常见的数量关系
常见的数量关系
常见的数量关系1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。
例:90÷5÷6=90÷(5×6)6、1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。
1亩=666.666平方米。
1升=1立方分米=1000毫升1毫升=1立方厘米7、什么叫比:两个数相除就叫做两个数的比。
如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。
如3:χ=9:1811、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k( k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
小学常见数量关系
小学常见数量关系:乘除关系的有:(1)单价×数量=总价,总价÷数量=单价,总价÷单价=数量。
(2)速度×时间=路程,路程÷速度=时间,路程÷时间=速度。
(3)相遇时间×速度和=总路程,总路程÷相遇时间=速度和,总路程÷速度和=相遇时间。
(4)工作时间×工作效率=工作总量,工作总量÷工作效率=工作时间,工作总量÷工作时间=工作效率。
(5)砖块数×砖面积=铺地面积,铺地面积÷砖块数=砖面积,铺地面积÷砖那就=砖块数。
(6)因数×因数=积,积÷因数=另一个因数。
(7)被除数÷除数=商,被除数=商×除数,除数=被除数÷商。
(8)图上距离:实际距离=比例尺。
图上距离=实际距离×比例尺,实际距离=图上距离÷比例尺。
(9)平均数=总数÷总份数。
(10)正方形的面积=边长×边长。
正方形的周长=边长×4(11)长方形的面积=长×宽。
(12)平行四边形的面积=底×高。
(13)三角形的面积=底×高÷2。
(14)梯形的面积=(上底+下底)×高÷2(14)圆形的周长=直径×圆周率或者圆形的周长=半径×2×圆周率。
圆形的面积=半径×半径×圆周率。
(15)长方体的体积=长×宽×高。
(16)正方体的体积=棱长×棱长×棱长。
正方体的棱长总和=棱长×12.(17)正方体表面积=棱长×6,(18)圆柱体侧面积=底面周长×高。
(19)圆柱体积=底. 加面积×高。
(20)圆锥体积=底面积×高×13减关系的数量关系:(1)加数+加数=和,加数=和-另一个加数。
整体常见的数量关系
整体常见的数量关系数量关系可以用来描述物体之间的直接关系,是数学学习中最基础的概念之一,也是数学运算的基础。
数量关系可以被定义为一些物体之间的关系,其中一个物体的数量可以影响另一个物体的数量。
在数学领域,数量关系可以表达为加减乘除法,如加法关系、减法关系、乘法关系、整除关系、乘方关系等。
加法关系是一种最常见的数量关系,是指给定两个数量,加起来后可以得到总量。
其中,一个加数加上另一个加数,结果可以得到和。
例如,一个人有2元钱,另一个人有1元钱,那么他们总共有3元钱。
减法关系是一种常见的数量关系,是指将两个数量相减,从而得到差值。
即从一个减数减去另一个减数,结果可以得到差值。
例如,一个人有5元钱,另一个人有2元钱,那么他们之间的差值是3元钱。
乘法关系是一种数量关系,指将两个数量相乘,从而得到乘积。
即将一个乘数与另一个乘数相乘,结果可以得到乘积。
例如,一个人有3个苹果,另一个人有4个苹果,那么他们总共有12个苹果。
整除关系是一种数量关系,指将一个数量除以另一个数量,从而得到商。
即将一个除数除以另一个除数,结果可以得到商数。
例如,一个人有8个苹果,另一个人有4个苹果,那么他们中每个人拥有2个苹果。
乘方关系是一种数量关系,指将一个数量乘以另一个数量,从而得到幂。
即将一个乘数乘以另一个乘数,结果可以得到幂数。
例如,一个数的三次方,即将这个数与它自身相乘三次,即可得到这个数的三次方。
除了上述的几种最常见的数量关系外,还有其他一些关系,比如比例关系、对数关系、幂函数关系等。
比例关系指两个数量之间的关系,可以用其中一个数量乘以一个固定的数值来表示另一个数量。
例如,一个人有6个苹果,另一个人有3个苹果,那么他们之间的比例关系是2:1。
对数关系是一种数量关系,指两个数量之间的对数关系,即可以使用某种数量的对数来表示另一个数量。
例如,设x的20次方等于1024,则x的对数关系等于1024的以20为底的对数。
幂函数关系是一种数量关系,指一个变量的幂函数关系。
常用的数量关系式
常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数解方程方法一:消项(如果消+3,方程两边就同时-3 ;如果消×3,方程两边就同时÷3) 1:把方程里的“括号”全部去掉,两种去括号的方法任选其一2:如果两边都有几 , 要先消去其中一边的几(如果有“-几”,就把“-几”消去,如果没有“-几”,就把较小的消去掉) 3:消去“-几”,消去“÷”4:把这边的数字全部消掉,先消“+ -” 再消“÷” 最后消“×” (注意:无论解到哪一步,数字+几都要写成几+数字)解方程方法二:移项(+3移到另一边就变成-3,×3移到另一边就变成÷3) 1:把方程里的“括号”全部去掉,两种去括号的方法任选其一2:如果两边都有几 ,就把其中一边的几移到另一边(如果有“-几”,就把“-几”移到另一边。
