的高性能离心机。实际使用时,转子在封闭的环境下高速旋转,经历这样的高负荷运行,长时间后即会出现转子不平衡、不对中和转轴磨损等一系列机械故障,并由此引发异常振动,使其故障率增高,影响生产和操作人员的安全性[1]。目前,国内对于离心机的故障诊断主要采用人工感官和简单仪表诊断,存在诊断效果差、耗时长、准确性低等问题。因此,研究一种超速离心机专用的故障诊断专家系统是十分必要的,可以有针对性的对超速离心机运行过程中出现的各种故障进行及时的诊断。
专家系统是一个智能计算机程序系统,能够利用人类专家的知识和解决问题的方法来处理该领域问题。专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题。专家系统一般由知识库、推理机、知识获取机构、解释机制、综合数据库和人机界面组成[2]。专家系统常用的推理方法有基于规则的推理方法、基于人工神经网络的推理方法、基于模糊理论的推理方法与基于贝叶斯网络的推理方法等。其中基于贝叶斯网络的推理方法具有对知识库的依赖性小、知识表达简单、容易处理不确定性数据等特点[3],所以,本文选择该方法作为超速离心机故障诊断专家系统的推理方法。
1·系统组成
超速离心机故障诊断专家系统原理如图1所示,主要由以下几个部分组成:
1)知识库:包含以规则形式编码的解决问题的领域专家知识。知识表示方法有很多种,包括产生式、语义网、框架、逻辑等方法。产生式知识表示方法是在专家系统中用得最多的一种知识表示方法。用产生式方法表示知识,由于各产生式规则之间是独立的模块,这对系统的修改、扩充特别有利。另外,产生式知识表示与人们很多思维习性十分吻合。
2)推理机:以知识库中的已有知识为根据,推理出结论。采用贝叶斯网络推理方法进行正向推理。
3)综合数据库:用来存储初始数据、实时数据以及计算过程中产生的数据。