有关圆锥曲线的经典结论

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、椭 圆

1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.

2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.

3. 以焦点弦PQ 为直径的圆必与对应准线相离.

4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.

5. 若000(,)P x y 在椭圆22

221x y a b

+=上,则过0P 的椭圆的切线方程是

00221x x y y

a b

+=. 6. 若000(,)P x y 在椭圆22

221x y a b

+=外 ,则过Po 作椭圆的两条切线切点为

P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y

a b

+=.

7. 椭圆22

221x y a b

+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆

上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为

122tan 2

F PF S b γ

∆=.

8. 椭圆22

221x y a b

+=(a >b >0)的焦半径公式:

10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).

9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10.

过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆

长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11.

AB 是椭圆22

221x y a b

+=的不平行于对称轴的弦,M ),(00y x 为AB 的

中点,则2

2OM AB b k k a

⋅=-, 即0

20

2y a x b K AB

-=。 12. 若000(,)P x y 在椭圆22

221x y a b

+=内,则被Po 所平分的中点弦的方程

是22

00002222x x y y x y a b a b

+=+. 13.

若000(,)P x y 在椭圆22

221x y a b

+=内,则过Po 的弦中点的轨迹方程是

22002222x x y y

x y a b a b

+=+. 二、双曲线

1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.

2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.

3. 以焦点弦PQ 为直径的圆必与对应准线相交.

4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)

5. 若000(,)P x y 在双曲线22

221x y a b -=(a >0,b >0)上,则过0P 的双曲

线的切线方程是00221x x y y

a b

-=.

6. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)外 ,则过Po 作双

曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是

00221x x y y

a b

-=. 7. 双曲线22

221x y a b

-=(a >0,b >o )的左右焦点分别为F 1,F 2,点

P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积

为1

2

2t 2

F PF S b co γ

∆=.

8. 双曲线22

221x y a b

-=(a >0,b >o )的焦半径公式:(1(,0)F c - ,

2(,0)F c

当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-. 当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =-- 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10.

过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、

A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.

11. AB 是双曲线22

221x y a b

-=(a >0,b >0)的不平行于对称轴的

弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即020

2y a x b K AB =。

12. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)内,则被Po

所平分的中点弦的方程是22

00002222x x y y x y a b a b -=-.

13. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)内,则过Po

的弦中点的轨迹方程是22002222x x y y

x y a b a b

-=-.

椭圆与双曲线的对偶性质--(会推导的经典结论)

椭 圆

1. 椭圆22

221x y a b

+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y

轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是

2222

1x y a b -=. 2. 过椭圆22

221x y a b

+= (a >0, b >0)上任一点00(,)A x y 任意作两条

倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且

相关文档
最新文档