如果没有“-几”,就把较小的移到另一边) 3:把“-几”移到另一边,把“÷”移到另一边”4:把这边的数字全部移到另一边,先移“+ -” 再移“÷” 最后移“×” (注意:无论解到哪一步,数字+几都要写成几+数字)小学数学图形计算公式1、正方形(C:周长 S:面积 a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体(V:体积 a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形( C:周长 S:面积 a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽 S=ab4、长方体(V:体积 S:面积 a:长 b: 宽 h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高 V=abh5、三角形(S:面积 a:底 h:高)面积=底×高÷2 S=ah÷2三角形的高=面积×2÷底三角形的底=面积×2÷高6、平行四边形(S:面积 a:底 h:高)面积=底×高 S=ah7、梯形(S:面积、 a:上底、 b:下底、 h:高)面积=(上底+下底)×高÷2 、S=(a+b)× h÷28、圆形(S:面积、 C:周长、:圆周率、 d=直径、 r=半径)(1)周长=直径×л=2×π×半径、 C=πd=2πr(2)面积=半径×半径×π、 S=πr²(3)半圆周长=r(π+2)(4)圆周长的一半=πr(5)S环=π(R²-r²)(6)S扇=360πr²9、圆柱体(V:体积、 h:高、 S:底面积、 r:底面半径、 C:底面周长)(1)侧面积=底面周长×高=Ch(2πr或πd) (2)表面积=侧面积+底面积×2 (3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(V:体积、 h:高、 S:底面积、 r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式(和+差)÷2=大数 (和-差)÷2=小数13、和倍问题和÷(倍数+1)=小数小数×倍数=大数 (或者和-小数=大数)14、差倍问题差÷(倍数-1)=小数小数×倍数=大数 (或小数+差=大数)15、相遇问题π = 3.14 2π = 6.28 3π = 9.42 4π = 12.56 5π = 15.7 6π = 18.84 7π = 21.98 8π = 25.12 9π = 28.26 10π = 31.4相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间16π = 50.24 25π = 78.5 36π = 113.04 49π =153.86 64π = 200.96 81π= 254.34 100π = 31416、追及问题追及距离=速度差×追及时间11² = 121 12² = 144 13² = 169 14² = 196 15² = 225 追及时间=追及距离÷速度差16² = 256 17² = 289 18² = 324 19² = 361 20²=400 速度差=追及距离÷追及时间17流水问题111顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷211118、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量19、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)20、植树问题非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距+1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 封闭线路上(例如围成一个圆形、椭圆形)的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数锯木问题:段数=次数+1 次数=段数-1 总时间=每次时间×次数实心方阵:最外层的人数是= (每边人数-1)×4 每边人数=最外层的人数÷4+1整个方阵的总人数是=每边人数×每边人数空心方阵:总人数=(最外层每边人数-空心方阵的层数)×空心方阵的层数×4内层总人数=最外层总人数-层数×4多边阵:最外层的人数是=(每边人数-1)×边数或每边人数×边数-边数21、鸡兔同笼⑴已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数⑵得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(每只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数 =不合格品数常用单位换算长度单位换算 km m dm cm mm1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米面积单位换算km² m² dm² cm² mm²1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米1平方分米=100平方厘米 1平方厘米=100平方毫米体(容)积单位换算L mL m³ dm³ cm³1立方米=1000立方分米 1立方分米=1000立方厘米 1升=1000毫升1立方米=1000升 1立方分米=1升 1立方厘米=1毫升质量单位换算 t kɡ ɡ1吨=1000 千克 1千克=1000克 1千克=1公斤人民币单位换算1元=10角 1角=10分 1元=100分时间单位换算 h min s1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有: 4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时 1时=60分 1分=60秒 1时=3600秒简便运算常见乘法计算(敏感数字):25×4=100 125×8=1000第一章数和数的运算一概念(一)整数1.自然数、负数和整数(1)自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
常见的数量关系
常见的数量关系1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=与一个加数=与+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法: 被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。
例:90÷5÷6=90÷(5×6)6、1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。
1亩=666、666平方米。
1升=1立方分米=1000毫升1毫升=1立方厘米7、什么叫比:两个数相除就叫做两个数的比。
如:2÷5或3:6或1/3比的前项与后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。
如3:χ=9:1811、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k( k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
常见数量关系式
六年级数学常见的数量关系及公式须掌握一、常见的数量关系式:1.解方程的数量关系式:一个加数+另一个加数=和一个加数 = 和-另一个加数被减数-减数=差被减数 = 减数+差减数 = 被减数-差一个因数×另一个因数=积一个因数 = 积÷另一个因数被除数÷除数=商除数 = 被除数÷商被除数 = 除数×商2.几种常用的应用题数量关系式:(1)相差关系:大数-小数 = 相差数小数=大数-相差数大数=小数+相差数(2)部总关系:部分数+部分数 = 总数部分数=总数-部分数(3)倍数关系:1倍数×倍数 = 几倍数倍数=几倍数÷1倍数 1倍数=几倍数÷倍数(4)份总关系:①单价×数量 = 总价单价=总价÷数量数量=总价÷单价②速度×时间 = 路程速度=路程÷时间时间=路程÷速度平均速度=总路程÷总时间速度和×相遇时间=相遇路程相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间③工作效率×工作时间 = 工作总量工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率④每份数×份数 = 总数每份数= 总数÷份数份数=总数÷每份数(5)利息=本金×利率×时间(6)图上距离÷实际距离=比例尺图上距离=实际距离×比例尺实际距离=图上距离÷比例尺(7)比较量÷标准量=分率比较量=标准量×分率标准量=比较量÷分率3.常用的运算定律与性质:⑴①加法交换律: a+b = b+a ②加法结合律:(a+b)+c = a+(b+c)⑵减法的性质:① a-b-c = a-(b+c) a-(b+c)= a-b-c② a-b+c = a-(b-c) a-(b-c)= a-b+c⑶①乘法交换律:a×b = b×a ②乘法结合律:(a×b)×c = a×(b×c)③乘法分配律:a×c+b×c = (a+b) ×c (a+b) ×c = a×c+b×c⑷除法的性质:① a÷b÷c = a÷(b×c) a÷(b×c) = a÷b÷c② a÷b×c = a÷(b÷c) a÷(b÷c) = a÷b×c二、形体问题1 .正方形的周长=边长× 4 边长=正方形的周长÷4正方形的面积=边长×边长2 .长方形的周长=(长+宽)×2 长=周长÷2-宽宽=周长÷2-长长方形的面积=长×宽3. 三角形的面积=底×高÷2高=面积×2÷底底=面积×2÷高4. 平行四边形的面积=底×高底=平行四边形的面积÷高5. 梯形的面积=(上底+下底)×高÷2高=面积×2÷(上底+下底)上底=面积×2÷高-下底下底=面积×2÷高-上底6.长方体的棱长总和=(长+宽+高)×4 长=棱长总和÷4 -宽-高正方体的棱长总和=棱长×12 棱长=棱长总和÷12长方体的表面积=(长×宽+长×高+宽×高)×2正方体的表面积=棱长×棱长×6长方体的体积=长×宽×高长=体积÷宽÷高正方体的体积=棱长×棱长×棱长长方体或正方体统一的体积公式=底面积×高底面积=体积÷高7.直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2 c=πd= 2πr圆的面积=圆周率×半径×半径 s=πr28.圆柱的侧面积=底面圆的周长×高 S=ch=πdh= 2πrh圆柱的表面积=侧面积+上下底面面积 S= 2πrh +2πr2圆柱的体积=底面积×高 V=Sh=πr2h圆锥的体积=底面积×高÷3 V=Sh÷3=πr2h÷3三、量的计量(单位换算)1. 长度单位换算1千米=1000米 1米=10分米=100厘米 1分米=10厘米 1厘米=10毫米2. 面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米=10000平方厘米 1平方分米=100平方厘米1平方厘米=100平方毫米3. 重量单位换算1吨=1000千克 1千克=1000克1千克=1公斤4. 体积单位换算1立方米=1000立方分米 1立方分米=1000立方厘米 1立方米=1000000立方厘米 1升=1立方分米 1毫升=1立方厘米 1升=1000毫升5. 人民币单位换算1元=10角 1角=10分1元=100分6. 时间单位换算1世纪=100年 1年=12月一年四个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天,闰年2月29天平年全年365天,闰年全年366天1日=24小时 1时=60分 1分=60秒 1时=3600秒。
常见的数量关系式
常见的数量关系式
数量关系式:
1,每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2,1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3,速度×时间=路程路程÷速度=时间路程÷时间=速度
4,单价×数量=总价总价÷单价=数量总价÷数量=单价
5,工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6,加数+加数=和一个加数=和-另一个加数
7,被减数-减数=差被减数-差=减数差+减数=被减数
8,因数×因数=积积÷一个因数=另一个因数
9,被除数÷除数=商被除数÷商=除数商
×除数=被除数
时间单位换算:
1世纪=100年1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天,闰年2月29天
平年全年365天,闰年全年366天
1日=24小时1时=60分
1分=60秒1时=3600秒
质量单位换算:
1吨=1000 千克1千克=1000克
1千克=1公斤
长度单位换算:
(1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米
相遇问题:
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间。
常见的数量关系
常见的数量关系 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】常见的数量关系1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。
例:90÷5÷6=90÷(5×6)6、1公里=1千米 1千米=1000米1米=10分米 1分米=10厘米 1厘米=10毫米1平方米=100平方分米 1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米 1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克 1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。
1亩=平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米7、什么叫比:两个数相除就叫做两个数的比。
如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。
如3:χ=9:1811、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k( k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
小学数学常见数量关系和计算公式
小学数学常见数量关系和计算公式数量关系是数学中的一个基本概念,它涉及到物体或事物之间的数量的大小和变化。
在小学数学中,常见的数量关系有等量关系、比例关系和代数关系等。
下面将介绍一些常见的数量关系和计算公式。
1.等量关系:等量关系是指两个物体或事物具有相等的数量。
在小学数学中,加法和减法是最常见的表达等量关系的运算。
(1)加法:加法是指将两个或多个数或量相加,得到它们的总和。
它的计算公式是:a+b=c,其中a、b是被加数,c是和。
(2)减法:减法是指将一个数或量从另一个数或量中相减,得到它们的差。
它的计算公式是:a-b=c,其中a是被减数,b是减数,c是差。
2.比例关系:比例是指两个或多个数之间的相对大小关系。
在小学数学中,常见的比例关系有比例、百分比和倍数。
(1)比例:比例是指两个或多个数之间的相对大小关系。
它的计算公式是:a:b=c:d,其中a、c是比例的前项,b、d是比例的后项。
(2)百分比:百分比是指一部分与整体之间的比例关系。
它的计算公式是:百分比=(一部分÷整体)×100%。
(3)倍数:倍数是指一个数可以被另一个数整除。
它的计算公式是:a×b=c,其中a是倍数,b是乘数,c是积。
3.代数关系:代数关系是指通过字母符号和运算符号表示数与量之间的关系。
在小学数学中,常见的代数关系有等式、不等式和方程等。
(1)等式:等式是指两个数或量之间相等的关系。
它的计算公式是:a=b,其中a、b是等式的两边。
(2)不等式:不等式是指两个数或量之间不等的关系。
它的计算公式可以是:a>b (大于)、a<b(小于)或a≥b(大于等于)、a≤b(小于等于)。
(3)方程:方程是指含有未知数的等式。
它的计算公式是:a+b=c,其中a、b是已知数,c是未知数。
总结起来,小学数学常见的数量关系和计算公式包括等量关系的加法和减法、比例关系的比例、百分比和倍数,以及代数关系的等式、不等式和方程等。
常见的数量关系
常见的数量关系
(1)工作时间×工作效率=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
(2) 速度×时间=路程路程÷速度=时间路程÷时间=速度
(3) 单价×数量=总价总价÷数量=单价总价÷单价=数量
(4) 单产量×数量=总产量总产量÷单产量=数量
总产量÷数量=单产量
(5) 每份数×份数=总数
(6) 本金×利率×时间=利息
(7) 植树问题中的主要数量关系是:
间隔数×每个间隔的米数=一共的米数;
(8) 锯木头问题的主要数量关系是:
锯的次数×锯一次用的时间=一共要的时间;
(9) 爬楼梯问题中的数量关系式是:
楼梯的级数÷每两层楼之间楼梯的级数=楼梯的段数。
(10) 敲钟问题的主要关系式是:
等待的次数×等待一次用的时间=一共用的时间
(10) 成活率=成活棵数/总棵数
(11) 合格率=合格/总数。
《常见的数量关系》课件
数量关系的分类
比例关系
表示两个数量之间的相对 大小,通常用分数或百分 数表示。
倍数关系
表示一个数量是另一个数 量的几倍,通常用乘法表 示。
百分比关系
表示部分与整体的关系, 通常用于表示某一比例或 部分所占的比重。
PART 02
常见的数量关系类型
REPORTING
正比例关系
01
02
03
04
定义
当两个量之间的比值保持恒定 时,它们之间的关系被称为正
概念
数量关系是数学和逻辑推理的基 础,是日常生活和工作中必不可 少的思维工具。
数量关系的重要性
01
02
03
解决实际问题
数量关系能够帮助我们解 决实际问题,如计算成本 、预算、评估等。
提高思维能力
掌握数量关系能够提高我 们的逻辑思维和推理能力 ,有助于更好地理解和分 析问题。
促进交流与合作
在商业、工程和其他领域 ,掌握数量关系能够促进 有效的交流与合作。
比例关系。
公式
y/x=k(k为常数)
特性
当一个量增加时,另一个量也 相应增加,且它们的比值不变
。
实例
当路程一定时,速度与时间成 正比;当时间一定时,速度与
路程成正比。
反比例关系
定义
当两个量之间的乘积保持恒定 时,它们之间的关系被称为反
比例关系。
公式
xy=k(k为常数)
特性
当一个量增加时,另一个量相 应减少,且它们的乘积不变。
总结词
比例计算是常见的数量关系之一,用于描述两个量之间的相对大小。
详细描述
比例计算通常用于比较两个量之间的相对大小,其计算公式为“比例 = 相对数量 / 总量”。例如,如果某公司去年销售额为100万元,今年销售额为120万元,那 么今年销售额与去年之比为120/100=1.2,表示今年销售额增长了20%。
小学常用的数量关系
【常用的数量关系】1、每份数×份数=总数;总数÷每份数=份数;总数÷份数=每份数2、1倍数×倍数=几倍数;几倍数÷1倍数=倍数;几倍数÷倍数=1倍数3、速度×时间=路程;路程÷速度=时间;路程÷时间=速度4、单价×数量=总价;总价÷单价=数量;总价÷数量=单5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率;6、加数+加数=和;和-一个加数=另一个加数7、被减数-减数=差;被减数-差=减数;差+减数=被减数8、因数×因数=积;积÷一个因数=另一个因数9、被除数÷除数=商;被除数÷商=除数;商×除数=被除数【小学数学图形计算公式】1、正方形(C:周长, S:面积, a:边长)周长=边长×4; C=4a 面积=边长×边长; S=a×a2、正方体(V:体积, a:棱长)表面积=棱长×棱长×6; S表=a×a×6 体积=棱长×棱长×棱长; V= a×a×a3、长方形(C:周长, S:面积, a:边长, b:宽)周长=(长+宽)×2; C=2(a+b)面积=长×宽; S=a ×b4、长方体(V:体积, S:面积, a:长, b:宽, h:高)(1)表面积=(长×宽+长×高+宽×高)×2;S=2(ab+ah+bh)(2)体积=长×宽×高; V=abh 5、三角形(S:面积, a:底, h:高)面积=底×高÷2 ; S=ah÷2 三角形的高=面积×2÷底三角形的底=面积×2÷高 6、平行四边形(S:面积, a:底, h:高)面积=底×高; S=ah 7、梯形(S:面积, a:上底, b:下底, h:高)面积=(上底+下底)×高÷2; S=(a+b)×h÷28、圆形(S:面积, C:周长,π:圆周率, d:直径, r:半径)(1)周长=π×直径π=2×π×半径; C=πd=2πr (2)面积=π×半径×半径;S= πr29、圆柱体(V:体积, S:底面积, C:底面周长, h:高, r:底面半径)(1)侧面积=底面周长×高=Ch=πdh=2πrh (2)表面积=侧面积+底面积×2 (3)体积=底面积×高10、圆锥体(V:体积, S:底面积, h:高, r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、相遇问题:相遇路程=速度和×相遇时间;相遇时间=相遇路程速度和;速度和=相遇路程÷相遇时间13、浓度问题溶质的重量+溶剂的重量=溶液的重量;溶液的重量×浓度=溶质的重量;溶质的重量÷溶液的重量×100%=浓度;溶质的重量÷浓度=溶液的重量14、利润与折扣问题:利润=售出价-成本;利润率=利润÷成本×100%;利息=本金×利率×时间;税后利息=本金×利率×时间×(1-利息税)【常用单位换算】(一)长度单位换算1千米=1000米; 1米=10分米; 1分米=10厘米;1米=100厘米;1厘米=10毫米(二)面积单位换算: 1平方千米=100公顷; 1公顷=10000平方米;1平方米=100平方分米; 1平方分米=100平方厘米; 1平方厘米=100平方毫米(三)体积(容积)单位换算:1立方米=1000立方分米; 1立方分米=1000立方厘米;1立方分米=1升; 1立方厘米=1毫升; 1立方米=1000升(四)重量单位换算: 1吨=1000千克; 1千克=1000克; 1千克=1公斤1日=24小时; 1时=60分=3600秒; 1分=60秒;(四)分数的基本性质分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。
常见的数量关系
常见的数量关系1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。
例:90÷5÷6=90÷(5×6)6、1公里=1千米 1千米=1000米1米=10分米 1分米=10厘米 1厘米=10毫米1平方米=100平方分米 1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米 1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克 1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。
1亩=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米7、什么叫比:两个数相除就叫做两个数的比。
如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。
如3:χ=9:1811、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k( k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
(完整版)常用的数量关系式
常用的数量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率4、加数+加数=和和-一个加数=另一个加数5、被减数-减数=差被减数-差=减数差+减数=被减数6、因数×因数=积积÷一个因数=另一个因数6、被除数÷除数=商被除数÷商=除数商×除数=被除数在有余数的除法中: (被除数-余数)÷除数=商7、总数÷总份数=平均数8、相遇问题相遇路程=速度和×相遇时间或相遇路程=快车速度×相遇时间+慢车速度×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间9、利息=本金×利率×时间10、收入-支出=结余单产量×数量=总产量量的计量在日常生活、生产劳动和科学研究中,经常要进行各种量的计量,我国法定计量单位与国际计量单位一致。
名数;数和单位名称合起来叫做名数。
单名数:只含有一种单位名称的名数叫单名数。
复名数:含有两种或两种以上单位名称的名数叫复名数。
×进率高级单位的名数低级单位的名数÷进率长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=1000000平方米1公顷=10000平方米1平方千米=100公顷1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体积(容积)单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1立方分米=1升1立方厘米=1毫升1升=1000毫升质量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月=4个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒练习:填空(1). 1时30分=()时40分=()时时=()分0.7时=()分平方米=()平方分米125克=()千克2 立方分米=()升=()毫升10 吨=()吨()千克()元=50元8角1分(2).1米∶ 10厘米=()∶()=()∶()100毫升∶1升=()∶()=()∶ ()(3).填上适当的计量单位名称。
常见数量关系
常见数量关系
1、相等关系:当两个数相等时,它们的数量关系是相等的。
例如:2+2=4,4等于2+2,因此2和2的数量关系是相等的。
2、大于关系:当一个数大于另一个数时,它们的数量关系是大于关系。
例如:3>2,因此3的数量比2的数量多。
3、小于关系:当一个数小于另一个数时,它们的数量关系是小于关系。
例如:2<3,因此2的数量比3的数量少。
4、多于关系:当一个数多于另一个数时,它们的数量关系是多于关系。
例如:2+1>2,因此2+1的数量比2的数量多。
5、少于关系:当一个数少于另一个数时,它们的数量关系是少于关系。
例如:2-1<2,因此2-1的数量比2的数量少。
6、倍数关系:当一个数是另一个数的倍数时,它们的数量关系是倍数关系。
例如:2*2=4,因此2的数量是4的两倍。
常见数量关系
小学四年级常用数量关系汇总
1、每份数×份数=总数总数÷每份数=份数
总数÷份数=每份数
2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3、速度×时间=路程路程÷速度=时间路程÷时间=速度
4、单价×数量=总价总价÷单价=数量总价÷数量=单价
5、工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6、加数+加数=和和-一个加数=另一个加数
7、被减数-减数=差被减数-差=减数差+减数=被减数
8 、因数×因数=积积÷一个因数=另一个因数
9、被除数÷除数=商被除数÷商=除数商×除数=被除数
10、总数量÷总份数=平均数
11、和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数
12、和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)
13、差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见的数量关系
1、单价×数量=总价
2、单产量×数量=总产量
3、速度×时间=路程
4、工效×时间=工作总量
5、加数+加数=和一个加数=和+另一个加数
被减数-减数=差减数=被减数-差被减数=减数+差
因数×因数=积一个因数=积÷另一个因数
被除数÷除数=商除数=被除数÷商被除数=商×除数
有余数的除法:被除数=商×除数+余数
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。
例:90÷5÷6=90÷(5×6)
6、1公里=1千米1千米=1000米
1米=10分米1分米=10厘米1厘米=10毫米
1平方米=100平方分米1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1吨=1000千克1千克= 1000克= 1公斤= 1市斤
1公顷=10000平方米。
1亩=666.666平方米。
1升=1立方分米=1000毫升1毫升=1立方厘米
7、什么叫比:两个数相除就叫做两个数的比。
如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:18
9、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。
如3:χ=9:18
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k( k一定)或kx=y
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:x×y = k( k一定)或k / x = y
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。
其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、要学会把小数化成分数和把分数化成小数的化发。
16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。
(或几个数公有的约数,叫做这几个数的公约数。
其中最大的一个,叫做最大公约数。
)
17、互质数:公约数只有1的两个数,叫做互质数。
18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。
(通分用最小公倍数)
20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
(约分用最大公约数)
21、最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。
个位上是0、2、4、6、8的数,都能被2整除,即能用2进行
约分。
个位上是0或者5的数,都能被5整除,即能用5进行约分。
在约分时应注意利用。
22、偶数和奇数:能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
1不是质数,也不是合数。
28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
29、利率:利息与本金的比值叫做利率。
一年的利息与本金的比值叫做年利率。
一月的利息与本金的比值叫做月利率。
30、自然数:用来表示物体个数的整数,叫做自然数。
0也是自然数。
31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。
如3. 141414……
32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。
如3. 141592654
33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。
如3. 141592654……
34、什么叫代数? 代数就是用字母代替数。
35、什么叫代数式?用字母表示的式子叫做代数式。
如:3x =ab+c。